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Abstract. We study nonlocal elliptic and parabolic equations on C1,τ open sets in weighted
Sobolev spaces, where τ ∈ (0,1). The operators we consider are infinitesimal generators of symmet-
ric stable Lévy processes, whose Lévy measures are allowed to be very singular. Additionally, for
parabolic equations, the measures are assumed to be merely measurable in the time variable.
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1. Introduction. In this paper, we study the parabolic equation





∂tu(t, x) =Ltu(t, x) + f(t, x), (t, x)∈ (0, T )×D,

u(0, x) = 0, x∈D,

u(t, x) = u0(x), (t, x)∈ (0, T )×Dc,

as well as the corresponding elliptic equation

{
Lu(x) = f(x), x∈D,

u(x) = 0, x∈Dc,
(1.1)

where D is a C1,τ open set with τ ∈ (0,1). Here, Lt is a time-dependent symmetric
nonlocal operator of order α ∈ (0,2), while L is independent of the time variable.
More specifically, the operators Lt is defined by

Ltu(x) =
1

2

∫

Rd

(u(x+ y) + u(x− y)− 2u(x)) νt(dy), t∈ (0, T ),(1.2)

where νt is a nondegenerate α-stable symmetric Lévy measure for each t ∈ (0,∞).
The operator L for the elliptic equation is defined as (1.2) with time-independent
Lévy measure ν instead of νt;

Lu(x) :=
1

2

∫

Rd

(u(x+ y) + u(x− y)− 2u(x)) ν(dy).(1.3)
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4624 HONGJIE DONG AND JUNHEE RYU

For instance, the operator L becomes the fractional Laplacian −(−∆)α/2 when
ν(dy) = c|y|−d−αdy for some c > 0. Another simple example is the generator of d
independent one-dimensional symmetric stable Lévy processes,

Lu(x) :=
1

2

d∑

i=1

∫

Rd

f(x+ yiei) + f(x− yiei)− 2f(x)

|yi|1+α
dyi,

where ei is the unit vector in the ith coordinate. In this case, the spectral measure
of the Lévy measure (see (2.1)) is a sum of 2d Dirac measures defined on the unit
sphere, which is very singular.

These types of operators can be derived as the infinitesimal generator of (time-
inhomogeneous) Lévy processes. Such stochastic processes have been widely studied
in both analysis and probability theory, and have appeared in various fields such as
physics and mathematical finance.

In [43], it was shown that the optimal regularity of the solution to (1.1) is Cα/2(D),
not Cα(D), even in the case when L = −(−∆)α/2 and f ∈ L∞(D). Therefore,
obtaining solvability for the equations in Hα

p (D), the (unweighted) Sobolev spaces,
may not be possible. This necessitates the exploration of Sobolev spaces with weights.

In this paper, we are mainly concerned with the weighted Sobolev spaces Hγ
p,θ(D)

and Lp((0, T );H
γ
p,θ(D)). In particular, when γ ∈N,

‖u‖Hγ
p,θ(D) :=

(
γ∑

k=0

∫

D

|dkxD
k
xu|

pdθ−dx dx

)1/p

.

Here, dx denotes the distance from x to Dc and the powers of dx are used to control
the behavior of u and its derivatives near the boundary. These spaces were presented
in [38, section 2.6.3] for the specific case p= 2 and θ= d. They were generalized in a
unified manner for p∈ (1,∞) and θ, γ ∈R in [32] in order to establish an Lp-theory of
stochastic partial differential equations (SPDEs). See, for instance, [30, 35]. Since the
work [32], there have been many results on second-order equations in the weighted
Sobolev spaces. See, for instance, [11, 25, 26, 27, 27, 29, 48].

The purpose of this paper is to present maximal regularity of solutions to nonlocal
equations in such weighted Sobolev spaces. In particular, for the elliptic equation
(1.1), we prove

∫

D

(
|d−α/2x u|p + |dα/2x (−∆)α/2u|p

)
dθ−dx dx≤N

∫

D

|dα/2x f |pdθ−dx dx,(1.4)

provided that θ is in a certain range. Here, due to the presence of d
α/2
x , both f and

(−∆)α/2u are in a space that allows them to blow up near the boundary. In [7, 28],
weighted estimates similar to (1.4) were proved when L = −(−∆)α/2, D is a C1,1

open set, and θ is in the sharp range (d− 1, d− 1 + p).
Compared to the results [7, 28], we study the equations in a more general setting

as we consider operators with highly singular Lévy measures as well as C1,τ open
sets with any τ ∈ (0,1). More precisely, when D is a half space or a bounded C1,τ

convex domain, under a certain ellipticity condition, we establish (1.4) where θ is in
the optimal range (d− 1, d− 1 + p). For general C1,τ open sets, the same results are
obtained when θ ∈ (d− α/2, d− α/2 + αp/2). Here, the range of θ is restricted since
we deal with singular Lévy measures. Nevertheless, in the case of convex domains,
such constraints are not necessary. Regarding the parabolic equations, the operators
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4625

Lt are assumed to be merely measurable in the time variable, and a parabolic version
of (1.4) is obtained.

For the proof of the main results, we derive a priori estimates and then use
the method of continuity. We first prove zeroth-order estimates in section 4.1. For
second-order equations, these weighted estimates can be obtained by using integration
by parts and the product rule of the differentiation. See [32, section 6]. However,
it appears that these fundamental methods are not directly applicable to nonlocal
operators. In [7], zeroth-order estimates for L=−(−∆)α/2 were obtained by using the
sharp heat kernel estimates for the fractional Laplacian on C1,1 open sets. Compared
to this, we do not rely on the representation in terms of the fundamental solution
since it is not available under our assumptions. Our approach is more elementary and
can be applied to a larger class of nonlocal operators. Next, in section 4.2, we provide
higher-order regularity of solutions by using an estimate of the commutator term. See
Lemma 4.9. In this subsection, we apply the Lp-maximal regularity of equations with
time-dependent operators in the whole space, which is briefly handled in Appendix B
by appealing a result in [41]. It is worth noting that no regularity of open sets is
utilized in section 4.2. Finally, to apply the method of continuity, the solvability of
equations for L=−(−∆)α/2 is presented at the beginning of section 5.

Now we give a short review on other relevant work. We first refer the reader to
[1, 16, 17, 18, 19] for Lp-maximal regularity results of equations with pseudodifferential
operators satisfying the µ-transmission condition. In particular, in [16], it was proved
that if f ∈Lp(D) and D is C∞, then (1.1) has a unique solution in the µ-transmission
space. These results were extended to C1,τ open sets with τ > α in [1, 19]. In a
similar setting, parabolic equations were handled in [18]. We remark that in this
paper, we introduce a different approach and consider open sets with lower regularity.
For interior regularity results, we refer the reader to [3, 4, 9, 42]. For instance, in [3],
it was proved that if f ∈ Lp(D), then a solution u to (1.1) with L=−(−∆)α/2 is in
Hα
p,loc(D). See also [5, 12, 20, 21, 22] for results on L2 spaces.
Let us also mention related results in Hölder spaces. In [43], it was proved that

when L = −(−∆)α/2, D is a C1,1 bounded domain, and f ∈ L∞(D), any solution

u to (1.1) satisfies d
−α/2
x u ∈ Cδ(D) for some δ > 0. This result was generalized in

[2, 13, 45] by considering more general operators. See also [46, 47] for the results for
equations on C1,τ or less regular domains. In [10], it was shown that if the operator is
nonsymmetric, then the boundary behavior of the solution is more complicated, while
for symmetric operators, all solutions behave like a fixed power of the distance function
d
α/2
x . See also [6, 44] for results about nonlinear nonlocal equations. Particularly, the

boundary behavior of solutions to fully nonlinear equations was investigated in [44].
We finish the introduction by introducing the notation used in this paper. We

use “:=” or “=:” to denote a definition. For a real number a ∈ R, we write a+ :=
max{a,0}. For any D ⊂ R

d, dx := dist(x,Dc). By N and Z, we denote the set of
natural numbers and the set of integers, respectively. We denote N0 := N ∪ {0}. As
usual, Rd stands for the Euclidean space of points x= (x1, . . . , xd). We also denote

Br(x) := {y ∈R
d : |x− y|< r}, R

d
+ = {(x1, . . . , x

d)∈R : x1 > 0}.

We write R := R
1 and R+ := R

1
+. We use Dn

xu to denote the partial derivatives of
order n ∈N0 with respect to the space variables. By C2(Rd), we denote the space of
twice continuously differentiable functions on R

d. By C2
b (R

d), we denote the space
of functions whose derivatives of order up to 2 are bounded and continuous. For
1 < p < ∞, 0 < T ≤ ∞, and a Banach space B, Lp((0, T );B) denotes the set of
B-valued Lebesgue measurable functions u such that
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4626 HONGJIE DONG AND JUNHEE RYU

‖u‖Lp((0,T );B) :=

(∫ T

0

|u|pB dt

)1/p

.

For Borel measures l1 and l2 on R
d, we write l1 ≤ l2 if

l1(A)≤ l2(A)

for any Borel set A⊂R
d. Lastly, we use the convention that negative powers of 0 are

defined as 0.

2. Main results. We first introduce the assumptions for the operators. Let ν
be a Lévy measure on R

d, that is, ν is a σ-finite (positive) measure on R
d such that

ν({0}) = 0, and
∫

Rd

min{1, |y|2}ν(dy)<∞.

A Lévy measure ν is said to be symmetric if ν(−dx) = ν(dx). For α ∈ (0,2), we say
that a Lévy measure ν is α-stable if there is a nonnegative finite measure µ on the
unit sphere Sd−1, called the spherical part of ν, such that

ν(A) =

∫

Sd−1

∫ ∞

0

1A(rθ)
dr

r1+α
µ(dθ).(2.1)

In particular, when d= 1 and ν(dy) = |y|−1−αdy, we have

Lu(x) =
1

2

∫ ∞

−∞

(u(x+ y) + u(x− y)− 2u(x))
dy

|y|1+α
=−π(−∆)α/2u.(2.2)

We first state our assumption on ν. We say that an α-stable Lévy measure ν is
nondegenerate if ν satisfies the following assumption.

Assumption 2.1.
(i) There exists λ> 0 such that

λ≤ inf
ρ∈Sd−1

∫

Sd−1

|ρ · θ|α µ(dθ),(2.3)

where µ is the spherical part of ν.
(ii) There exists Λ> 0 such that

∫

Sd−1

µ(dθ)≤Λ<∞.(2.4)

Next we consider time-dependent Lévy measure νt in (1.2). Assume that (νt)0<t<T
is a family of α-stable symmetric Lévy measure, that is,

νt(A) =

∫

Sd−1

∫ ∞

0

1A(rθ)
dr

r1+α
µt(dθ),

where µt is the spherical part of νt for each t. Here is our assumption on νt.

Assumption 2.2.
(i) If f is integrable with respect to νt for all t∈ (0, T ), then the mapping

t→

∫

Rd

f(y)νt(dy)

is measurable.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4627

(ii) There exist λ > 0 and nondegenerate symmetric α-stable Lévy measure ν(1)

such that

νt ≥ ν(1) ∀t∈ (0, T )(2.5)

and

λ≤ inf
ρ∈Sd−1

∫

Sd−1

|ρ · θ|αµ(1)(dθ),

where µ(1) is the spherical part of ν(1).
(iii) There exists Λ> 0 such that

∫

Sd−1

µt(dθ)≤Λ<∞, t∈ (0, T ),

where µt is the spherical part of νt.

Remark 2.3. Obviously, if νt satisfies Assumption 2.2, then for each t ∈ (0, T ), νt
satisfies Assumption 2.1.

Now we present some weighted Lp spaces which will be used throughout this
paper. Let D be an open set with nonempty boundary and dx := dist(x,Dc). For any
p > 1, θ ∈ R, and n ∈ N0, we denote weighted Sobolev spaces of nonnegative integer
orders by

Hn
p,θ(D) := {u : u,dxDu, . . . , d

n
xD

nu∈Lp,θ(D)},

where Lp,θ(D) is an Lp space with the measure dθ−dx on D. The norm in this space
is defined as

‖u‖Hn
p,θ(D) =

∑

|β|≤n

(∫

D

|d|β|x Dβ
xu(x)|

pdθ−dx dx

)1/p

.(2.6)

Here, notice that Lp,θ(D) =H0
p,θ(D).

Next, we generalize these spaces to Sobolev and Besov spaces of arbitrary order.
Let {ζn}n∈Z be a collection of nonnegative functions in C∞(D) with the following
properties:

(i) supp(ζn)⊂ {x∈D : c1e
−n < dx < c2e

−n}, c2 > c1 > 0,(2.7)

(ii) sup
x∈Rd

|Dm
x ζn(x)| ≤Nme

mn ∀m∈N0,(2.8)

(iii)
∑

n∈Z

ζn(x)> c> 0 ∀x∈D.(2.9)

To construct such functions, one can take, for example, mollifications of indicator
functions of the sets of type {x∈D : c3e

−n < dx < c4e
−n}.

Let Hγ
p and Bγp,p denote the Bessel potential space and the Besov space on R

d,
respectively. For any p ∈ (1,∞), θ ∈ R, and γ ∈ R, weighted Sobolev spaces Hγ

p,θ(D)
and weighted Besov spaces Bγp,p;θ(D) are defined as collections of distributions u on
D such that

‖u‖p
Hγ

p,θ(D)
:=
∑

n∈Z

enθ‖ζ−n(e
n·)u(en·)‖p

Hγ
p
<∞(2.10)
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4628 HONGJIE DONG AND JUNHEE RYU

and

‖u‖p
Bγ

p,p;θ(D)
:=
∑

n∈Z

enθ‖ζ−n(e
n·)u(en·)‖p

Bγ
p,p
<∞,

respectively. The spaces Hγ
p,θ and Bγp,p;θ are independent of choice of {ζn}. See, for

instance, [37, Proposition 2.2]. More specifically, if {ζn} satisfies (2.7) and (2.8), then
we have

∑

n∈Z

enθ‖ζ−n(e
n·)u(en·)‖p

Hγ
p
≤N‖u‖p

Hγ
p,θ(D)

.

Also, the reverse inequality holds if {ζn} additionally satisfies (2.9). Furthermore,
when γ = n ∈ N0, the two norms (2.6) and (2.10) are equivalent. Similar properties
also hold for Bγp,p;θ(D).

Take an infinitely differentiable function ψ in D such that N−1ψ≤ dx ≤Nψ and
for any m∈N0

sup
D

|dmx D
m+1
x ψ(x)| ≤N(m)<∞.

For instance, we can take ψ(x) :=
∑
n∈Z

e−nζn(x) (see also, e.g., [26]).
Below we collect some facts about the space Hγ

p,θ(D). For ν ∈ R, we write
u∈ψ−νHγ

p,θ(D) if ψνu∈Hγ
p,θ(D).

Lemma 2.4. Let D be an open set with nonempty boundary, γ, θ ∈ R and 1 <
p<∞.

(i) The space C∞
c (D) is dense in both Hγ

p,θ(D) and Bγp,p;θ(D).
(ii) For ν ∈R, we have

Hγ
p,θ(D) = ψνHγ

p,θ+νp(D) and Bγp,p;θ(D) = ψνBγp,p;θ+νp(D).

Moreover,

N−1‖ψ−νu‖Hγ
p,θ+νp(D) ≤ ‖u‖Hγ

p,θ(D) ≤N‖ψ−νu‖Hγ
p,θ+νp(D)

and

N−1‖ψ−νu‖Bγ
p,p;θ+νp(D) ≤ ‖u‖Bγ

p,p;θ(D) ≤N‖ψ−νu‖Bγ
p,p;θ+νp(D),

where N depends only on d, γ, ν, p, and θ.
(iii) (Duality.) Let

1/p+ 1/p′ = 1, θ/p+ θ′/p′ = d.

Then H−γ
p′,θ′(D) and B−γ

p′,p′;θ′(D) are the dual spaces of Hγ
p,θ(D) and Bγp,p;θ(D),

respectively.

Proof. We only deal with Hγ
p,θ(D) since the proofs for Bγp,p;θ(D) are similar to

those for Hγ
p,θ(D). When D = R

d
+, all the claims are proved by Krylov in [33], and

those are generalized by Lototsky in [37] for arbitrary domains. See Propositions 2.2
and 2.4 and Theorem 4.1 in [37], whose proofs are still valid for general open sets.
The lemma is proved.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4629

Next, we introduce solution spaces for the parabolic equation. For γ, θ ∈ R,
p∈ (1,∞), and T ∈ (0,∞], we denote

H
γ
p,θ(D,T ) :=Lp((0, T );H

γ
p,θ(D)), Lp,θ(D,T ) :=Lp((0, T );Lp,θ(D)).

Let α ∈ (0,2). For u ∈ ψα/2Hαp,θ(D,T ) with u(0, ·) ∈ ψα/2−α/pB
α−α/p
p,p;θ (D), we say

u∈Hαp,θ(D,T ) if there exists f ∈ψ−α/2
Lp,θ(D,T ) such that for any φ∈C∞

c (D)

〈u(t, ·), φ〉D = 〈u(0, ·), φ〉D +

∫ t

0

〈f(s, ·), φ〉D ds ∀ t∈ (0, T ),

where 〈·, ·〉 is defined as

〈f, g〉E :=

∫

E

fg dx,

where f and g are measurable functions defined on E ⊂R
d. Here, we write ∂tu := f .

The norm in this space is defined as

‖u‖Hα
p,θ(D,T ) := ‖ψ−α/2u‖Hα

p,θ(D,T ) + ‖ψα/2∂tu‖Lp,θ(D,T )

+ ‖ψ−α/2+α/pu(0, ·)‖
B

α−α/p
p,p;θ (D)

.

We introduce a notion of weak solution.

Definition 2.5. Let T ∈ (0,∞] and D⊂R
d be an open set.

(i) (Parabolic problem.) Given u0 ∈L1,loc(D) and f ∈L1,loc((0, T )×D), we say
that u is a (very weak) solution to the equation





∂tu(t, x) =Ltu(t, x) + f(t, x), (t, x)∈ (0, T )×D,

u(0, x) = u0, x∈D,

u(t, x) = 0, (t, x)∈ (0, T )×Dc,

(2.11)

if (a) u= 0 a.e. in (0, T )×Dc, (b) 〈u(t, ·), φ〉Rd and 〈u(t, ·),Ltφ〉Rd exist for
any t < T and φ∈C∞

c (D), and (c) for φ∈C∞
c (D) the equality

〈u(t, ·), φ〉Rd = 〈u0, φ〉D +

∫ t

0

〈u(s, ·),Lsφ〉Rd ds+

∫ t

0

〈f(s, ·), φ〉D ds

holds for all t < T .
(ii) (Elliptic problem.) Given f ∈ L1,loc(D), we say that u is a (very weak)

solution to the equation
{
Lu(x) = f(x), x∈D,

u(x) = 0, x∈Dc,
(2.12)

if (a) u= 0 a.e. in Dc, (b) 〈u,φ〉Rd and 〈u,Lφ〉Rd exist for φ ∈ C∞
c (D), and

(c) for φ∈C∞
c (D) we have

〈u,Lφ〉Rd = 〈f,φ〉D.

We remark here that if u is a sufficiently regular strong solution, it is also a (very
weak) solution in the sense of Definition 2.5.

The main purpose of this paper is to derive weighted maximal Lp estimates in
C1,τ open sets. Below we give the formal definition of C1,τ open sets.
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4630 HONGJIE DONG AND JUNHEE RYU

Definition 2.6. For τ ∈ (0,1), an open set D⊂R
d is said to be a C1,τ open set

if there exists a constant R0 > 0 such that for any x0 ∈ ∂D, there is a C1,τ function
Φ :Rd−1 →R and a coordinate system y= (y1, y

′) centered at x0 in which

D ∩BR0
(x0) =BR0

(0)∩ {y : y1 >Φ(y′)}.

Now we state the main result for the parabolic equations.

Theorem 2.7 (parabolic case). Let p ∈ (1,∞), α ∈ (0,2), τ ∈ (0,1), and T ∈
(0,∞]. Suppose that νt satisfies Assumption 2.2. Assume that θ ∈ (d− 1, d− 1 + p)
if D is a half space or a bounded C1,τ convex domain, and θ ∈ (d− α/2, d− α/2 +
αp/2) if D is a bounded C1,τ open set. Then, for any f ∈ ψ−α/2

Lp,θ(D,T ) and

u0 ∈ ψ
α/2−α/pB

α−α/p
p,p;θ (D), there is a unique weak solution u to (2.11) such that u ∈

Hαp,θ(D,T ), and for this solution we have

‖u‖Hα
p,θ(D,T ) ≤N

(
‖ψα/2f‖Lp,θ(D,T ) + ‖ψ−α/2+α/pu0‖Bα−α/p

p,p;θ (D)

)
,(2.13)

where N =N(d, p,α, θ, τ,D,λ,Λ).

Here is the main result for the elliptic equations.

Theorem 2.8 (elliptic case). Let p ∈ (1,∞), α ∈ (0,2), and τ ∈ (0,1). Suppose
that ν satisfies Assumption 2.1. Assume that θ ∈ (d− 1, d− 1+ p) if D is a half space
or a bounded C1,τ convex domain, and θ ∈ (d−α/2, d−α/2+αp/2) if D is a bounded
C1,τ open set. Then, for any f ∈ψ−α/2Lp,θ(D), there is a unique weak solution u to
(2.12) such that u∈ψα/2Hα

p,θ(D), and for this solution we have

‖ψ−α/2u‖Hα
p,θ(D) ≤N‖ψα/2f‖Lp,θ(D),(2.14)

where N =N(d, p,α, θ, τ,D,λ,Λ).

3. Analysis of distance functions. Throughout this section, Assumption 2.1
is enforced.

We first introduce several useful facts on convex domains, which will be used in
the proof of Lemma 3.2.

Lemma 3.1. Let D be a convex domain with nonempty boundary and x, y ∈D.
(i) For z := (1− t)x+ ty and t∈ [0,1], we have

dz ≥ (1− t)dx + tdy.(3.1)

In particular,

dz ≥min{dx, dy}.

(ii) Let θ ∈ Sd−1. Then if there is no r0 > 0 such that x + r0θ ∈ ∂D, then
dx+rθ ≥ dx for any r > 0.

Proof.
(i) Notice that it suffices to prove (3.1) for x, y ∈ D. Let ẑ ∈ ∂D such that

|z− ẑ|= dz, and let P be the hyperplane to ∂D at ẑ. Take x̂, ŷ ∈ P such that
both x− x̂ and y− ŷ are parallel to z− ẑ. Then, since D is convex, x̂, ŷ ∈Dc.
Thus,

dz = |z − ẑ|= (1− t)|x− x̂|+ t|y− ŷ| ≥ (1− t)dx + tdy.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4631

(ii) Assume that x + r0θ ∈ D for all r0 > 0, and dx+rθ < dx for some r > 0.
Take c ∈ (0,1) such that dx+rθ = cdx. Then, by (3.1) with z := x+ rθ and
y := 1

1−c (z − cx) = x+ r
1−cθ ∈D, we get

(1− c)dy ≤ dz − cdx = 0.

However, due to the convexity of D, we have dy > 0, which gives a contradic-
tion. The lemma is proved.

Lemma 3.2. Let D be a convex domain with nonempty boundary, κ0 ∈ (0,1),
κ1 ∈ (0,∞), and κ2 ∈ (−1,0). Let νκ1

be a measure taking the form

νκ1
(A) =

∫

Sd−1

∫ ∞

0

1A(rθ)
dr

r1+κ1
µ(dθ).(3.2)

Then, for x∈D,
∫

Rd

1dx+y≤κ0dxd
κ2
x+y νκ1

(dy)≤Nd−κ1+κ2
x ,(3.3)

where N depends only on d,κ1, κ2, κ0,Λ, and D.

Proof. Let x∈D and θ ∈ Sd−1. To prove (3.3), by (2.4), it suffices to show
∫ ∞

0

1dx+rθ≤κ0dxd
κ2

x+rθr
−1−κ1 dr≤Nd−κ1+κ2

x .

Since D is convex, there exists at most one r0 ∈ (0,∞) such that x+ r0θ ∈ ∂D.
By Lemma 3.1(ii), we only consider the case when such r0 exists. If dx+rθ ≤ κ0dx,
then by (3.1) with (x+ rθ,x+ r0θ) instead of (z, y), we have r≥ (1− κ0)r0, and

dx+rθ ≥

(
1−

r

r0

)
dx.

Since r0 = |(x+ r0θ)− x| ≥ dx (recall that negative powers of 0 are defined as 0),
∫ ∞

0

1dx+rθ≤κ0dxd
κ2

x+rθr
−1−κ1 dr≤ dκ2

x

∫ r0

(1−κ0)r0

(
1−

r

r0

)κ2

r−1−κ1 dr

≤Ndκ2
x r

−κ1
0 ≤Nd−κ1+κ2

x .

The lemma is proved.

Now we present the corresponding result for general open sets without convexity.

Lemma 3.3. Let D be an open set with nonempty boundary, κ0, κ1 ∈ (0,∞),
κ2 ∈ [0, κ1), and let νκ1

be a measure taking the form (3.2). For x∈D and ρ> 0 such
that κ0dx ≤ ρ,

∫

|y|≥ρ

dκ2
x+y νκ1

(dy)≤Nd−κ1+κ2
x ,(3.4)

where N depends only on d,κ0, κ1, κ2, and Λ.

Proof. Since κ2 ≥ 0, using the relation dx+y ≤ dx + |y|, we clearly have
∫

|y|≥ρ

dκ2
x+y νκ1(dy)≤Ndκ2

x

∫

|y|≥ρ

νκ1(dy) +N

∫

|y|≥ρ

νκ1−κ2(dy)

≤Ndκ2
x ρ

−κ1 +Nρ−κ1+κ2 ≤Nd−κ1+κ2
x .

Thus, we have (3.4). The lemma is proved.
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4632 HONGJIE DONG AND JUNHEE RYU

Corollary 3.4. Let D be a convex domain with nonempty boundary, κ1, κ0 ∈
(0,∞), κ2 ∈ (−1, κ1), and let νκ1 be a measure taking the form (3.2). Then, for x∈D
and ρ> 0 such that κ0dx ≤ ρ,

∫

|y|≥ρ

dκ2
x+y νκ1

(dy)≤Nd−κ1+κ2
x ,

where N depends only on d,κ1, κ2, κ0,Λ, and D.

Proof. Since the case κ2 ≥ 0 is treated in (3.4), we only consider κ2 < 0. Then,
by Lemma 3.2, we have

∫

|y|≥ρ

dκ2
x+y νκ1

(dy)

≤

∫

Rd

1dx+y≤dx/2d
κ2
x+y νκ1

(dy) +

∫

|y|≥ρ

1dx+y>dx/2d
κ2
x+y νκ1

(dy)

≤Nd−κ1+κ2
x +Ndκ2

x

∫

|y|≥ρ

νκ1
(dy)

≤Nd−κ1+κ2
x +Ndκ2

x ρ
−κ1 ≤ d−κ1+κ2

x .

The corollary is proved.

In the rest of this section, we deal with regularized distance functions defined on
C1,τ open sets. We say that ψ̃ is a regularized distance function on a C1,τ open set
D if

N−1ψ̃(x)≤ dx ≤Nψ̃(x), ψ̃ ∈C1,τ (D), |D2
xψ̃(x)| ≤Ndτ−1

x .(3.5)

To construct such a function, one can follow the ideas in [15, 26] (see also [24]). Since
we will compute Lψ̃(x) below, we additionally define ψ̃(x) = 0 on x∈Dc.

We first state explicit computations for one-dimensional operators. The following
two lemmas are extensions of [10, Propositions 4.3 and 4.4] (see also [14, 17, 23]). The
proofs are given in Lemmas A.1 and A.2.

Lemma 3.5. Let d= 1 and L be an operator of the form (2.2) with α 6= 1. Let

u(x) := (x+)
β , β ∈ (−1, α).

Then

Lu(x) =Kα,β(x+)
β−α, x∈R+,

where

Kα,β =−
2

π
Γ(−α)Γ(1 + β)Γ(α− β) cos(απ/2) sin((β − α/2)π).

In particular,





Kα,β > 0, β ∈ (−1,−1 + α/2)∪ (α/2, α),

Kα,β = 0, β =−1 + α/2 or α/2,

Kα,β < 0, β ∈ (−1 + α/2, α/2).

(3.6)
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4633

Lemma 3.6. Let d= 1 and L=−(−∆)1/2. Let

u(x) := (x+)
β , β ∈ (−1,1).

Then

Lu(x) =K1,β(x+)
β−1, x∈R+,

where

K1,β =





−β cos(βπ), β ∈ (0,1),

− 1
π , β = 0,

β cos(βπ), β ∈ (−1,0).

Moreover, (3.6) still holds true with α= 1.

As a consequence of Lemmas 3.5 and 3.6, we have the following. Here, Kα,β is
taken from the above two lemmas.

Corollary 3.7. Let d ≥ 1 and let L be an operator of the form (1.3). Let
ρ∈ Sd−1 and define

u(x) := [(x · ρ)+]
β , β ∈ (−1, α).

Then, for t > 0,

Lu(x) =Nα,β [(x · ρ)+]
β−α in {x · ρ> 0},

where

Nα,β =Kα,β

∫

Sd−1

|θ · ρ|α µ(dθ).

In particular,





Nα,β > 0, β ∈ (−1,−1 + α/2)∪ (α/2, α),

Nα,β = 0, β =−1 + α/2 or α/2,

Nα,β < 0, β ∈ (−1 + α/2, α/2).

Proof. Note that for fixed x∈R
d, r ∈R, and θ ∈ Sd−1,

u(x+ rθ) = v(x · ρ+ (θ · ρ)r),

where

v(s) := (s+)
β .

Since r→ u(x+ rθ) is a one-dimensional function, by Lemmas 3.5 and 3.6,

1

2

∫ ∞

−∞

(u(x+ rθ) + u(x− rθ)− 2u(x))
dr

|r|1+α
=Kα,β |θ · ρ|

α(x · ρ)β−α+ .

This equality easily yields the desired result. The corollary is proved.

The following two lemmas will be used to prove Lemmas 3.10 and 3.11.
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4634 HONGJIE DONG AND JUNHEE RYU

Lemma 3.8. Let 0< ε≤ 1 and β ≤ 1. Then, for a, b > 0,

|aβ − bβ | ≤N(β, ε)|a− b|ε|aβ−ε + bβ−ε|.(3.7)

Proof. Without loss of generality, we only consider the case 0 < b < a. Let
f(x) := |xβ − bβ |1/ε. Then, by the mean value theorem,

f(a) = f(a)− f(b) = (a− b)f ′(c)(3.8)

for some b < c < a. Here,

|f ′(c)| ≤
|β|

ε
|cβ − bβ |1/ε−1cβ−1 ≤N(cβ/ε−β + bβ/ε−β)cβ−1

=N(cβ/ε−1 + bβ/ε−βcβ−1)≤N(aβ/ε−1 + bβ/ε−1).

This and (3.8) easily yield (3.7). The lemma is proved.

Lemma 3.9. Let D be a C1,τ open set, c∈ (0,∞), κ1 ∈ (0,∞), κ2 ∈ (−1, κ1), and
let νκ1

be a measure taking the form (3.2). Denote

l(z) := (ψ̃(x) +∇ψ̃(x) · (z − x))+.

Then, for x∈D,
∫

|y|>cψ̃(x)

lκ2(x+ y)νκ1
(dy)≤Nψ̃−κ1+κ2(x),

where N depends only on c, κ1, κ2, Λ, and D.

Proof. Due to the definition of νκ1 , we have
∫

|y|>cψ̃(x)

lκ2(x+ y)νκ1
(dy)

=

∫

Sd−1

∫ ∞

cψ̃(x)

[
(ψ̃(x) +∇ψ̃(x) · θr)+

]κ2

r−1−κ1 dr µ(dθ) =:

∫

Sd−1

I(θ)µ(dθ).

Therefore, it suffices to show

I(θ)≤Nψ̃−κ1+κ2(x).(3.9)

First, if ∇ψ̃(x) · θ = 0, then one can easily obtain (3.9). Next, assume ∇ψ̃(x) · θ > 0.
Note that if κ2 ≥ 0 and s≥ 0, then

(1 + cs)κ2 ≤N(c, κ2)(1 + sκ2),

and if κ2 < 0 and s≥ 0, then

(1 + cs)κ2 ≤ 1.

Thus, by the change of variables ∇ψ̃(x) · θr→ cψ̃(x)s,

I(θ) = c−κ1 ψ̃−κ1+κ2(x)
(
∇ψ̃(x) · θ

)κ1
∫ ∞

∇ψ̃(x)·θ

(1 + cs)κ2s−1−κ1 ds

≤Nψ̃−κ1+κ2(x)
(
∇ψ̃(x) · θ

)κ1
∫ ∞

∇ψ̃(x)·θ

(s−1−κ1 + s−1−κ1+κ2)ds

≤Nψ̃−κ1+κ2(x)

(
1 +

(
∇ψ̃(x) · θ

)−1+κ2
)
≤Nψ̃−κ1+κ2(x).
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4635

Here, the last inequality follows from the fact −1+κ2 > 0 and ∇ψ̃ is bounded. Lastly,
it remains to prove (3.9) when ∇ψ̃(x) · θ < 0. Similarly, by the change of variables
−∇ψ̃(x) · θr→ cψ̃(x)s

I(θ) = c−κ1 ψ̃−κ1+κ2(x)
(
−∇ψ̃(x) · θ

)κ1
∫ ∞

−∇ψ̃(x)·θ

[(1− cs)+]
κ2s−1−κ1 ds.

Here,
∫ ∞

−∇ψ̃(x)·θ

[(1− cs)+]
κ2s−1−κ1 ds

≤ 1−∇ψ̃(x)·θ<1/2

∫ 1/2c

−∇ψ̃(x)·θ

· · ·ds+

∫ 1/c

1/2c

· · ·ds

≤N

∫ ∞

−∇ψ̃(x)·θ

s−1−κ1 ds+N

∫ 1/c

1/2c

[(1− cs)+]
κ2 ds

≤N

[(
−∇ψ̃(x) · θ

)−κ1

+ 1

]
.

Thus, we have (3.9). The lemma is proved.

The following is an extension of [46, Proposition 2.3].

Lemma 3.10. Let D be a bounded C1,τ convex domain. Then, for any −1+α/2<
β <α/2, there exists δ > 0 such that

L(ψ̃β)(x)≤−Ndβ−αx , 0< dx < δ,

where N and δ depend only on α,β, τ, λ,Λ, d, and D.

Proof. Since ψ̃ is a regularized distance, one can take δ1 > 0 such that

inf
0<dz<δ1

|∇ψ̃(z)|> 0.(3.10)

Fix x∈D such that dx < δ1, and define

l(z) := (ψ̃(x) +∇ψ̃(x) · (z − x))+.

Then, by Corollary 3.7, (2.3), and (3.10), there exists N0 > 0 such that

L(lβ)(x)≤−N0l
β−α(x) =−N0ψ̃

β−α(x).(3.11)

Now, we estimate L(ψ̃β − lβ)(x). Let

c :=
1

2 supx∈D |∇ψ̃(x)|
.(3.12)

Since ψ̃β(x) = lβ(x) and ν is symmetric,

|L(ψ̃β − lβ)(x)| ≤

∫

Rd

|ψ̃β(x+ y)− lβ(x+ y)|ν(dy)

=

∫

|y|≤cψ̃(x)

· · ·ν(dy) +

∫

|y|>cψ̃(x)

· · ·ν(dy)

=: I1(x) + I2(x).(3.13)
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First, we estimate I1(x). Note that due to (3.12), Bcψ̃(x)(x) ⊂ D, and for |y| ≤

cψ̃(x),

1

2
ψ̃(x)≤ ψ̃(x+ y)≤

3

2
ψ̃(x).

Thus, for |y| ≤ cψ̃(x),

ψ̃β−1(x+ y)≤Nψ̃β−1(x), lβ−1(x+ y)≤Nψ̃β−1(x).

Since |D2
xψ̃(x)| ≤Nψ̃τ−1(x), for |y| ≤ cψ̃(x), by (3.7) with ε= 1,

|ψ̃β(x+ y)− lβ(x+ y)| ≤ |ψ̃(x+ y)− l(x+ y)||ψ̃β−1(x+ y) + lβ−1(x+ y)|

≤Nψ̃β−1(x)|ψ̃(x+ y)− ψ̃(x)−∇ψ̃(x) · y|

≤Nψ̃τ+β−2(x)|y|2.

Thus,

I1(x)≤Nψ̃τ+β−α(x).(3.14)

Next, we consider I2(x). Since ψ̃ ∈C1,τ (D), we can consider ψ̃0, a C
1,τ (Rd) extension

of ψ̃|D satisfying ψ̃0 ≤ 0 in Dc. Then there exists z ∈B|y| such that

|ψ̃(x+ y)− l(x+ y)|= |(ψ̃0(x+ y))+ − (ψ̃(x) +∇ψ̃(x) · y)+|

≤ |ψ̃0(x+ y)− ψ̃(x)−∇ψ̃(x) · y|

≤ |y · (∇ψ̃0(x+ z)−∇ψ̃(x))|

≤N |y|1+τ .(3.15)

Take ε satisfying 0< ε<min{1, β + 1, α−βτ , α
1+τ }. By (3.7) and (3.15),

|ψ̃β(x+ y)− lβ(x+ y)|

≤ |ψ̃(x+ y)− l(x+ y)|ε|ψ̃β−ε(x+ y) + lβ−ε(x+ y)|

≤N |y|ε+ετ |ψ̃β−ε(x+ y) + lβ−ε(x+ y)|.(3.16)

Since cψ̃(x)>κ0dx for some κ0 > 0, by Corollary 3.4 with (ρ,κ1, κ2) = (κ0dx, α− ε−
ετ,β − ε), we have

∫

|y|>cψ̃(x)

|y|ε+ετ ψ̃β−ε(x+ y)ν(dy)≤N

∫

|y|>κ0dx

|y|ε+ετdβ−εx+y ν(dy)

≤Ndετ+β−αx ≤Nψ̃ετ+β−α(x).(3.17)

Applying Lemma 3.9 with (α− ε− ετ,β − ε) instead of (κ1, κ2), we get

∫

|y|>cψ̃(x)

|y|ε+ετ lβ−ε(x+ y)ν(dy)≤Nψ̃ετ+β−α(x).(3.18)

Thus, (3.16)–(3.18) lead to

I2(x)≤Nψ̃ετ+β−α(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/0

2
/2

4
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

6
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4637

Therefore, this, (3.13), and (3.14) yield

|L(ψ̃β − lβ)(x)| ≤Nψ̃ετ+β−α(x).

Combining this with (3.11), we get

L(ψ̃β)(x)≤−N0ψ̃
β−α(x) +Nψ̃ετ+β−α(x), 0< dx < δ1.

Thus, if δ < δ1 is small enough, then we have the desired result. The lemma is
proved.

We also obtain a similar result for general C1,τ open sets.

Lemma 3.11. Let D be a bounded C1,τ open set. Then, for any 0 < β < α/2,
there exists δ > 0 such that

L(ψ̃β)(x)≤−Ndβ−αx , 0< dx < δ,

where N depends only on α,β,λ, d, and D.

Proof. One can easily prove the lemma by following the proof of Lemma 3.10.
The main difference is that one needs to use Lemma 3.3 instead of Corollary 3.4 to
obtain (3.17). The lemma is proved.

The following lemma will be used to handle interior estimates of solutions.

Lemma 3.12. Let D be a bounded open set. Then, for x∈D,

L1D(x)≤−N,

where N depends only on α,D, and λ.

Proof. Since D is bounded, one can find R> 0 such that D⊂BR. Then

L1D(x) =−

∫

Rd\{0}

1Dc(x+ y)ν(dy)≤−

∫

Bc
2R

ν(dy)≤−N.

The lemma is proved.

Remark 3.13. Let D be a convex domain (not necessarily bounded). Then a
similar result of Lemma 3.12 can be obtained; for x∈D,

L1D(x)≤−Nd−αx ,

where N depends only on α and λ. Indeed, let θ0 ∈ S
d−1 such that x+ dxθ0 ∈ ∂D.

Then, since D is convex, for rθ > 0 and θ ∈ Sd−1 such that x + rθθ ∈ ∂D, we get
rθ(θ · θ0)≤ dx. Thus,

L1D(x) =−

∫

Rd\{0}

1Dc(x+ y)ν(dy)≤−

∫

Sd−1

∫ ∞

rθ

1θ·θ0>0r
−1−α drµ(dθ)

≤−

∫

Sd−1

∫ ∞

dx
θ·θ0

1θ·θ0>0r
−1−α drµ(dθ)

≤−
d−αx
2α

∫

Sd−1

|θ · θ0|
α µ(dθ)≤−Nd−αx .

4. A priori estimates for solutions. In this section, we obtain a priori esti-
mates for solutions.
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4638 HONGJIE DONG AND JUNHEE RYU

4.1. Zeroth-order estimates. We first prove the weighted Hardy-type inequal-
ity for L on the half space.

Lemma 4.1. Let 1< p<∞, −1+α−αp/2< c< p−1+α−αp/2, and u∈C∞
c (Rd+).

Then, under Assumption 2.1, there exists N =N(d,α, c, p,λ)> 0 such that
∫

R
d
+

|u|pxc−α1 dx≤−N

∫

R
d
+

|u|p−2uLuxc1 dx.

Proof. Here, we use the notation

fy(x) := f(x+ y)

and denote h(x) := (x1)+. Then, by (1.2),

−

∫

R
d
+

|u(x)|p−2u(x)Lu(x)xc1 dx

=
1

2

∫

R
d
+

∫

Rd

|u(x)|p−2u(x)hc(x)
(
2u(x)− uy(x)− u−y(x)

)
ν(dy)dx.(4.1)

Due to the range of c, we can take γ ∈R satisfying

−1 +
α

2
< γ <

α

2
(4.2)

and

−1 +
α

2
< γ(p− 1) + c <

α

2
.(4.3)

Let v(x) := u(x)h−γ(x). Then, for each x∈R
d
+ and y ∈R

d \ {0},

|u(x)|p−2u(x)hc(x)
(
2u(x)− uy(x)− u−y(x)

)

=
p− 1

p
v(x)|u(x)|p−2u(x)hc(x)

(
2hγ(x)− hγy(x)− hγ−y(x)

)

+
p− 1

p
v(x)|u(x)|p−2u(x)hc(x)

(
hγy(x) + hγ−y(x)

)

+
1

p
|v(x)|phγ(x)

(
2hγ(p−1)+c(x)− hγ(p−1)+c

y (x)− h
γ(p−1)+c
−y (x)

)

+
1

p
|v(x)|phγ(x)

(
hγ(p−1)+c
y (x) + h

γ(p−1)+c
−y (x)

)

− |u(x)|p−2u(x)hc(x)
(
vy(x)h

γ
y(x) + v−y(x)h

γ
−y(x)

)

=:

5∑

k=1

Ik(x, y).(4.4)

Recall that, in this paper, negative powers of 0 are defined as 0. By (4.2), we can
apply Corollary 3.7 to get

Lhγ(x) =−Nhγ−α(x),

with a constant N > 0. Thus,
∫

Rd\{0}

I1(x, y)ν(dy) =−
p− 1

p
v(x)|u(x)|p−2u(x)hc(x)Lhγ(x)

=Nv(x)|u(x)|p−2u(x)hc(x)hγ−α(x)

=N |u(x)|phc−α(x) =N |u(x)|pxc−α1 .(4.5)
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4639

Similarly, one can obtain

∫

Rd\{0}

I3(x, y)ν(dy) =N |u(x)|pxc−α1 .(4.6)

Next, we deal with I4. Since ν is symmetric, for ε > 0, the Fubini theorem yields

∫

R
d
+

∫

|y|≥ε

|v(x)|phγ(x)hγ(p−1)+c
y (x)ν(dy)dx

=

∫

|y|≥ε

∫

Rd

|v(x)|phγ(x)hγ(p−1)+c
y (x)dxν(dy)

=

∫

|y|≥ε

∫

Rd

|v−y(x)|
phγ−y(x)h

γ(p−1)+c(x)dxν(dy)

=

∫

R
d
+

∫

|y|≥ε

|v−y(x)|
phγ−y(x)h

γ(p−1)+c(x)ν(dy)dx.

Thus,

∫

R
d
+

∫

|y|≥ε

I4(x, y)ν(dy)dx

=
1

p

∫

R
d
+

∫

|y|≥ε

|vy(x)|
phγy(x)h

γ(p−1)+c(x)ν(dy)dx

+
1

p

∫

R
d
+

∫

|y|≥ε

|v−y(x)|
phγ−y(x)h

γ(p−1)+c(x)ν(dy)dx.

Using this, we have

lim
ε↓0

∫

R
d
+

∫

|y|≥ε

(I2(x, y) + I4(x, y) + I5(x, y)) ν(dy)dx

= lim
ε↓0

1

p

∫

R
d
+

∫

|y|≥ε

[
|vy(x)|

p − |v(x)|p − p|v(x)|p−2v(x)(vy(x)− v(x))
]

× hγy(x)h
γ(p−1)+c(x)ν(dy)dx

+ lim
ε↓0

1

p

∫

R
d
+

∫

|y|≥ε

[
|v−y(x)|

p − |v(x)|p − p|v(x)|p−2v(x)(v−y(x)− v(x))
]

× hγ−y(x)h
γ(p−1)+c(x)ν(dy)dx.(4.7)

Due to the convexity of function a→ |a|p, we have

|b|p − |a|p − p|a|p−2a(b− a)≥ 0, a, b∈R.

Thus, we conclude that

lim
ε↓0

∫

R
d
+

∫

|y|≥ε

(I2(x, y) + I4(x, y) + I5(x, y)) ν(dy)dx≥ 0.

Combining this with (4.1) and (4.4)–(4.6), we have the desired result. The lemma is
proved.

Now we deal with C1,τ open sets.
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4640 HONGJIE DONG AND JUNHEE RYU

Lemma 4.2. Let D be a bounded C1,τ convex domain, 1 < p < ∞, −1 + α −
αp/2 < c < p − 1 + α − αp/2, and u ∈ C∞

c (D). Then, under Assumption 2.1, for
a regularized distance ψ̃ satisfying (3.5), there exist constants N1 and N2 depending
only on d,α, c, τ, p, λ,Λ, and D such that

∫

D

|u|pψ̃c−α dx≤−N1

∫

D

|u|p−2uLuψ̃c dx−N2

∫

D

|u|p−2uLudx.(4.8)

Moreover, if D is a bounded C1,τ open set, then the claim still holds, provided
that α/2− αp/2< c<α/2.

Proof. We first prove
∫

D

|u|pψ̃c−α dx≤−N1

∫

D

|u|p−2uLuψ̃c dx+N

∫

Dδ

|u|p dx,(4.9)

where Dδ := {x∈D : dx ≥ δ}.
We repeat the proof of Lemma 4.1 by substituting ψ̃(x) for h= (x1)+. Then, as

in (4.4) and (4.7),

−

∫

D

|u|p−2uLuψ̃c dx≥−
p− 1

p

∫

D

|u|pψ̃c−γLψ̃γ dx

−
1

p

∫

D

|u|pψ̃−γ(p−1)Lψ̃γ(p−1)+c dx,(4.10)

where γ satisfies (4.2) and (4.3). By Lemma 3.10, there exists δ > 0 such that

∫

Eδ

|u|pψ̃c−α dx≤−N

∫

Eδ

|u|pψ̃c−γLψ̃γ dx−N

∫

Eδ

|u|pψ̃−γ(p−1)Lψ̃γ(p−1)+c dx,

(4.11)

where Eδ := {x ∈D : 0< dx < δ}. Since ψ̃ is a regularized distance, for υ >−1, Lψυ

is bounded on Dδ := {x∈D : dx ≥ δ}. Thus, we have
∫

Dδ

|u|pψ̃c−γ |Lψ̃γ(x)|dx+

∫

Dδ

|u|pψ̃−γ(p−1)|Lψ̃γ(p−1)+c|dx≤N

∫

Dδ

|u|p dx.(4.12)

Therefore, (4.9) follows from (4.10)–(4.12).
Now we consider interior estimates for u. We again repeat the proof of Lemma 4.1

with h(x) = 1D(x). Then, by Lemma 3.12, we have
∫

D

|u(x)|p dx≤−N

∫

D

|u(x)|pL1D(x)dx≤−N2

∫

D

|u(x)|p−2u(x)Lu(x)dx.

This together with (4.9) yields (4.8).
Lastly, we deal with the case when D is a bounded C1,τ open set. Due to the

range of c, we can take γ ∈R satisfying

0< γ <
α

2

and

0< γ(p− 1) + c <
α

2
.

Then, by repeating the above proof with Lemma 3.11 in place of Lemma 3.10, we
have the desired result. The lemma is proved.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4641

Lemma 4.3. Let 1 < p < ∞, 0 < T < ∞, d − 1 < θ < d − 1 + p, and u ∈
C∞
c ([0, T ]×R

d
+). Then, under Assumption 2.2, there exists N =N(d, p,α, θ,λ) such

that
∫ T

0

∫

R
d
+

|u|px
θ−d−αp/2
1 dxdt+

∫

R
d
+

|u(T )|px
θ−d−αp/2+α
1 dx

≤N

∫ T

0

∫

R
d
+

|f |px
θ−d+αp/2
1 dxdt+N

∫

R
d
+

|u(0)|px
θ−d−αp/2+α
1 dx,(4.13)

where u(t) := u(t, ·) and

f := ∂tu−Ltu.(4.14)

Proof. We first multiply both sides of (4.14) by |u|p−2uxc1, where c := θ − d −
αp/2 + α. Then

1

p

∫ T

0

∫

R
d
+

∂t(|u|
p)xc1 dxdt−

∫ T

0

∫

R
d
+

Ltu|u|
p−2uxc1 dxdt

=

∫ T

0

∫

R
d
+

f |u|p−2uxc1 dxdt.

(4.15)

Notice that, by the fundamental theorem of calculus,
∫ T

0

∫

R
d
+

∂t(|u|
p)xc1 dxdt=

∫

R
d
+

|u(T )|pxc1 dx−

∫

R
d
+

|u(0)|pxc1 dx.

Since νt satisfies Assumption 2.1 for each t, we can apply Lemma 4.1 and Hölder’s
inequality to get

∫ T

0

∫

R
d
+

|u|pxc−α1 dxdt+

∫

R
d
+

|u(T )|px
θ−d−αp/2+α
1 dx

≤N

∫

R
d
+

|u(0)|pxc1 dx+N

∫ T

0

∫

R
d
+

f |u|p−2uxc1 dxdt

≤N

∫

R
d
+

|u(0)|pxc1 dx

+N

(∫ T

0

∫

R
d
+

|f |pxc+αp−α1 dxdt

)1/p(∫ T

0

∫

R
d
+

|u|pxc−α1 dxdt

)(p−1)/p

.

This gives (4.13). The lemma is proved.

Now we consider bounded C1,τ convex domains.

Lemma 4.4. Let D be a bounded C1,τ convex domain, 1 < p < ∞, 0 < T < ∞,
d−1< θ≤ d−α+αp/2, and u∈C∞

c ([0, T ]×D). Then, under Assumption 2.2, there
exists N =N(θ, d,α, p, τ, λ,Λ,D)> 0 such that

∫ T

0

∫

D

|u|pdθ−d−αp/2x dxdt+

∫

D

|u(T )|pdθ−d−αp/2+αx dx

≤N

∫ T

0

∫

D

|f |pdθ−d+αp/2x dxdt+N

∫

D

|u(0)|pdθ−d−αp/2+αx dx,

where u(t) := u(t, ·) and f := ∂tu−Lu.
Moreover, if D is a bounded C1,τ open set, then the claim still holds, provided

that d− α/2< θ≤ d− α+ αp/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/0

2
/2

4
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

6
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



4642 HONGJIE DONG AND JUNHEE RYU

Proof. Let ψ̃ be a regularized distance satisfying (3.5), and let N1 and N2 be the
constants taken from Lemma 4.2 with c := θ− d−αp/2+α. Here, the possible range
of θ is determined according to the conditions of D. As in (4.15), by multiplying both
sides of f = ∂tu−Lu by |u|p−2u(N1ψ̃

c +N2),

1

p

∫ T

0

∫

D

∂t(|u|
p)(N1ψ̃

c +N2)dxdt−

∫ T

0

∫

D

Lu|u|p−2u(N1ψ̃
c +N2)dxdt

=

∫ T

0

∫

D

f |u|p−2u(N1ψ̃
c +N2)dxdt.

Then, by following the proof of Lemma 4.3 with Lemma 4.2 instead of Lemma 4.1,
we get

∫ T

0

∫

D

|u|pψ̃c−α dxdt+

∫

D

|u(T )|pψ̃c dx

≤N

∫

D

|u(0)|p(1 + ψ̃c)dx

+N

∫ T

0

∫

D

|f ||u|p−1(1 + ψ̃c)dxdt

≤N

∫

D

|u(0)|pψ̃c dx

+N

(∫ T

0

∫

D

|f |pψ̃c+αp−α dxdt

)1/p(∫ T

0

∫

D

|u|pψ̃c−α dxdt

)(p−1)/p

.

Here, for the last inequality, we used the fact that D is bounded and c≤ 0. Thus, the
desired result follows from N−1ψ̃(x)≤ dx ≤Nψ̃(x). The lemma is proved.

Remark 4.5. In the proofs of Lemmas 4.3 and 4.4, the condition (2.5) is not
necessary. In other words, those lemmas can be proved for νt, which satisfies As-
sumption 2.1 for each t.

Remark 4.6. When D is a convex domain such that supx∈D dx < ∞, the same
result of Lemma 4.4 can be obtained by following the proof of Lemmas 4.2 and 4.4
with Remark 3.13 in place of Lemma 3.12.

4.2. Higher order estimates. In this subsection, we obtain higher order regu-
larity of solutions. To prove this, we extend the ideas of [7], which treats the fractional
Laplacian ∆α/2.

Throughout this subsection, we fix a collection of functions {ζn : n∈Z} satisfying
(2.7)–(2.9) with (c1, c2) = (1, e2). We also take {ηn : n ∈ Z} satisfying ζnηn = ζn and
(2.7)–(2.9) with (c1, c2) = (e−2, e4).

Lemma 4.7. Let D be an open set with nonempty boundary, γ ∈R, 1< p<∞, and
u ∈ C∞

c (D). Then, under Assumption 2.1, there exists a constant N =N(d,α,Λ,D)
such that for any n∈Z,

∥∥∥L
(
(uζ−nη−n)(e

n·)
)
− ζ−n(e

n·)L
(
(uη−n)(e

n·)
)∥∥∥

Hγ
p

≤N
∥∥∥∆α/4

(
(uη−n)(e

n·)
)∥∥∥

Hγ
p

+N‖u(en·)η−n(e
n·)‖Hγ

p
.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4643

Proof. Since ν is symmetric, by (1.3),

L
(
(uζ−nη−n)(e

n·)
)
(x)− ζ−n(e

nx)L
(
(uη−n)(e

n·)
)
(x)

− u(enx)η−n(e
nx)Lζ−n(e

n·)(x) =

∫

Rd

Fn(x, y)ν(dy),(4.16)

where

Fn(x, y) := [(uη−n)(e
n(x+ y))− (uη−n)(e

nx)][ζ−n(e
n(x+ y))− ζ−n(e

nx)].

Due to (2.8), we have

|Dm
x (ζ−n(e

n(x+ y))− ζ−n(e
nx))| ≤N(1∧ |y|),

and thus ζ−n(e
n(x+ y))− ζ−n(e

nx) becomes a pointwise multiplier in Hγ
p (see, e.g.,

[31, Lemma 5.2]). Hence, we can apply [49, Lemma 2.1] to get

‖Fn(·, y)‖Hγ
p
≤N(1∧ |y|)‖(uη−n)(e

n(·+ y))− (uη−n)(e
n·)‖Hγ

p

≤N
(
‖u(en·)η−n(e

n·)‖Hγ
p
∧ |y|α/2+1‖∆α/4

(
u(en·)η−n(e

n·)
)
‖Hγ

p

)
.

Thus, by Minkowski’s inequality,

∥∥∥∥
∫

Rd

Fn(·, y)ν(dy)

∥∥∥∥
Hγ

p

≤N‖∆α/4
(
u(en·)η−n(e

n·)
)
‖Hγ

p

∫

|y|≤1

|y|α/2+1 ν(dy)

+N‖u(en·)η−n(e
n·)‖Hγ

p

∫

|y|>1

ν(dy)

≤N‖∆α/4
(
(uη−n)(e

n·)
)
‖Hγ

p
+N‖u(en·)η−n(e

n·)‖Hγ
p
.(4.17)

On the other hand, by (2.8), one can find that |Dm
x L(ζ−n(e

n·))| is uniformly bounded
with respect to n. Therefore, [31, Lemma 5.2] yields

‖u(en·)η−n(e
n·)L(ζ−n(e

n·))‖Hγ
p
≤N‖u(en·)η−n(e

n·)‖Hγ
p
.

This, (4.16), and (4.17) lead to the desired result. The lemma is proved.

The following lemma is an extension of [7, Lemma 4.2].

Lemma 4.8. Let D be a convex domain with nonempty boundary, 1 < p < ∞,
u∈C∞

c (D), and d− 1− αp/2< θ < d+ p− 1 + αp/2. Then, under Assumption 2.1,

∑

n∈Z

en(θ−αp/2)
∥∥∥ζ−n(en·)L

(
[1− η−n(e

n·)]u(en·)
)∥∥∥

p

Lp

≤N‖u‖pLp,θ−αp/2(D),

where N depends only on d, p,α, θ,D, and Λ.
Moreover, if D is an open set with nonempty boundary, then the claim still holds,

provided that d− αp/2< θ < d+ αp/2.

Proof. 1. We first treat the case in which D is a convex domain with nonempty
boundary. Notice that

ζ−n(e
nx)(1− η−n(e

n(x+ y))) = 0 if |y|< δ0,
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4644 HONGJIE DONG AND JUNHEE RYU

where δ0 := 1− e−1. Hence, due to the (1.3) (recall that ν is symmetric),

ζ−n(e
nx)L

(
[1− η−n(e

n·)]u(en·)
)
(x)

= ζ−n(e
nx)

∫

|y|≥δ0

u(en(x+ y))[1− η−n(e
n(x+ y))]ν(dy)

≤Nζ−n(e
nx)

∫

|y|≥δ0

|u(en(x+ y))|ν(dy) =: Fn(x).

Thus, we only need to show

∑

n∈Z

en(θ−αp/2)‖Fn‖
p
Lp

≤N‖u‖pLp,θ−αp/2(D).(4.18)

Let β ∈ (0, α) be given. Since d− 1− αp/2 < θ < d+ p− 1 + αp/2, we can take
γ ∈R such that

1− p < γp< αp− βp(4.19)

and

−1< θ− d− αp/2 + γp+ βp< βp.(4.20)

By Hölder’s inequality,

Fn(x)≤ ζ−n(e
nx)

(∫

Sd−1

∫

r≥δ0

d−γpen(x+rθ)|u(e
n(x+ rθ))|pr−1−βp drµ(dθ)

)1/p

×

(∫

Sd−1

∫

r≥δ0

dγp
′

en(x+rθ)r
−1−(α−β)p′ drµ(dθ)

)1/p′

,(4.21)

where p′ := p/(p−1) and µ is the spherical part of ν. By a change of variables, (4.19),
and Corollary 3.4 with (ρ,κ1, κ2) = (enδ0, (α− β)p′, γp′), for x∈ supp(ζ−n(e

n·)),

∫

Sd−1

∫

r≥δ0

dγp
′

en(x+rθ)r
−1−(α−β)p′ drµ(dθ)

= en(α−β)p
′

∫

Sd−1

∫

r≥enδ0

dγp
′

enx+rθr
−1−(α−β)p′ drµ(dθ)

≤Nd
γp′−(α−β)p′

enx en(α−β)p
′

≤Nenγp
′

.

This and (4.21) yield

Fn(x)≤Nenγζ−n(e
nx)

(∫

|y|≥δ0

d−γpen(x+y)|u(e
n(x+ y))|p νβp(dy)

)1/p

,

where νβp is a measure taking the form (3.2). Then, by the Fubini theorem and the
change of variables (enx, eny)→ (x, y),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4645

∑

n∈Z

en(θ−αp/2)‖Fn‖
p
Lp

(4.22)

≤N
∑

n∈Z

en(θ−αp/2+γp)
∫

|y|≥δ0

∫

Rd

|ζ−n(e
nx)|pd−γpenx+y|u(e

n(x+ y))|p dxνβp(dy)

=N(d)
∑

n∈Z

en(θ−d−αp/2+γp+βp)
∫

|y|≥enδ0

∫

D

|ζ−n(x)|
pd−γpx+y|u(x+ y)|p dxνβp(dy)

=:N(d)

∫

D

H(x)d−γpx |u(x)|p dx,

where

H(x) :=
∑

n∈Z

en(θ−d−αp/2+γp+βp)
∫

|y|≥enδ0

|ζ−n(x− y)|p νβp(dy).

Here, for the last equality in (4.22), we used the change of variables x→ x− y.
Now we estimate H(x). For fixed x∈D, there exists n0 = n0(x)∈Z such that

en0+3 ≤ dx < e
n0+4.

If n ≤ n0 and x − y ∈ supp(ζ−n), then en < dx−y < en+2 ≤ en0+2 ≤ e−1dx, and
consequently |y| ≥ dx − dx−y ≥ Nen0 . Using this relation, (4.20), and Corollary 3.4
with (ρ,κ1, κ2) = (Nen0 , βp, θ− d− αp/2 + γp+ βp) (recall that ν is symmetric),

∑

n≤n0

en(θ−d−αp/2+γp+βp)
∫

|y|≥enδ0

|ζ−n(x− y)|pνβp(dy)

≤N

∫

|y|≥Nen0

∑

n≤n0

|ζ−n(x− y)|pd
θ−d−αp/2+γp+βp
x−y νβp(dy)

≤N

∫

|y|≥Nen0

d
θ−d−αp/2+γp+βp
x−y νβp(dy)

≤Ndθ−d−αp/2+γpx .(4.23)

Now we consider the summation for n> n0. Due to θ− d− αp/2 + γp < 0,

∑

n>n0

en(θ−d−αp/2+γp+βp)
∫

|y|≥δ0en
|ζ−n(x− y)|pνβp(dy)

≤N
∑

n>n0

en(θ−d−αp/2+γp+βp)
∫

|y|≥δ0en
νβp(dy)

≤N
∑

n>n0

en(θ−d−αp/2+γp) =Nen0(θ−d−αp/2+γp) ≤Ndθ−d−αp/2+γpx .

This together with (4.23) leads to

H(x)≤ dθ−d−αp/2+γpx .

Thus, by (4.22), we obtain (4.18).
2. Now we deal with open sets with nonempty boundary. This case can be

obtained by repeating the above argument. More specifically, for given β ∈ (0, α),
take γ ∈R such that

0≤ γp < αp− βp
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4646 HONGJIE DONG AND JUNHEE RYU

and

0≤ θ− d− αp/2 + γp+ βp< βp,

instead of (4.19) and (4.20), respectively. For instance, in this case, we can choose
γ = 0. Then proceed with the proof with Lemma 3.3 instead of Corollary 3.4. The
lemma is proved.

Lemma 4.9. Let D be a convex domain with nonempty boundary, γ ≤ 0, 1< p<
∞, d−1−αp/2< θ < d−1+p+αp/2, and u∈C∞

c (D). Then, under Assumption 2.1,
there exists a constant N =N(d, p,α, θ,D,Λ) such that

∑

n∈Z

en(θ−αp/2)
∥∥∥L
(
u(en·)ζ−n(e

n·)
)
− ζ−n(e

n·)L(u(en·))
∥∥∥
p

Hγ
p

≤N‖ψ−α/2u‖p
H

0∨(γ+α/2)
p,θ (D)

.(4.24)

Moreover, if D is an open set with nonempty boundary, then the claim still holds,
provided that d− αp/2< θ < d+ αp/2.

Proof. Since η−nζ−n = ζ−n, by the triangle inequality and the relation Lp ⊂Hγ
p ,

∥∥∥L
(
u(en·)ζ−n(e

n·)
)
− ζ−n(e

n·)L(u(en·))
∥∥∥
Hγ

p

≤
∥∥∥L
(
(uζ−nη−n)(e

n·)
)
− ζ−n(e

n·)L
(
(uη−n)(e

n·)
)∥∥∥

Hγ
p

+
∥∥∥ζ−n(en·)L

(
[1− η−n(e

n·)]u(en·)
)∥∥∥

Lp

.

Thus, by Lemmas 4.7 and 4.8, (2.10), and the relation

‖v‖Hγ
p
+ ‖∆α/4v‖Hγ

p
≤N‖v‖

H
γ+α/2
p

,

we have (4.24). The lemma is proved.

For a distribution u on an open set U ⊂ R
d, the action of u on φ ∈ C∞

c (U) is
denoted by

(u,φ)U := u(φ).(4.25)

Due to Lemma 2.4(iii), for U = D and u ∈ Hγ
p,θ(D), (4.25), defined on C∞

c (D), can

be extended by continuity to H−γ
p′,θ′(D).

The following lemma shows the boundedness of L from ψα/2Hα
p,θ(D) to ψ−α/2

Lp,θ(D).

Lemma 4.10. Let 1< p<∞ and let Assumption 2.1 hold.
(i) Let D be a convex domain with nonempty boundary, and d− 1− αp/2< θ <

d−1+p+αp/2. Then, for any u∈C∞
c (D), we have Lu∈ψ−α/2Lp,θ(D) and

‖ψα/2Lu‖Lp,θ(D) ≤N‖ψ−α/2u‖Hα
p,θ(D),

where N =N(d, p,α, θ,D,λ,Λ).
(ii) Under the same conditions in (i), for u∈ψα/2Hα

p,θ(D), Lu defined as

(Lu,φ)D = (u,Lφ)D, φ∈C∞
c (D),

is well defined and belongs to ψ−α/2Lp,θ(D).
Moreover, if D is an open set with nonempty boundary, then all the claims
above still hold, provided that d− αp/2< θ < d+ αp/2.
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4647

Proof. First, we prove (i). By [40, Proposition 1], we have

N−1‖∆α/2v‖Lp ≤ ‖Lv‖Lp ≤N‖∆α/2v‖Lp .(4.26)

Then the claim of (i) easily follows from Lemma 4.9 with γ = 0 and the relations
(4.26) and Lv(enx) = e−nαL(v(en·))(x).

Now we consider (ii). By (i) and Lemma 2.4(iii), for φ ∈ C∞
c (D), Lφ is in the

dual space of ψα/2Hα
p,θ(D). This actually proves (ii). The lemma is proved.

Now we are ready to prove higher order regularity of solutions.

Lemma 4.11. Let D be a convex domain with nonempty boundary, 1 < p < ∞,
0 < T ≤ ∞, d− 1− αp/2 < θ < d− 1 + p+ αp/2, and let νt satisfy Assumption 2.2.

Suppose that f ∈ ψ−α/2
Lp,θ(D,T ), u0 ∈ ψ

α/2−α/pB
α−α/p
p,p;θ (D), and u is a solution to

(2.11) such that u∈ψα/2Lp,θ(D,T ). Then u∈Hαp,θ(D,T ) and

‖u‖Hα
p,θ(D,T ) ≤N‖ψ−α/2u‖Lp,θ(D,T ) +N‖ψα/2f‖Lp,θ(D,T )

+N‖ψ−α/2+α/pu0‖Bα−α/p
p,p;θ (D)

,(4.27)

where N =N(d, p,α, θ,λ,Λ,D).
Moreover, if D is an open set with nonempty boundary, then the claim still holds,

provided that d− αp/2< θ < d+ αp/2.

Proof. It suffices to assume that T <∞. We first prove that

‖ψ−α/2u‖
H

α/2
p,θ (D,T )

≤N‖ψ−α/2u‖Lp,θ(D,T ) +N‖ψα/2f‖Lp,θ(D,T )

+N‖ψ−α/2+α/pu0‖Bα−α/p
p,p;θ (D)

.(4.28)

Let

un(t, x) := u(enαt, enx), fn(t, x) := f(enαt, enx), u0n(x) := u(enx), n∈Z.

Then un(t, x)ζ−n(e
nx) ∈ Lp(e

−nαT ) := Lp((0, e
−nαT );Lp(R

d)) is a weak solution to
the equation

{
∂tv=Lv+ Fn, (t, x)∈ (0, e−nαT )×R

d,

v(0, ·) = u0n(·)ζ−n(e
n·), x∈R

d,

where

Fn(t, x) := enα(fn(·, ·)ζ−n(e
n·))(t, x)

−L(un(·, ·)ζ−n(e
n·))(t, x) + ζ−n(e

nx)Lun(t, x).

Due to Lemma 4.9 with γ =−α/2,

∑

n∈Z

en(θ−αp/2)‖Fn(e
−nαt, ·)‖p

H
−α/2
p

≤N‖ψ−α/2u(t, ·)D‖
p
Lp,θ(D) +N‖ψα/2f(t, ·)‖p

H
−α/2
p,θ (D)

.(4.29)
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4648 HONGJIE DONG AND JUNHEE RYU

This implies that Fn ∈H
−α/2
p (e−nαT ) :=Lp((0, e

−nαT );H
−α/2
p ). By Lemma B.3 with

γ =−α/2, we have un(·, ·)ζ−n(e
n·)∈H

α/2
p (e−nαT ) and

‖∆α/2(u(·, en·)ζ−n(e
n·))‖p

H
−α/2
p (T )

= enα‖∆α/2(un(·, ·)ζ−n(e
n·))‖p

H
−α/2
p (e−nαT )

≤Nenα‖Fn(·, ·)‖
p

H
−α/2
p (e−nαT )

+Nenα‖u0n(·)ζ−n(e
n·)‖p

B
α/2−α/p
p

=N‖Fn(e
−nα·, ·)‖p

H
−α/2
p (T )

+Nenα‖u0n(·)ζ−n(e
n·)‖p

B
α/2−α/p
p

.(4.30)

By (4.29), (4.30), and the relation

‖v‖
H

α/2
p

≤N
(
‖v‖

H
−α/2
p

+ ‖∆α/2v‖
H

−α/2
p

)
,

we have

‖ψ−α/2u‖p
H

α/2
p,θ (D)

(4.31)

≤N
∑

n

en(θ−αp/2)
(
‖u(en·)ζ−n(e

n·)‖p
H

−α/2
p

+ ‖∆α/2(u(en·)ζ−n(e
n·))‖p

H
−α/2
p

)

≤N‖ψ−α/2u‖p
Lp,θ(D,T ) +N‖ψα/2f‖p

Lp,θ(D,T ) +N‖ψ−α/2+α/pu0‖
p

B
α−α/p
p,p;θ (D)

,

which gives (4.28).
Now we prove (4.27). By repeating the above argument, one can obtain

‖ψ−α/2u‖Hα
p,θ(D,T ) ≤N‖ψ−α/2u‖

H
α/2
p,θ (D,T )

+N‖ψα/2f‖Lp,θ(D,T )

+N‖ψ−α/2+α/pu0‖Bα−α/p
p,p;θ (D)

.(4.32)

This together with (4.28) easily yields (4.27). Moreover, by Lemma 4.10, ∂tu ∈
ψ−α/2

Lp,θ(D,T ), and thus u∈Hαp,θ(D,T ). The lemma is proved.

In the following lemma, the corresponding result for the elliptic equations is ob-
tained.

Lemma 4.12. Let D be a convex domain with nonempty boundary, 1 < p < ∞,
d− 1− αp/2< θ < d− 1 + p+ αp/2, and let ν satisfy Assumption 2.1. Suppose that
f ∈ ψ−α/2Lp,θ(D), and u is a solution to (2.12) such that u ∈ ψα/2Lp,θ(D). Then
u∈ψα/2Hα

p,θ(D), and

‖ψ−α/2u‖Hα
p,θ(D) ≤N‖ψ−α/2u‖Lp,θ(D) +N‖ψα/2f‖Lp,θ(D),(4.33)

where N =N(d, p,α, θ,λ,Λ,D).
Moreover, if D is an open set with nonempty boundary, then the claim still holds,

provided that d− αp/2< θ < d+ αp/2.

Proof. As in the proof of Lemma 4.11, we first show

‖ψ−α/2u‖
H

α/2
p,θ (D)

≤N‖ψ−α/2u‖Lp,θ(D) +N‖ψα/2f‖Lp,θ(D).(4.34)

For n∈Z, denote un(x) := u(enx) and fn(x) := f(enx). Then we have

L(un(·)ζ−n(e
n·))(x) = Fn(x), x∈R

d,(4.35)
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4649

where

Fn(x) := enαfn(x)ζ−n(e
nx)− (L(un(·)ζ−n(e

n·))(x)− ζ−n(e
nx)Lun(x)) .

By Lemma 4.9 with γ =−α/2,

∑

n∈Z

en(θ−αp/2)‖Fn‖H−α/2
p

≤N‖ψ−α/2u‖Lp,θ(D) +N‖ψα/2f‖Lp,θ(D).

Thus, from (4.26) and (4.35),

‖∆α/2(un(·)ζ−n(e
n·))‖p

Hγ−α
p

≤N‖L(un(·)ζ−n(e
n·))‖p

Hγ−α
p

=N‖Fn‖
p

Hγ−α
p

.

Thus, as in (4.31), we have (4.34).
Finally, as in (4.32), one can obtain (4.33) by repeating the above argument. The

lemma is proved.

5. Proof of Theorems 2.7 and 2.8. We first introduce a probabilistic repre-
sentation of the solution. A rotationally symmetric α-stable d-dimensional process
X = {Xt, t≥ 0} is a Lévy process defined on a probability space (Ω,F ,P) such that

Eeiξ·Xt = e−|ξ|αt ∀ξ ∈R
d.

For x ∈ R
d, let κD := κxD := inf{t ≥ 0 : x+Xt 6∈D} be the first exit time of X from

D. For bounded measurable functions f , we denote

PDt f(x) =E[f(x+Xt);κD > t], t > 0, x∈R
d.

Obviously, PDt f(x) = 0 for x∈Dc. It is known that {PDt }t≥0 is a Feller semigroup in
L∞(D) if D is a C1,τ open set (see page 68 of [8]).

Lemma 5.1. Let D be a bounded C1,τ open set, p∈ (1,∞), T ∈ (0,∞), α∈ (0,2),
and θ ∈ (d− 1,∞). Then, for any u0 ∈C

∞
c (D) and f ∈C∞

c ((0, T )×D),

u(t, x) := PDt u0(x) +

∫ t

0

PDt−sf(s, ·)(x)ds

belongs to ψα/2Lp,θ(D,T ) and is a (weak) solution to (2.11) with L=−(−∆)α/2.

Proof. First, one can show that u is a weak solution to (2.11) by following the
proof of [50, Lemma 8.4], which treats the case u0 = 0. The general case can be
handled similarly. Thus, it remains to show u∈ψα/2Lp,θ(D,T ).

Let ψ̃ be a regularized distance, and take δ from Lemma 3.11. Due to the condition
θ > d− 1, we take β such that β ∈ (0, α/2) and

βp− αp/2 + θ− d>−1.(5.1)

Notice that u is bounded since u0 and f are bounded. Therefore, there exists suf-
ficiently large N0 > 0 (depending also on u0 and f) such that vβ(x) := N0ψ̃

β(x)
satisfies

|u0(x)| ≤ vβ(x), x∈D,

|u(t, x)| ≤ vβ(x), t∈ (0, T ), dx ≥ δ,
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4650 HONGJIE DONG AND JUNHEE RYU

and

Lvβ(x)≤−NN0ψ̃
β−α(x)≤−|f(t, x)|, t∈ (0, T ), dx < δ.

Thus, from the last inequality above, we have

(u− vβ)t −L(u− vβ)≤ 0, t∈ (0, T ), dx < δ.

By applying the maximum principle to u− vβ over (0, T )× {0 < dx < δ} (see, e.g.,
[Theorem 3.2]), u ≤ vβ for x ∈ D. Using the same argument for −u, we conclude
|u| ≤ vβ . Thus, by (5.1), u∈ψα/2Lp,θ(D,T ). The lemma is proved.

Here we deal with the representation of the solution to the elliptic equations.

Lemma 5.2. Let D be a bounded C1,τ open set, p ∈ (1,∞), α ∈ (0,2), and
θ ∈ (d− 1,∞). Then, for any f ∈C∞

c (D),

u(x) :=−

∫ ∞

0

PDt f(x)dt

belongs to ψα/2Lp,θ(D) and is a (weak) solution to (2.12) with L=−(−∆)α/2.

Proof. By [50, Lemma 5.9], if D is a bounded domain, then E(κxD)
2 ≤N , where

N is independent of x. Here, we remark that [50] is proved only for domains, but the
estimate still holds even for open sets. Hence, using this,

|PDt f(x)| ≤ ‖f‖L∞(D)P(κ
x
D < t)≤ ‖f‖L∞(D)min

{
1,

1

t2
E(κxD)

2

}
,

which implies that u is well defined, and PDt f(x)→ 0 uniformly with respect to x as
t→ ∞. Thus, one can show that u is a solution to (2.12) by repeating the proof of
[7, Lemma 3.4(ii)].

Now we prove u∈ψα/2Lp,θ(D). As in the proof of Lemma 5.1, we take a regular-

ized distance ψ̃ and δ from Lemma 3.11. Then, for β ∈ (0, α/2) satisfying (5.1), there
exists N0 > 0 such that vβ(x) :=N0ψ̃

β(x) satisfies

|u(x)| ≤ vβ(x), dx ≥ δ,

and

Lvβ(x)≤−NN0ψ̃
β−α(x)≤−|f(x)|, dx < δ.

Hence, applying the maximum principle to u − vβ over {0 < dx < δ} (see, e.g.,
[6, Theorem 5.2]), we have |u| ≤ vβ . Thus, from (5.1), we have u∈ψα/2Lp,θ(D). The
lemma is proved.

Proof of Theorem 2.7. Note that the case T = ∞ can be easily treated if the
theorem is proved for any T <∞. Thus, we assume T <∞.

1. Assume that D = R
d
+. Since C∞

c ([0, T ]×D) is dense in Hαp,θ(D,T ) (see [32,
Remark 5.5]), the a priori estimate (2.13) easily follows from Lemmas 4.3 and 4.11.
Next, the solvability of (2.11) with Lt =−(−∆)α/2 is treated in [7, Theorems 2.2 and
2.9]. Thus, thanks to the method of continuity, we obtain the solvability for general
operators.

2. Suppose that D is bounded and θ ≤ d+ αp/2− α. As in case 1, Lemmas 4.4
and 4.11 yield the a priori estimate (2.13). Thus, again by the method of continuity,
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4651

we only need to show the solvability of (2.11) with L=−(−∆)α/2. By Lemmas 4.11
and 5.1, for u0 ∈C

∞
c (D) and f ∈C∞

c ((0, T )×D), there exists a solution u∈Hαp,θ(D,T )

to (2.11). For general u0 ∈ ψα/2−α/pB
α−α/p
p,p;θ (D) and f ∈ ψ−α/2

Lp,θ(D,T ), take a
sequence u0n ∈ C∞

c (D) and fn ∈ C∞
c ((0, T ) × D) such that u0n → u and fn → f

in ψα/2−α/pB
α−α/p
p,p;θ (D) and ψ−α/2

Lp,θ(D,T ), respectively. For each n, un denotes a
solution to (2.11) with un and fn in place of u and f , respectively. Then, by (2.13),

‖(un − um)‖Hα
p,θ(D,T )

≤N‖ψ−α/2+α/p(u0n − u0m)‖
B

α−α/p
p,p;θ (D)

+N‖ψα/2(fn − fm)‖Lp,θ(D,T ),

which actually implies un is Cauchy in Hαp,θ(D,T ). Hence, the limit of the sequence,
say u, is a solution to (2.11), and u∈Hαp,θ(D,T ).

3. Lastly, we assume D is bounded and θ > d + αp/2 − α. We will use a du-
ality argument to prove the a priori estimate. Let u, v ∈ C∞

c ([0, T ]×D). Then, by
integration by parts,

∫ T

0

∫

D

u(∂tv+Lv)dxdt=−

∫ T

0

∫

D

v(∂tu−Lu)dxdt

+

∫

D

u(T )v(T )dx−

∫

D

u(0)v(0)dx.

By Lemma 2.4(iii),
∣∣∣∣∣

∫ T

0

∫

D

u(∂tv+Lv)dxdt

∣∣∣∣∣

≤N‖ψα/2(∂tu−Lu)‖Lp,θ(D,T )‖ψ
−α/2v‖Lp′,θ′ (D,T )

+N‖ψ−α/2+α/pu(0)‖Lp,θ(D)‖ψ
−α/2+α/p′v(0)‖Lp′,θ′ (D)

+N‖ψ−α/2+α/pu(T )‖Lp,θ(D)‖ψ
−α/2+α/p′v(T )‖Lp′,θ′ (D),

where 1/p + 1/p′ = 1 and θ/p + θ′/p′ = d. Since θ′ < d + αp′/2 − α, by applying
Lemma 4.4 to v(T − t, x), we have

‖ψ−α/2+α/p′v(0)‖Lp′,θ′ (D)

≤N‖ψα/2(∂tv+Lv)‖Lp′,θ′ (D,T ) +N‖ψ−α/2+α/p′v(T )‖Lp′,θ′ (D).

Moreover, by the result for the case 2, for any g ∈ ψ−α/2
Lp,θ(D,T ), one can find a

solution w to




∂tw(t, x) =−Lw(t, x) + g(t, x), (t, x)∈ (0, T )×D,

w(T,x) = 0, x∈D,

w(t, x) = 0, (t, x)∈ (0, T )×Dc,

satisfying w ∈H
α
p,θ(D,T ), and

‖ψ−α/2w‖Hα
p,θ(D,T ) ≤N‖ψα/2g‖Lp,θ(D,T ).

Here, note that the initial condition is defined at t = T and the sign of the operator
is reversed. Thus, this solvability and the denseness of ψ−α/2

Lp,θ(D,T ) actually
imply that for any g ∈ ψ−α/2

Lp,θ(D,T ), there exists vn ∈ C∞
c ([0, T ]×D) such that
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4652 HONGJIE DONG AND JUNHEE RYU

vn(T )→ 0, vn→w, and ∂tvn+Lvn→ g in their corresponding spaces. Therefore, for
any g ∈ψ−α/2

Lp,θ(D,T ),
∣∣∣∣∣

∫ T

0

∫

D

ug dxdt

∣∣∣∣∣≤N‖ψα/2(ut −Lu)‖Lp,θ(D,T )‖ψ
α/2g‖Lp,θ(D,T )

+N‖ψ−α/2+α/pu(0)‖Lp,θ(D)‖ψ
α/2g‖Lp,θ(D,T ).

Thus, by Lemma 2.4(iii),

‖ψ−α/2u‖Lp,θ(D,T ) ≤N‖ψα/2(ut −Lu)‖Lp,θ(D,T ) +N‖ψ−α/2+α/pu(0)‖Lp,θ(D).

This together with Lemma 4.11 yields the a priori estimate (2.13). Now one can obtain
the solvability of (2.11) by repeating the argument used in step 2. The theorem is
proved.

Proof of Theorem 2.8. We first prove the a priori estimate (2.14) by following the
proof of [34, Theorem 2.6]. Here, by Lemma 2.4(i), we only need to prove (2.14) for
u∈C∞

c (D).
Let η ∈C∞

c ((0,∞)) and u∈C∞
c (D). Then v(t, x) := η(t/n)u(x) satisfies





∂tv(t, x) =Lv(t, x) + g(t, x), (t, x)∈ (0,∞)×D,

v(0, x) = 0, x∈D,

v(t, x) = 0, (t, x)∈ (0,∞)×Dc,

where g(t, x) := 1
nη

′(t/n)u(x)− η(t/n)Lu(x). Observe that

‖ψ−α/2v‖p
H

α
p,θ(D,∞) = nN1‖ψ

−α/2u‖pHα
p,θ(D)

and

‖ψα/2g‖p
Lp,θ(D,∞) =N

(
nN1‖ψ

α/2Lu‖Lp,θ(D) + n1−pN2‖ψ
α/2u‖Lp,θ(D)

)
,

where

N1 :=

∫ ∞

0

|η|p dt, N2 :=

∫ ∞

0

|η′|p dt.

This and (2.13) with T =∞ yield (2.14).
Due to the method of continuity, we only need to prove the solvability of (2.12)

with L = −(−∆)α/2. For the case D = R
d
+, see [7, Theorems 2.3 and 2.10]. Now

we consider the general open sets. For f ∈ C∞
c (D), Lemmas 4.12 and 5.2 easily lead

to the solvability. Then the standard approximation argument as in the proof of
Theorem 2.7 yields the desired result. The theorem is proved.

Appendix A. One-dimensional distance functions.

Lemma A.1. Let d= 1 and let L be an operator of the form (2.2) with α 6= 1. Let

u(x) := (x+)
β , β ∈ (−1, α).

Then

Lu(x) =Kα,β(x+)
β−α, x∈R+,
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4653

where

Kα,β =−
2

π
Γ(−α)Γ(1 + β)Γ(α− β) cos(απ/2) sin((β − α/2)π).

In particular,




Kα,β > 0, β ∈ (−1,−1 + α/2)∪ (α/2, α),

Kα,β = 0, β =−1 + α/2 or α/2,

Kα,β < 0, β ∈ (−1 + α/2, α/2).

(A.1)

Proof. We first assume that α∈ (0,1). Using Euler’s reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, z /∈Z,

one can easily prove the case β = 0. Thus, we only consider β 6= 0. By a change of
variables, for x> 0,

Lu(x) =

∫ ∞

−∞

((x+ y)β+ − (x+)
β)|y|−1−αdy

=

(∫ ∞

−∞

((1 + y)β+ − 1)|y|−1−αdy

)
(x+)

β−α =:Mα,β(x+)
β−α.

Here,

Mα,β =−

∫ −1

−∞

|y|−1−αdy+

∫ 0

−1

((1 + y)β − 1)|y|−1−αdy

+

∫ ∞

0

((1 + y)β − 1)|y|−1−αdy

=−α−1 +

∫ 1

0

((1− y)β − 1)y−1−αdy+

∫ ∞

0

((1 + y)β − 1)y−1−αdy

=:−α−1 + I1(α,β) + I2(α,β).(A.2)

By the definition of the beta function B(a, b),

I1(α,β)− I1(α,β + 1) =

∫ 1

0

(
(1− y)β − (1− y)β+1

)
y−1−αdy

=

∫ 1

0

(1− y)βy−αdy=B(1− α,β + 1).(A.3)

Since β + 1> 0, we can use the Fubini theorem to get

I1(α,β + 1) =−(β + 1)

∫ 1

0

∫ 1

1−y

y−1−αzβdzdy

= α−1(β + 1)

∫ 1

0

(1− (1− z)−α)zβdz

= α−1 − α−1(β + 1)B(1− α,β + 1).(A.4)

Combining (A.3) and (A.4),

I1(α,β) = α−1 + α−1(α− β − 1)B(1− α,β + 1).(A.5)
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4654 HONGJIE DONG AND JUNHEE RYU

Now we consider I2(β). By the fundamental theorem of calculus and the Fubini
theorem,

I2(α,β) = β

∫ ∞

0

∫ y

0

(1 + z)β−1y−1−αdzdy

= α−1β

∫ ∞

0

(1 + z)β−1z−αdz

= α−1βB(1− α,α− β).(A.6)

Here, for the last equality, we used a well-known formula

B(a, b) =

∫ ∞

0

ta−1(1 + t)−a−b dt.(A.7)

Thus, by Euler’s reflection formula and equalities (A.2), (A.5), and (A.6),

Mα,β = α−1(α− β − 1)B(1− α,β + 1) + α−1βB(1− α,α− β)

=−
Γ(1− α)

α

(
Γ(β + 1)

Γ(1− α+ β)
+

Γ(α− β)

Γ(−β)

)

=−
πΓ(1− α)

αΓ(1− α+ β)Γ(−β)

(
1

sin((α− β)π)
−

1

sin(βπ)

)

=−
πΓ(1− α)

αΓ(1− α+ β)Γ(−β)

(
2cos(απ/2) sin((β − α/2)π)

sin((α− β)π) sin(βπ)

)

=Kα,β .(A.8)

Hence, the case α∈ (0,1) is proved.
Next, we consider α∈ (1,2). As above, we assume β 6= 1. By a change of variables,

Lu(x) =Mα,β(x+)
β−α, x > 0.

where

Mα,β :=

∫ ∞

−∞

((1 + y)β+ − 1− βy)|y|−1−αdy

=

∫ −1

−∞

· · ·+

∫ 0

−1

· · ·+

∫ ∞

0

· · ·

=−α−1 + β(α− 1)−1 +

∫ 0

−1

· · ·+

∫ ∞

0

· · ·

=:−α−1 + β(α− 1)−1 + J1(α,β) + J2(α,β).(A.9)

As in (A.3),

J1(α,β)− J1(α,β + 2) = J1(α,β)− J1(α,β + 1) + J1(α,β + 1)− J1(α,β + 2)

= I1(α− 1, β) + I1(α− 1, β + 1)

= 2(α− 1)−1 + (α− 1)−1(α− β − 2)B(2− α,β + 1)

+ (α− 1)−1(α− β − 3)B(2− α,β + 2).(A.10)

Here, for the last equality, we used (A.5). By the fundamental theorem of calculus
and the Fubini theorem,
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4655

J1(α,β + 2) = (β + 2)(β + 1)

∫ 1

0

∫ y

0

∫ z

0

(1− t)βy−1−α dtdzdy

= (β + 2)(β + 1)

∫ 1

0

∫ 1

t

∫ 1

z

(1− t)βy−1−α dydzdt

=
(β + 2)(β + 1)

α

∫ 1

0

(1− t)β
(

α

1− α
−
t1−α

1− α
+ t

)
dt

=
β + 2

1− α
−

(β + 2)(β + 1)

α(1− α)
B(2− α,β + 1)

+
(β + 2)(β + 1)

α
B(2, β + 1).

Combining this and (A.10), we obtain

J1(α,β) =
1

α
+

β

1− α
−

Γ(−α)Γ(β + 1)

Γ(1− α+ β)
.(A.11)

For J2(α,β), by the fundamental theorem of calculus and (A.7),

J2(α,β) = β(β − 1)

∫ ∞

0

∫ y

0

∫ z

0

(1 + t)β−2y−1−α dtdzdy

=−
β(β − 1)

α(1− α)

∫ ∞

0

(1 + t)β−2t1−α dt

=−
β(β − 1)

α(1− α)
B(2− α,α− β)

=−
Γ(1− α)Γ(α− β)

αΓ(−β)
.(A.12)

Thus, as in (A.8), Euler’s reflection formula and equalities (A.9), (A.11), and (A.12)
lead to

Mα,β =Kα,β .

The lemma is proved.

Lemma A.2. Let d= 1 and L=−(−∆)1/2. Let

u(x) := (x+)
β , β ∈ (−1,1).

Then

Lu(x) =K1,β(x+)
β−1, x∈R+,

where

K1,β =





−β cos(βπ), β ∈ (0,1),

−1/π, β = 0,

β cos(βπ), β ∈ (−1,0).

Moreover, (A.1) still holds true with α= 1.

Proof. See [10, Proposition 4.4] for the case β ∈ (0,1). Now we consider β < 0.
Let
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4656 HONGJIE DONG AND JUNHEE RYU

v(x) :=
1

β + 1
(x+)

β+1.

Then, since β + 1> 0, for x> 0,

Lu(x) =
dLv

dx
(x) =

−(β + 1)cos((β + 1)π))

β + 1

d

dx
(x+)

β = β cos(βπ)(x+)
β−1.

Lastly, the case β = 0 can be easily obtained from (2.2). The lemma is proved.

Appendix B. Parabolic equations in the whole space. In this section, we
present the Lp-maximal regularity of nonlocal parabolic equations in the whole space.
We consider more general operators than in the main sections above.

We first impose the assumption on a family of Lévy measures (νt)t∈(0,T ).

Assumption B.1.
(i) If f is integrable with respect to νt for all t∈ (0, T ), then the mapping

t→

∫

Rd

f(y)νt(dy)

is measurable.
(ii) For any σ >α,

∫

|y|≤1

|y|σ νt(dy)<∞.

(iii) There exist α1, α2 and N0 > 0 such that for any R> 0,

Rα−α1

∫

|y|≤R

|y|α1 νt(dy) +Rα−α2

∫

|y|>R

|y|α2 νt(dy)≤N0,

where α1, α2 ∈ (0,1] if α ∈ (0,1); α1, α2 ∈ (1,2] if α ∈ (1,2); α1 ∈ (1,2] and
α2 ∈ [0,1) if α= 1.

(iv) If α∈ (1,2), then
∫

|y|>1

|y|νt(dy)<∞.(B.1)

(v) We have

sup
t∈(0,T )

∫

Rd

min{1, |y|2}νt(dy)<∞.

Let νt satisfy Assumption B.1 for some α ∈ (0,2). Now we define the nonlocal
operator Lt as

Ltu :=

∫

Rd

(
u(x+ y)− u(x)− y(α) · ∇u(x)

)
νt(dy),(B.2)

where y(α) :=
(
11<α<2 + 1α=11|y|≤1

)
y. Here, due to (B.1), (B.2) is well defined for

any u∈C2
b (R

d). We also denote the adjoint operator

L∗
tu :=

∫

Rd

(
u(x+ y)− u(x)− y(α) · ∇u(x)

)
νt(−dy).

For the nondegeneracy of the operator, in Lemma B.3 below, we will assume that
ν(1) ≤ νt for some (nonsymmetric) α-stable Lévy measure ν(1). Here, we state the
assumption on ν(1).
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NONLOCAL EQUATIONS IN WEIGHTED SOBOLEV SPACES 4657

Assumption B.2.
(i) There exist λ,Λ> 0 such that

λ≤ inf
ρ∈Sd−1

∫

Sd−1

|ρ · θ|αµ(1)(dθ)

and
∫

Sd−1

µ(1)(dθ)≤Λ<∞,

where µ(1) is the spherical part of ν(1).
(ii) When α= 1,

∫

Sd−1

θµ(1)(dθ) = 0.(B.3)

Note that (B.3) is equivalent to
∫

r<|y|<R

yν(1)(dy) = 0, 0< r <R<∞.

Lemma B.3. Let α ∈ (0,2), 1< p <∞, 0< T <∞, γ ∈ R, and let ν(1) be an α-
stable Lévy measure. Suppose that Lévy measures νt and ν

(1) satisfy Assumptions B.1
and B.2, respectively. Assume that

ν(1) ≤ νt,

f ∈ Lp((0, T );H
γ
p ), and u0 ∈ B

γ+α−α/p
p,p . Then there exists a unique solution u ∈

Lp((0, T );H
γ+α
p )∩L∞((0, T );Hγ

p ) to

{
∂tu(t, x) =Ltu(t, x) + f(t, x), (t, x)∈ (0, T )×R

d,

u(0, x) = u0(x), x∈R
d.

(B.4)

More precisely, for any φ∈C∞
c (Rd) and t∈ (0, T ),

(u(t, ·), φ)Rd = (u0, φ)Rd +

∫ t

0

(u(s, ·),L∗
sφ)Rd ds+

∫ t

0

(f(s, ·), φ)Rd ds.

Moreover, for this solution u,

‖(−∆)α/2u‖Lp((0,T );Hγ
p ) ≤N

(
‖u0‖Bγ+α−α/p

p,p
+ ‖f‖Lp((0,T );Hγ

p )

)
,(B.5)

where N =N(d, p,α, γ,λ,Λ,N0) is independent of u and T .

Proof. 1. Since the isometry (1−∆)κ0/2 : Hκ+κ0
p → Hκ

p commutes with Lt, we
only need to prove the claim for γ = 0.

2. Suppose that νt = ν(1) for all t ∈ (0, T ). In this case, one can check that ν(1)

satisfies all the assumptions in [41, Theorem 1]. Thus, by [41, Theorem 1], we have
u∈Lp((0, T );H

γ+α
p ) together with (B.5). Here, we note that the constant N depends

only on d, p,α,λ, and Λ. Thus, it remains to show u∈L∞((0, T );Lp).
For general functions h, denote

hε(x) = h ∗Φε(x), Φε(x) := ε−dΦ(x/ε),
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4658 HONGJIE DONG AND JUNHEE RYU

where Φ is a standard mollifier on R
d, and ∗ denotes the convolution. Then one can

easily find

uε(t, x) = uε0(x) +

∫ t

0

Lsu
ε(s,x)ds+

∫ t

0

fε(s,x)ds, t∈ (0, T ), x∈R
d.

By the Minkowski inequality and Hölder’s inequality, we have

‖uε(t, ·)‖Lp ≤ ‖uε0‖Lp +

∫ t

0

‖Lsu
ε(s, ·)‖Lp ds+

∫ t

0

‖fε(s, ·)‖Lp ds

≤ ‖uε0‖Lp
+ T (p−1)/p‖Lsu

ε‖Lp((0,T );Lp) + T (p−1)/p‖fε‖Lp((0,T );Lp).

Letting ε ↓ 0, due to (B.5) and the continuity of Lt (see [41, Lemma 14]),

‖u‖L∞((0,T );Lp) ≤N(T )
(
‖u0‖Bα−α/p

p,p
+ ‖f‖Lp((0,T );Lp)

)
.(B.6)

Thus, we have u∈L∞((0, T );Lp).
3. Now we deal with the existence and (B.5) for general νt. To consider time-

dependent nonlocal operators, we use probabilistic arguments. Let ν̃t := νt − ν(1),
and let p(dt, dy) be the Poisson random measure on [0, T )× R

d with intensity mea-
sure ν̃t(dy)dt. For the compensated Poisson random measure q(dt, dy) := p(dt, dy)−
ν̃t(dy)dt, we define the stochastic process with independent increments

Yt :=

∫ t

0

∫

Rd

y(α)q(dr, dy) +

∫ t

0

∫

Rd

(
y− y(α)

)
p(dr, dy), 0≤ t < T.

Let f ∈ C∞
c ((0, T )×R

d) and u0 ∈ C
∞
c (Rd). By case 2, there exists a solution v

satisfying
{
∂tv(t, x) =Lν

(1)

v(t, x) + f(t, x− Yt), (t, x)∈ (0, T )×R
d,

u(0, x) = u0(x), x∈R
d,

where Lν
(1)

is the operator associated to ν(1). Note that, by the representation formula
of solution (see (4.9) of [41]), v is well defined (measurable) on the probability space
where Yt is defined. Since f and u0 are smooth, we have v(t, ·) ∈ C2(Rd) for each
t∈ (0, T ). Thus, by the Itô–Wentzell formula (see, e.g., [39, Proposition 1]), we have

v(t, x+ Yt) = v(0, x) +

∫ t

0

∫

Rd

y(α) · ∇v(s,x+ Ys−) q(dsdy)

+

∫ t

0

∫

Rd

(
y− y(α)

)
· ∇v(s,x+ Ys−)p(dsdy)

+
∑

s≤t

[v(s,x+ Ys)− v(s,x+ Ys−)−∆Ys · ∇v(s,x+ Ys)]

+

∫ t

0

∂sv(s,x+ Ys)ds,

where ∆Ys := Ys − Ys−. Thus,

v(t, x+ Yt)

= u0(x) +

∫ t

0

∫

Rd

y(α) · ∇v(s,x+ Ys−) q(dsdy)

+

∫ t

0

∫

Rd

(
y− y(α)

)
· ∇v(s,x+ Ys−)p(dsdy)
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+

∫ t

0

∫

Rd

[v(s,x+ Ys− + y)− v(s,x+ Ys−)− y · ∇v(s,x+ Ys)] p(dsdy)

+

∫ t

0

(
Lν

(1)

v(s,x+ Ys) + f(s,x)
)
ds.(B.7)

Since q(dsdy) is a martingale measure, by taking expectation of both sides of (B.7),
for u(t, x) :=E[v(t, x+ Yt)],

u(t, x) = u0(x) +

∫ t

0

∫

Rd

[
u(s,x+ y)− u(s,x)− y(α) · ∇u(s,x)

](
νt − ν(1)

)
(dy)ds

+

∫ t

0

(
Lν

(1)

u(s,x) + f(s,x)
)
ds

= u0(x) +

∫ t

0

(Ltu(s,x) + f(s,x)) ds.

Since v(t, ·) ∈ C2(Rd), we have u(t, ·) ∈ C2(Rd), and thus u is a solution to (B.4).
Moreover, by using the Minkowski inequality, (B.5) easily follows from the one for v.

For general f and u0, the desired result can be obtained from the denseness of
C∞
c functions in the spaces Lp((0, T );Lp) and B

α−α/p
p,p , (B.6), and the continuity of

Lt. Here, we note that under Assumptions B.1 and B.2, the constant N depends only
on d, p,α,λ,Λ, and N0.

4. Lastly, we show the uniqueness. Suppose that u is a solution to (B.4) with
u0 = 0 and f = 0. Let t0 ∈ (0, T ), v0 ∈C

∞
c (Rd), take a solution v ∈ Lp′((0, t0);H

α
p′) ∩

L∞((0, t0);Lp′) to the adjoint backward equation
{
∂tv(t, x) =−L∗

t v(t, x), (t, x)∈ (0, t0)×R
d,

v(t0, x) = v0(x), x∈R
d,

where p′ = (p− 1)/p. Then, for any t∈ (0, t0) and x∈R
d,

uε(t, x) =

∫ t

0

Lsu
ε(s,x)ds,

and

vε(t, x) = vε0(x) +

∫ t0

t0−t

L∗
sv
ε(s,x)ds.

Thus, u, v ∈L∞((0, T );Lp) implies that, for each x∈R
d, both uε(·, x) and vε(·, x) are

Lipschitz continuous in the time variable. Hence, by integration by parts,

uε(t0, x)v
ε
0(x)− uε(0, x)vε(0, x) =

∫ t0

0

∂s (u
ε(·, x)vε(·, x)) ds

=

∫ t0

0

(Lsu
ε(s,x)vε(s,x)− uε(s,x)L∗

sv
ε(s,x)) ds.

Thus, if we integrate both sides of the above over Rd, then we have
∫

Rd

uε(t0, x)v
ε
0(x)dx= 0.

Letting ε ↓ 0, since v0 ∈C
∞
c (Rd) is arbitrary, u(t0, ·) = 0. The lemma is proved.
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