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Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial
training to generate new samples with the same (potentially very complex) statistics as the training samples.
One major form of training failure, known as mode collapse, involves the generator failing to reproduce the
full diversity of modes in the target probability distribution. Here, we present an effective model of GAN
training, which captures the learning dynamics by replacing the generator neural network with a collection
of particles in the output space; particles are coupled by a universal kernel valid for certain wide neural
networks and high-dimensional inputs. The generality of our simplified model allows us to study the
conditions under which mode collapse occurs. Indeed, experiments which vary the effective kernel of the
generator reveal a mode collapse transition, the shape of which can be related to the type of discriminator
through the frequency principle. Further, we find that gradient regularizers of intermediate strengths can
optimally yield convergence through critical damping of the generator dynamics. Our effective GANmodel
thus provides an interpretable physical framework for understanding and improving adversarial training.
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I. INTRODUCTION

In the past decade, deep generative models have proven
to be an impressive tool for sampling from complex
distributions. In particular, generative adversarial networks
(GANs) have been used to produce realistic data and
represent a powerful framework for training generative
models [1–4]. Consequently, understanding and improving
the training of GANs is of considerable interest.
GANs comprise two neural networks: one called the

generator Gθ and the other called the discriminator Dϕ

(parametrized by θ and ϕ, respectively):

generator Gθ∶ Rn → Rd; ð1Þ

discriminator Dϕ∶ Rd → R: ð2Þ

The generator is a function which maps randomly selected
points in the latent space to points in data space. The

discriminator assigns scores to these simulated data points,
as well as to genuine samples from the dataset. During
training, the discriminator’s goal is to distinguish real data
from simulated data (through high and low scores, respec-
tively), while the generator’s goal is to increase the score
assigned to its outputs by the discriminator [5–8].

Although GANs are both powerful and popular, they are
notoriously hard to train. The adversarial nature of the
dynamics distinguishes a GAN’s objective Lðϕ; θÞ from a
standard loss function—one that is bounded from below
and which the training algorithm seeks to minimize. Rather
than living at the minimum, the ideal parameter settings
here are at the saddle points of the loss landscape [5]:

θ� ¼ argmin
θ

max
ϕ

Lðϕ; θÞ: ð3Þ

Convergence to such an equilibrium is difficult to attain,
as it requires a careful balancing of the two competing
networks during training.
One important form of nonconvergence commonly

encountered during GAN training is known as mode
collapse [9,10]. Mode collapse occurs when samples from
the generator fail to capture the full diversity of modes
present in the dataset. Instead, the generator’s output
“collapses” as it only produces samples from relatively
few of the available modes in the data distribution.
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When mode collapse occurs, during training the
generator will focus its distribution on a small subset
of the overall data distribution. Eventually, the discrimi-
nator learns to identify the concentrated output of the
generator, at which point the generator will switch from
its current specialization to another [9,10]. The gener-
ator’s output switching from mode to mode, rather than
converging on the distribution as a whole, is a key
symptom of mode collapse.
Many practically useful training techniques for avoiding

mode collapse have been proposed, often involving modi-
fied objective functions and novel regularizers [1,5,7,9].
Here, rather than constructing empirical methods for
reducing mode collapse, we seek to understand this
phenomenon from the perspective of dynamical systems,
determine the physical meaning of competing factors, and
derive principles to guide the training of GANs.
The dynamics of learning in neural networks have been

studied in weight space [11,12]. Here, we map GANs to an
effective model in which the output of the generator
network is replaced by N particles in Rd. The learning
dynamics in GANs can then be studied in the output space
by following the motion of the N “output” particles, which
descend the loss landscape set by both the discriminator’s
score function and the collective state of N particles. We
additionally incorporate a static neural tangent kernel
(NTK)—a feature of realistic GANs using an infinite-width
generator. Within our effective model, the NTK induces a
dependence of the velocity of any particle on the discrimi-
nator gradient at the location of all particles. As a result of
the sampling procedure of generators and the form of
common NTKs, we show the presence of universality
within a restricted set of neural network architectures;
many different types of infinite-width generator neural
networks may lead to the same particle dynamics. As a
result of the sampling procedure of generators and the form
of common NTKs, we show the presence of universality—
many different types of infinite-width generator neural
networks map to the same particle dynamics.
We argue that this effective model provides a simplified

and interpretable framework in which to understand mode
collapse. In particular, applying this model to a low-
dimensional target distribution, we show a transition from
convergence to mode collapse as a function of the NTK and
the relative training time. We provide a physical interpre-
tation which explains this transition in terms of learning
characteristics of the discriminator.
Finally, we use this model to study GAN regularization—

modification of the training objective in order to promote
convergence. We find that when a gradient regularizer [13] is
introduced, it results in a reduction of mode collapse in our
model GAN. Additionally, by sweeping over regularization
strengths, we are able to observe underregularized, over-
regularized, and critically regularized regimes. These
regimes can be understood by analogy to the physics of a

damped oscillator and its under, over, and critically damped
cases. The regularizer, which incentivizes a “smoother”
generator, here plays the role of a damping term.

II. TRAINING AND FAILURE

In GANs, the generator is a neural network Gθ, which is
fed random inputs, z∈Rn, selected from some noise
distribution qðzÞ. The generator outputs,GθðzÞ∈Rd, there-
fore represent samples from its implicit probability dis-
tribution in data space pθðXÞ. Conceptually, the generator
and discriminator seek to minimize and maximize an
objective expressing the expected difference between the
dataset and the generator’s outputs:

Lðϕ; θÞ ¼ hDϕðxÞix∼pðxÞ − hDϕ(GθðzÞ)iz∼qðzÞ: ð4Þ

The function pðxÞ is the probability distribution of samples
in the dataset, while qðzÞ is the distribution from which
seeds in the latent space are sampled.
In practice, however, the discriminator’s objective is

often modified to include regularization, restricting the
magnitude of the discriminator network and promoting
stability [7,14]. Different GAN implementations exist,
many with distinct objectives [14]. Here we consider
objective functions of the following form [7,8,14,15] that
characterize the discriminatory power under constraints:

LD ≡ hDϕ(GθðzÞ)iz∼qðzÞ − hDϕðxÞix∼pðxÞ þ λRðDϕ; GθÞ;
ð5Þ

LG ≡ hDϕðxÞix∼pðxÞ − hDϕ(GθðzÞ)iz∼qðzÞ: ð6Þ

LD and LG define the objectives for the discriminator
and generator, respectively, where RðDϕ; GθÞ represents a
regularizer on the discriminator, limiting its magnitude
under a norm of interest (here, we use an L2-norm on the
discriminator weights ϕ) with λ ≥ 0 denoting the strength
of the regularizer.
The discriminator parameters ϕ evolve to maximize the

expected difference between the discriminator’s value on
the real data and the generated data [Eq. (5)], while the
generator parameters θ evolve to minimize this difference:

ϕ̇ ¼ −αD
dLD

dϕ
; θ̇ ¼ −αG

dLG

dθ
: ð7Þ

The discriminator and generator evolution occurs at indi-
vidual learning rates αD and αG.
Practically, in neural networks, the loss function is

defined using mini batches of N samples of real data
and generated data, both of which are resampled at each
training step:
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LðNÞ
D ≡ 1

N

XN
i¼1

Dϕ(GθðziÞ) −
1

N

XN
i¼1

DϕðxiÞ þ λRðDϕ; GθÞ;

ð8Þ

LðNÞ
G ≡ 1

N

XN
i¼1

DϕðxiÞ −
1

N

XN
i¼1

Dϕ(GθðziÞ): ð9Þ

Training is performed in iterations. First, for ndisc steps,
the discriminator is updated according to its stochastic
gradient:

ϕ ← ϕ − αD∇ϕL
ðNÞ
D : ð10Þ

Then, for a single step, the generator is updated analo-
gously with stochastic gradient descent:

θ ← θ − αG∇θL
ðNÞ
G : ð11Þ

Alternating updates are repeated until convergence, or until
training is halted after a large number of iterations.
Mode collapse occurs when the generator’s outputs focus

on a few of the available modes, rather than replicating the
full data distribution. During training, once the discrimi-
nator learns that the generator is focused at a particular
mode, it assigns low scores to the data points coming from
this mode. The response of the generator is then to shift its
output distribution to another mode. Mode collapse is
therefore characterized by the generator’s distribution
switching from mode to mode throughout training.

III. GENERATOR PARTICLES
AND UNIVERSALITY

Rather than following the dynamics of generator param-
eters [Eq. (11)], we study instead the time evolution of
generator outputs treated as particles in data space (Fig. 1),
an approach applied in Ref. [16] and later in Ref. [17].
While each generator parameter follows its own local
(stochastic) gradient, as we will show below, the dynamics
of generator outputs are explicitly correlated.
With a time-dependent vector of parameters θt, a fixed

seed z maps to a point in data space at time t according to

Xt ¼ GθtðzÞ:

This mapping relates updates in parameter space dθt to
updates in data space dXt by

dXt ¼
dGθðzÞ
dθ

T
����
θ¼θt

dθt
dt

dt: ð12Þ

Under gradient dynamics, the generator parameters evolve
according to

θ̇t ¼ −αG
dLG

dθt
¼ αG

d
dθt

hDϕ(GθðzÞ)iz∼qðzÞ; ð13Þ

and so

dθt
dt

¼ αG
d
dθ

�Z
dz0qðz0ÞD(Gθðz0Þ)

�����
θ¼θt

ð14Þ

¼ αG

Z
dz0qðz0Þ∇jD(Gθtðz0Þ)

∂Gj
θðz0Þ
∂θ

����
θ¼θt

: ð15Þ

To see the corresponding data space dynamics, we plug this
into Eq. (12) and write

dXi
t ¼ αGdt

Z
dz0Γi;j

θt
ðz; z0Þ∇jD(Gθtðz0Þ)qðz0Þ; ð16Þ

where i and j index the components of the data vector Xt
and repeated indices are summed over.
Moreover, we have introduced the neural tangent

kernel [18] Γi;j
θ ðz; z0Þ, defined by

Γθ∶ Rn ×Rn → Rd×d; ð17Þ

Γi;j
θ ðz; z0Þ ¼

X
k

∂GiðzÞ
∂θk

∂Gjðz0Þ
∂θk

; ð18Þ

where n and d are the dimensions of the inputs and the
data space, respectively, and θk denotes the kth generator
parameter. Importantly, Eq. (16) makes clear that the NTK
Γθ couples the generator outputs; it specifies to what extent
the dynamics of the generator particle at X ¼ GθðzÞ is

FIG. 1. Mapping to an effective GAN model. An illustration of
how the input vectors z in the seed space Z (sampled from a high-
dimensional sphere) map to particles in the data space X. During
GAN training, generator parameters θt evolve over time in the Θ
space (upper left, blue trajectory). As a result, given fixed inputs
fzg (lower left), the set of data space outputs fXtg also evolves in
time (lower right). It is the dynamics of these points in data space
that our effective model directly describes.
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influenced by the discriminator gradients at the position
X0 ¼ Gθðz0Þ of all other particles.
In general, NTKs evolve during training. However, for

larger-width networks, the weights θt will asymptotically
remain in the vicinity of their initial values θ0. The
network’s NTK, which involves a sum over the network’s
weights, changes even less—in the infinite-width limit
becoming fixed at initialization [18,19] (see Appendix G
for an example of such large-width training dynamics). In
this work, we will assume that the generator is in this
infinite-width regime, and enforce that the generator NTK
remains fixed during training: Γθt ¼ Γθ0 .
The infinite-width regime is of particular interest, as the

performance of neural networks has been observed to
improve as their width is increased. Additionally, in this
limit, it becomes possible to derive analytical results,
as certain theoretical aspects of neural networks simplify
[18–22]. The exact form of the infinite-width NTK can be
found for particular network architectures, such as those
with a ReLU or Erf activation [22].

A. Mapping to model GANs

In generative adversarial networks, random seeds are
provided to the generator by sampling from a so-called
noise distribution qðzÞ at each iteration. Usually, this is
taken to be a high-dimensional Gaussian. Noting that
points from N nð0; 1Þ are approximately on a sphere of
radius

ffiffiffi
n

p
in n dimensions [23], we take the noise

distribution as a uniform selection from a (n − 1) sphere.
For certain activations (most prominently, ReLU), if

input seeds have a fixed magnitude, then the infinite-width
NTK will be a function only of the angle between inputs,
φz;z0 : Γðz; z0Þ ¼ Γðφz;z0 Þ [22,24]. Additionally, these sam-
ples selected uniformly from a high-dimensional sphere
will, with high probability, be nearly orthogonal [25].
Therefore, given such an NTK and high-dimensional
inputs, it becomes possible to estimate the distribution of
NTK values within a mini batch.
Using these observations, we propose a simplification of

the GAN training protocol. Within our simplified model, we
take the generator to be of large width with a static NTK. The
noise distribution qðzÞ is taken to be a uniform distribution
over a high-dimensional sphere. Finally (as in wide ReLU
networks with inputs of fixed magnitude), we take the NTK
to be a function of the dot product of inputs only.
Our first assumption fixes the NTK at initialization

[18,22]. The latter two concentrate the pairwise NTK values,
obtained using one sample of inputs fzg, to two character-
istic numbers g1 and g2. The first number, g1 ≡ Γðφz;z ¼ 0Þ,
corresponds to evaluations involving the same point, and the
second, g2 ≡ Γðφz;z0 ¼ π=2Þ, corresponds to pairs of distinct
points chosen from the high-dimensional latent space. The
values of g1 and g2 are determined by the architecture of the
network, but can also be modified by, for instance, the use of
batch normalization [26,27].

The fact that an entire generator neural network, with
its activation functions and individual weight and bias
distributions, can be to an extent characterized by just
two numbers, suggests a sort of universality within this
particular set of neural network architectures. Many
different generator neural network architectures may be
mapped onto the same system, parametrized only by
(g1, g2). This universality can be observed in Fig. 2, in
which two distinct networks (one with ReLU activation,
the other with Erf, both using a single hidden layer
with 2048 units [28]) are observed to have very similar
pairwise NTK values across a sample from a unit sphere
in 100 dimensions.
Additionally, we consider a restricted version of GAN

training. Rather than resampling from the noise distribution
[i.e., taking a new mini batch from qðzÞ] at each training
iteration, we instead train by effectively using one fixed set
of N generator inputs fzg.
Although our approximations reduce the model’s exact

resemblance to practical GAN frameworks, our simplified
model still tackles the same min-max game that governs the
dynamics of a full GAN. Moreover, while in practice both
the dimension of latent space and the width of neural
networks are finite, our assumptions yield reasonable and
efficient approximations that allow systematic experimen-
tation. Most importantly, the resulting simplifications
enable physical interpretation and control of learning
dynamics, which provide broader insights beyond the
limiting regime.

FIG. 2. Universality of NTK values. Two distinct network
architectures result in similar distributions of sampled NTK
values. Fifty inputs fzig are sampled from a unit sphere in
100 dimensions. Using two untrained networks, the NTK values
for all pairs of inputs are computed. The red histogram is obtained
using a single hidden-layer network (width 2048) with an Erf
activation, while for the blue histogram a ReLU activation is
used. Zero-mean normal distributions with distinct variances are
used to initialize two networks’ weights and biases. Despite their
differences, the two networks’ NTK values are approximately
characterized by the same two numbers, Γðφz;z0 ≈ π=2Þ for
distinct inputs and Γðφz;z ¼ 0Þ for pairs of the same input.
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Based on these simplifications, we propose a coarse-
grained NTK of the form

Γi;jðz; z0Þ ¼ δi;j(g1δz;z0 þ g2ð1 − δz;z0 Þ): ð19Þ

This NTK is static throughout training, and its two
constants, g1 and g2, characterize the NTK values for pairs
of identical and distinct points, respectively.
This NTK allows us to further simplify the effective

model—ignoring the latent space entirely, and instead
explicitly correlating particles in data space:

Γi;j
a;b ¼ δi;jðg1δa;b þ g2ð1 − δa;bÞÞ: ð20Þ

Here, a and b index particles, while i and j index
components in data space. Out front, δi;j can be understood
as implying a lack of correlation between the gradients of
output degrees of freedom of a wide neural network—this is
exact in the infinite-width limit [18] and further described
in Appendix H. g1 and g2 set the degree to which the
discriminator gradient at identical and distinct points,
respectively, contribute to a generator particle’s velocity [29],
Using this effective NTK, we can model the dynamics

of data points in output space by dynamics of coupled
generator particles:

dXi
a

dt
¼ αG

N

XN;d

b;j

Γi;j
a;b∇jDðXbÞ: ð21Þ

These dynamics are reminiscent of flocking behavior,
in which local velocities are found through a spatial average
[30]. Here, however, the average is not over velocities,
but over discriminator gradients. In addition, the average is
taken over all particles, rather than over a local region.

B. Multimodal target

We now proceed with our simplified GAN training
protocol, replacing the generator network with a collection
of N particles in data space and using the generator update
rule of Eq. (21) rather than that of Eq. (16).
As a case study, we consider a canonical two-

dimensional problem of training a GAN on a distribution
of eight Gaussians arranged in a circle of radius 2, each
having a standard deviation 0.02 [31]. Since each Gaussian
can naturally represent a distinct mode, this data distri-
bution is used throughout GAN literature as a toy dataset
for observing mode collapse [9,10,13,32]. Mode collapse
in this context would correspond to a generator whose
outputs are focused on one, or a subset, of the eight
Gaussians. During training, mode collapse would cause
the outputs to oscillate between distinct modes, without
splitting to cover all eight.
The generator particles are taken to be 2000 parametrized

points in the plane, initialized as a Gaussian distribution with

σ ¼ 0.5, while the discriminator is a ReLU network with
four hidden layers of width 512 [33]. The discriminator
parameters ϕ and the generator points Xa are both updated
during training according to their objective functions,
following training routine described in Algorithm 1.
In Figs. 3 and 4, we show time slices of the training

progress. The generator particles are shown in white on a
heat map of the discriminator values. We begin by running
an experiment using a diagonal NTK (g2=g1 ¼ 0 [35]). In
this case, the generator particles independently ascend the
local gradient of the discriminator: Ẋi

a ∝ ∇iDðXaÞ. Visually
(Fig. 3), this corresponds to each particle (in white) drifting
up the color gradient (taking steps toward lighter regions).
Meanwhile, the discriminator modifies its parameters to
increase the difference between the expectation on the real
data and the generator particles—assigning higher values
(brighter colors) to the eight data points in black, and lower
values (darker colors) to the particles in white.
We observe the result of this dynamic in Fig. 3. Initially,

the discriminator assigns low values to the cluster of
particles. However, the initial cloud of particles rapidly
splits apart, and the adversarial dynamic results in inform-
ative gradients being passed to the generator particles, which
quickly converge to the full multimodal distribution.

Generator points at step 100

Generator points at step 1700

Generator points at initialization

Generator points at step 580

FIG. 3. Convergence of the model GAN dynamics under a
diagonal NTK (g2 ¼ 0). The generator particles are shown in
white, while the discriminator values are color coded, with higher
values shown in brighter colors. Because the NTK is diagonal, the
particles’ velocities are not explicitly correlated, and they ascend
their local gradients (from darker to brighter colors), Ẋ ∝ ∇DðXÞ.
Meanwhile, the discriminator attempts to maximize the differ-
ence between its expectation on the data (black points) and
generator particles (in white). Initially, the discriminator assigns a
low value to the cluster’s location. Consequently, the cluster
rapidly splits apart (step 100), with each point following the local
discriminator gradient. The combined adversarial dynamics are
seen to result in convergence to the eight modes.
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In a second experiment, we begin with the same initial-
ization, but instead use an NTK satisfying g2=g1 ¼ 1=5.
Because of the nontrivial off-diagonal terms of the NTK, the
velocities of the particles are correlated. As is shown in
Fig. 4, generator particles (in white) no longer split apart.
Instead, they stay together as the entire cluster shifts from
mode to mode indefinitely. The discriminator repeatedly
attempts to assign low values (darker colors) to the generator
particle cluster’s spatial region.
This behavior is a key signature of mode collapse, and

suggests an understanding of this phenomenon through the
lens of our model. For the remainder of this work, we will
identify the observed failure of convergence and switching
between modes with mode collapse. By varying g2=g1, we
will probe the onset of this failure mode and investigate
what training algorithms and discriminator characteristics
would lead to improved performance.

IV. MODEL GAN EXPERIMENTS—THE MODE
COLLAPSE TRANSITION

We have observed that the ratio g2=g1 may be increased
to induce mode collapse. Apart from the architecture of the
discriminator network, the remaining adjustable parameters

in Algorithm 1 concern the relative training dynamics of
the discriminator and generator. The parameters αD and αG
control the step size of the discriminator and generator,
respectively, while ndisc tunes the number of discriminator
steps taken for each generator step.
We will therefore vary these parameters to examine

the relationship between g2=g1 and the discriminator’s
dynamics. The latter can be varied in two ways: by
modifying the learning rate αD or by modifying the value
of ndisc used in the algorithm. Here, we show the result of
modifying ndisc, leaving αD experiments (which produce
similar results) to Appendix A.
To characterize whether, at a given time, generator

particles have converged or collapsed to a single mode,
we define a metric based on the entropy of the distribution.
Letting Pi be the fraction of particles for which the ith
mode is the nearest, we define the following:

mode collapse metric ¼ logð8Þ þ
X
i

Pi logðPiÞ: ð22Þ

Note that Pi ¼ 1=8, i ¼ 1; 2;…; 8, would give a complete
mode coverage with an even split, and have a value of 0.
On the other hand, P1 ¼ 1, Pi>1 ¼ 0 would correspond to
all generator points being nearest to a single mode, giving a
mode collapse metric value of log 8.

To further characterize the quality of convergence of
the generator particles, we can compute the average log-
likelihood, ð1=NÞPa log½pðXaÞ�, where pðXÞ is the prob-
ability density of the multimodal Gaussian distribution.

Generator points at step 1660

Generator points at step 4980

Generator points at initialization

Generator points at step 3000

FIG. 4. Model GAN dynamics exhibit mode collapse under
all-to-all coupling by a nondiagonal NTK (g2=g1 ¼ 1=5). As in
Fig. 3, dynamics are depicted over time. During training, the
discriminator seeks to assign higher values (brighter colors) to
real data points (the eight points in black), and lower values
(darker colors) to generated points (white dots). As had occurred
in Fig. 3, the discriminator initially places its minimum at the
position of the generator particle cluster. Now, however, due to
correlations in particle velocity, the cluster no longer splits apart.
Instead, it shifts away from discriminator minima before splitting
can happen. As a result, the cluster of generator particles switches
from mode to mode, as the discriminator attempts to “catch up”—
a behavior indicative of mode collapse.

Algorithm 1. The coarse-grained, ðg1; g2Þ GAN training algo-
rithm.

for iteration number do
for ndisc do
i Sample N data points,fxig from the eight-Gaussian
distribution.

ii Compute

LðNÞ
D ¼ 1

N

XN
a¼1

DϕðXaÞ −
1

N

XN
l¼1

DϕðxlÞ þ
λ

2

X
k

ϕ2
k

and update discriminator parameters by descending its
stochastic gradient

ϕ ← ϕ − αD∇ϕL
ðNÞ
D

end for
iii update Xa according to Eq. (21)

Xi
a ← Xi

a þ αG
1

N

XN;d

b;j

Γi;j
a;b∇jDðXbÞ

end for
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The combination of these two metrics (mode collapse and
log-likelihood) indicates whether the generator points have
both avoided mode collapse and successfully converged to
the modes of the distribution.

A. GAN setup

To maximize the interpretability of our results, we
employ a simpler discriminator with a single wide hidden
layer (2048 units):

DðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

width

r
aiσðwj

ix
j þ biÞ: ð23Þ

Details of the initialization can be found in Appendix A.
The activation function is set to ReLU, σðxÞ ¼ maxð0; xÞ.
Experiments employing a Tanh activation were also per-
formed and the results can be found in Appendix C. The
target data distribution is again taken to be the eight
Gaussians. A total of 200 generator particles are initialized
at ð 1ffiffi

2
p ; 1ffiffi

2
p Þ with a standard deviation of 0.1.

The discriminator loss function is defined as

LD ¼ hDðXÞigen − hDðxÞitarget
þ 1

width

�X
i;j

ðwj
iÞ2 þ

X
i

a2i þ
X
i

b2i

�
; ð24Þ

where hDðXÞigen is the expectation of the discriminator
on the generator distribution, ð1=NÞPa DðXaÞ, while
hDðxÞitarget is its expectation on the data distribution (the
eight Gaussians). The remaining terms represent an L2

regularizer on the weights, placing an overall restriction on
the discriminator.
Following Eq. (21), particle velocities are given by

dXi
a

dt
¼ αG

N

XN;d

b;j

Γi;j
a;b∇jDðXbÞ ð25Þ

¼ αG

�
g1 − g2

N
∇iDðXaÞ þ g2h∇iDðXÞi

�
: ð26Þ

Here the angular bracket indicates an average over all
generator particles. Hence, each particle, at position Xa,
experiences a competition between the mean discriminator
gradient over the ensemble g2h∇DðXÞi and the contribu-
tion from its local gradient (ðg1 − g2Þ=N)∇DðXaÞ.
The entire system is trained using Algorithm 1.

B. Results and interpretation

We run the model GAN training algorithm for each
(g2=g1, ndisc) pair considered. After training for a fixed
number of iterations, and computing the mode collapse
metric [Eq. (22)] for all pairs, we can observe a clear

transition from convergence (blue data points) to mode
collapse (yellow data points), as shown in Fig. 5. A
complementary metric representing the quality of conver-
gence across the transition is plotted in Fig. 6. In the
following, we provide a heuristic argument to explain the
observed characteristics of the mode-collapse transition.
During training, the discriminator seeks to maximize the

difference between its expectation on the training data
and on the generator distribution. Suppose, to this end, the
discriminator has formed its minimum within a region
(cluster) of generator particles. According to the equation
of motion for the generator particles [Eq. (26)], if the term
involving local gradients dominates over g2h∇DðXÞi, then
the particles in this cluster “split apart”; each particle
follows its own local gradient, regardless of the location
of the discriminator minimum within the region. As a
result, the generator particle cluster, which corresponds to
mode collapse, can be split and the full targeted distribution
can be recovered.
However, for sufficiently large g2, the term g2h∇DðXÞi

may dominate. Now the location of the discriminator’s
minimum within the region becomes important, as it may
determine both the magnitude and direction of h∇DðXÞi.
As is depicted in Fig. 7, if the discriminator obtains a
minimum far from the center of a cluster, jh∇DðXÞij would
become non-negligible, leading to an onset of instability,

FIG. 5. Phase diagram of the transition to mode collapse using a
ReLU discriminator. Mode collapse metric values are shown as a
function of generator NTK and discriminator training rate. Brighter
points indicate mode collapse while darker points correspond to an
even distribution of generator particles over the target data. The
x axis gives the value of g2=g1 for a given experiment, while the
y axis indicates the number of training steps the discriminator takes
at each iteration. As g2=g1 is increased, the discriminator requires
more “time” (a greater ndisc value) in order to shift the training from
mode collapse (bright points) to convergence (darker points).
Experimental results are taken after 5000 training iterations, and
data are time averaged, representing the mean of results taken at
5000� n × 20, with n ¼ 0, 1, 2, 3. A line is fit to ð1=2Þ log 8,
indicating a power-law boundary.
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and causing the entire group of generator particles to
“slip away”—including those on the opposing slope
[Fig. 7(a)]. In contrast, for a minimum closer to the cluster’s
center, the mean gradient experienced by the particle
cloud becomes sufficiently small to allow the cluster to
“split apart” [Fig. 7(b)].
In this way, the discriminator’s precision in minimizing

its value over a cluster of generator particles influences its
ability to split apart the cluster. More spatially precise
discriminators may yield smaller values of jh∇DðXÞij,
allowing local gradients to dominate particle dynamics.
The mode-collapse data resulting from using a ReLU

discriminator is shown in Fig. 5 on a log-log scale.
A dashed white line emphasizes a visible power-law
boundary separating mode collapse from convergence.
Examples of generator particle distributions sampled across
this transition can be found in Appendix D. Figure 6 plots
the log-likelihood data and shows that only sufficiently far
above the transition boundary would particles converge
precisely to the target modes.
This power-law behavior matches another feature

of wide ReLU networks, referred to as the frequency
principle [36–38]. As networks learn, they tend to first
learn lower-frequency functions, before including higher-
frequency contributions. This behavior thus sets a rate γðkÞ
at which a network can learn a feature of spatial frequency
k. For example, within wide ReLU networks, γðkÞ is
expected to be power law, whereas for wide Tanh networks,
an exponential γðkÞ is predicted [38].
If we identify spatial features of size 1=k as having a

dominant spatial frequency of k, then simple arguments
suggest (Appendix B) that in order to split a cluster,
the maximum allowable spatial imprecision falls with

increasing g2 as ðg1 − g2Þ=g2. This indicates that to break
apart such a distribution, we require the discriminator
to learn a feature with spatial frequency proportional to
g2=ðg1 − g2Þ; for g2 ≪ g1, roughly, k ∼ g2=g1.
Assuming that the discriminator has a frequency-

dependent learning rate γðkÞ, then the time required to
learn such a feature scales as T ∼ 1=γðkÞ. The necessary
discriminator steps ndisc (and learning rate αD) to overcome
mode collapse would then scale as 1=γðkÞ.
Experiments involving wide Tanh networks, among

other discriminators, are described in Appendix C.
Interestingly, Tanh discriminators display a roughly expo-
nential transition boundary as predicted, which lends
further support to the above-proposed explanation. As
such, the frequency principle suggests a connection
between the relevant length scales and timescales of the
discriminator’s learning objective. That is, it takes a longer
training time to learn a finer spatial feature.

C. Relation to catastrophic forgetting

By analyzing effective properties of the generator net-
work, and how these might interplay with those of the
discriminator, our analysis suggests an explanation for the
onset of mode collapse in terms of insufficient discrimi-
nator precision and hence overwhelmed local gradients

FIG. 7. Increased discriminator precision may result in splitting
of a cluster of generator particles. A cluster of generator particles
is depicted as a uniform shaded region (with distribution pθ)
between two modes of the target distribution (pdata). The value of
the discriminator is shown as a simple function of the form
DϕðxÞ≡ ajx − bj. Arrows indicate local velocities of the par-
ticles on either side of the discriminator minimum. (a) Imprecision
of the discriminator leads to a subminimal expectation hDðXÞi
and a significant h∇DðXÞi value, causing all particles to slip to
the left due to all-to-all coupling through the NTK. (b) The
discriminator has found the precise minimum at the center of the
distribution, which kills off average gradients and allows particles
to ascend their local slopes; the cluster is thus splitting apart.

FIG. 6. Precise convergence occurs well above the mode-
collapse transition. The average log-likelihood of generator
particles is depicted following the same procedure as in Fig. 5.
The power-law transition of Fig. 5 is shown as a reference; only
sufficiently far above this boundary would particles converge
precisely to the eight modes.
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of the discriminator’s loss landscape. However, the mode
collapse dynamics we observe (shown in Fig. 4) can also be
understood through the lens of catastrophic forgetting [32].
Within GANs, the task of the discriminator is to

distinguish between the target distribution and that of
the generator. As the generator’s distribution evolves
over time, so does this task. When GANs do converge,
the sequence of discriminator tasks does so as well.
Catastrophic forgetting occurs when this sequence of tasks
fails to converge, and consequently the lessons learned by
the discriminator from previous tasks become irrelevant for
the current task.
From this perspective, the dominant source of mode

collapse is indeed catastrophic forgetting. This is apparent
fromour experiments inwhich the discriminator tries and fails
to split apart the cluster of generator particles. When the
generator’s tightly focused distribution travels from mode to
mode, the task of the discriminator changes significantly over
time. Indeed, the nature of mode collapse in our empirical
studies is highly similar to that observed in Ref. [32].
When convergence does occur (for instance, when

g2=g1 ¼ 0 as depicted in Fig. 3), we can see that the
discriminator’s task also converges. Consequently, the
lessons learned at previous training steps remain relevant
to the current task.

V. CRITICAL REGULARIZATION

Various regularization techniques have been applied to
the problem of mode-collapse avoidance [9,10,13]. Here,
we demonstrate that even in our simplified model GAN,
the effect of regularization on reducing mode collapse can
be observed.
Following Ref. [13], we introduce a gradient regularizer,

βjj∇θhD(GθðzÞ)ijj2=2; ð27Þ

into the discriminator’s loss function during training. Since
the velocities of generator parameters are driven by local
gradients of the discriminator, this term is analogous to the
kinetic energy of these parameters. This regularization
term penalizes sharp gradients and encourages generators
to take smoother paths to the target distribution. The effect
of the regularizer on the GAN system can be viewed in
analogy to a damping term in physics (a connection made
explicit in Appendix E), with oscillations from mode to
mode corresponding to an underdamped regime, slow
convergence to all available modes corresponding to
overdamping, and a most efficient convergence corre-
sponding to critical damping. Using this analogy as a
conceptual starting point, we can sweep over β to identify a
regime of “critical regularization.”
Despite the fact that our model GAN setup does not

have any reference to generator parameters (or a generator
network), we may still incorporate such a term into training
via the effective NTK:

jj∇θhD(GθðzÞ)ijj2

¼ 1

N2

X
z;z0∼qðzÞ

∇iD(GθðzÞ)∇θGi
θðzÞ∇θG

j
θðz0Þ∇jD(Gθðz0Þ)

¼ 1

N2

X
z;z0∼qðzÞ

∇iD(GðzÞ)Γi;j
θ ðz; z0Þ∇jD(Gðz0Þ):

This effective form immediately allows us to apply the
regularizer within the model GAN by including the
following term in Eq. (5):

β

N2

X
a;b

∇iDðXaÞΓi;j
a;b∇jDðXbÞ: ð28Þ

We can understand the effect of such a regularizer by
expressing Eq. (28) in the form

β

�
g2jh∇DðXÞij2 þ ðg1 − g2Þ

N
hj∇DðXÞj2i

�
: ð29Þ

The second term discourages sharp gradients from being
provided to generator particles, leading to smoother paths
to convergence. The first term, directly proportional to g2,
can be seen to discourage the presence of large mean
gradients over the ensemble of generator particles.
Incorporating this into the same setup used to produce
mode collapse in Fig. 4 and repeating the procedure [39],
we now observe convergence instead (Fig. 8).

Generator points at step 200

Generator points at step 4380

Generator points at initialization

Generator points at step 1000

FIG. 8. Model GAN dynamics with significant off-diagonal
NTK values (g2=g1 ¼ 1=5) converge under regularization.
Model GAN dynamics is shown over time, taking g2=g1 ¼
1=5 and including a regularizer [Eq. (28), with β ¼ 100].
Despite that without the regularizer the system oscillates from
mode to mode (Fig. 4), now particles converge evenly and
steadily to the eight modes.
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Within our setup, we can experiment with the regulari-
zation parameter β. Running model GAN experiments
using different β values, we note regions corresponding
to underregularization and overregularization, and an inter-
mediate regime of critical regularization. In this regime,
convergence is most efficiently achieved (Fig. 9).

VI. DISCUSSION

In this paper, we consider a model GAN system
constructed by incorporating limiting features present
within real GANs. The generator inputs are taken to be
sampled uniformly from a sphere of high dimension.
Additionally, the generator is assumed to be of infinite
width and to have a static NTK such that given inputs of
fixed magnitude, the NTK is a function only of their dot
product [Γðz; z0Þ ¼ Γðz · z0Þ, as is the case in infinite-width
ReLU networks]. We also modify the training procedure,
using a single fixed mini batch of generator seeds through-
out training. Under these approximations, the outputs of an

infinite-width generator may be represented as a cloud of
particles, whose velocities are coupled through the gen-
erator network’s NTK. Further, due to the nature of the
assumed NTK and the high-dimensional inputs, we argue
that this coarse-grained NTK may be characterized using
just two values.
Despite the simplicity of our model GAN system, we

observe that it is able to exhibit the defining symptoms of
mode collapse—generator outputs fail to become diverse.
Indeed, the simplified particle-based setting allows for
physical interpretation of the phenomenon through com-
petition between the local gradient experienced by each
particle and the average discriminator gradient experienced
by the cloud as a whole. When the latter dominates over the
former, the particle cloud fails to split and hence cannot
cover a target diversity of modes. From this physically
motivated effective description, we are able to connect the
ratio of the two effective NTK values to the occurrence or
avoidance of mode collapse.
Because the generator NTK values within the model GAN

setup can be easily modified, our framework makes it
possible to study learning dynamics over a broad range
of generators. Using simple discriminators with a single
hidden layer, we investigated the onset of mode collapse as a
function of the NTK parameters and the relative training
rates of the discriminator and generator. We were able to
identify power-law and exponential relationships, and
explain their presence by drawing a connection to the
frequency principle; frequency-dependent learning rates
alone suffice to explain the shape of the transition boundary.
To our knowledge, this is the first time that the principle has
been observed in the context of GANs. As a consequence,
for a given NTK matrix, mode collapse can be avoided by
allowing sufficient time for the discriminator to learn finer
features characterizing a multimodal target distribution.
Would it be possible to reduce the training time while

avoiding mode collapse? We have experimented with a
regularizer designed to reduce mode collapse in real GANs,
the effect of which is to dampen the velocity of the
generator parameters during training. Despite the fact that
our model contains no generator parameters, and focuses
instead on the dynamics of the outputs, we show how it is
possible to adapt such a regularizer to our particle-based
setting. We demonstrate that, in our effective model too,
such a regularizer can encourage smooth paths to con-
vergence. Importantly, an analogy to a damped oscillator,
made clear through examples, enables us to identify
regimes analogous to overdamping, underdamping, and
critical damping. Intermediate regularization strengths
would allow most efficient convergence, suggesting critical
regularization as a potential means to cure mode collapse
and shorten training time.
In our experiments, we used a two-dimensional dataset

of eight Gaussians. This simplified the model GAN
dynamics, and maximized the clarity of our theoretical

FIG. 9. Critical regularization mitigates mode collapse within a
model GAN. Upper: each point represents an experiment using a
single hidden-layer ReLU discriminator, halted after 1600 iter-
ations (similar to the experiments of Sec. IV). 200 generator
points are used, with g2=g1 ¼ 0.275 and ndisc ¼ 5, placing the
system within the regime of mode collapse. The regularizer,
which plays a role similar to that of a damping term, results in a
reduction of mode collapse. We observe three regimes analogous
to underdamped, critically damped, and overdamped dynamics.
Lower: snapshots of sampled generator particle configurations
for the three circled points in the upper diagram. Note that only
the critically regularized example has converged.
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insights. To confirm these insights and our model’s
validity in a more realistic, much higher-dimensional
setting, we perform further experiments analogous to
those of Sec. IV using a target distribution of MNIST
data (784 dimensional images of hand-written digits). As
described in Appendix I, the central findings of our study
using the simple dataset indeed replicate when using the
high-dimensional MNIST data. In particular, this is true of
those results regarding the effect of the relative discrimi-
nator learning rate and the off-diagonal to diagonal ratio of
NTK values ðg2=g1Þ on mode collapse.
The problem of understanding GAN convergence is

complex. By essentializing key features of real GANs, we
have probed GAN failure in a more physically interpretable
setting, which allows for extensive experimentation.
However, the model’s assumptions also suggest directions
of future work in refining the model by incorporating
deviations from these limiting approximations, and in
mapping the lessons learned to more realistic GAN settings.
We have, for instance, assumed a time-independent NTK

with uniform values throughout data space. In reality,
however, for networks of finite widths, the NTK evolves
throughout training. Indeed, such dynamic corrections may
be studied order by order (in 1=network width) [19] and
incorporated into a more complete analysis. An NTK
function which develops spatial features during training
[that is, an NTK defined in data space, ΓðX;X0Þ] might
yield dynamics showing closer parallels to flocking, in
which individual birds look at spatial neighbors to update
their velocities [30,40].
We have also replaced the distribution of NTK values

[comprising the evaluations of Γðz; zÞ and Γðz ≠ z0Þ within
a mini batch] with just two numbers, g1 and g2. By
including some variance in the diagonal and off-diagonal
NTK values, as is present in realistic settings of finite
latent-space dimensions (see, for example, Fig. 2), future
work might broaden the scope of the noted universality.
Finally, we have obtained our results using a modified

training algorithm in which only one mini batch of seeds is
used throughout training. In order to extrapolate the lessons
learned to a more realistic setting, we would like to better
understand the implications of our results for contexts in
which mini batches of seeds fzg are continually resampled.

The data depicted in Appendix I, as well as a notebook to
aid analysis, can be found at Ref. [41].
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APPENDIX A: NTK SWEEP EXPERIMENTAL
DETAILS

The experiments of Sec. IV are performed using the
following protocol.

(i) Generator: A collection of 200 two-dimensional
points initialized as a Gaussian centered at
ð ffiffiffi

2
p

;
ffiffiffi
2

p Þ, with standard deviation 0.1.
(ii) Discriminator: A single hidden-layer neural network

of width 2048:

DðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

width

r
aiσðwj

ixj þ biÞ: ðA1Þ

Experiments were run using both ReLU and Tanh
activation functions. At initialization, we take
ai; w

j
i ∼N ð0; σ2 ¼ 1Þ and bi ∼N ð0; σ2 ¼ 9Þ.

To understand the relationship between the generator
NTK and the training rate, we vary both the discriminator
learning rate αD and the discriminator updates per iteration
ndisc (Algorithm 1). We then examine the degree of mode
collapse after some fixed number of training iterations.
The results of experiments which sweep over ndisc are

described in the main text (Sec. IV), and the results of those
varying αD are given in Sec. A 1. Both reflect the same
pattern: generally, for larger g2=g1, the discriminator
requires more “time” (larger αD or greater ndisc) in order
for the adversarial dynamics to overcome mode collapse.
In addition, the mode-collapse transition boundaries for
ReLU and Tanh discriminators are, respectively, power law
and exponential.
Our conclusions concerning the influence of relative

learning rates and training iterations on the convergence of
GANs do have some grounding in empirical and theoretical
works. Notably, the paper which introduced Wasserstein
GANs [7] also used the strategy of applying multiple
discriminator iterations for each generator iteration
(ndisc ¼ 5) and demonstrated its efficacy. In a separate
paper [42] on theoretical guarantees of the convergence of
GANs, the authors proposed a so-called two-timescale
update rule, in which the discriminator and generator were
given individual learning rates. Under mild assumptions,
the authors were able to prove convergence when the
discriminator’s learning rate was much higher than that of
the generator.
In our experiments, as we vary g2=g1, we take care to

control for the overall effect that the NTK has on total
velocity. For example, if all points were initialized at the
same location, X, then their velocities would obey

dXa

dt
¼ αG

1

N

X
j

Γa;b∇DðXbÞ

¼ αG
∇DðXÞ

N
½g1 þ g2ðN − 1Þ�:
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To control for this effect, as we vary g2=g1 we maintain
g1 þ g2ðN − 1Þ ¼ const. We take g1 þ g2ðN − 1Þ ¼ N, so
that g2=g1 ¼ 0 ⇒ g2 ¼ 0; g1 ¼ N, and g2=g1 ¼ 1 ⇒
g2 ¼ g1 ¼ 1. Since in our experiments, points are initial-
ized in a tight distribution (with σ ¼ 0.1), we believe this
allows us to meaningfully compare the effect of different
generator NTKs.
The NTK values written in Eq. (21) can be thought of

as elements of an NTK Gram matrix [26]. Our choice
of (g1, g2) normalization is then equivalent to fixing the
eigenvalue of the constant mode to λconst ¼ N for all g2=g1.
All other eigenvalues are then equal to

N
N − 1

�
N

ðN − 1Þg2=g1 þ 1
− 1

�
:

From this perspective, as g2=g1 grows, the constant
mode of the NTK Gram matrix dominates. The effect of
a nonzero constant mode (which, using our language, is
equivalent to a nonzero g2=g1) was examined in Ref. [26].
In their paper, the authors proposed creative interventions
(including specific normalizations) which allowed them
to remove the constant NTK contribution for orthogonal
inputs. Effectively, these interventions set g2=g1 to 0. Their
results are in agreement with our interpretation of the role
of g2=g1. Indeed it was found that by removing the constant
component, mode collapse could be successfully avoided.
Conversely, if this constant term of the NTK did dominate,
the resulting networks were prone to mode collapse [26].

1. Discriminator learning rate experiments

Rather than varying ndisc, we run experiments which
vary the training rate of the discriminator learning rate αD.

Apart from this difference, the experiments performed are
identical to those of Sec. IV.
Using a ReLU discriminator, a roughly power-law

transition boundary is found (shown in Fig. 10). A Tanh
discriminator shows an exponential boundary (shown in
Fig. 11). As in the case of sweeps over ndisc, this matches
the expected frequency-dependent learning rate γðkÞ of the
respective networks [36–38].

APPENDIX B: PRECISION SCALING
ARGUMENTS

The correspondence between ReLU networks and
power-law boundaries (Fig. 5), and between Tanh
networks and exponential boundaries (Fig. 12), can
be interpreted by considering the spatial precision
required for a discriminator to split apart a collection
of particles uniformly distributed within a one-
dimension region. In Fig. 13, we depict a hypothetical
discriminator [defined by DðxÞ ¼ cjxj] and a distribu-
tion of generator points uniformly distributed within
½−pl; ð1 − pÞl� (depicted as a shaded region). The
placement of discriminator’s minimum with respect to
the center of the generator distribution is determined
by p, with p ¼ 1=2 placing its minimum directly at the
center, and p ¼ 0 completely shifting the distribution to
the right side of DðxÞ.
Under this setup, the velocities of the points to the left

and right of the minimum of DðxÞ will be

vL ¼ c

�
−
ðg1 − g2Þ

N
þ g2ð1 − 2pÞ

�

and

FIG. 10. A power-law mode collapse threshold is found for
ReLU discriminators. Mode collapse is depicted as a function of
αD and the ratio g2=g1 using a ReLU discriminator. Mode
collapse data are averaged over the iterations, 4000� n × 20,
with n ¼ 0, 1, 2, 3. On the log-log plot a linear threshold is
observed.

FIG. 11. An exponential mode collapse threshold is found
when using Tanh discriminators. Mode collapse as shown as a
function of discriminator learning rate αD and g2=g1. As in
Fig. 10, mode collapse is averaged about iteration 4000. On a log-
linear plot, a broadly linear threshold is observed, indicating an
exponential transition.
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vR ¼ c

�ðg1 − g2Þ
N

þ g2ð1 − 2pÞ
�
:

These velocities satisfy

vL < 0 ⇒ p >
1

2
−
g1 − g2
2g2N

;

vR > 0 ⇒ p <
1

2
þ g1 − g2

2g2N
:

In order to “split” the points, and ensure that the particles
on each side have opposing velocities, we require

�
1

2
−

g1
2Ng2

þ 1

2N

�
< p <

�
1

2
þ g1
2Ng2

−
1

2N

�
:

This range of p indicates that for the discriminator to be
able to split apart the distribution, we require the discrim-
inator’s minimum to be near the center of the generator
distribution, with a spatial precision of order

l
g1 − g2
Ng2

:

Here if we take g1=g2 to be large, then the relevant
frequency corresponding to this spacial precision is roughly

k ∼
Ng2
lg1

: ðB1Þ

APPENDIX C: SUPPORTING THE F-PRINCIPLE
MECHANISM

Analogous to the mode collapse experiments using a
ReLU discriminator (Sec. IV, and in Fig. 14), experiments
were also performed employing Tanh discriminators
(Figs. 12 and 15). Here, a roughly exponential phase
boundary was found, appearing to match the predicted
exponential frequency-dependent learning rate γðkÞ [38].
Our physically motivated mechanism for the transition

(described in Sec. IV B) makes use of the so-called
frequency principle within neural networks to explain
the shape of the phase boundary. In light of the stark
contrast between the shapes of the ReLU and Tanh
boundaries (shown in Figs. 5 and 13), which match the
differences in their respective frequency learning rates [38],
this connection appears very plausible.
We would like, however, to ensure that such a frequency

relationship is sufficient on its own to create such power-law
and exponential phase boundaries, since it is conceivable
that some other property of the networks is responsible.
We note that our discriminators are very wide net-

works with a single hidden layer. In this large-width
limit, it is expected to be approximately linear in
parameters during training [22]. Additionally, the net-
works in question are known to obey a given frequency
principle. We therefore define a new discriminator
which has these precise properties alone and rerun
the same experiment to observe the resulting phase
boundary. If the same power-law and exponential phase
boundaries are found, we can be much more confident
in this connection.
We define

DðxÞ ¼
X
k

DkðxÞ; ðC1Þ

DkðxÞ ¼ wð1Þ
k sinðk · xÞ þ wð2Þ

k cosðk · xÞ; ðC2Þ

FIG. 13. A schematic depicts a hypothetical discriminator and
generator distribution. The generator’s uniform distribution of
length l, depicted shifted a distance pl=2, p∈ ½0; 1�, to the right of
the origin. The discriminator of the form cjxj is superimposed.

FIG. 12. Phase diagram using a Tanh discriminator. Results are
depicted as in Fig. 5, although experimental results are taken after
2500 training iterations. A dashed line is fit to the transition,
highlighting a roughly exponential phase boundary, and differing
from the power-law boundary observed in Fig. 5.
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where k ¼ ðk1; k2Þ and ki are taken from 25 values of equal
logarithmic spacing from [0.01, 20], as well as the

negatives of these values. wðiÞ
k are the weights of the model.

During training, we follow the routine of Algorithm 2, a

modification of Algorithm 1, in which each wðiÞ
k is updated

with a rate proportional to the value of a function γðkÞ. We
then plug in power-law and exponential γðkÞ functions by
hand and run the same experiments performed in Sec. IV.
The power-law and exponential γðkÞ functions are
defined below [43]:

γpowðkÞ ¼ minð103; jkj−3Þ; ðC3Þ

γexpðkÞ ¼ 668.8 expð−2.05 · jkjÞ: ðC4Þ

Our new routine essentializes the properties of the wide
ReLU and Tanh discriminators by being linear in the
parameters and explicitly learning frequency k features
with a rate γðkÞ.
The results of Figs. 16 and 17 show a very clear phase

boundary having precisely the power-law and exponential
behavior, respectively. This indicates that a frequency-
dependent learning rate is sufficient to produce the type
of phase boundary we previously observed and lends
credence to the connection drawn between the onset of
mode collapse and the frequency principle of the discrimi-
nator network.
We do, however, emphasize that our simple explanation

of the threshold shape (Sec. IV B) is likely incomplete.
In particular, the assumption of g1=g2 ≫ 1 breaks down
within Fig. 17, and yet the depicted transition remains

FIG. 15. A modified target distribution yields a similar tran-
sition boundary. A replication of the experiment of Fig. 12, still
using a mixture of eight Gaussians as the target distribution, but
with standard deviations of more than 10 times their original
values (σ ¼ 0.3, as opposed to 0.02). Using the same wide Tanh
discriminator, we see the same exponential-like behavior of the
transition, indicating robustness with respect to details of the
target distribution.

Algorithm 2. The model GAN training algorithm, with a
Fourier discriminator and a frequency-dependent learning rate.

for iteration number do
for ndisc do
i Sample N data points,fxig from the eight-Gaussian
distribution.

ii Compute

LðNÞ ¼ 1

N

XN
a¼1

DðXaÞ −
1

N

XN
i¼1

DðxiÞ

þ λ

2

X
k

½ðwð1Þ
k Þ2 þ ðwð2Þ

k Þ2�

and update discriminator parameters by descending its
stochastic gradient

wðiÞ
k ← wðiÞ

k þ αDγðkÞ∇wðiÞ
k
LðNÞ
D

end for
iii update Xa according to Eq. (16)

Xa ← Xa þ αG
1

N

XN
b

Γa;b∇xDðXbÞ

end for

FIG. 14. Modifying the target distribution produces a similar
diagram using a wide ReLU discriminator. We replicate the
experiment of Fig. 5, but with a modified mixture of Gaussians
(here we take σ ¼ 0.3, rather than the original σ ¼ 0.02). Despite
the modified target distribution, we see the same broadly power-
law behavior of the transition.
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essentially linear (exponential) even to g2=g1 ≈ 0.7. Rather,
our description outlines a plausible causal connection, from
which a more general explanation might be obtained.

APPENDIX D: GENERATOR DISTRIBUTION
ACROSS THE TRANSITION

To visualize the behavior of the generator points through
the transition, here we plot the generator distributions
for different g2=g1 values given a fixed ndisc. This uses a

ReLU discriminator and the outputs of the experiment
performed in Sec. IV.
Taking ndisc ¼ 6, the transition here occurs roughly at

g2=g1 ¼ 0.06 (see the transition depicted in Fig. 5). We
therefore show plots from below and above this value of
g2=g1 (Fig. 18).
The distribution of generator particles across the mode

collapse phase boundary can also be seen through the
average (Euclidean) distance to the nearest mode, shown in
Fig. 19. Below the transition, points are tightly focused,
oscillate from mode to mode, and are therefore relatively
close to the modes. Far above the transition, the distance
to the nearest mode is very small; however, this is now
due to convergence. Between these two phases, the
particles have spread apart. They have begun the process

FIG. 16. Fourier discriminators [Eq. (C1)] with power law γðkÞ
have a power-law mode-collapse transition. A scatter plot depicts
the transition for a power law γðkÞ after 3000 steps. Brighter
points indicate mode collapse, and darker points indicate con-
vergence. An extremely clear power-law boundary is found here,
with a slope of ≈4.90.

FIG. 17. Fourier discriminators [Eq. (C1)] with exponential
γðkÞ show an exponential mode-collapse transition. A scatter plot
shows the transition for an exponential γðkÞ after 2000 steps.
Brighter points indicate mode collapse, and darker points indicate
convergence. Again, a clear exponential boundary is found here,
having a slope of ≈1.86.

FIG. 18. Generator particles overcome mode collapse and
converge below the g2=g1 boundary. Generator outputs are shown
after 3000 steps. Note the full convergence for small g2=g1, while
for g2=g1 > 0.06 the generator fails to converge.
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of convergence, and therefore have a larger distance to
the nearest mode.

APPENDIX E: REGULARIZATION AND
CRITICAL DAMPING

To understand the physical meaning of the regularizer
implemented in Sec. V, we can consider its effect on a
so-called Dirac GAN [44]. Here, our generator’s implicit
distribution is simply a Dirac δ focused at θ, with an output
given by GθðzÞ ¼ θ, a data distribution focused at 0, δðxÞ,
and a discriminator defined by DϕðXÞ ¼ ϕ · X. In this
system, equilibrium would correspond to the point
ϕ ¼ θ ¼ 0.
The regularizer in this setup then takes the form

βj∇θϕ · θj2=2 ¼ βϕ2=2:

In a simultaneous descent-ascent setup, we find that

θ̇ ¼ ∇θDϕðθÞ ¼ ϕ; ðE1Þ

ϕ̇ ¼ −∇ϕ½DϕðθÞ þ βϕ2=2� ¼ −θ − βϕ: ðE2Þ

Diagonalizing, we obtain the eigenvalues of the dynamical
matrix: ðβ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4

p
Þ=2, giving us critical damping

at β ¼ 2.
Indeed, if we initialize such a system from ðθ;ϕÞ ¼

ð1; 0Þ for different β values, and observe the value of jθj
after a set time T (here we used T ¼ 10), we obtain Fig. 20,
showing a similar behavior to that found in Fig. 9.

APPENDIX F: MODE COLLAPSE AND
REGULARIZATION FOR TANH

DISCRIMINATORS

Using a Tanh discriminator, we compute the degree of
mode collapse as regularizer strength β is varied. As in
Fig. 9, regimes of over, under, and critical regularization are
found (Fig. 21).

APPENDIX G: NTK EVOLUTION DURING
TRAINING

In the infinite-width limit, the NTK remains fixed
during training [18]. An example is shown in Fig. 22,
where despite the convergence of a large-width generator’s
outputs to the target distribution, its NTK values remain
nearly constant. This reflects the assumption we have made
in using constant values for g1 and g2 throughout training.
In the upper plot of Fig. 22 is shown the evolution of

generator outputs during training. At each time slice, we
compute the NTK for each pair of inputs and find that they
are very nearly proportional to a d × d ¼ 2 × 2 identity
matrix [reflecting the δi;j in Eq. (20)]. Below, three histo-
grams show the distributions of NTK magnitudes at each
time slice. The two peaks hardly vary and correspond to the
values of g2 (at ≈1.1) and g1 (≈4.5) used in Eq. (20).
During training, we use a discriminator and a generator

both with a single hidden layer and both using ReLU
activations. The generator, expressed,

GiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

width

r
ajiσðwk

jxk þ bjÞ;

FIG. 19. Euclidean distance to nearest mode drops above (con-
vergence) and below (mode collapse) the mode-collapse transition.
Above the phase boundary, points are close to modes due to
convergence. Below the transition, points are close to modes due to
mode collapse. We observe an increase near the phase transition,
indicating that the initially tight clusters of particles have broken
apart and the process of convergence has begun. This behavior is
somewhat apparent in the log-likelihood plotted in Fig. 6.

FIG. 20. Critical regularization is demonstrated to result in
convergence [θðTÞ ¼ 0] within a Dirac GAN. A plot showing the
distance after a fixed time, between the Dirac GAN’s generator
output θ and its equilibrium point 0. The system is initialized at
θ ¼ 1, ϕ ¼ 0, and halted at T ¼ 10. The critical regularization
value β ¼ 2 is indicated by a vertical dashed line. Note the
overdamped, underdamped, and critically damped regions bear a
striking resemblance to the three regimes identified in Fig. 9.
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has a hidden-layer width of 216 and parameters initialized
according to wj

i ∼N ð0; σ2 ≈ 0.046Þ, bi ∼N ð0; σ2 ¼ 0Þ,
aji ∼N ð0; σ2 ≈ 2.25Þ. Mirroring the training described
in the text, throughout training we use only a single set
of 200 seeds sampled from a unit sphere in 256 dimensions.
The generator is then trained using RMSProp with a learning
rate of 10−3.
The location of the two peaks within each histogram

(which determine g1 and g2) are a function of the network’s
architecture and the initialization of its parameters. For
instance, replacing the ReLU activation function, which
gives ðg1; g2Þ ≈ ð4.5; 1.1Þ, with an Erf activation yields
ðg1; g2Þ ≈ ð10.6; 5.2Þ. In general, even when an analytical
form of the NTK is available, its value is computed
recursively through the layers of the network. Typically
no simple closed form is available.

Within certain deep ReLU networks, however, the
magnitude of the NTK for orthogonal inputs (correspond-
ing to g2) can be related to the presence of order or
chaos within the network [26]. Using the notation of
Refs. [18,26,45], taking inputs from a sphere in n0
dimensions of radius

ffiffiffiffiffi
n0

p
, taking the lth layer to have

width nl, and σðxÞ ¼ maxð0; xÞ, we may write

α0ðzÞ ¼ z;

α̃l>0ðzÞ≡ μbðl−1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

nl−1

s
Wðl−1Þαl−1ðzÞ;

αl>0ðzÞ≡ σ(α̃lðzÞ):

The output of the neural network function itself is then

fθðzÞ ¼ α̃lðzÞ, where the parameters θ ¼ fðWðlÞÞji ; bðlÞi g are
initialized according to Wj

i ; bi ∼N ð0; 1Þ.
Using six hidden layers of width 212 and n0 ¼ 256,

Fig. 23 demonstrates the effect of varying the parameter,
μ∈ ½0; 1�, tuning between networks which are more chaotic

FIG. 21. Regularization regimes are observed using a Tanh
discriminator. A plot of the mode collapse present within a model
GAN when trained using a regularizer of strength β and a Tanh
discriminator. Similar to Fig. 9, in the upper plot each point
represents an experiment halted after 2000 iterations, using a single
hidden-layer Tanh discriminator. Here, g2=g1 is set to 1=5 and 200
points are used. A clear dip in mode collapse is visible about
β ∼ 10. For vanishing β values, we observe volatility in mode
collapse. Samples from this region are oscillatory, and may
oscillate into and out of a more symmetric distribution with
respect to the modes. The drop in volatility as β is increased
reflects the regularizer’s influence in encouraging smooth paths to
convergence. Sampled generator particle configurations are shown
for each of the three circled points, corresponding to under-
regularized, critically regularized, and overregularized regions.

FIG. 22. The NTK values of large-width generators remain
approximately fixed during training, despite the convergence of
generator outputs. A single set of seeds is used to train a large-
width generator (hidden-layer width ¼ 216). Generator outputs
are shown at three time slices (above), and the corresponding
NTK magnitudes are shown in histograms (below). The medians
of the histogram’s two peaks are indicated by vertical dashed
lines, and roughly correspond to the values of g1 and g2 used in
the effective NTK of Eq. (20).
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and those which are ordered [26]. For values of μ near 1, the
network is expected to be in an ordered phase, and g2=g1
approach unity. Smaller μ values correspond to networks
that are more chaotic, and g2=g1 is much lower.

APPENDIX H: INDEPENDENCE OF
COORDINATES

In the infinite-width limit, the matrix-valued outputs of
the NTK (Γθ∶ Rn ×Rn → Rd×d) become asymptotically
diagonal [18]. This phenomenon is shown in Fig. 24, in
which off-diagonal to diagonal ratios are plotted as a
function of network width. Intuitively, as network widths
are expanded, layer outputs are scaled by a factor of 1=

ffiffiffiffiffi
Nl

p
(where Nl is the width of the lth hidden layer). Diagonal
components of the NTK outputs compound while off-
diagonal values drop to zero. The resulting effective NTK

of Eq. (19) therefore gains an overall δi;j for each pair of
inputs, ðz; z0Þ, decoupling output coordinates in data space.

APPENDIX I: EXPERIMENTS IN HIGH
DIMENSIONS

Within our model GAN setup, and using a low-
dimensional Gaussian mixture as the target distribution,
we have observed the phenomena of convergence and
mode collapse. In order to confirm that our framework is
capable of modeling this phenomena in more realistic,
much higher-dimensional settings, we perform experi-
ments analogous to those of Sec. IV using a target
distribution of MNIST data (784 dimensional images
of handwritten digits).
In our experiments, we use 100 particles in 784 dimen-

sions, with dynamics coupled through an effective NTK
parametrized by the pair ðg1; g2Þ following Eq. (20). Our
data distribution is taken to be a set of 100 MNIST images.
All particles are initialized near a single data point
(resembling the initialization of particles in Sec. IV),
with Gaussian noise (σ ¼ 1=4) added to create a high-
dimensional particle cloud focused about a single image.
As a discriminator, we use a ReLU neural network

having three hidden layers of respective widths 64, 1024,
and 64 before outputting a single float. Here, the discrimi-
nator is regularized through weight decay as well as a
gradient regularizer. Particles are updated using gradient
ascent [following precisely Eq. (21)], while the discrimi-
nator is updated using the ADAM optimizer [46].
After 10 000 time steps, we analyze the outputs using a

mode-collapse metric analogous to that employed in
Sec. IV to produce a plot indicating the degree of mode
collapse present. In particular, we extend Eq. (22) by
defining

mode collapse metric ¼ logð100Þ þ
X
i

Pi logPi: ðI1Þ

Here Pi expresses the fraction of particles for which the ith
MNIST data point is the nearest using cosine distance. The
larger this metric, the less diverse and more distinct outputs
are as compared to the target distribution.
The resulting diagram is shown in Fig. 25, and plots of

outputs from throughout the diagram are depicted in
Figs. 26 and 27. Crucially, even in this high-dimensional
setting, we observe similar features noted previously; that
is, as g2=g1 is decreased, and as the discriminator learning
rate is increased, convergence is improved.
It is encouraging that the broad trends produced by

experiments in high dimensions match those performed in
low dimensions. This signals a broad applicability of our
model, demonstrates a general validity of the principles
learned, and highlights the utility of interpretable effective
models for understanding complex learning dynamics [41].

FIG. 23. Tuning between order and chaos changes the value of
g2=g1. More chaotic networks (small μ) have lower values of
g2=g1 compared to those in the ordered phase (μ ≈ 1).

FIG. 24. NTK values are asymptotically diagonal. As the layer
width is increased, the off-diagonal matrix elements of NTK
outputs die off. Using neural networks with one hidden layer and
two outputs, the NTK is computed using two inputs sampled
from a unit Gaussian in 1024 dimensions. 100 random initializa-
tions of these two-layer networks are done for each width, using
either a ReLU (upper panel) or Tanh (lower panel) activation. The
mean ratio of off-diagonal NTK values to diagonal NTK values is
plotted as a solid line, with the shading above and below
indicating one standard deviation.
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