Klt varieties with conjecturally minimal volume

Burt Totaro

We construct mildly singular (klt) complex projective varieties with ample canon-
ical class and the smallest known volume. We also find exceptional Fano varieties
with the smallest known volume. In fact, we conjecture that our examples have
the minimum volume in every dimension n, and we give low-dimensional evidence
to support this. Crudely, the volume is about 1/22". These varieties improve on
the examples by Chengxi Wang and me [32, Theorem 0.1]. Those examples had
roughly the right asymptotics, but they were known not to be optimal.

By definition, the volume of a normal projective variety X measures the asymp-
totic growth of the plurigenera,

vol(X) == lim_ RO(X, mKx)/(m"/n!),

where n = dim(X). The volume is equal to the intersection number K% if the
canonical class Kx is ample; it is the basic discrete invariant for a variety of general
type, analogous to the genus of a curve. (When X is klt and Kx is ample, this is
literally the volume of X with its unique Kéhler-Einstein metric of Ricci curvature
—1, up to a constant factor [12, Theorem C].) By Hacon-M“Kernan-Xu, there is
a positive lower bound for the volumes of all klt complex projective varieties with
ample canonical class, depending only on the dimension [16, Theorem 1.3]. Finding
an explicit bound is a central problem in the classification of algebraic varieties, wide
open in dimensions at least 3. (Alexeev, Mori, and Liu gave a bound in dimension
2 [3, Theorem 4.8], [2, section 10].) We are showing that the bound must go to
zero extremely fast, and conjecturally we give the exact bound in each dimension.
In related work, Kollar found a klt pair with ample canonical class and standard
coefficients (described in section 2) that conjecturally has minimal volume among
such pairs [23], [15, Introduction]. If we restrict to varieties with milder singularities,
Esser, Wang, and I constructed varieties in several classes with small volume, such
as smooth varieties of general type or terminal Fano varieties [11].

The examples here are hypersurfaces in weighted projective spaces. In contrast
to most previous work, including the examples by Wang and me [32], the new hyper-
surfaces are not quasi-smooth. As a result, the singularities are not always quotient
singularities, and proving that they are klt is more subtle. In dimension 2, our ex-
ample is Alexeev-Liu’s klt surface with ample canonical class and volume 1/48983
[2, Theorem 1.4]. Their construction was different, but we find that their example
is in fact a non-quasi-smooth hypersurface, namely X433 C P?’(2197 146,61, 11).

We also consider an analogous problem for klt Fano varieties. The anticanonical
volume of a klt Fano variety can be arbitrarily small in a given dimension. (For
example, for any positive integer a, the weighted projective plane Y = P?(2a +
1,2a,2a — 1) is a kit del Pezzo surface with vol(—Ky) = 18a/(4a? — 1).) How-
ever, Birkar showed that exceptional Fano varieties form a bounded family in each



dimension, and in particular there is a positive lower bound for their volumes [4,
Theorem 1.3]. (By definition, a klt Fano variety X is exceptional if the pair (X, D)
is klt for every effective Q-divisor D that is Q-linearly equivalent to —Kx. Equiv-
alently, the global log canonical threshold (or a-invariant) of X is greater than 1,
by [5, Theorem 1.7]. Non-exceptional Fano varieties can be analyzed in terms of
lower-dimensional Fano pairs, and so exceptional Fano varieties can be considered
the core of the classification problem for Fano varieties.) By the recent proof of
the Yau-Tian-Donaldson conjecture for singular varieties, every exceptional Fano
variety has a Kédhler-Einstein metric [30, Theorem 1.4], [28, Theorem 1.6].

We construct here what we conjecture to be the exceptional Fano variety of
minimum volume in every dimension n. Again, the volume is roughly 1/22". It
seems that the only known examples of exceptional Fano varieties in high dimensions
are the quasi-smooth hypersurfaces found by Johnson and Kollar [20, Proposition
3.3]. We extend their argument to prove exceptionality of our examples. In fact, we
compute the global log canonical threshold exactly. Crudely, it is about 22", hence
greater than 1 as we want. The method, based on weighted multiplicities in place
of the usual multiplicity of a variety at a point, should be useful for many other
Fano varieties.

We give low-dimensional evidence that our exceptional Fano varieties have the
minimum volume in each dimension. As in the case of ample canonical class,
seeking optimal examples among all exceptional Fano varieties forces us to con-
sider non-quasi-smooth hypersurfaces in weighted projective space. In dimension
2, our example (apparently new) is the exceptional del Pezzo surface X354 C
P3(177,118,49,11), for which vol(—Kx) = 1/31801. This is smaller than the
volume of any exceptional del Pezzo surface with Picard number 1, by Lacini’s
classification of those surfaces [26, 21]. (The surface of smallest volume in Lacini’s
list is LDP 15 with (s,r) = (4, 1), part (1), blowing up above ¢ along A eight times;
then X has volume 1/3953.) The surface here has Picard number 2.

Finally, in every even dimension, we construct klt varieties with ample canonical
class, and also kit Fano varieties, with the largest known bottom weight (Theorems
8.1 and 9.1). The bottom weight means the smallest positive integer m such that
HY(X,mKx) # 0 in the K-ample case, or H*(X,—mKx) # 0 in the Fano case.
The global log canonical threshold should be extremely large in these examples,
perhaps even maximal (Question 8.2).
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1 Background

Our examples use Sylvester’s sequence, defined by sop = 2 and sp41 = Sp(sp —
1) + 1. The sequence begins 2,3,7,43,1807,.... We have s,41 = so--- s, + 1, and
hence the numbers in Sylvester’s sequence are pairwise coprime. More important
for applications to extremal problems is that the sums of the reciprocals of these
numbers converge quickly to 1:
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Here s, grows doubly exponentially in n, and so this sum is very close to 1. In
fact, for every positive integer n, Soundararajan showed that the sum above is the
closest to 1 of all sums of n unit fractions that are less than 1 [31].

There is a constant ¢ = 1.264 such that s; is the closest integer to CQ%H for all
i > 0 [14, equations 2.87 and 2.89]. For example, it follows that s; > 22 for all
1 > 0. We write a; ~ b; to mean that two sequences of positive real numbers are
asymptotic, meaning that a;/b; converges to 1 as i goes to infinity.

We consider algebraic varieties over the complex numbers, although some of
the paper would work in any characteristic. A reference for the singularities of the
minimal model program, such as Kawamata log terminal (klt) and log canonical
(Ie), is [25]. We often use without comment that the kit or lc properties of a pair
(X, A) are unchanged under finite coverings f of normal varieties with f étale in
codimension 1 [25, Corollary 2.43]. (This would not be true for other singularity
classes such as terminal or canonical.) As a result, we do not need to distinguish
between the klt or lc property for a normal Deligne-Mumford stack and for its
associated coarse moduli space, provided that the stabilizer groups are trivial in
codimension 1.

For an effective Q-Cartier Q-divisor D on a klt variety X, the log canonical
threshold lct(X, D) is the supremum of the real numbers A such that the pair
(X,AD) is le. For a kit Fano variety X, the global log canonical threshold (or
a-invariant) glet(X) is the supremum of the real numbers A such that (X, AD) is
lc for every effective Q-divisor D with D ~q —Kx. It follows that a Fano variety
with global log canonical threshold greater than 1 must be exceptional. In fact,
glet(X) > 1 is equivalent to exceptionality, by Birkar [5, Theorem 1.7].

For positive integers ag, . . . , a,, the weighted projective space Y = P"(ay, ..., an)
means the quotient variety (A"*! —0)/G,, over C, where the multiplicative group
G, acts by t(zg,...,xn) = (t%xq,...,t%x,) [17, section 6]. Starting in sec-

tion 4, we switch to viewing weighted projective space as the quotient stack ) =
[(A"T! —0)/G,,). Here Y is a smooth Deligne-Mumford stack with canonical class
Ky = Oy(—>_aj). We say that Y is well-formed if the stack ) has trivial stabilizer
in codimension 1, or equivalently if gcd(ao,...,a;,...,a,) = 1 for each j. In the
well-formed case, the canonical class of the variety Y is given by the same formula
as for the stack.

Here O(1) is a line bundle on the stack J. On the variety Y, with Y well-
formed, Oy (1) is only the reflexive sheaf associated to a Weil divisor, in general;
the divisor class Oy (m) is Cartier if and only if m is a multiple of every weight
a;. The intersection number fy c1(0O(1))™is 1/(ag - - - an). More generally, for an
integral closed substack Z of dimension r in ), its degree means [, ¢i(O(1))".

Let Y be a well-formed weighted projective space. A closed subvariety X of
Y is called quasi-smooth if its affine cone in A"*! is smooth outside the origin.
(Equivalently, the inverse image of X in the stack ) is smooth over C.) In particular,
a quasi-smooth subvariety has only cyclic quotient singularities and hence is klt.
Also, X is well-formed if Y is well-formed and the codimension of X N Y*"8 in X
is at least 2. (For a well-formed weighted projective space Y, the singular locus of
the variety Y corresponds to the locus where the stack ) has nontrivial stabilizer.)

For a well-formed normal hypersurface X of degree d in a weighted projective
space Y, we have Kx = Ox(d— )" a;j). (We are not assuming quasi-smoothness of
X.) Indeed, the canonical class of a normal variety is defined as a Weil divisor up



to linear equivalence, and so we are free to delete closed subsets of codimension at
least 2 from X in order to prove this formula. So we can delete the singular locus
of X and the singular locus of Y from X and Y, and then Kx = Ox(d — )" a;) is
the usual adjunction formula for a smooth hypersurface in a smooth variety.

Note an ambiguity in the notion of “degree”: if X is a hypersurface of degree d
in ), meaning that it is defined by a weighted-homogeneous polynomial of degree
d, then its degree as a substack of Y is X - c1(O(1))" ! =d/(ag- - - an).

2 KIt varieties with ample canonical class

Theorem 2.1. For each integer n at least 2, let

1(s2 —sp+2) ifn is even
an+1 - 1 2 . .
1(s5n = 3s,+4) if nis odd.

Let ap, = (sp, — 2)ap+1 + (sn — 1), =1+ ap + any1, d = (s, — Dz, and a; = d/s;
for 0 < i <n—1. Then there is a hypersurface X of degree d in P"(ag, ... ani1)
that is well-formed and klt, with Kx = Ox(1). It has volume

1
(sn — D) 227 La,a,q’

which is asymptotic to 22’”2/8#. In particular, this is less than 1/22n.

Explicitly, define X by the equation, for n > 2 even:
O=af +ad 4+ +a " +airr, g +ag -xnaszH,
where b = (s2 — 2s,, + 7)/2. For n > 3 odd, define X by

Sn—
0= :Ug + xi{’ + o)y e mn_lximgﬂ,

where now b = (s — 4s,, + 11)/2. Since the number of monomials is equal to the
number of variables, any linear combination of these monomials with all coefficients
nonzero defines an isomorphic variety, by scaling the variables. One can check that
the monomials shown are all the monomials of degree d, and hence that an open
subset of all hypersurfaces of degree d are isomorphic to the one indicated; but we
will not need those facts.

Note that X is not quasi-smooth.

Conjecture 2.2. For each integer n at least 2, the variety in Theorem 2.1 has the
minimum volume among all klt projective n-folds with ample canonical class.

We know that there is some positive lower bound for the volume in each dimen-
sion, by Hacon-M°Kernan-Xu [16, Theorem 1.3].

In dimension 2, our example is X433 C P3(219, 146, 61, 11), with volume 1/48983 =
2.0 x 1075, This is the smallest known volume for a klt surface with ample canonical
class. This example was found earlier by Alexeev and Liu, without the description
as a hypersurface [2, Theorem 1.4]. It has smaller volume than all quasi-smooth



hypersurfaces of dimension 2 with Kx = Ox(1), by Brown and Kasprzyk’s com-
puter classification [7, 8]. Namely, the best quasi-smooth hypersurface is X316 C
P3(158, 85, 61, 11), with volume 2/57035 = 3.5 x 10~5.

In dimension 3, our example is

Xrg2000 C P4(381045, 254030, 108870, 17713, 431),

which has volume about 9.5 x 1078, This beats the best previously known 3-fold,
the quasi-smooth hypersurface

X340068 C P1(170034, 113356, 47269, 9185, 223),

which has volume about 1.8 x 10716, (The latter example is optimal among quasi-
smooth hypersurfaces with Kx = Ox(1), by Brown and Kasprzyk’s program, which
can be downloaded from the Graded Ring Database. This example is part of the
sequence of examples constructed by Wang and me [32, section 2].) Finally, in
dimension 4, our new example has volume about 8.0 x 1075, Again, this beats the
optimal quasi-smooth hypersurface with Kx = Ox(1) in dimension 4, which has
volume about 1.4 x 10747 [8, ID 538926].

Finally, our klt variety with ample canonical class has volume quite close to that
of Kollar’s conjecturally optimal example in the broader setting of klt pairs with
ample canonical class and standard coefficients (meaning coefficients of the form
(m — 1)/m for positive integers m). That example is

(Y,A) = <P", Yy 2w 4 Sy S"H_lHnH),
2 3 7 Sn+1

where Hy, H1,...,H,11 are n + 2 general hyperplanes. The volume of Ky + A
is 1/(spp2 — 1)™, which is (crudely) about 1/22". Our example in Theorem 2.1
has vol(X)/vol(Ky + A) about 22"*2.  (Precisely, log(vol(X)/vol(Ky + A)) is
asymptotic to (2n+2) log 2 as n goes to infinity.) So vol(X) is bigger than vol( Ky +
A), but not by much, since 22"*2 is far smaller than 22". That is some further
evidence for the optimality of Theorem 2.1.

Proof. (Theorem 2.1) To explain the choice of weights a;, we first prove some prop-
erties of these numbers. First, we have d — > a; = 1 (which will imply that
Kx = Ox(1)), because d — Y7 a; = d(1 — 1/sg — -+ — 1/sp,_1) = d/(sp — 1) =
z =1+ ay, + apy1.- Next, let us check that the monomials listed in the equation
of X (above) have degree d. For n even, let b = (s2 — 2s,, + 7)/2; then we have to
show that d = 2a¢9 =3a1 = -+ = sp_1aGn—1 = Spap + apy1 =a1 + -+ an + bapy1.
All these equations except the last one are easy by our choice of weights. For the



last one, note that

1 1
d—al—---—an:d(l——--'— )—an
S1 Sp—1
1 1
=d| ;+ >—a
<2 sp—1 "
Sp+1
= 2 —an
Spn+1 s,—1 +sn—i—l
= a a
9 2 n 2 n+1
Lo Lo
= 5(5” —sn+2)+ 5(5” — 28, + 3)an+1
1
= 5(3% —28p + T)ant1,

as we want. For n odd, a similar calculation shows that the monomials in the
equation of X have degree d.
We first show that the weighted projective space Y = P""(ag, ..., an.1) is well-

formed. That is, we have to show that ged(ag...,aj,...,ant1) = 1 for each j. It
suffices to show that ged(an+1,x) = 1, ged(ap, x) = 1, and ged(an+1, n, Sp—1) = 1.
(This uses that s,, — 1 =s¢- - $,—_1, where sg,...,s,_1 are pairwise coprime.)

First, note that s, is 7 (mod 8) if n > 2 is even and 3 (mod 8) if n > 3 is odd.
This is immediate by induction from the recurrence s, 11 = s, (s, —1)+1. It follows
that s2 — s, +2is 4 (mod 8) if n > 2 is even, and that s2 — 3s, +4 is 4 (mod 8) if
n > 3 is odd. So an41 is odd in both cases.

Next, let us show that ged(an+1,2) = 1. Suppose that a prime number p divides
both an+1 and x. Since an41 is odd, p is not 2. Since x = 1 + ay, + an+1, we have
an, = —1 (mod p). Since a,, = (8, —2)an+1+ (8, —1), we have —1 = s, —1 (mod p),
so p divides s,. If n > 2 is even, s2 — s, +2 = 2 (mod p), and this is not zero mod
p. SO a1 is not zero mod p, a contradiction. Likewise, for n odd, s2 —3s, +4 = 4
(mod p), and this is not zero mod p. So ap4; is not zero mod p, a contradiction.
Thus a,+1 is prime to x.

To show that ged(an,z) = 1, suppose that a prime number p divides both
ap and z. Since x = 1+ a, + ap4+1, we have a,41 = —1 (mod p). Since a, =
(sn — 2)aps+1 + (sp, — 1), we have 0 = —(s, — 2) + (s, — 1) = —1 (mod p), a
contradiction. So a,, is prime to x.

It remains to show that ged(ay, ant1, sp—1) = 1; in fact, we show that ged(an+1, Sn—
1) = 1. Let p be a prime number that divides a,41 and s, — 1. We have s, = 1
(mod p), 50 52 — s, + 2 =2 (mod p) and s2 — 3s,, + 4 =2 (mod p). Since p is not
2, these two expressions are not zero mod p. It follows that a,1; is not zero mod
p, a contradiction. This completes the proof that Y is well-formed.

To show that X is well-formed, it remains to show that X does not contain any
(n—1)-dimensional coordinate linear subspace of Y along which Y is singular. Since
the equation of X includes the monomials x%,xi}’, . ,w;?_‘ll, and also z)rxpy1, X
does not contain any positive-dimensional coordinate linear subspace of Y. Since
n > 2, X is well-formed.

Next, we show that X is klt. First suppose that n is even. In this case, the
equation defining X is 0 = :U% + x:f + -+ xf{’_‘f +airrpyer xnmgﬂ, where
b = (s2 — 2s, + 7)/2. Since the number of monomials is equal to the number



of variables, any linear combination of these monomials with nonzero coefficients
defines a hypersurface isomorphic to X. So X is isomorphic to a general divisor in
the linear system on Y spanned by these monomials. The base locus of this linear
system is contained in the two last coordinate points, [0,...,0,1,0] and [0,...,0,1].
Since we are in characteristic zero, Bertini’s theorem on A™*2? — 0 gives that a
general divisor in this linear system is quasi-smooth outside those two points; so
X is quasi-smooth outside those two points. In view of the monomial z;"x,1,
X is also quasi-smooth at the point [0,...,0,1,0]. So X is klt outside the point
[0,...,0,1].

At the point [0,...,0,1], X is not quasi-smooth, but we will show that it is
still klt. As just mentioned, we know that a general linear combination of the
monomials in the equation of X defines a hypersurface X’ isomorphic to X, by
scaling the variables. So it suffices to show that a general hypersurface X’ of that
form is klt at [0,...,0,1]. In coordinates x,+1 = 1, the equation of X’ is 0 =
cox% + clxif + e+ cn_lscfl":f + et + Cpg121 - - - Ty, for general complex numbers
¢;. The open subset 41 # 0 of X’ is the quotient by the finite cyclic group pq,,,,
of the hypersurface with the same equation in A™*!. Because the klt property is
preserved by finite quotients, it suffices to show that such a general hypersurface S
in A"*! has canonical singularities (or equivalently, rational singularities).

Ishii and Prokhorov (following earlier work) described when the general hy-
persurface S C A™! with equation spanned by a given set I of monomials has
canonical singularities, as follows [18, Proposition 2.9]. By definition, the Newton
polyhedron of a finite subset I  R""! is the convex hull of I plus the positive
orthant, (R=%)"+1,

Theorem 2.3. Let I be a finite subset of N" ™1, viewed as monomials in Clxo, . .., x,].
Let S C A%'H be the zero set of a general linear combination of these monomials.
Assume that for every 0 < ¢ < j < n, there is an monomial in I that contains
neither x; nor x;; then the hypersurface S is normal. If the Newton polyhedron of
I in R contains (1,...,1) in its interior, then the hypersurface S has canonical
singularities. The converse holds if I contains no monomial of degree 1.

As above, for n > 2 even, let S be the zero set in A"t! of a general linear
combination of x%,x:{’, . ,xi’l‘ll,xfln, and x1---x,. The first condition in Theo-
rem 2.3 (ensuring normality of S) is clear. Therefore, to show that S is canon-
ical and hence X is klt, it suffices to show that the convex hull of the points
(2,0,...,0), (0,3,0,...,0), ..., (0,...,0,s,), (0,1,...,1) in R*™™! contains a point
with all coordinates less than 1. In fact, we only need three of these points: namely,
(5/12)(2,0,...,0) +(1/6)(0,3,0...,0) + (5/12)(0,1,...,1) has all coordinates less
than 1. Thus X is klt when its dimension n is even.

For n > 3 odd, the equation defining X is 0 = z3 + a3 + -+ 2" + aira, 1 +
Ty mn,lm%mzﬂ, where now b = (s2 — 4s,, + 11)/2. As above, it is equivalent to
consider a general linear combination of these monomials. As in the case of n even,
X is quasi-smooth outside the point [0, ..., 0, 1]. To show that X is klt at that point,
it suffices to show that the convex hull of the points (2,0,...,0), (0,3,0,...,0),

.., (0,...,0,5,), (0,1,...,1,2) in R""! contains a point with all coordinates less
than 1. Again, we only need three of these points: namely, (5/12)(2,0,...,0) +
(1/6)(0,3,0...,0) +(5/12)(0,1,...,1,2) has all coordinates less than 1. Thus X is

klt whether n is even or odd.



Since X is well-formed, the adjunction formula holds, meaning that Kx =
Ox(d—>a;) = Ox(1). Therefore,

d

) = e
n

1
(sn — D) 227 Llayan41

Here a1 ~ s2/4 and a, ~ s /4 (much bigger than a,1), so z ~ s3 /4. It follows
that vol(K y) ~ 2272 /sin, O

3 KIlt Fano varieties

Theorem 3.1. For each integer n at least 2, let

1(s2 —sp+2) ifn is even
a’n+1 - 1 2 . .
1(s5, —3s,+4) if nis odd.

Let ap, = (sp —2)ant1 — (S — 1), 2 = =14 ap+apy1, d = (s, — D)z, and a; = d/s;
for 0 <i <n—1. Then there is a hypersurface X of degree d in P"(ag, ... ani1)
that is a well-formed kit Fano variety, with —Kx = Ox(1). The volume of —Kx s

1
(sp — )" 227 La,a,q’

which is asymptotic to 227”2/3%”. In particular, this is less than 1/22".

Explicitly, define X by the equation, for n > 2 even:
0= :c% + xij’ + -+ LEZ"_T + Ty Ty + 21 '$n$2+1,
where b = (s2 — 25, — 1)/2. For n > 3 odd, define X by

Sn—
0= x% + x:f +otx) T e :En_lx%xfbﬂ,

where now b = (s2 — 4s,, + 3)/2. Since the number of monomials is equal to the
number of variables, any linear combination of these monomials with all coefficients
nonzero defines an isomorphic variety, by scaling the variables. One can check that
the monomials shown are all the monomials of degree d, and hence that an open
subset of all hypersurfaces of degree d are isomorphic to the one indicated; but we
will not need those facts.

Note that X is not quasi-smooth. We show in Theorems 6.1 and 7.1 that this
Fano variety is exceptional.

Conjecture 3.2. For each integer n at least 2, the variety in Theorem 3.1 has the
minimum anticanonical volume among all exceptional Fano n-folds.

Birkar showed that exceptional Fano varieties form a bounded family in each
dimension, and so there is some positive lower bound for their volumes [4, Theorem
1.3].



In dimension 2, our example is the klt del Pezzo surface X354 C P3(177, 118,49, 11),
for which vol(—Kx) = 1/31801 = 3.1 x 1075, The lowest volume previously known
for an exceptional del Pezzo surface occurs for Johnson-Kollar’s quasi-smooth sur-
face Xos6 C P3(128,69,49,11), with volume 2/37191 = 5.4 x 107° [19, Theorem
8]. (This volume is listed in the arXiv version of [9, Big Table].) Exceptional-
ity of the latter surface follows from Johnson-Kollar’s theorem that a well-formed
quasi-smooth hypersurface Xy C P"™(ag,...,ap41) with d = —1 + Y a; (so
Kx = Ox(-1)) and ag > -+ > ap41 is exceptional if d < anany1 [20, Proposi-
tion 3.3].

In dimension 3, our example is the klt Fano 3-fold

Xrssars C P4(379239, 252826, 108354, 17629, 431),

with anticanonical volume about 9.6 x 10718, The lowest previously known volume
of an exceptional Fano 3-fold occurs for Johnson-Kollar’s quasi-smooth hypersurface

Xsse060 C P4(168480, 112320, 46837, 9101, 223),

which has volume about 1.9 x 10716 [20, introduction]. Finally, our klt Fano 4-
fold has volume about 8.0 x 1079, The smallest previously known volume of an
exceptional Fano 4-fold is 1.4 x 10747, again for a certain quasi-smooth hypersurface
[8, ID 1233322]. (To explain these previous records: the Graded Ring Database lists
all quasi-smooth hypersurfaces with Kx = Ox(—1) in dimension 4, in terms of 1597
infinite series and 1233322 sporadic cases. A summary can be found in [7, Theorem
1.3]. The database shows that the Fano 4-fold [8, ID 1233322] has the lowest volume
among the sporadic cases, and then one checks by Johnson-Kollar’s criterion that
it is exceptional. The 3-dimensional quasi-smooth example mentioned above can be
found by a similar search, using Brown and Kasprzyk’s program.)

Proof. (Theorem 3.1) The proof is similar to that of Theorem 2.1, where the canon-
ical class is ample. In particular, the weight a,41 is the same in the two theorems,
and the formulas for a, and z differ only by sign changes. Modifying the calcu-
lation at the start of the proof of Theorem 2.1 by these sign changes shows that
d— > a; = —1 (rather than 1). Also, whether n is even or odd, we compute that
the monomials in the equation for X have degree d.

As shown in the proof of Theorem 2.1, a,4+1 is odd. The sign changes make no
difference to the proof that ged(an+1,2) = 1, ged(an, ) = 1, and ged(an+1, an, Sn —
1) = 1. Therefore, Y = P""(ag, ..., ans1) is well-formed.

To show that X is well-formed, it remains to show that X does not contain
any (n — 1)-dimensional coordinate linear subspace of Y along which Y is singular.
Since the equation of X includes the monomials x%, xi’, ... ,xi”_‘f, and x)"Tpy1, X
does not contain any positive-dimensional coordinate linear subspace of Y. Since
n > 2, X is well-formed.

Next, we show that X is klt. First suppose that n is even. In this case, the
equation defining X is 0 = w% + x? 4+ 4 xi"_‘f + T 2y xnwfm, where
b= (s2 —2s, — 1)/2. It follows that X is quasi-smooth and hence klt outside
the point [0,...,0,1]. At the point [0,...,0,1], X is not quasi-smooth, but we
will show that it is still klt. In coordinates z,4+1 = 1, the equation of X is 0 =
wd+ad+-+a ] +as 421 1,. We showed in the proof of Theorem 2.1 that



this hypersurface in A”*! has canonical singularities near the origin. Therefore, X
(the quotient by fi4, ) is klt at [0,...,0,1], as we want.

For n > 3 odd, the equation defining X is 0 = 23+ a3 + -+ 2" ' + 2rw, 41 +
z1 - Tpo122a2l,, where now b = (s2 — 4s, + 3)/2. Again, X is quasi-smooth
and hence klt outside the last coordinate point [0,...,0,1]. To show that X is
klt at that point, we use coordinates z,41 = 1 to write the equation of X as
0=ad+a3+ - +a 7 +ai+mx1 - 2122 We showed in the proof of Theorem 2.1
that this hypersurface in A”*! has canonical singularities near the origin. Therefore,
X (the quotient by pq,,,) is kIt at [0,...,0,1], as we want, whether n is even or
odd.

Since X is well-formed, the adjunction formula holds, meaning that Kx =
Ox(d—>"a;) = Ox(—1). Therefore,

d

agp - - Qan+1
1

(s — )" 22" Lla,an, 1

VO](—K)() =

Here a, 41 ~ s2/4 and a, ~ s /4 (much bigger than a,1), so x ~ s3 /4. Tt follows
that vol(—Ky) ~ 22712 /sin, O

4 Estimating the log canonical threshold in terms of
the weighted tangent cone

Sections 4 to 7 will show that the klt Fano varieties in Theorem 3.1 are exceptional
(Theorems 6.1 and 7.1). This follows from their global log canonical threshold (or
a-invariant) being greater than 1. In fact, we compute the global log canonical
threshold exactly. The method should be useful for many other examples.

Lemma 4.1. Let ag, ..., a, be positive integers with n > 2. Let X be a hypersurface
in A" over C that contains the origin. Let X, be the a-weighted tangent cone of X
at the origin; thus X1 is a hypersurface of some degree d in the weighted projective
space Y = P"(ag,...,a,), viewed as a smooth Deligne-Mumford stack over C.
Assume that X1 is normal. Let A be an effective Q-Cartier Q-divisor in X, and let
Ay C Xy be the weighted tangent cone of A. Then Ay ~q Ox, (e) for some positive
rational number e, and Kx, + Ay ~q Ox,(r) wherer =d+e—> a;. Ifr <0 and
(X1,Aq) is log canonical, then (X, A) is log canonical near 0.

This generalizes Kollar’s description of which cones are lc, which (in effect)
concerns the case ap = --- = a, = 1 [25, Lemma 3.1]. We do not assume that X
is a weighted cone. The proof is fairly straightforward once one is willing to use
stack-theoretic weighted blow-ups. In retrospect, they are the right tool for the job.

Proof. Let p: B — X be the stack-theoretic weighted blow-up of X C A"*! at
the origin with the given weights a = (ao,...,ay). Explicit coordinate charts can
be found in [1, Section 3.4]. The weighted tangent cone X; is defined to be the
exceptional divisor £ C B; in particular, E is a hypersurface in the smooth stack
Y = P"%(ag,...,a,) = [(A""! —0)/Gp]. (Because we view Y as a stack, we can
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allow aq, ..., a, to have a common factor; that is, the weighted projective space Y
need not be well-formed.)

We are assuming that £ = X; is normal. It is a Cartier divisor in the stack
B. By the adjunction formula, the canonical class Kr = (Kp + E)|g is given by
Op(d - Zj aj).

Next, write X = {f = 0} for some regular function f near 0 in A"!. Let f; be
the part of f with smallest weighted degree, so that X; = {f; =0} in Y. Since X,
is a normal hypersurface in Y of dimension at least 1, it is irreducible. Since A is
assumed to be Q-Cartier on X, there is a positive integer m and a regular function
g near 0 on A"*! such that mA = {f = g = 0}. After subtracting a multiple of f
from g, we can assume that the part ¢g; of g with smallest weighted degree is not a
multiple of f;. Then the weighted tangent cone Ay C X7 is 1/m times the complete
intersection {f; = g1 = 0} in Y. Let e be 1/m times the a-weighted degree of gi;
then A; ~q Ox, (e) on X, as we want.

Therefore, K + Ay ~q Ox,(r) ~q —rE|g, where r = d+e—) a; € Q.
Write Ap for the birational transform p;!A on B. Then Kp + Ap + (1+71)E ~q
p*(Kx + A), using that both sides are trivial on F.

By [25, Definition 2.23], it follows that the discrepancy of (X, A) is given by

discrep(X, A) = min(—1 — r, discrep(B, (1 + r)E + Ap)).

(Here (X,A) is lc if and only if discrep(X,A) > —1.) So (X,A) is lc near 0
if » < 0 (as we assume) and (B, (1 4+ r)E + Ap) is lc near E. Since r < 0, it
suffices to show that (B, E 4+ Ap) is lc. Since E is a normal Cartier divisor in B,
inversion of adjunction says that this follows from (F,Ap|g) = (X1,A1) being lc
[25, Proposition 4.5, Theorem 4.9]. O

The following corollary applies Lemma 4.1 to the case of a “weighted ordi-
nary” hypersurface singularity, meaning that the weighted tangent cone is smooth.
That covers many examples. The singularities in this paper are more compli-
cated, however, and so we will have to go back to Lemma 4.1. Corollary 4.2
is a weighted version of an Izumi-type inequality, meaning a bound of the form
leto(X, D) > cx/mult(D) (cf. [27, Theorem 3.2, Remark 3.3]).

Corollary 4.2. Let ag > --- > ay be positive integers. Let X be a hypersurface in
A" over C that contains the origin. Let D be an effective Q-Cartier Q-divisor in
X. Let Xy be the weighted tangent cone of X at the origin; thus X1 is a hypersurface
of some degree d in the weighted projective space Y = P"(ag,...,a,), viewed as a
smooth Deligne-Mumford stack over C. Suppose that the stack X1 is smooth over
C. Let Dy C X1 be the weighted tangent cone of D. Let b = —d + Zj aj. If b >0,
then the log canonical threshold of (X, D) near the origin satisfies:

min(ay,—_1ay, bd)

leto(X, D) > '
C O( ) )— aO...anmlﬂta(D)

Here, given positive integers a = (ao, ..., a,), the weighted multiplicity (at the
origin) of a closed subscheme S C A"™ over a field k, written mult,(.S), means the
degree of the weighted tangent cone .57 as a substack of the weighted projective space
Y. Equivalently, define a decreasing filtration of the ring O(S) of regular functions
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on S by: FPO(S) is the linear span of the monomials ! with > j—oajij > b. Let
m be the dimension of S. Then the weighted multiplicity is the limit

i A(O(3)/F0(5))

(This interpretation makes sense for any positive real weights ay, ..., a,.) When all
weights are equal to 1, this is the usual multiplicity at S at the origin [13, Example
4.3.1].

Proof. (Corollary 4.2) Let ¢ = min(ap—1an,bd)/(ag - - andeg(D1)). We want to
show that (X,cD) is lc near 0. Let A = ¢D and A; = ¢D; its weighted tangent
cone. By Lemma 4.1, it suffices to show that Kx, + Ay ~q Ox, (r) with » < 0 and
that (Xl,Al) is lc.

By the adjunction formula, we have —Kx, = Ox, (b). To show that r < 0, it is
equivalent to show that deg(A1) = Ay -¢1(0(1))" 2 < (—=Kx,)-c1(O(1))" 2, where
the intersection numbers are computed on the (n—1)-dimensional stack X; C Y. So
(—Kx,)-c1(O(1)" 2 =bd/(ap - - ay). Using this plus the fact that A; = ¢Dy, the
inequality above holds if ¢ < bd/(ag - - - a, deg(D1)). That holds by our definition of
c.

It remains to show that (X7,A;) is lc. We define the multiplicity at a point of
an irreducible closed substack (or an effective algebraic cycle) in weighted projec-
tive space Y to be the multiplicity at a corresponding point of its inverse image in
any orbifold chart A" — [A"/pue,| = {z; # 0} C Y. (This is independent of i, be-
cause the different orbifold charts are étale-locally isomorphic.) Johnson and Kollar
proved the following bound [19, Proposition 11]. (The last sentence of Theorem 4.3
is not stated in their paper, but it is immediate from their argument.)

Theorem 4.3. Let ag > --- > a, be positive integers. Let M be an irreducible
closed substack of dimension r in the stack P"(aq,...,ay). Then the multiplicity
of M at every point is at most (ag---a,)deg(M). If M is not contained in the
hyperplane x,, = 0, then this bound can be improved to (ag- - - ar—1ay,) deg(M).

Returning to the proof of Corollary 4.2, Theorem 4.3 gives that the (n — 2)-
dimensional cycle D; in Y has multiplicity at every point at most (ag - - - ap—2) deg(D1).

Now use the assumption that X is a smooth stack. Then, for 0 < ¢ < n, the
inverse image X1,; of X1 in the ith orbifold chart is a smooth hypersurface in A™.
For a smooth variety S with an effective Q-divisor 7', the pair (S,T) is lc if T has
multiplicity at most 1 at every point [25, Claim 2.10.4]. So the stack (Xi,cD;) is
lc if ¢D; has multiplicity at most 1 at each point. By the previous paragraph, it
suffices to show that c(ag---an—2)deg(D;) < 1. This holds by the definition of c.
So (X1,A1) is lc and hence (X, A) is lc. O

The proof of Corollary 4.2 works by bounding the unweighted multiplicity of
D in A", At several points in this paper, it works better to bound a weighted
multiplicity of D at the worst point of X, where information would be lost by going
through Theorem 4.3. The idea is that D is given to us as a subspace of a weighted
projective space; so we should use those weights in analyzing the singularities of D,
as follows.
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Lemma 4.4. Let ag,...,an+1 be positive integers (in any order). Let S be an
irreducible closed substack of a weighted projective stack Y = P"(ag, ... apny1).
In coordinates x,41 = 1, S corresponds to a subvariety of A"*1. Consider the
weights ag, . ..,a, on A", Then the weighted multiplicity of S at the origin in
A" satisfies

mult, (S) < ap+1 deg(S).

Proof. Consider the family of hypersurfaces {x, 11 =t} in A"*? as t varies. Write
C(S) for the affine cone over S in A"*2. Consider the weighted multiplicity of
C(S) N {xpt1 = t} at the point (0,...,0,t). For t # 0, this is equal to mult,(.5).
For t = 0, this is equal to deg(SN{zp4+1 = 0}) = an+1 deg(S) if S is not contained in
the hyperplane {x,+; = 0}. Then upper semicontinuity of the weighted multiplicity
gives that mult,(S) < ap41 deg(S). If S is contained in the hyperplane {x,+; = 0},
then S does not contain the point [0,...,0,1]; so mult,(S) = 0 and the inequality
again holds. O

5 The log canonical threshold for a certain singular hy-
persurface

In order to show that the kit Fano varieties in Theorem 3.1 are exceptional, we need
to analyze their worst singular point, as follows. Specifically, we need to estimate
the log canonical threshold of any divisor on this singular hypersurface. The proof
involves an induction on these singularities of different dimensions.

Lemma 5.1. Let n be a positive integer. Let X, be the hypersurface in A" defined
by 0 = :E% + a3+ ai + a2, Let D be an effective Q-Cartier Q-divisor
in Xpn. Let ¢; = (Spy1 — 1)/s; for 0 < i < n. Write mult.(D) for the c-weighted
multiplicity of D at the origin. Then the log canonical threshold of D in X near the
origin satisfies 1cto(Xy, D) > 1/ mult.(D) if n =1 and

2

ICt X 7D >
0( n ) = ngl(sn + 1)2(571 — 1)”*3 multc(D)

ifn > 2.

Proof. For n =1, X; is a smooth curve, and the origin in X; has c-multiplicity 1.
So every effective Q-Cartier Q-divisor D on X has lcto(X, D) > 1/ mult.(D), as
we want.

For any positive integer n, write \,, for the constant in the lemma, so we are try-
ing to show that lcto(X,, D) > A,/ mult.(D). (In particular, let \; = 1.) Suppose
that n > 2 and the inequality holds for n — 1 in place of n. Let D be an effective
Q-Cartier Q-divisor, and let ¢; = (sp4+1 — 1)/s; for 0 < i < n. We have to show
that if mult.(D) = 1, then (X,, A, D) is lc near the origin.

Consider the modified weights w; = ¢; for 0 <i <n—1 and w, = s,(s, +1)/2.
Since wy, > ¢, we have mult,, (D) < mult.(D) = 1. (The inequality is clear from
the interpretation of weighted multiplicity in section 4.) To simplify the numbering,
let b; = w; /sy, for all 0 < i < n. Since D has dimension n — 1, we have mult,(D) =
st mult,, (D) < s? L. Here b; = (s, —1)/s; for 0 <i <n—1and b, = (s, +1)/2.

n
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Note that b, > bg > --- > b,—1, contrary to our usual ordering. Finally, let
e=25,—1.

The reason for considering the weights by, ..., b, on A"*! is that the weighted
tangent cone of the hypersurface X,, at the origin is klt; namely, it is the hyper-
surface X, in Y := P"(by,...,b,) of degree e defined by 0 = a3 + 23 + -+ +
xi":f + 21+ x,. (Here only the monomial z;» has disappeared.) The stack X,_;
is smooth outside the point [zg, ..., z,] = [0,...,0,1]. The singularity at that point,
in coordinates x, = 1, is

Xn—l={0=$8+-~+$Z":11+$1"'93n—1}CAn,

in agreement with the notation of this lemma.

Let D,—1 C X,,—1 (inside Y') be the b-weighted tangent cone of D. Since D is
Q-Cartier, D,_; is Q-linearly equivalent to a rational multiple of Ox, ,(1). We
have deg(D;,_1) = multy(D) < s""! as shown above. By Lemma 4.4, it follows
that in coordinates {x, = 1} = A", and with weights by, ...,b,—1 on A", we have

mUItb(Dn—l) < bn deg(Dn—l)
< st (sp+1)/2,

using that b, = (s, + 1)/2. Here b; = (s, — 1)/s; for 0 < i < n — 1, and
so our inductive assumption gives that lcto(X,—1, Dp—1) > Ap—1/ multy(Dy—1) >
2X\n—1/(s"1(s,, +1)). This number is at least A,. Indeed, A, ~ 2/s2"~2 and so A\,
divided by 2\, _1/(s?"!(s, + 1)) is asymptotic to 1/2. So it is less than 1 for large
n, and a bit more calculation shows that it is less than 1 for all n > 2. (For n = 2,
using that A\; = 1, this ratio is 3/4, and for n = 3 this ratio is 28/33.) Thus we have
shown that the pair (X,,—1, A\pDp—1) is lc near the point [z, ...,z,] =1[0,...,0,1].

Since the stack X,_; is smooth outside that point, we check easily that the
pair (Xp—1, AnDp—1) is lc on all of X,,_;. Namely, by Theorem 4.3, D,,_; has (un-
weighted ) multiplicity at every point at most bg - - - b, _3b, deg(Dy_1) < bg - - - by_gb,s? L.
Here by -+ b3 = (sp — 1)"2/(sp_0 — 1) ~ sfb”__Qg, bp = (sp+1)/2 ~ sfl_l/Q, and
Ay, ~ 2/(32’1_28). So Uy = Apbg - bp_3bys" 1 ~ 1/s,_o. This is less than 1 for
n large. With a bit more calculation, we have u, < 1 for all n > 2 (for example,
uz = 3/4). So A,Dp_1 has multiplicity at most 1 at every point, for each n > 2.
Therefore, the pair (X,—1, A\nDp—1) is lc at points other than [0,...,0, 1] as well as
at that point.

By Lemma 4.1, the pair (X,,, A\, D) is lc near the origin if (X,_1, A\nDp—1) is lc
(as we have shown) and Kx, , + A\,Dp—1 ~q Ox,_,(r) with » < 0. Let us show
that 7 < 0. By the adjunction formula, we have —Kx, , = Ox,_,(—e+ > ;b;) =
Ox((sp —1)/2). To show that r <0, it is equivalent to show that A, deg(Dy_1) =
AnDp—1-c1(0(1))" % < (=Kx,) -e1(O(1))" 2. Here (—=Kx,)-c1(O(1))"? = (sn —
1e/(2bg - --bp) = 1/((sn —1)"3(s, +1)). As a result, the inequality above holds if
An (8 — 1) 3(sy, +1) deg(Dp—1) < 1. We have deg(D,,—1) = multy(D) < s? (s, +
1)/2. So the inequality above holds if A\,s? (s, + 1)%(s, — 1)"3/2 < 1. In fact,
An has been chosen to make equality hold here. Therefore, the pair (X,, A, D) is lc
near the origin, as we want. O
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6 Exceptionality of the klt Fano example in even di-
mensions

In order to show that the klt Fano variety X in Theorem 3.1 is exceptional, it
suffices to show that its global log canonical threshold is greater than 1. It turns
out that we can compute glct(X) exactly, and it is doubly exponentially large in
terms of n = dim(X). In this section, we consider the case where n is even, which
turns out to be simpler.

Theorem 6.1. For each even number n at least 2, the kit Fano n-fold X in Theorem
3.1 is exceptional. More strongly, the global log canonical threshold of X is equal to
(sn — 2)ans1/(sn — 1) ~ s2 /4. In particular, this is greater than 1.

Proof. To recall the example: let a,41 = (52 —5,+2)/4, an = (5, —2)ani1—(5,—1),
x=—-14an+ apnt1, d = (s, — 1)z, and a; = d/s; for 0 < i < n —1. Then X is
a hypersurface of degree d in Y := P""(ag,... ,any1). Since —d + Zj a; =1, we
have —Kx = Ox(1). Let 0, = (s — 2)an+1/(sn —1). We have to show that for
every effective Q-divisor D ~q —Kx, the pair (X, 0,D) is lc, and that this bound
is optimal. As a cycle on the stack Y, D has degree d/(ag - - an+1).

To see that the bound o, is optimal, let E be the hyperplane section X N
{Zn4+1 = 0}; then we can take D = (1/an4+1)E. I claim that (X, 0,D) is not klt,
or equivalently that (X, ((sp, —2)/(sp, — 1))F) is not klt. Here E is given by the
equations {0 = z,11, 0 = 23 + -+ + 2)"7'}. We read off that F is irreducible.
The stack E is singular at the point [zg,...,Zn, Zp+1] = [0,...,0,1,0], where X is
smooth. In coordinates z,, = 1, the singularity of FE is étale-locally isomorphic to
the Fermat-type hypersurface singularity 0 = 23+ - - -—i—a:fb”_‘f in A", which is known
to have log canonical threshold equal to min(1,1/24---4+1/s,-1) = (s,—2)/(sn—1)
[24, Example 8.15]. That is, (X, ((sp, —2)/(sp, —1))E) is lc but not klt at the point
[0,...,0,1,0], as we want.

It remains to show that the pair (X, 0, D) is Ic for every effective Q-divisor D ~q
—Kx. The discrepancy of a Q-Cartier Q-divisor D on X at a given irreducible
divisor over X is an affine-linear function of D [25, Lemma 2.5]. By considering a
log resolution of (X, Dy + D3), it follows that if the pairs (X, D) and (X, D3) are
le, then so is (X, (1 —¢)Dy + tD3) for any ¢ € [0, 1]. Since we have already handled
the case where D is 1/ay41 times the irreducible divisor E, it suffices to show that
(X,0nD) is Ic when D ~q —Kx and the support of D does not contain E.

In this case, no irreducible component of D is contained in the hyperplane
ZTpy1 = 0. So Theorem 4.3 gives that D has multiplicity at every point at most
ag -+ ap—2an+1 deg(D) = d/(an—1an) = Sp—1/an. Therefore, o, D has multiplicity
at every point at most s,_1(s, —2)an+1/((sn — 1)an) ~ 1/s,—1. This is less than 1.
So (X,0,D) is lc at all smooth points of the stack X [25, Claim 2.10.4], hence at
all points other than [zg,...,zp, Zp4+1] = [0,...,0,1]. In order to handle that point,
we will switch to analyzing a certain weighted multiplicity of D.

In coordinates z,+1 = 1, X becomes the hypersurface 0 = x% + x:{’ + o+
o+ adh + xy - x, in AT We want to show that (X, 0,D) is lc near the
origin. Consider the weights aq, ..., a, on A"T!. Then the a-weighted multiplicity
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of D at the origin in A"*! satisfies

mult, (D) < ay41 deg(D)
= d/(a() .. 'an)7

by Lemma 4.4.

Consider the modified weights w; = a; = d/s; for 0 < i < n —1, and w, =
d/sn. Here w, is not an integer, but we can still define multiplicity for positive
rational weights by scaling. We have w,, = (s, — 1)z/s, = = — (x/s,). Also,
x=—14ap+ ant+1 = (S — D)ant1 — $n < Splant1 —1). So z/sp, < aps1 — 1,
and hence w, = x — (¥/sp) > = — (an+1 — 1) = ap. It follows that mult,, (D) <
mult, (D) < d/(ap- - an).

Next, let ¢; = spw;/x for all 0 < ¢ < n; then ¢; = (sp41 — 1)/s; for all 0 <
i < n. Since D has dimension n — 1, we have mult.(D) = (z/s,)" ! mult, (D) <
" d/(s" tag - an) = 1/(s" (s, — 1)"2a,). By Lemma 5.1, it follows that
(X, enD) is lc near the point [0,...,0, 1], where we let

2
s7 L (sp + 1)2(sp — 1)n—3
_ 2(sp — 1)ay
 (sp 12

€n —

It remains to show that this number e, is at least o,, for every even number
n > 2. The ratio e, /oy, is 2(sp — 1)%an/((5n + 1)?(s5 — 2)an11). Since a,.1 ~ s2 /4
and a, ~ s> /4, this ratio is asymptotic to 2, so it is greater than 1 for n large. With
a bit more calculation, we find that e,/o, > 1 for every even number n > 2. (For
example, ea/oy = 441/440.) That completes the proof that glct(X) = o,. Since
this is greater than 1, the kit Fano variety X is exceptional. O

7 Exceptionality of the klt Fano example in odd dimen-
sions

We now prove the exceptionality of our kit Fano example in odd dimensions.

Theorem 7.1. For each odd number n at least 3, the klt Fano n-fold X in Theorem
3.1 is exceptional. More strongly, the global log canonical threshold of X is equal to
(8n —2)ans1/(5n — 1) ~ 82 /4. In particular, this is greater than 1.

Proof. Torecall the example: let a, 11 = (s2—3s,+4)/4, an = (8n—2)an11—(sp—1),
x=—-14an+apt1, d = (s, — 1)z, and a; = d/s; for 0 <i < n —1. Then X is
a hypersurface of degree d in Y := P""(ag,... ,ap41). Since —d + doja =1, we
have —Kx = Ox(1). Let 0, = (sp — 2)an+1/(sn, —1). We have to show that for
every effective Q-divisor D ~q —Kx, the pair (X, 0,D) is Ic, and that this bound
is optimal. As a cycle on the stack Y, D has degree d/(ag - - an+1)-

To see that the bound o, is optimal, let E be the hyperplane section X N
{xn+1 = 0}; then we can take D = (1/an+1)E. I claim that (X, 0, D) is not klt, or
equivalently that (X, ((s,—2)/(s,—1))E) is not klt. Here E is given by the equations
{0 =2p41, 0=2a%+---+ "'}, which in particular shows that E is irreducible.
The stack E is singular at the point [zo, ..., Zn, Zpt1] = [0,...,0,1,0], where X is
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smooth. In coordinates x,41 = 1, the singularity of F is étale-locally isomorphic to
the Fermat-type hypersurface singularity 0 = x% +-- -+:ch":11 in A™, which is known
to have log canonical threshold equal to min(1,1/2+---+1/s,-1) = (sp—2)/(sn—1)
[24, Example 8.15]. That is, (X, ((sn, —2)/(sn —1))E) is lc but not klt at the point
[0,...,0,1,0], as we want.

It remains to show that the pair (X, 0, D) is lc for every effective Q-divisor D ~q
—Kx. The discrepancy of a Q-Cartier Q-divisor D on X at a given irreducible
divisor over X is an affine-linear function of D [25, Lemma 2.5]. By considering a
log resolution of (X, Dy + Ds), it follows that if the pairs (X, D;) and (X, Ds) are
le, then so is (X, (1 —t)D; + tDs) for any ¢ € [0, 1]. Since we have already handled
the case where D is 1/a,4+1 times the irreducible divisor E, it suffices to show that
(X,0nD) is Ic when D ~q —Kx and the support of D does not contain E.

In this case, no irreducible component of D is contained in the hyperplane
Tpye1 = 0. So Theorem 4.3 gives that D has multiplicity at every point at most
ag - - ap—2an+1 deg(D) = d/(ap—1an) = Sp—1/an. Therefore, o, D has multiplicity
at every point at most s,—1(sp — 2)an+1/((sn, —1)ay) ~ 1/s,—1. This is less than 1.
So (X,0,D) is lc at all smooth points of the stack X [25, Claim 2.10.4], hence at
all points other than [zg, ..., Zn, Tn+1] = [0,...,0,1]. In order to handle that point,
we will switch to analyzing a certain weighted multiplicity of D.

In coordinates z,+1 = 1, X becomes the hypersurface 0 = z3 +x3+---+z." ' +
o8 4y w122 in AP We want to show that (X, 0, D) is lc near the origin.
Consider the weights ag, ..., a, on A"T!. Then the a-weighted multiplicity of D at
the origin in A"*! satisfies

mult, (D) < ap41 deg(D)
= d/(ao .. .an)7

by Lemma 4.4.

Let w; = a; for 0 < i <n-—1, and let w, = (s, +1)z/4. Since w, > a,, we have
mult,, (D) < mult,(D) < d/(ag---a,). To simplify the numbering, let ¢; = w;/z
for all 0 < 4 < n; then mult.(D) = 2"~ mult,, (D) < 2" 'd/(ao - - a,). Going back
through the definitions, this means that ¢; = (s, — 1)/s; for 0 < i < n — 1 and
¢n = (sp +1)/4. Also, let e = s, — 1, so that d = (s, — 1)z = ex. Then we can
rewrite our bound as mult.(D) < e/(cy- - cn_1a,). (Note that the largest numbers
from co, ..., cy, are cop, c1, ¢y, contrary to our usual convention.)

The reason for choosing the weights cg,...,c, is that with these weights, the
weighted tangent cone at the origin to the hypersurface X C A™+! is klt: it is the
hypersurface S C P"(cy,...,cy,) of degree e defined by

Ozx%—kxi’ +~-—i—a:2”:11 +x1-~xn_1xi.
The stack S is smooth outside the point [zg,...,z,] =[0,...,0,1]. The singularity
of S at that point, in coordinates =, =1, is 0 = l’% + 3::{’ + -+ 1‘;"_711 + 21 Tp_1.
This is exactly the singularity of dimension n — 1 in Lemma 5.1.

Let F be the weighted tangent cone of D at the origin in A"*!, so that F is
an effective Q-divisor in S C P"(co,...,c,). Since D is Q-Cartier, F' is Q-linearly
equivalent to a rational multiple of Og(1). By inversion of adjunction as in the proof
of Lemma 4.1, the pair (X,0,D) is lc if (S,0,F) is lc and Kg + o, F ~q Ogs(r)
with » < 0.
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We first check that r < 0. By the adjunction formula, we have —Kg =
Os(—e + >_;¢j) = Ox((sn — 3)/4). To show that r < 0, it is equivalent to
show that o, deg(F) = 0,F - c1(0O(1))" 2 < (=Kg) - c1(O(1))" 2. Here (—Kg) -
c1(0O(1)"2 = (s, — 3)e/(4cy---¢,). As a result, the inequality above holds if
on < (sn—3)e/(4co - - - cnp deg(F')). We have deg(F) = mult.(D) <e/(co- - cn_1an).
So the inequality above holds if o, < g, := (s, — 3)a,/(4c,). Here a, ~ s3 /4 and
Cn ~ 8p/4, and so g, ~ s3, whereas o, ~ s2/4. With a bit more calculation, we
see that g, is greater than o, for each odd n > 3. (For example, g3 = 16026.4 and
oy = 420.7.)

It remains to show that (S,0,F) is lc. Since the stack S is smooth outside
the point [zg,...,2z,] = [0,...,0,1], it is easy to show that (S,0,F) is lc outside
that point. Namely, F' has degree at most e¢/(cy - cp—1a,). By Johnson-Kollar’s
bound (Theorem 4.3), in every orbifold chart {z; # 0} and at every point, F has
multiplicity at most ¢ - - - cp—3c, deg(F) (if n > 5) or cocy deg(F') (if n = 3). So F
has multiplicity at every point at most ec,/(ch—2¢n—1a,) if n > 5, or e/(coay,) if
n = 3. So o, F has multiplicity at every point at most o,ec,,/(ch—2cn—1a,) if n > 5,
or ose/(ceay) = 0.17 if n = 3. In particular, this is less than 1 for n = 3.

For n > 5, we have e ~ s, ~ St o, Ch2 ~ Sp/Sp—2 ~ 8o _o, Cn1 ~ Sp/Sn—1 ~
82 o, Cn o~ SpfAd ~ st /A an ~ s34 ~ s12,/4, and o, ~ s2/4 ~ s8_,/4. So
eonCn/(Cn—acn_1an) ~ 1/(48,_2), which is less than 1 for n large. With a bit more
calculation, it is less than 1 for every odd number n > 5. (For example, for n = 5,
it is about 0.024.) So, for each odd number n > 3, o, F' has multiplicity less than 1
everywhere. Since the stack S is smooth outside the point [z, ..., x,] =[0,...,0,1],
it follows that (S, 0, F) is lc outside that point.

In coordinates x,, = 1, F corresponds to a codimension-2 cycle on A". Using
weights cg, ..., cn—1 on A, Lemma 4.4 gives that the weighted multiplicity of F' at
the origin in A™ satisfies

mult.(F) < ¢, deg(F)

< ecn/(CD ce cn—lan)
Sn+1
4(sp, — 1) 2a,

The weights cg,...,c,—1 are those considered in Lemma 5.1 to analyze the
hypersurface X,,_1 C A™. That lemma gives that (S,0,F") is lc near the point
[0,...,xp] =[0...,0,1] if

2
§" 2 (sp_1 4+ 1)2(sp—1 — 1) 4 mult(F)’

on <

hence if

8(sp — 1) 2ay,
= ST (51 +1)2(sp_1 — 1)n4 1)’
n—1\Sn—1 Sn—1 ) (Sn + )

I claim that this fraction f,, is greater than o, for every odd number n > 3. We
have a,, ~ s3/4, and so f, ~ s2, whereas o, ~ s2/4. In particular, f, > o, for
n sufficiently large. With a bit more calculation, we find that f, > o, for all odd
n > 3. (For example, f3 = 1803.0 and o3 = 420.7.) That completes the proof that

glet(X) = oy,. Since this is greater than 1, the klt Fano variety X is exceptional. [J
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8 KIt Fano varieties with large bottom weight

The bottom weight of a Fano variety X means the smallest positive integer m such
that H°(X, —mKx) # 0. The following klt Fano variety has the largest known bot-
tom weight in even dimensions n at least 4, asymptotic to %s% (hence, crudely, about
22"). We know that there is some upper bound for the bottom weight of kit Fano
varieties in each dimension, by Birkar’s theorem on boundedness of complements
[4, Theorem 1.1].

In particular, Theorem 8.1 beats the examples by Wang and me of klt Fano
varieties with large bottom weight [32, Theorem 5.1]. The example here is not
quasi-smooth.

Theorem 8.1. For each even integer n at least 4, let an41 = %(205% —295s,+113)
and a, = 3—16(203721—55871%—17). Letx = —14+an+ant1, d = (spn—1)x, and a; = d/s;
for 0 <i <n—1. Then a general hypersurface X of degree d in P"(ag, ... ani1)
is well-formed and is a kit Fano variety, with —Kx = Ox(1). Its bottom weight is

Gn41, which is asymptotic to gs%.

Moraga conjectured that every Fano type variety of dimension n has an -
complement for some N < (2s, — 3)(s, — 1) [29, Conjecture 4.1]. Theorem 8.1
implies that this bound, if true, would be optimal up to a constant factor.

It would be interesting to compute the global log canonical threshold for these
examples. The global log canonical threshold of a Fano variety is at most the bottom
weight, and it seems to be close to the bottom weight when the bottom weight is
large.

Question 8.2. For each even number n at least 4, does the variety in Theorem 8.1
have the largest bottom weight and the largest glct among all kIt Fano n-folds?

I speculate that the optimal examples in odd dimensions will also have bottom
weight and glct asymptotic to %si.

The best examples I know in low dimensions are as follows. I conjecture that
the klt del Pezzo surface with largest bottom weight and largest glct is Xy54 C
P3(77,45,19,14), for which glet(X) = 21/2 = 10.5; this is a non-quasi-smooth
hypersurface, apparently new. (The first known klt del Pezzo surface with bottom
weight 14 was Kim-Park’s quasi-smooth complete intersection Xg4,70 C P*(45,32,25,19,14),
which has glct equal to 28/3 = 9.33 [22, Table 2].)

I conjecture that the klt Fano 3-fold with largest bottom weight and largest glct
is another non-quasi-smooth hypersurface, introduced here:

Xesas C P(32709, 21806, 9233, 884, 787),

with equation 0 = x% + ZL‘:{’ + xga:4 + x1x2x§8x4 + achi?. The largest previously

known bottom weight of a klt Fano 3-fold occurs for Johnson-Kollar’s quasi-smooth

hypersurface
Xarssa C PA(18792, 12528, 5311, 547,407)

[20, Introduction].

Finally, the klt Fano 4-fold in Theorem 8.1 has bottom weight 1799223. The
largest previously known bottom weight of a klt Fano 4-fold is 1094225, which occurs
for the quasi-smooth hypersurface [8, ID 1228436].
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Proof. (Theorem 8.1) By the properties of the Sylvester sequence, we have d —
> a; = —1. Also, we compute that the equation of X includes at least the monomi-
als 0 = a2+ 23+ +a) ' +aab ey +ag - w2228, where b = (4s, —31)/3
and ¢ = (5s, —5)/3.

We first check that a,11 and a, are integers. The denominator 36 factors as
2232, Since n is even and at least 2, we have s, = —1 (mod 8) by induction
from the definition of the Sylvester sequence, as in the proof of Theorem 2.1. So
2052 — 2955, + 113 = 20(—1)% —295(—1) + 113 = 4 (mod 8). It follows that a,1 is
integral at 2 and odd. Let e = a,,—an11 = %(205,1—8). We see that e is integral at 2
and even, and so a,, is integral at 2 and odd. Next, we have s,, = —2 (mod 9) since
n > 2. Write s, = 9t — 2 for an integer t. Then ap4; = %(205% — 2955, + 113) =
1(180t2 — 375t +87) = 0 (mod 3). Also, e = £(20s, —8) = 60t —16 = —1 (mod 3).
So an+1 and a,, are integers, both are odd, and a,+1 = 0 (mod 3) while a,, = —1
(mod 3). It is also immediate from the definitions that a,+; and a, are nonzero
modulo 5.

Let us show that the weighted projective space Y = P" L (aq, ..., ap41) is well-
formed. That is, we have to show that ged(ag...,a;,...,ant1) =1 for each j. Let
x = —14ay, + any1. It suffices to show that ged(an41,2) = 1, ged(ay, z) = 1, and
ged(an41, G, sp — 1) = 1.

We first show that ged(an41,2) = 1. Let p be a prime number that divides
both ap4; and x. We know that a,41 is odd and not a multiple of 5, and = =
—1l+ap,+ a1 = —-1—1+0= —2 (mod 3); so we must have p > 5. Since
x = —1+ 2ap41 + e, we have e = 1 (mod p). That is, £(20s,, —8) = 1 (mod p),
and so 20s, = 11 (mod p). (Since 3 is invertible in the field Z/p, the fraction
% makes sense as an element of Z/p.) It follows that s, = 11/20 (mod p). So
0 = ant1 = (1/36)(20(11/20)% — 295(11/20) + 113) = —6/5 (mod p). So p is 2 or
3, contradiction. So ged(ant1,x) = 1.

Next, we show that ged(a,,z) = 1. Let p be a prime number that divides
an and z. Since a, is not a multiple of 2, 3, or 5, we must have p > 5. Since
x = —1+ap, + anpy1, we have ap41 =1 (mod p) and hence e = —1 (mod p). That
is, 3(20s, —8) = —1 (mod p), so 20s,, =5 (mod p), and hence s, = 1/4 (mod p).
So 0 = a, = (1/36)(20(1/4)? — 55(1/4) + 17) = 1/8 (mod p), a contradiction.
(Since 36 is invertible in the field Z/p, the fraction 1/36 makes sense in Z/p.) So
ged(ap, x) = 1.

Finally, we show that ged(an, an+1, s, —1) = 1 (and in fact ged(ay, s, —1) = 1).
Let p be a prime number that divides a, and s,, — 1. In particular, p > 5 because p
divides a,,. We have s,, = 1 (mod p), and so 0 = a,, = (1/36)(20(1)? —55(1)+17) =
—1/2, contradiction. This completes the proof that Y is well-formed.

To show that X is well-formed, it remains to show that X does not contain
any (n — 1)-dimensional coordinate linear subspace of Y along which the variety
Y is singular (that is, where the corresponding smooth stack has nontrivial sta-
bilizer group). Since the equation of X includes the monomials :L‘%, x:f, . ,:Uin_’f,
X contains at most one positive-dimensional coordinate linear subspace of Y, the
projective line Z given by 0 = xg = --- = x,—1. Since n > 4, it follows that
X is well-formed. Also, the hypersurface X is normal, by Serre’s criterion, using
that X is quasi-smooth outside the curve Z. Then adjunction applies: we have
Kx =Ox(d—>a;) = Ox(—1), as we want.

Next, we show that a general hypersurface X of degree d in Y is klt. As we have
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said, X is quasi-smooth (and hence klt) outside the projective line Z. It remains to
show that X is klt in the open subsets z,, # 0 and x,11 # 0.

In coordinates x, = 1, the equation of X includes the monomials 0 = z3 + 23 +
cee xfffll + T1%pq1 + T2 Tpo125 4, Where ¢ = (55, — 5)/3. By Theorem 2.3,
it suffices to show that the convex hull of the points (2,0,...,0), (0,3,0,...,0),

.., (0,...,0,5,-1,0), (0,1,0,...,0,1), (0,0,1,...,1,¢) in R"™! contains a point
with all coordinates less than 1. In fact, we only need two of these points: namely,
(1/3)(2,0,...,0)+(2/3)(0,1,0,...,0,1) has all coordinates less than 1. Thus X is
klt in the open set x, # 0.

It remains to analyze X in coordinates z,+1 = 1. The equation of X includes
the monomials 0 = x(2)+xi{’+- . ~+fo”_*11 +$1x2+x2 . ~:Un,13:7112. So it suffices to show
that the convex hull of the points (2,0,...,0), (0,3,0,...,0), ..., (0,...,0,8,-1,0),
(0,1,0,...,0,b), (0,0,1,...,1,12) in R""! contains a point with all coordinates less
than 1. Indeed, the point (1/2 —€)(2,0,...,0) +(1/3 —¢€)(0,3,0,...,0) + (1/12 +
3¢)(0,0,7,0,...,0) + (1/12 — €)(0,0,1,...,1,12) has all coordinates less than 1 if
0 < € < 1/60. This completes the proof that X is klt. ]

9 KIt varieties with ample canonical class and large
bottom weight

The bottom weight of a projective variety X with Kx ample means the smallest
positive integer m such that HY(X,mKyx) # 0. The following klt variety with
ample canonical class has the largest known bottom weight in even dimensions n
at least 4, asymptotic to 3531 (hence, crudely, about 22"). (In other words, we
are exhibiting klt varieties with ample canonical class that have many vanishing
plurigenera.) We know that there is some upper bound for the bottom weight in
each dimension, by Hacon-M“Kernan-Xu [16, Theorem 1.3].

In particular, Theorem 9.1 beats the examples by Wang and me of klt varieties
with ample canonical class and large bottom weight [32, Remark 4.2]. The example
here is not quasi-smooth.

Theorem 9.1. For each even integer n at least 4, let apy1 = %(203% —415s,+161)
and a, = %(205% —1758,465). Letx = 14+an+ant1, d = (sn—1)z, and a; = d/s;
for 0 <i<n—1. Then a general hypersurface X of degree d in P"(ay, ..., ani1)
is well-formed and is a klt variety with Kx = Ox(1). Its bottom weight is ap+1,
which is asymptotic to 83%.

The proof is completely parallel to that of Theorem 8.1 and hence is omitted.
The proof uses that the equation of X includes the monomials 0 = x% +-- -+xf1’f11 +
izl +ao o wpqxbal ), where b= (4s, —19)/3 and ¢ = (5s, — 50)/3. Here
X is not quasi-smooth.

The variety in Theorem 9.1 should also have large global log canonical threshold
glet(X) :=let(X, Kx). (For varieties with ample canonical class, this invariant was
first studied by J. Chen, M. Chen, and C. Jiang [10, Section 2.5].) The global log
canonical threshold of a variety with ample canonical class is at most the bottom
weight, and it seems to be close to the bottom weight when the bottom weight is

large.
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Question 9.2. For each even number n at least 4, does the variety in Theorem 9.1
have the largest bottom weight and the largest glct among all kIt projective n-folds
with ample canonical class?

I speculate that the optimal examples in odd dimensions will also have bottom
weight asymptotic to %3721.

The best examples I know in low dimensions are as follows. I conjecture that the
klt surface with ample canonical class of largest bottom weight and largest glct is
X1 C P3(91,53,23,14); this is a non-quasi-smooth hypersurface, apparently new.
By Brown and Kasprzyk’s programs, the largest bottom weight for a quasi-smooth
hypersurface with Kx = Ox (1) is 13, which occurs for X315 C P3(158, 101,43, 13)
and X150 C P3(73,43,29,13) [8].

I conjecture that the klt 3-fold with ample canonical class of largest bottom
weight and largest glct is another non-quasi-smooth hypersurface, introduced here:

Xra954 C P4(36477,24318, 10422, 943, 793),

with equation 0 = x3 + 23+ 28 + 023 23 + 12073737 The largest previously known

bottom weight of a klt 3-fold with ample canonical class occurs for the quasi-smooth

hypersurface
Xig174 C P*(8854, 5889, 2457, 507, 466)

[8].

Finally, the klt 4-fold with ample canonical class in Theorem 9.1 has bottom
weight 1793201. The largest previously known bottom weight of a kit 4-fold with
ample canonical class is 1127113, which occurs for the quasi-smooth hypersurface
[8, ID 534198|.
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