Klt varieties of general type with small volume
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For projective varieties of general type, the wvolume measures the asymptotic
growth of the plurigenera: vol(X) = lim,, 0o h%(X,mKx)/(m™/n!). This is equal
to the intersection number K% if the canonical class Kx is ample. A central fact
about the classification of algebraic varieties is the theorem of Hacon-M°®Kernan-Xu,
which says in particular: for mildly singular (klt) complex projective varieties X
with ample canonical class, there is a constant u,, depending only on the dimension n
of X such that the pluricanonical linear system |mK x| gives a birational embedding
of X into projective space for all m > w, [10, Theorem 1.3]. It follows that there
is a positive lower bound v,, for the volume of all klt n-folds with ample canonical
class: namely, 1/(u,)" is a lower bound. It is a fundamental problem to find the
optimal values of these constants.

We focus here on constructing klt varieties of general type with small volume.
(We also construct klt Fano varieties with similar exotic behavior.) It is also inter-
esting to look for small volumes in the narrower setting of varieties with canonical
singularities and ample canonical class, since these arise as canonical models of
smooth projective varieties of general type. In that direction, Ballico, Pignatelli,
and Tasin constructed smooth projective n-folds of general type with volume about
1/n™ [2, Theorems 1 and 2]. After several advances, Esser and the authors con-
structed smooth projective n-folds of general type with volume about 1/ 92"/ 7,
Theorem 1.1]. That paper also gives comparably extreme examples of Fano and
Calabi-Yau varieties. Returning to the klt setting, our examples here have volume
roughly 1/2%". These examples should actually be close to optimal, by the following
discussion.

In the more general context of klt pairs, Kollar proposed what may be the kit
pair (Y,A) of general type with standard coefficients that has minimum volume
[9, Introduction]. (Here “general type” means that Ky + A is big, and “standard
coefficients” means that all coefficients of the Q-divisor A are of the form 1—1/m for
m € Z*.) There is some positive lower bound for such volumes, and the minimum
is attained, by Hacon-M¢Kernan-Xu’s theorem that these volumes satisfy DCC [10,
Theorem 1.3]. The example is

1 2 6 Cna1 — 1
(V,A)= (P, SHy+ SHy+ _Hy+ -+ 5 ——Hy, ),
2 3 7 Cn+1
where Hg, H1, ..., H,11 are n+2 general hyperplanes and c¢g, ¢1, ca, . .. is Sylvester’s
sequence,
co =2 and ¢pp1 = ey — 1) + 1.

In this case, the volume of Ky + A is 1/(cp42 — 1)™, which is really small, less than
1/ 22" The optimality of Kollar’s example is known only in dimension 1, where it
is the “Hurwitz orbifold” of volume 1/42 [1, section 10].



How small can the volume be for a klt variety with ample canonical class, as
opposed to a klt pair? In dimension 2, Alexeev and Liu gave an example with
volume 1/48983 [1, Theorem 1.4]. In high dimensions, we give examples as follows
(Theorems 2.1 and 4.1). Following a long tradition in algebraic geometry [11, 12, 2,
4], our examples are weighted projective hypersurfaces. These exhibit a huge range
of behavior, and finding good examples is not easy.

Theorem 0.1. For every integer n > 2, there is a complex kit n-fold X with
ample canonical class such that vol(Kx) < 1/22". More precisely, log(vol(Kx)) is
asymptotic to log(vol(Ky + A)) as the dimension goes to infinity, where (Y,A) is
Kolldr’s klt pair above.

Since Kollar’s example is conjecturally optimal in the broader setting of klt pairs
with standard coefficients, Theorem 0.1 means that our klt varieties with ample
canonical class should be close to optimal in high dimensions. The details of the
construction are intricate, combining Sylvester’s sequence with several sequences of
polynomials defined by recurrence relations.

Finally, we construct a klt Fano variety X in every dimension n such that the
linear system | — mK x| is empty for all 1 < m < b, with b doubly exponential in n
(Theorem 5.1). More precisely, b is roughly 22”. (In the narrower setting of terminal
Fano varieties, Esser and the authors gave examples with b roughly 92"/ [7, Theorem
3.9].) Birkar’s theorem on the boundedness of complements implies that there is an
upper bound on the number of vanishing spaces of sections H°(X, —mKx), for all
klt Fano varieties of a given dimension [3, Theorem 1.1]. Our examples show that
the bound must grow extremely fast as the dimension increases.
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1 Background on weighted projective spaces

Some introductions to the singularities of the minimal model program, such as
terminal, canonical, or Kawamata log terminal (klt), are [15, 13]. We work over C,
although much of the following would work in any characteristic.

For positive integers ayg, ..., a,, weighted projective space Y = P(ag,...,an)
means the quotient variety (A"*! — 0)/G,,, where the multiplicative group Gy,
acts by t(zo,...,xn) = (t%xq,...,t%x,). Here Y is said to be well-formed if
ged(ao, ..., aj,...,a,) =1 for each j. We always assume this. (In other words, the
analogous quotient stack [(A" ™! —0)/G,,] has trivial stabilizer group in codimension
1.) For well-formed Y, the canonical class of Y is given by Ky = O(—ag— -+ —ap)
[6, Theorem 3.3.4]. Here O(m) is the reflexive sheaf associated to a Weil divisor for
any integer m; it is a line bundle if and only if m is a multiple of every weight a;.
The intersection number [i, ¢1(O(1))" is equal to 1/ag - - - ap. (To check this, think
of the intersection number as vol(O(1)), and use that the coordinate ring of O(1) is

the graded polynomial ring with generators in degrees ag, ..., ay.)
Since weighted projective spaces have quotient singularities, they are klt. A
closed subvariety X of a weighted projective space P(ayg,...,a,) is called quasi-

smooth if its affine cone in A"! is smooth outside the origin. It follows that X



has only cyclic quotient singularities. A subvariety X in Y = P(ao,...,a,) is said
to be well-formed if Y is well-formed and the codimension of X N Y*"® in X is
at least 2. Notably, the adjunction formula holds for a well-formed quasi-smooth
hypersurface X of degree d in Y, meaning that Kx = Ox(d — ) a;) [11, section
6.14]. A general hypersurface of degree d is well-formed if and only if d is an
N-linear combination of ao,...,a;,...,a;,...,a, for all i < j; that holds for all
examples in this paper. Indeed, assuming that d is not equal to any a; (as will be
true in our examples), a quasi-smooth hypersurface of dimension at least 3 is always
well-formed [11, Theorem 6.17].

Iano-Fletcher proved the following criterion for quasi-smoothness, using that we
are in characteristic zero [11, Theorem 8.1]. Here N denotes the natural numbers,

{0,1,...}.
Lemma 1.1. A general hypersurface of degree d in P(ay,...,ay) is quasi-smooth
if and only if

either (1) a; = d for some i,

or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear
combination of the numbers a; with i € I, or (b) there are at least |I| numbers j & I
such that d — a; is an N-linear combination of the numbers a; with i € I.

2 KIlt varieties with ample canonical class
As in the introduction, let cg, c1, 2, ... be Sylvester’s sequence [14],
co=2and cpy1 =cplen — 1)+ 1.

The first few terms are cg = 2, ¢ = 3, co = 7, c3 = 43, ¢4 = 1807. We give the
following examples of klt varieties with ample canonical class. We will generalize
the construction as Theorem 4.1, giving better but more complicated examples.

Theorem 2.1. Let n be an integer at least 2, and define integers ag,...,Gn+1 aS
follows. Let y=cp_1 — 1 and

a2:y3+y+1

a1 =y(y +1)(1 + ag) — az

ap =y(1 +az+ay) —as.
Letx =14ao+a1+as, d=yx =cy---cn_ox =y +y°+1y° +4y* + 2> + 2% + 2y,
and a;13 =co--C; - Cpox for 0 <i<mn—2. Let X be a general hypersurface of

degree d in the complex weighted projective space P(aq,...,ant1). Then X is a kit
projective variety of dimension n with ample canonical class, and

1
yn73xnf2a0a1a2 :

Vol(Kx) =

It follows that vol(Kx) < . yR=T and hence vol(Kx) < 22%

(Cnf 1 -1

This example is not optimal, but it should be fairly close to optimal, given
the fast-growing functions involved. Indeed, Kollar’s conjecturally optimal klt pair
(Y, A) from the introduction has vol(Ky + A) = 1/(cpta — 1)" = 1/(cp—1 — 1),



while the kit variety X in Theorem 2.1 has vol(Kx) = 1/(cp—1 — 1)™ 1, thus
about the 7/8th power of the volume of Kolldr’s kit pair. See Theorem 4.1 for a
generalization, producing better examples.

Some cases of Theorem 2.1 in low dimensions, klt varieties with ample canonical
class, are:

X316 C P3(158,85,61,11) of dimension 2, with volume 2/57035 = 3.5 x 107°.

Xs4006s C P4(170034, 113356, 47269, 9185, 223) of dimension 3, with volume

1/5487505331993410 = 1.8 x 1016

The klt 4-fold with ample canonical class given by Theorem 2.1 has volume
about 1.4 x 10744, For comparison, the smallest known volume for a klt 4-fold with
ample canonical class is about 1.4 x 10747 [5, ID 538926].

Proof. Sylvester’s sequence satisfies ¢, = ¢g---cm—1 + 1. It follows that any two
terms in the sequence are relatively prime. Another notable feature is that

1 1 1 - 1 1
SR A
which converges very quickly to 1 as m increases.

We first show that the weighted projective space Y = P(ay,...,ap+1) is well-
formed. That is, we have to show that ged(ag,...,am,-..,an+1) = 1 for each
0 <m < n+ 1. It suffices to show that ag, a1, as are pairwise relatively prime.

Indeed, 1 is a Z[y]-linear combination of any two of ag, a1, as. For clarity, how-
ever, let us check by hand that ag, a1, as are pairwise relatively prime. To show that
ged(ag, ag) = 1, let p be a prime number dividing a; and ag. By the formula for aq,
p divides y(y + 1). But as a polynomial in y, as(y) = y® + y + 1 satisfies a2(0) = 1
and ag(—1) = —1;s0 ag =1 (mod y) and ag = —1 (mod y + 1). This contradicts
that p divides as. So ged(aq,a2) = 1.

Next, let p be a prime number that divides ag and a;. By the formula for ay,
either p divides 1 4 a9 or p divides y. In both cases, the formula for a; gives that p
divides as, contradicting that ged(a1,a2) = 1. So ged(ap, a1) = 1.

Finally, let p be a prime number that divides ag and as. Then the formulas for
ap and a; imply that a; = y(a; + 1) (mod p), that is, (y — 1)a; +y = 0 (mod p),
and a; = y(y+1) (mod p). Combining these shows that (y—1)y(y+1)+y=3>=0
(mod p). So p divides y. But then a1 = y(y + 1) = 0 (mod p), contradicting that
ged(ag,ag) = 1. It follows that the weighted projective space Y is well-formed.

Next, let us show that the general hypersurface X of degree d in Y is quasi-
smooth. We use the following sufficient condition in terms of a cycle of congruences.

Lemma 2.2. For positive integers d and ag,...,an+1, o general hypersurface of
degree d in P(ag,...,ant+1) is quasi-smooth if d > a; for every i and there is a
positive integer r such that:

(1) a;|d if i > r (that is, all but the first r weights divide d),

and (2) d—a,—1 =0 (mod a,—2), ..., d—a; =0 (mod agp), and d —ag = 0
(mod ay,_1).

Proof. Use Lemma 1.1. We have something to prove for each nonempty subset I
of {0,...,n+ 1}. If I contains a number i > r, then a; divides d and we are done.



Otherwise, I is contained in the set S = {0,...,7 — 1}. Consider S as the vertices
of a directed graph, with arrows from r — 1 tor —2 to ...to 0 to r — 1; then S is
a directed cycle of length r. If I contains two vertices j,4 with an edge from j to 1,
then the congruence d —a; = 0 (mod a;) implies that d is an N-linear combination
of a; and a;, using that d > a;, and we are done.

Otherwise, I contains no edge in the graph. Let J be the set of vertices that
point to some element of I. We have |J| = |I|, and J is disjoint from I because [
contains no edge. For each element j € J pointing to a vertex ¢ € I, the congruence
d—aj =0 (mod a;) implies that d — a; is an N-linear combination of the numbers
am with m € I. This checks the condition of Lemma 1.1 for quasi-smoothness. [

Returning to the proof of Theorem 2.1, let us use Lemma 2.2 to prove that the
general hypersurface X of degree d in Y is quasi-smooth. We know that a; divides
d for each ¢ > 3; also, d is greater than every a;. Given that, it suffices to prove the
cycle of 3 congruences: d —as =0 (mod a;), d —a; =0 (mod ap), and d —ag =0
(mod ag). Using that x = 14 ag + a1 + a2 and d = yx, we compute that

d—agz(yQ—i-l)al
d—a1 = (y+1)ag
d— ag ::(y4-+»3y-—»1)a2,

proving the desired congruences. That completes the proof that X is quasi-smooth.
In particular, X has only cyclic quotient singularities, and so X is klt.

Since Y is well-formed and X is quasi-smooth, Kx = Ox(d — > a;). Here
A=Y ai = o ena(1-1F 1/¢i)x = & = 1+ag+ar+ag, and so Kx = Ox(1).
As a result,

d
ag - -+ an+l
(co - cn2)x
e n—2,n—1
(co--cn_2) 22" lagajas
1
yn—3xn—2a0a1a2 !

vol(Kx) =

In terms of y = ¢,,—1 —1, we have ay = y3+y+1 > 3, a1 = +y* +3y2+y—1 >
v, a0 =0 +3y3 — 2 +1> 95 and x = yb +9° + ot + 4y + 2% + 2y + 2 > S,
Therefore, vol(Kx) < 1/y™ ' =1/(cp1 — 1) L.

There is a constant ¢ = 1.264 such that ¢; is the closest integer to & for all
i > 0 [8, equations 2.87 and 2.89]. This implies the crude statement that vol(Kx) <
1/22" for all n > 2. O

3 Some polynomial sequences defined by recurrence re-
lations

Here we define five sequences of polynomials in Z[y] by recurrence relations, f;, e;,
b;, z; and d;. These will be used for defining our examples of klt varieties with ample
canonical class in Theorem 4.1, generalizing Theorem 2.1. It would be interesting
to know if these polynomials (such as f;, below) have been encountered before.



We found these polynomials by trying to choose weights for our weighted pro-
jective space such that the largest weights are of the form d/2,d/3,...,d/c;, while
the other weights satisfy a cycle of congruences as in Lemma 2.2 (so that we get a
quasi-smooth hypersurface). For a cycle of length 3, we were led to the polynomials
in Theorem 2.1. Cycles of even length seem not to lead to good examples: we want
large weights which also yield a well-formed weighted projective space. We found
similar polynomials to produce a cycle of length 5, and generalizing to a cycle of any
odd length led to the polynomials in this section. These polynomials seem related
to the sequence of iterates of the polynomial y> — y + 1, which comes up because

the Sylvester numbers satisfy ¢;+1 = ¢7 — ¢; + 1.

Definition 3.1. For each ¢ > 0, define a polynomial f; in Z[y] by: fo = vy + 1,
=y’ +1and fi= fi1fica+ (fica = 1)(fiia —2) for i > 2.

For example, fo =y + 1, fi = y>+ 1, and fo = y* + 3> +y + 1. Clearly the
polynomial f; has degree 2! for each i > 0. The following description of f; may seem
more natural.

Lemma 3.2. For alli > 0,
fi= 1 ylfo - fiot = fo- o fima o (1)),
Proof. Temporarily define a sequence of polynomials h; in Z[y] by
hi =1+y(ho---hi_1 —ho---hi_g+ -+ (=1)).

We want to show that h; = f; for all ¢ > 0. We have h = y+ 1 = fy and
h1 = y2 + 1 = f1. It remains to show that h; satisfies the recurrence relation
that defines f; for ¢ > 2. We clearly have h; + h;—1 — 2 = yhgo - hj—1. Likewise,
hi—1+ hi—o — 2 = yhg - - h;—s. Therefore, h; + hj—1 — 2 = hj—1(hj—1 + hi—2 — 2),
which is equivalent to the desired relation h; = h;j—1hj—2 + (hj—1 — 1)(hi—1 — 2). So
h; = f; for all i > 0. O]

The next polynomial sequence we will need is:

Definition 3.3. For each i > 0, define a polynomial e; in Z[y] by

ei =yfor- fi1.

For example, €9 = y, e1 = y(y + 1) = y? +y, and ez = yly + )(y? + 1) =
y4 + y3 + y2 + y. By Lemma 3.2, we have

e; = fi+ fi-1—2

for all ¢ > 1, which can be viewed as an alternative definition of e;. We can also say
that e; = fi_1e;_1 for all i > 1. The polynomial e; has degree 2¢ for each i > 0.

Definition 3.4. For each i > 0, define a polynomial b; in Z[y] by by = 1 and
bi = (=1)" + fi—1biy

for i > 1.



It follows by induction that

bi=fo - fioi—fifiii 4+ (=1

for all i > 0. For example, by = 1, by = y, and by = 3> + y + 1 (which was the
smallest weight of the weighted projective space in Theorem 2.1). The polynomial
b; has degree 2¢ — 1 for each i > 0.

Definition 3.5. For each i > 0, define a polynomial z; in Z[y] by 20 = y — 1,
21 =y>—y+1, and

Zi = €;—1%i—1 + Zi—2
for all 7 > 2.

For example, z3 = y* + 2y — 1. The polynomial z; has degree 2¢ for each i > 0.
The following identity, needed for Theorem 4.1, relates the polynomial z; to b; and
fi, which may be considered simpler.

Lemma 3.6. For every i > 0,
oo fimrz = (=)™ bi(fi = 1),
Proof. The lemma holds for i = 0 (since y — 1 = —1 + 1(y)) and for ¢ = 1 (since
(y+1D(?*—y+1)=1+y(y?). Now let i > 2 and assume the lemma for smaller
values of ¢. Then the definition of z; gives that:
for fic1zi = fo- - fim1(€im12i-1 + 2i-2)
= (fo--- ficezic1)(ficreim1) + (fo- - fimszi2)(fi—2fiz1)
= (fo- fi—2zi-1)ei + (fo - fi—szi—2)(fi—2fi-1)
= [(—1)i +bi—1(fi1 — 1)]e
+ (1) + bima(fima — D] fima fiz1,
using that the lemma holds for smaller values of i. So the lemma holds for ¢ if 0 is
equal to

[(=1)" +bi—1(fic1 — D] (=) + [(=1)" "+ bi—a(fime — D] (— fi—2fi-1)
+ (=D +bi(fi - 1)
= [(=1)" + b1 fim1] (—ei) + [(=1)" " + bi—a fim2| (— fimafi—1)
+ (D) bi(fi — 1) 4 bires + bi—a fima fic1
= [(=1)" + bi1 fic1] (—ei + eim1 — fico + 1) + [(=1)"" 1+ bi—afioa] (fic1 — fi—2fi-1)
+bi(fi — 1)+ bi1(ei — eim1fic1 + fici fica — fic1) + (=1 (—eim1 + fic1 + fi2 — 2).
By definition of b;, we have b;_; = (—1)""! + b;_ofi 2 and likewise b; = (—1)% +
bi—1fi—1. Also, e; = e;_1fi—1. So we need to show that 0 is equal to
bi(—ei+ei—1— fica+ 1)+ bi1(fio1 — fim1fi2)
+b(fi = 1)+ bic1(fio1 fice — fi1) + (1) (fic1 + fi—2 — €i-1 — 2)
=bi(—e; + ei—1 — fi—o + fi) + (=1)(fi—1 + fi—2 — €i—1 — 2).

This is zero by the identities e; = f; + fi_1 —2 and e¢;_1 = f;—_1 + fi—o — 2. Lemma
3.6 is proved. O



The last sequence of polynomials we define is:

Definition 3.7. For each i > 0, define a polynomial d; in Z[y] by
di = €5 + bl(fl — 1).

For example, dy = 2y, di = y3+y?>+vy, and dp = v+ +v° +4y* + 23 +2y° + 2y
(which was the degree of the hypersurface in Theorem 2.1). The polynomial d; has
degree 2¢*1 — 1 for each ¢ > 0. By Lemma 3.6, another formula for d; is that

di = (=1)"+ fo--- fir1(2i +9).

4 Better kit varieties with ample canonical class

We now construct klt varieties X with ample canonical class and with smaller
volume than in Theorem 2.1. These should be close to optimal in high dimensions.
Indeed, we give examples with log(vol(Kx)) asymptotic to log(vol(Ky + A)) as the
dimension goes to infinity, where (Y, A) is Kollar’s conjecturally optimal klt pair
from the introduction.

For any odd number r > 3 and any dimension n > r — 1, we give an example
with weights chosen to satisfy a cycle of r congruences. For r = 3, this is the
example in Theorem 2.1. For each odd r > 3, our klt variety X compares to
Kollar’s conjecturally optimal klt pair by

log(vol(Kx)) R 2" —1
log(vol(Ky + A)) 2r

as n goes to infinity. Thus, by increasing r as n increases, we can make this ratio
converge to 1.

The example given by Theorem 4.1 in dimension 4, with r = 5, is a general
hypersurface of degree 147565206676 in

P? (73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361).

Here X has volume = 7.4x1074%. This is better than the kit 4-fold given by Theorem
2.1, although the smallest known volume for a klt 4-fold with ample canonical class
is about 1.4 x 10747 [5, ID 538926].

Let cg,c1,... be Sylvester’s sequence; see section 2 for the properties of that
sequence. We also use the five sequences of polynomials f;, e;, b;, z; and d; in Z[y]
from section 3.

Theorem 4.1. Let r be an odd integer at least 3 and let n be an integer at least
r — 1. Define integers ag, . ..,an+1 a$ follows. Let y = cp_rio — 1 and

ar—1=br_1
ap = dr—1 — (-1 + y)a,—1

a1 = dr—1 — foao

r—2 = dp_1 — fr73ar73



These are positive integers. Let x = 1 + ag + -+ + ap—1; then d,—1 = yx =
coCp—py1T. Let apyy; = co -G Cpprrx for 0 < i < n—r+1. Let X
be a general hypersurface of degree d,._1 in the complex weighted projective space
P(ag,...,ant1). Then X is a kit projective variety of dimension m with ample
canonical class, and

1
yn—ra;.n—r—l-lao @ :

vol(Kx) =

It follows that vol(Kx) <

1 1
e @D and hence vol(Kx) < 5.

Remark 4.2. As mentioned in the introduction, Hacon-M°®Kernan-Xu showed that
for each positive integer n, there is a constant u, such that for every klt projective
variety X of dimension n with Kx ample, the linear system |u, Kx| gives a bira-
tional embedding of X into projective space [10, Theorem 1.3]. Although we have
emphasized the role of volume, Theorem 4.1 shows that u, must also grow at least
doubly exponentially with n. Indeed, the variety X has

HY(X,mKx)=0
for all 1 < m < b,_1, where b,_1 > (¢ph—rt2 — 1)2“1*1. Taking r = n+ 1 if n is
even and r = n if n is odd, we deduce that the bottom weight b,_; is at least 92" -1
if n is even and at least 62" '~ if n is odd.

Proof. For any positive integer r and n > r—1, define ag, ..., a,_1 as in the theorem.
We start by proving various identities that we need, leading up to the proof that
dyr—1 = yx. We only introduce the assumption that r is odd and at least 3 when we
prove that Y is well-formed.

A first step is to show that a,_1 = d.—1 — fr_2a,_2 if r > 2. By section 3, we
have d,_1 = (=1)" "'+ fo -+ fr_2(2r—1 +y). Multiplying by (—1)""1a,_; gives that

Qr—1 = (_l)r_ld'r—lar—l + (_l)rfO T fr—2(zr—1 + y)aT—l
=dr[L= frea+ frosfroo— 4+ (=1 for o fro]
+(=1)"fo- -+ fro2(zr—1 +y)ar_1,

using a formula for a,_1 = b,_1 from section 3. By definition of ag, this gives that
ar—1 = dr—1 [1 - fr72 + frfoer =t (*1)7”_21?1 T fr72]
+ (=1 fo - fro2a0.

Now successively apply the definitions of a1, as, and so on, giving

ar—1 = dr—l(l - fr—2 + fr—Sfr—Q) - fr—4fr—3fr—2ar—4
= dr—l(l - fr—?) + fr—3fr—2ar—3
=dy1 — fr20,—2.

That is what we wanted.



Lemma 4.3. The following r equations hold.

ar—1=br1
Ap_9 = er_g(l + Cbr—l) — Ar—1

Ar—3 = er—3(1 +ar—1 + ar—2) — Gr-2

a0:€0(1+a7_1+"‘+a1)—a1.

The integer y is at least 2. Given that, Lemma 4.3 shows that the a;’s are
positive integers. We will also use it to prove the identity d,_; = yz, which is
important for Theorem 4.1.

Proof. (Lemma 4.3) The first equation, a,—1 = b,_1, holds by definition of a,_1.
Next, if » > 2, we want to show that a,—o = e,—2(1 + a,—1) — a,—1. It suffices to
prove this after multiplying by f,_2, which we do in order to use the result above
that a,_1 = d,_1 — fr_2a,_2. So we want to show that 0 is equal to

fr72€r72(1 + arfl) — fre2ar—1 — (drfl - arfl)
= ar—l(fr—Qer—2 — fr2+ 1) + (fr—?er—2 - dr—l)-
= br—l(fr—l - 1) + (er—l - d?“—l)7

where we used the identities that e,_1 = f,._1 + fr_2 — 2 and e,_1 = fr_2e,_9 from
section 3. By definition, d,—1 = e,—1 + by_1(fr—1 — 1), and so the desired equation
holds. So we have a,—2 = e,—2(1 +a,—1) — ap_1.

Now suppose we have proved the equation in Lemma 4.3 for a;41, with 0 < i <
r — 3; let us prove it for a;. That is, we want to show that a; = e;(1 + ap—1 + -+
ai+1) — @i+1. By definition, a;+1 = d,—1 — fia;, and so fia; = d,—1 —a;41. It suffices
to prove the desired identity after multiplying by f;; so we want to show that 0 is
equal to

fiei(l+ar—1+ -+ air1) — fiaiyr — (dr—1 — aiy1)
=aip1(fiei — fi+ 1)+ fies(L +ar—1 + -+ ajp2) —dr_y
=aip1(fir1 — 1) +epi(I4+ar—1 + -+ + aig2) — dr_1,

using the identities e;11 = fir1 + fi — 2 and e;41 = fie; from section 3.
By induction, we know that a; 11 = e;41(1 + ar—1 + -+ + a;12) — aj+2. So we
want to show that 0 is equal to

@it1 fir1 + g2 — dr_1,

which is true by definition of a;y2 (or, in the case i = r — 3, by the equality
ar—1 = dy—1 — ap—2fr—o which we proved). That completes the proof of Lemma
4.3. O

We return to the proof of Theorem 4.1. From Lemma 4.3, it is clear that
ag, - --,ar—1 are positive integers. Writing * = 1 4+ ag + --- + a,—1, let us show
that d,_1 = yz, part of the statement of the theorem. If r = 1, then ag = by = 1
and d,—1 = 2y, so x = 1 + a9 = 2 and we see that d,_1 = yx. If r > 2, then
Lemma 4.3 says that ap = ep(1 + ar—1 + -+ - +a1) — a1, where eg = y. Equivalently,
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x=14ap+---+ a, satisfies a; = yzr — (y + 1)ag. Here a; = d,—1 — (y + 1)aop, by
definition if » > 3 and by the formula a,_1 = d,—_1 — fr_2a,_o shown above if r = 2.
We conclude that d,—1 = yx. Since y = ¢p—p42 —1 =g - - - ¢p—r41 by the properties
of Sylvester’s sequence, we can also say that d,—1 =co - cp—rt12.

As in the statement of the theorem, define a,1; = ¢o---¢ - cp_pa12 for 0 <
i <n—r+1. We now show that the weighted projective space Y = P(ag, ..., an+1)
is well-formed, when 7 is odd and at least 3. That is, we have to show that
ged(ag, ...y Gmy ... any1) = 1 for each 0 < m < n+ 1. It suffices to show that
ged(ag, -y Qmy .-, ar—1) =1 foreach 0 <m <r — 1.

We first compute some of section 3’s polynomial sequences modulo y. By induc-
tion on i, we have f; =1 (mod y) for all i > 0. It follows that

b = 1 (mody) ifiiseven
"7 10 (mody) ifiis odd.

Also by induction, we find that

= 0 (mody+1) ifiiseven
‘712 (mody+1) ifiisodd,

and hence
b = 1 (mody+1) ifi=0
"7 1-1 (mody+1) ifi>0.
From there, we can show that ged(ag,...,a,—1) = 1, a step towards our goal.

Namely, if a prime number p divides a; for all 0 < j < r — 1, then the formula for
ag from Lemma 4.3 shows that p divides eg = y. But a,—1 = b1 = 1 (mod y)
(using that r is odd), contradicting that p divides a,_;. So we have shown that
ng(ao, . ,ar,l) =1.

Using that, let us show that ged(ag, . .., @m,...,a,—1) = L foreach2 < m < r—1.
(We handle the cases where m is 0 or 1 afterward.) Let p be a prime number that
divides a; for all 0 < j < r — 1 with j # m. The formula for ag from Lemma
4.3 gives that 0 = y(1 + ay,) (mod p). As a result, the formula for a,,—; from the

lemma gives that 0 = e;,—1(1 + a) — am = —an, (mod p), using that e,,—1 is a
multiple of y. This contradicts the fact that ged(ag,...,a,—1) = 1.
Next, we show that ged(ag,ag,...,ar,—1) = 1. Let p be a prime number that

divides ag as well as a; for all 2 < j < r — 1. The formula for ag from Lemma
4.3 gives that 0 = y(1+ a1) —a1 =y + (y — 1)a; (mod p). The formula for a;
from the lemma gives that a; = e; = y(y + 1) (mod p). Combining these, we have
0=y+(y—y(y+1) =y (mod p). So p divides y. But then a; = 0 (mod p),
contradicting that ged(ag,...,ar—1) = 1.

Finally, we show that ged(aj,...,ar,—1) = 1. Let p be a prime number that
divides a; for all 1 < j <r — 1. By the formula for a; from Lemma 4.3, p divides
e1 =y(y+1). If p divides y (= eg), then the formula for ay from the lemma gives
that p divides ag, contradicting that ged(ag, . ..,a,—1) = 1. So p divides y + 1. But
ar—1 =b,—1 = —1 (mod y+1) since r is at least 3, contradicting that p divides a,_;.
This completes the proof that ged(ag, - .., am,-..,a,—1) =1 foreach 0 < m < r—1.
So Y is well-formed.
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Next, let us show that the general hypersurface X of degree d,_1 in Y is quasi-
smooth. For each ¢ > r — 1, we know that a; divides d,_1; also, d,_1 is greater
than each a;. (For ag,...,a,_1, that follows from the fact that d,—1 = y(1 + ap +
-+ +ap_1).) Given this, Lemma 2.2 shows that quasi-smoothness follows from a
cycle of r congruences, namely that d,_1 —a,—1 =0 (mod a,—2), dp—1 — a,—2 =0
(mod a,—3), ..., dp—1 —a; = 0 (mod ap), and d,—1 —ag = 0 (mod a,_1). These
are immediate from the definitions of a;, together with the identity a,—1 = d,—1 —
fr—oa,_o which we proved. So X is quasi-smooth. In particular, X has only cyclic
quotient singularities, and so X is klt.

Therefore, Kx = Ox(d,—1 — >_ a;). Here

n+1 n+1

dr—y — E a; =Co*** Cpri1T — E a;
i=r i=r
n—r+1
=co - Cp_ril (1 - g 1/ci>:c

1=0
=T

=l+a+--+a—,
and so Kx = Ox(1). As a result,

drfl
ag - an+1
(co-Cpers1)T
B (CO ... cn_r+1)n—r+1xn—r+2a0 ey
_ 1
ynfrxnfrJrlao e Qp_ :

VOI(K)() =

In terms of y = ¢,_r120 — 1, we have a,_1 > yQT_lfl. Use the r equations from
Lemma 4.3 to estimate the other a;’s. By descending induction on 4, using that
ej > y? for each j, it follows that a; > yQT*T*l for 0 < ¢ < r — 1. Therefore,
x> ag > y> 2. Tt follows that vol(Kx) < 1/y® ~D""1 = 1/(¢p_pynp — 1) —n-1,

There is a constant ¢ = 1.264 such that ¢; is the closest integer to ™ for all
i > 0 [8, equations 2.87 and 2.89]. This implies the crude statement that vol(Kx) <

1/2%" foralln >r — 1. O

5 KIlt Fano varieties with H’(X,—mKx) = 0 for a large
range of positive integers m

We now construct klt Fano varieties such that H°(X, —mKx) = 0 for a large range
of positive integers m (Theorem 5.1). This is of interest in connection with Birkar’s
theorem on the boundedness of complements. Namely, for each positive integer n,
there is a positive integer e = e,, such that for every klt Fano variety X of dimension
n, the linear system | — eK x| is not empty, and in fact it contains a divisor M with
mild singularities in the sense that the pair (X, 11) is log canonical [3, Theorem

1.1]. Our examples show that e, must grow at least doubly exponentially, roughly
like 22",

12



In low dimensions, our examples are good but not optimal. In dimension 2,
Theorem 5.1 gives the kit Fano surface of degree 256 in P3(128,69,49,11). The
optimal bottom weight (for quasi-smooth hypersurfaces of dimension 2 with Kx =
Ox(—1)) is 13, which occurs in the examples Xo56 C P3(128,81,35,13) and X197 C
P3(57,35,23,13). In dimension 3, Theorem 5.1 gives the klt Fano 3-fold

X336060 C P4(168480, 112320, 46837, 9101, 223),

which has Kx = Ox(—1). The optimal bottom weight here is 407, from Johnson
and Kolldr’s kit Fano 3-fold [12, Remark 3]:

Xsrss1 C P1(18792, 12528, 5311, 547, 407).

So Theorem 5.1 has excellent asymptotics in high dimensions, but it is not optimal.

Our klt Fano varieties also have fairly small volume of —Kx; but that has no
particular significance, because the volume of klt Fano varieties in a given dimension
can be arbitrarily small. (For example, for any positive integer a, the weighted
projective plane Y = P%(2a + 1, 2a,2a — 1) is a klt Fano surface with vol(—Ky) =
18a/(4a® —1).)

The definition of our klt Fano varieties is much like that of the klt varieties of
general type in Theorem 4.1. Again, let ¢g, c1, . . . be Sylvester’s sequence; see section
2 for the properties of that sequence. We use the five sequences of polynomials f;,
ei, bi, z; and d; in Z[y] from section 3. The one slightly different polynomial we
need here is d; := —e; + b;(f; — 1), in place of d; = e; + b;(fi — 1).

Theorem 5.1. Let r be an odd integer at least 3 and let n be an integer at least
r — 1. Define integers ag, . ..,an+1 as follows. Let y = cp_rio — 1 and

Ar—1 = brfl
ap = dr—1 — (-1 — y)ar—1

a1 = dr—1 — foao

r—2 =dr_1 — fr—3a,-3

These are positive integers. Let x = —1 4+ ag + -+ + a,—1; then Ci"—l = yr =
coCp—py1T. Let apy; = co G Cpeprrx for 0 < i < n—r+1. Let X

be a general hypersurface of degree d,._1 in the complex weighted projective space
P(ag,...,ant1). Then X is a kit Fano variety of dimension n, and

HY(X,-mKx) =0
foralll1 <m < b,_y. Here by_1 > (Ch—ri2 — 1)2“1*1.

Taking r = n + 1 if n is even and r = n if n is odd, we deduce that the bottom
weight b,._1 is at least 22"=1 if n is even and at least 62"~ 1 if n is odd.

Proof. The proof is identical to that of Theorem 4.1, with sign changes where
needed. For example, in place of the identity d; = (—=1)" + fo--- fi_1(zi + v),
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use that d; = (1) + fo--- fi-1(zi —y). As in the proof of Theorem 4.1, start by
showing that a,_1 = d,_1 — fr_2a,_2. The analog of Lemma 4.3 says that

ar—1="br1

Ar—2 = 67"72(_1 + arfl) — Gr-1

Ar—3 = 67“73(_1 +ar—1+ ar72) — Qr-2

ap =eo(—1+ar—1+--+a1) —ar.

That makes it clear that the a;’s are positive integers. The rest of the proof shows
that X is a well-formed quasi-smooth hypersurface with Kx = Ox(—1), and its
bottom weight is b, _1. O
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