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Abstract. We study nonlocal elliptic and parabolic equations on C'>7 open sets in weighted
Sobolev spaces, where 7 € (0,1). The operators we consider are infinitesimal generators of symmet-
ric stable Lévy processes, whose Lévy measures are allowed to be very singular. Additionally, for
parabolic equations, the measures are assumed to be merely measurable in the time variable.
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1. Introduction. In this paper, we study the parabolic equation

Owu(t,z) = Lyu(t,x) + f(t,x), (t,x)€(0,T)x D,
u(0,2) =0, xeD,
u(t, x) = up(x), (t,x) €(0,T) x D¢,

as well as the corresponding elliptic equation

(11) Lu(z)= f(z), z€D,
u(z) =0, x e D¢,

where D is a CY7 open set with 7 € (0,1). Here, L; is a time-dependent symmetric
nonlocal operator of order v € (0,2), while L is independent of the time variable.
More specifically, the operators L; is defined by

(12 Lu@)=j [ (et 9)+ule=9)-20) mldy), t<0.7),

where v, is a nondegenerate a-stable symmetric Lévy measure for each ¢ € (0,00).
The operator L for the elliptic equation is defined as (1.2) with time-independent
Lévy measure v instead of vy;

(1.3) Lu(w) = [ (e +3) +ule =) = 20(2) vldy)
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For instance, the operator L becomes the fractional Laplacian —(—A)a/ 2 when
v(dy) = c|y|~?%dy for some ¢ > 0. Another simple example is the generator of d
independent one-dimensional symmetric stable Lévy processes,

i 2

_IN~ [ f@ i) + fz—yie) = 2f ()
Lu(z):= 5 ; y
where e; is the unit vector in the ith coordinate. In this case, the spectral measure
of the Lévy measure (see (2.1)) is a sum of 2d Dirac measures defined on the unit
sphere, which is very singular.

These types of operators can be derived as the infinitesimal generator of (time-
inhomogeneous) Lévy processes. Such stochastic processes have been widely studied
in both analysis and probability theory, and have appeared in various fields such as
physics and mathematical finance.

In [43], it was shown that the optimal regularity of the solution to (1.1) is C*/2(D),
not C*(D), even in the case when L = —(—A)*/2 and f € L. (D). Therefore,
obtaining solvability for the equations in H,(D), the (unweighted) Sobolev spaces,
may not be possible. This necessitates the exploration of Sobolev spaces with weights.

In this paper, we are mainly concerned with the weighted Sobolev spaces H. ;,a(D)
and L, ((0,7); H) ,(D)). In particular, when v € N,

~ 1/p
Julli oy = (z / |d';D;:u|pdz-ddx) |
’ k=0"D

Here, d, denotes the distance from x to D¢ and the powers of d, are used to control
the behavior of v and its derivatives near the boundary. These spaces were presented
in [38, section 2.6.3] for the specific case p=2 and 6 = d. They were generalized in a
unified manner for p € (1,00) and 6, € R in [32] in order to establish an L,-theory of
stochastic partial differential equations (SPDEs). See, for instance, [30, 35]. Since the
work [32], there have been many results on second-order equations in the weighted
Sobolev spaces. See, for instance, [11, 25, 26, 27, 27, 29, 48].

The purpose of this paper is to present maximal regularity of solutions to nonlocal
equations in such weighted Sobolev spaces. In particular, for the elliptic equation
(1.1), we prove

) [ (il ) ) e <N [ (g e as,

provided that 6 is in a certain range. Here, due to the presence of dg/ 2, both f and
(—A)*/?y are in a space that allows them to blow up near the boundary. In [7, 28],
weighted estimates similar to (1.4) were proved when L = —(—A)*/2, D is a C!
open set, and @ is in the sharp range (d —1,d — 1+ p).

Compared to the results [7, 28], we study the equations in a more general setting
as we consider operators with highly singular Lévy measures as well as C1" open
sets with any 7 € (0,1). More precisely, when D is a half space or a bounded C'*7
convex domain, under a certain ellipticity condition, we establish (1.4) where 6 is in
the optimal range (d — 1,d — 1 + p). For general C1'™ open sets, the same results are
obtained when 6 € (d — a/2,d — a/2 + ap/2). Here, the range of 6 is restricted since
we deal with singular Lévy measures. Nevertheless, in the case of convex domains,
such constraints are not necessary. Regarding the parabolic equations, the operators
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L; are assumed to be merely measurable in the time variable, and a parabolic version
of (1.4) is obtained.

For the proof of the main results, we derive a priori estimates and then use
the method of continuity. We first prove zeroth-order estimates in section 4.1. For
second-order equations, these weighted estimates can be obtained by using integration
by parts and the product rule of the differentiation. See [32, section 6]. However,
it appears that these fundamental methods are not directly applicable to nonlocal
operators. In [7], zeroth-order estimates for L = —(—A)®/? were obtained by using the
sharp heat kernel estimates for the fractional Laplacian on C1'! open sets. Compared
to this, we do not rely on the representation in terms of the fundamental solution
since it is not available under our assumptions. Our approach is more elementary and
can be applied to a larger class of nonlocal operators. Next, in section 4.2, we provide
higher-order regularity of solutions by using an estimate of the commutator term. See
Lemma 4.9. In this subsection, we apply the L,-maximal regularity of equations with
time-dependent operators in the whole space, which is briefly handled in Appendix B
by appealing a result in [41]. It is worth noting that no regularity of open sets is
utilized in section 4.2. Finally, to apply the method of continuity, the solvability of
equations for L = —(—A)®/? is presented at the beginning of section 5.

Now we give a short review on other relevant work. We first refer the reader to
(1,16, 17, 18, 19] for L,-maximal regularity results of equations with pseudodifferential
operators satisfying the p-transmission condition. In particular, in [16], it was proved
that if f € L,(D) and D is C°, then (1.1) has a unique solution in the p-transmission
space. These results were extended to C'™ open sets with 7 > « in [1, 19]. In a
similar setting, parabolic equations were handled in [18]. We remark that in this
paper, we introduce a different approach and consider open sets with lower regularity.
For interior regularity results, we refer the reader to [3, 4, 9, 42]. For instance, in [3],
it was proved that if f € L,(D), then a solution u to (1.1) with L = —(—A)*/2 is in
HKIOC(D). See also [5, 12, 20, 21, 22] for results on Ly spaces.

Let us also mention related results in Holder spaces. In [43], it was proved that
when L = —(—=A)*/2, D is a C! bounded domain, and f € L. (D), any solution
u to (1.1) satisfies dz " e C%(D) for some § > 0. This result was generalized in
[2, 13, 45] by considering more general operators. See also [46, 47] for the results for
equations on C'17 or less regular domains. In [10], it was shown that if the operator is
nonsymmetric, then the boundary behavior of the solution is more complicated, while
for symmetric operators, all solutions behave like a fixed power of the distance function
d3'?. See also [6, 44] for results about nonlinear nonlocal equations. Particularly, the
boundary behavior of solutions to fully nonlinear equations was investigated in [44].

We finish the introduction by introducing the notation used in this paper. We
use “:=”" or “=:" to denote a definition. For a real number a € R, we write a4 :=
max{a,0}. For any D C R?, d, := dist(z,D¢). By N and Z, we denote the set of
natural numbers and the set of integers, respectively. We denote Ny := NU {0}. As
usual, R? stands for the Euclidean space of points = = (z1,...,74). We also denote

B, (z):={yeR:|jz—y|<r}, RL={(z1,....2%) €R:a1>0}.

We write R := R! and Ry :=RY. We use D}u to denote the partial derivatives of
order n € Ny with respect to the space variables. By C?(R?), we denote the space of
twice continuously differentiable functions on R?. By Cg(]Rd), we denote the space
of functions whose derivatives of order up to 2 are bounded and continuous. For
1<p<oo,0<T < oo, and a Banach space B, L,((0,7);B) denotes the set of
B-valued Lebesgue measurable functions u such that
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T 1/p
lullz,(0,1);B) == (/o lul'y dt) )

For Borel measures {1 and ls on R?, we write I <y if
lh(A) <la(A)

for any Borel set A C R%. Lastly, we use the convention that negative powers of 0 are
defined as 0.

2. Main results. We first introduce the assumptions for the operators. Let v
be a Lévy measure on R?, that is, v is a o-finite (positive) measure on R? such that
v({0}) =0, and

/ min{1, |y|*} v(dy) < oco.
Rd

A Lévy measure v is said to be symmetric if v(—dz) = v(dz). For a € (0,2), we say
that a Lévy measure v is a-stable if there is a nonnegative finite measure p on the
unit sphere S9!, called the spherical part of v, such that

(2.1) V(A):/SH AOO 1A(r9)r%ﬂ(d9).

In particular, when d =1 and v(dy) = |y| =1 ~“dy, we have

ule Ooua: w(x —y) — 2u(x dy = —7m(=A)*?y
2 Luw)=g [ (et +ule—y) - 2u(@) T = —n(-A)

We first state our assumption on v. We say that an a-stable Lévy measure v is
nondegenerate if v satisfies the following assumption.

Assumption 2.1.
(i) There exists A > 0 such that

peSd—1

(2.3) A< inf/ - 01" (o),
gd—1

where g is the spherical part of v.
(ii) There exists A > 0 such that

(2.4) / wu(df) <A < 0.
Sd—1

Next we consider time-dependent Lévy measure v; in (1.2). Assume that (v4)o<i<r
is a family of a-stable symmetric Lévy measure, that is,

)= [ [ 1a00) T wlan),

where p; is the spherical part of v; for each t. Here is our assumption on v4.

Assumption 2.2.
(i) If f is integrable with respect to v for all ¢ € (0,7T), then the mapping

t—>/Rdf(y)Vt(dy)

is measurable.
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(ii) There exist A > 0 and nondegenerate symmetric a-stable Lévy measure v(!)
such that

(2.5) v > vte (0,T)

and

A< inf 201%™ (dp
—,Jg;%-l/sd,l'P V) (d6),

where 11 is the spherical part of v(1).
(iii) There exists A > 0 such that

/ ue(df) <A <oo, te(0,T),
gd—1

where p; is the spherical part of v;.

Remark 2.3. Obviously, if v, satisfies Assumption 2.2, then for each ¢ € (0,7), v,
satisfies Assumption 2.1.

Now we present some weighted L, spaces which will be used throughout this
paper. Let D be an open set with nonempty boundary and d,, := dist(x, D). For any
p>1,0 € R, and n € Ny, we denote weighted Sobolev spaces of nonnegative integer
orders by

po(D):={u:u,d,Du,...,dyD"u€ Ly, o(D)},

where L, ¢(D) is an L, space with the measure d?~¢ on D. The norm in this space
is defined as

1/p
(26) lollay 0= 3 ([ ' D2utora-as)
P D

|Bl<n

Here, notice that Ly, o(D) = H)) 4(D).

Next, we generalize these spaces to Sobolev and Besov spaces of arbitrary order.
Let {¢n}tnez be a collection of nonnegative functions in C°°(D) with the following
properties:

(2.7) (i) supp(Cn) C{r € D:cre " <dy <coe™ "}, ca>c1 >0,
(2.8) (ii) sup |DY'Cn(z)] < Npe™™  ¥m € Ny,

zER?
(2.9) (i) Y Cu(z)>c>0 VaeD.

nez

To construct such functions, one can take, for example, mollifications of indicator
functions of the sets of type {x € D:cze ™ <d, <cge "}.

Let H) and B , denote the Bessel potential space and the Besov space on R?,
respectively. For any p € (1,00),0 € R, and v € R, weighted Sobolev spaces H;’H(D)
and weighted Besov spaces B;p;g(D) are defined as collections of distributions u on

D such that

(2.10) Il oy = D e llGnlemule™ )5y < oo
nez
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and

0
lallyy oy = D€ nlem (e ), < o0

neZ

respectively. The spaces H 79 and Bp o are independent of choice of {(,}. See, for
instance, [37, Proposition 2. 2] More specifically, if {(,, } satisfies (2.7) and (2.8), then
we have

DGl ule™ )y < Nlullfy oy

nez

Also, the reverse inequality holds if {(,} additionally satisfies (2.9). Furthermore,
when v =n € Ny, the two norms (2.6) and (2.10) are equivalent. Similar properties
also hold for B} ,(D).

Take an mﬁnltely differentiable function v in D such that N~ < d, < N and
for any m € Ny

sup |[d7 D™ ep(z)| < N(m) < oo.
D

For instance, we can take ¢ (x):=)_ ., e "C.(x) (see also, e.g., [26]).

Below we collect some facts about the space H;G.(D). For v € R, we write
we ™ H] ,(D) if y*ue H 4(D).

LEMMA 2.4. Let D be an open set with nonempty boundary, 7,0 € R and 1 <
p <oo.

(i) The space C°(D) is dense in both H) o(D) and B) , ,(D).

(ii) ForveR, we have

H;’G(D) wVH;ﬁ«H/p(D) and B;p o(D) = w”B;,p;eJrup(D).

Moreover,
Nl oy < Il o) < Nl ullay .. o)
and
N7 ullgy . o) <llullsy oy SNIG ullgy . (),

where N depends only on d,v,v,p, and 0.
(iii) (Duality.) Let

p+1/p'=1, 0/p+6/p =d.

Then H,, (D) and B, 4
respectively.

Proof. We only deal with H 7 ,(D) since the proofs for B” (D) are similar to
those for H ,(D). When D = Ri, all the claims are proved by Krylov in [33], and
those are generahzed by Lototsky in [37] for arbitrary domains. See Propositions 2.2
and 2.4 and Theorem 4.1 in [37], whose proofs are still valid for general open sets.
The lemma is proved. |

(D) are the dual spaces of H) ,(D) and B)) . ,(D),
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Next, we introduce solution spaces for the parabolic equation. For 7,6 € R,
p€ (1,00), and T € (0, 00|, we denote
H o(D,T) :=Lp((0,7); Hy y(D)),  Lypo(D,T):=Lp((0,T); Lps(D)).

Let o € (0,2). For u € Qﬂa/QHgﬂ(D,T) with «(0,-) € wa/z_“/pBg’;;’;‘/p(D), we say
u€ Ny o(D,T) if there exists f € Y=%?1L, o(D,T) such that for any ¢ € C(D)

wwmwpzwm»¢m+[}ﬂam@D@ vie (0,7),

where (-,-) is defined as

<f>g>E :,/Efgdx’

where f and g are measurable functions defined on E C R%. Here, we write yu := f.
The norm in this space is defined as

[ullse (o) = ||¢_a/2u||Hg,9(D,T) + 20l ,(p.1)

+ [|gp /e /Py 0, ')||B§;_°(;/P(D)'

We introduce a notion of weak solution.

DEFINITION 2.5. Let T € (0,00] and D CR? be an open set.
(i) (Parabolic problem.) Given ug € L1 j0c(D) and f € L1 10:((0,T) x D), we say
that u is a (very weak) solution to the equation

owu(t,xz) = Lyu(t,z) + f(t,x), (t,z)€(0,T)x D,
(2.11) u(0, ) = uy, reD,
u(t,xz) =0, (t,z) € (0,T) x D°,

if (a) u=0 a.e. in (0,T) x D°, (b) (u(t,-),p)ra and (u(t,-), Lip)ra exist for
any t <T and ¢ € C(D), and (c) for p € C(D) the equality

mwmwsz¢m+Aw@muwww+éuwm@D@

holds for all t <T.
(ii) (Elliptic problem.) Given f € L1 1,.(D), we say that u is a (very weak)
solution to the equation

(2.12) {LU(:E)_— f(z), zeD,

u(z) =0, x e De,

if (a) u=0 a.e. in D°, (b) (u,P)pa and (u,Ld)ga exist for p € C>(D), and
(c) for ¢ € C(D) we have

(u, Lo)ra = (f, ) D

We remark here that if u is a sufficiently regular strong solution, it is also a (very
weak) solution in the sense of Definition 2.5.

The main purpose of this paper is to derive weighted maximal L, estimates in
CY7 open sets. Below we give the formal definition of C'*7 open sets.
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DEFINITION 2.6. For 7 €(0,1), an open set D C RY 4s said to be o C*7 open set
if there exists a constant Ry > 0 such that for any xo € dD, there is a CY7 function
®: R4 5 R and a coordinate system y= (y1,y') centered at xo in which

DN Bp,(z0) = Br,(0) N {y:y1 > ®(y')}.

Now we state the main result for the parabolic equations.

THEOREM 2.7 (parabolic case). Let p € (1,00), a € (0,2), 7 € (0,1), and T €
(0,00]. Suppose that v; satisfies Assumption 2.2. Assume that 6 € (d—1,d — 1+ p)
if D is a half space or a bounded C*7 convexr domain, and 6 € (d — «/2,d — /2 +
ap/2) if D is a bounded CY'™ open set. Then, for any f € 1/70‘/21[%9(D,T) and
ug € ¢a/2_a/pB;;:‘;‘/p(D), there is a unique weak solution u to (2.11) such that u €
956(D,T), and for this solution we have

(2.13) lullse o) <N (WO‘/QJCHLP,Q(D,T) + ||?/17a/2+a/puo||B§;;c2/p(D)> ;

where N =N (d,p,«,0,7,D,\, ).
Here is the main result for the elliptic equations.

THEOREM 2.8 (elliptic case). Let p € (1,00), a € (0,2), and T € (0,1). Suppose
that v satisfies Assumption 2.1. Assume that 8 € (d—1,d—1+p) if D is a half space
or a bounded C*7 convexr domain, and 0 € (d—«a/2,d—a/2+ap/2) if D is a bounded
CY7 open set. Then, for any f € w_a/QLp,g(D), there is a unique weak solution u to
(2.12) such that u € w“/gH;H(D), and for this solution we have

(2.14) 1%~ ullga 0y < NI fllL, 4(p);
where N = N(d,p,«,0,7,D,\, ).

3. Analysis of distance functions. Throughout this section, Assumption 2.1
is enforced.

We first introduce several useful facts on convex domains, which will be used in
the proof of Lemma 3.2.

LEMMA 3.1. Let D be a convex domain with nonempty boundary and x,y € D.
(i) For z:= (1 —t)xz +ty and t €[0,1], we have
(3.1) d, > (1—t)d, +td,.
In particular,
d. > min{d,,d,}.
(i) Let @ € S4=L. Then if there is no ro > 0 such that x + rof € 0D, then
dytrg > dy for any r>0.

Proof.

(i) Notice that it suffices to prove (3.1) for x,y € D. Let 2 € 9D such that
|z — 2| =d., and let P be the hyperplane to 0D at 2. Take %, € P such that
both x — & and y — ¢ are parallel to z — 2. Then, since D is convex, &, 4 € D°.
Thus,

d,=|z—2=1Q—-t)|x — 2| +tly— 9| > (1 —t)dy + tdy.
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(ii) Assume that z + 196 € D for all rqg > 0, and dyy.¢9 < d for some r > 0.
Take ¢ € (0,1) such that dyy,9 = cd;. Then, by (3.1) with z := 2 + 76 and
yi=1—(z—cx)=x+ 70 €D, we get

1—c

(1-c¢)dy <d, —cd, =0.

However, due to the convexity of D, we have d, > 0, which gives a contradic-
tion. The lemma is proved. O

LEMMA 3.2. Let D be a convex domain with nonempty boundary, ko € (0,1),
k1 € (0,00), and Ky € (—1,0). Let vy, be a measure taking the form

o dr
(3.2) Vi, (A) = /SUH /0 1A(T0)m w(do).
Then, for z € D,

(33) [ it €52, iy () < N,
R

where N depends only on d, k1, Ko, ko, A, and D.

Proof. Let x € D and 6§ € S4=1. To prove (3.3), by (2.4), it suffices to show
oo
/ Ld,o<nod, dyppgr ™' " dr S Ndg1 2,
0

Since D is convex, there exists at most one ro € (0,00) such that = + o8 € dD.
By Lemma 3.1(ii), we only consider the case when such rq exists. If dyir9 < Kody,
then by (3.1) with (z + r, 2z 4+ r¢f) instead of (z,y), we have r > (1 — kg)ro, and

dz+r0 > (1 - r> dx
To

Since ro = |(z 4+ 198) — x| > d, (recall that negative powers of 0 are defined as 0),

[e%e] T0 r K2
/ 1dw+1,egﬁodwd;irer_l_'“ dr < d? / (1 — ) riTR gy
0 (

1—ko)ro To
<Ndfrrg™ < Ndmtee,
The lemma is proved. ]
Now we present the corresponding result for general open sets without convexity.

LEMMA 3.3. Let D be an open set with nonempty boundary, ko,k1 € (0,00),
ko €10,K1), and let v, be a measure taking the form (3.2). For x € D and p >0 such
that kod, < p,

(3.4) / &% v (dy) < NdF+5,
ly|>p

where N depends only on d, kg, K1, k2, and A.

Proof. Since k2 >0, using the relation d,1, <d, + |y|, we clearly have

[ an, @ =N [ o)+ N [ )
ly|>p ly|>p ly|>p
< Nd$2p7m +prm+m < Nd;”lJ”"".

Thus, we have (3.4). The lemma is proved. d
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COROLLARY 3.4. Let D be a convex domain with nonempty boundary, ki,Kkq €
(0,00), ko € (—1,K1), and let v,;, be a measure taking the form (3.2). Then, for x € D
and p >0 such that kody, < p,

/ 055 v (dy) < Ndz =%,
ly|>p

where N depends only on d, k1, Ko, ko, A, and D.

Proof. Since the case ko > 0 is treated in (3.4), we only consider k2 < 0. Then,
by Lemma 3.2, we have

[y vy
lyl=p

< /d La,,,<do/2d5%y Ve, (dY) +/ Layy,>dy 2ty Ve (dy)
R

ly|>p

< Nd;"™*" + Ndf? / Vi, (dy)
ly|>p
<N 4 Ndj2p™™ < drtee,

The corollary is proved. 0

In the rest of this section, we deal with regularized distance functions defined on
CY7 open sets. We say that 1) is a regularized distance function on a C''" open set
D if
(3.5) N7'(x) <d <NY(z), Y eC (D), |Di(z)|<Ndj™.

To construct such a function, one can follow the ideas in [15, 26] (see also [24]). Since
we will compute L (z) below, we additionally define ¢(z) =0 on x € D°.

We first state explicit computations for one-dimensional operators. The following

two lemmas are extensions of [10, Propositions 4.3 and 4.4] (see also [14, 17, 23]). The
proofs are given in Lemmas A.1 and A.2.

LEMMA 3.5. Let d=1 and L be an operator of the form (2.2) with a # 1. Let
u(@) = (22), Be(-1a)
Then
Lu(z) = Kop(z,)°~°, z€Ry,
where
Kag = —2T(~a)l(1+ §)T (0~ §) cos(om/2)sin((§ — a/2)m).
In particular,

Kop>0, Be(-1,-14a/2)U(a/2,a),
(3.6) Kop=0, B=-1+a/2ora/2,
Koc76<07 /BE(—1+04/2,0(/2).
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LEMMA 3.6. Let d=1 and L =—(—A)Y2. Let
u(z):=(z4)?, Be(-1,1).
Then
Lu(z) = K1 p(z4)° 7}, zeRy,
where

—Beos(fm), Be€(0,1),
Kl,ﬁ = -1 6 = 07

T?

Beos(fm), e (-1,0).

Moreover, (3.6) still holds true with a = 1.

As a consequence of Lemmas 3.5 and 3.6, we have the following. Here, K, g is
taken from the above two lemmas.

COROLLARY 3.7. Let d > 1 and let L be an operator of the form (1.3). Let
p€ 8%t and define

u(x):=[(z-p)4]°, Be(=1,a).
Then, fort>0,
Lu(z) = Na,g[(z - p)4]°~* in {z - p>0},
where
Noy =Ko [ 16-0l" n(ab).
Sdfl
In particular,

Nop>0, pe(-1,-1+a/2)U(a/2,q),
Nop=0, p=—-14a/2 ora/2,
N@7[3<O7 ﬁe(_1+a/27a/2)

Proof. Note that for fixed € R?, r € R, and 0 € S4~1,
u(x+rf)=v(x-p+(0-p)r),
where
v(s) = (s4)”.

Since 7 — u(x + rf) is a one-dimensional function, by Lemmas 3.5 and 3.6,

1 [ dr o a
3]l r0) 4 ule —r0) = 2u(w) s = Ko l0 ol )]

— 00

This equality easily yields the desired result. The corollary is proved. ]

The following two lemmas will be used to prove Lemmas 3.10 and 3.11.
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LEMMA 3.8. Let 0<e <1 and 8 <1. Then, for a,b>0,
(3.7) |a” —b°| <N(B,e)la —b|*[a’ % +°77.

Proof. Without loss of generality, we only consider the case 0 < b < a. Let
f(z):=|x? — bP|'/=. Then, by the mean value theorem,

(3.8) fa)=f(a) = f(b) = (a =) f'(c)

for some b < ¢ < a. Here,

If'(c)| < @|CB — WOV < N (PP pfPle By At
=7 <
— ]\/‘(cﬂ/"f—1 + b5/5—505—1> < N(aﬁ/a—l + b/B/E—l)_
This and (3.8) easily yield (3.7). The lemma is proved. |

LEMMA 3.9. Let D be a CY7 open set, c € (0,00), k1 € (0,00), k2 € (—1,k1), and
let v, be a measure taking the form (3.2). Denote

I(2) == (¥(z) + V() - (2 — 2)) 4.
Then, for xz € D,

[ gy < NG ),
ly|>ct(x)

where N depends only on ¢, k1,k2, A, and D.

Proof. Due to the definition of v, we have

/ (@4 y)ve, (dy)
ly|>ci (o

Sd—1

)
= / / _ [(J(w) + Vi (z)- em]“ r= R dr (df) =: / 1(6) u(d6).
Sd=1 Jeyp(x)
Therefore, it suffices to show
(3.9) I(0) < Ny~ te2 (),

First, if V4)(x) -0 =0, then one can easily obtain (3.9). Next, assume V¢ (z) -6 > 0.
Note that if ko >0 and s >0, then

(14 c¢s)™ < N(c,k2)(1+ s72),
and if ko <0 and s >0, then
(1+es)™ <1.

Thus, by the change of variables V’J(x) -Or — c{z;v(x)s,

I(Q) = c*fﬂ{pvferHz (CU) (V?J/?(x) . 9) K1 Lz( )9(1 + Cs)nzsflf,gl ds
< N{/;*ernz (x) (V{/Jv(m) . 0)”1 /VO;( ).0(3717;{1 —|—3717M+H2)ds

+K2

< Nap—rtee (g) (1 + (v{z?(x) .9)_1 ) < Ntz (g),
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Here, the last inequality follows from the fact —1+#x2 >0 and V{/; is bounded. Lastly,
it remains to prove (3.9) when V¢ (z) -6 < 0. Similarly, by the change of variables
—Vi(z) - 0r — cp(z)s

~ ~ K 0
I(0) = c "o~ tm2 () (—Vw(x) ~9) ' / [(1—cs)y )25 7F 1 ds.
V()0
Here,
/ [ —es)y)rrsT s
=Vi()-0
1/2¢ 1/c
S17 Tix). / ...d8+/ ...ds
Vo (@)6<1/2 —V(z)-0 1/2¢
0o 1/c
SN/ sTimm derN/ [(1—cs)4]™ ds
—Vip(z)-0 1/2¢
~ —K1
<N [(—vw(x) : 9) + 1] .
Thus, we have (3.9). The lemma is proved. |

The following is an extension of [46, Proposition 2.3].

LEMMA 3.10. Let D be a bounded C*™ convex domain. Then, for any —1+a/2 <
B < /2, there exists § >0 such that

L(P)(x) < —NdP~=, 0<d, <3,

where N and § depend only on o, 8,7, \,A,d, and D.

Proof. Since {/; is a regularized distance, one can take d; > 0 such that

(3.10) 0<}1121f<51 |Vi(2)] > 0.

Fix x € D such that d, < §1, and define
1(2) = (@) + V(@) - (z = ).
Then, by Corollary 3.7, (2.3), and (3.10), there exists Ny > 0 such that
(3.11) L(I%)(z) < —NolP~%(z) = —Notp? ().
Now, we estimate L(¢/? — 1%)(z). Let

1
c:= —.
2sup,p [V (2)|

(3.12)

Since ¢#(z) =1°(z) and v is symmetric,
L@ =)@ < [ 109w +) =P+ )l vl

ly|<ci(x) ly|>ci(x)

(3.13) cN(x) + ().
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First, we estimate I(z). Note that due to (3.12), B
(),

mZ(z)(x) C D, and for |y| <

S0(0) Bz +y) < S0().
Thus, for |y| < cib(x),
P a4 y) SN @), PN @+ y) < NG (@),
Since |D2¢(w)| < Ny™~L(x), for |y| < c(x), by (3.7) with e =1,

[0 (x +y) — 1Pz + )| < [d(a +y) — U+ )07 @ +y) + 17 (@ + )l
S NP Y @) (@ +y) — P(x) — Vip(z) - y]
S NY™HI2(2) |y 2.

Thus,
(3.14) L(z) < NY™T~(z).

Next, we consider I5(z). Since ¢ € C47(D), we can consider g, a -7 (RY) extension
of 9| p satisfying 1o <0 in D°. Then there exists z € By, such that

[z +y) = Uz +9)| = |(Go(@ +9))+ = () + V(@) - 9)q]
< o(w +3) ~9() ~ Vi) -
<ly- (Voo +2) = Vi (z))]
(3.15) < Ny
Take ¢ satisfying 0 < e <min{1,5 + 1,222, 1551+ By (3.7) and (3.15),

Iiﬂ(ﬂcjy)*lﬁ(x+y)l )
<p(r+y) =@+’ (@+y) +1(x+y)
(3.16) SN 9P~ ( +y) + 175 (a + y).

Since cﬂ?(x) > kod, for some ko > 0, by Corollary 3.4 with (p, k1, k2) = (kodz, @ — € —
et, 8 —¢€), we have

[ W g uldy) <N [yl = d0 5 v(dy)

ly|>cy(x) ly|>rKode

(3.17) < NATHP=> < Nype™ 872 (g),

Applying Lemma 3.9 with (o —e —e7, 8 — ¢) instead of (k1,k2), we get

(3.18) [l ) < NPT )
[y|>cip(x)

Thus, (3.16)—(3.18) lead to

L(z) < N0 ().
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Therefore, this, (3.13), and (3.14) yield
L7 = 1°)(2)] < N7 ().
Combining this with (3.11), we get
L3P (z) < —No@P~% () + NgFTH8=%(z), 0 <d, < dy.
Thus, if § < §; is small enough, then we have the desired result. The lemma is
proved. ]

We also obtain a similar result for general C1'™ open sets.
LEMMA 3.11. Let D be a bounded CY7 open set. Then, for any 0 < 3 < /2,
there exists 0 >0 such that
L) (z) < —Nd?~*, 0<d, <39,

where N depends only on o, B,\,d, and D.

Proof. One can easily prove the lemma by following the proof of Lemma 3.10.
The main difference is that one needs to use Lemma 3.3 instead of Corollary 3.4 to
obtain (3.17). The lemma is proved. |

The following lemma will be used to handle interior estimates of solutions.

LEMMA 3.12. Let D be a bounded open set. Then, for x € D,
Llp(z) <—N,

where N depends only on a, D, and .
Proof. Since D is bounded, one can find R > 0 such that D C Bg. Then

Lip(z)=— /Rd\{o} 1pe(z+y)v(dy) < —/B v(dy) < —N.

SR
The lemma is proved. O

Remark 3.13. Let D be a convex domain (not necessarily bounded). Then a
similar result of Lemma 3.12 can be obtained; for z € D,

Llp(z) < —Nd;°,

where N depends only on a and \. Indeed, let 6y € S4~! such that = + d,.0y € OD.
Then, since D is convex, for ry > 0 and 6 € S4! such that = + 790 € 0D, we get
ro(0-6p) <d,. Thus,

L) == [ ApGryrld <= [ [ laasor o druas)
R4\ {0} Sd=1 Sy

o0
<— / / 19.90>07’_1_a dru(df)
Sd—1 ﬁ%ﬁ

< & / 10- 00| pu(d6) < —Nd.
gd—1

2

4. A priori estimates for solutions. In this section, we obtain a priori esti-
mates for solutions.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/02/24 to 128.148.225.163 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4638 HONGJIE DONG AND JUNHEE RYU

4.1. Zeroth-order estimates. We first prove the weighted Hardy-type inequal-
ity for L on the half space.

LEMMA 4.1. Let1 <p<oo, —l+a—ap/2 <c<p—1l+a—ap/2, andu e C*(RL).
Then, under Assumption 2.1, there exists N = N(d,a,c,p, \) >0 such that

/ \u|pr_ad:c§—N/ |u|P~2uLux§ d.
R Re

1
Proof. Here, we use the notation

fy(@):=f(z+y)
and denote h(x):= (x1)+. Then, by (1.2),

—/ |u(2)|P~2u(z) Lu(z)x¢ da
Rd

+

(4.1) :%/R

Due to the range of ¢, we can take v € R satisfying

[u(@)"~2u(@)he (@) (2u(@) = uy () = uy (2)) v(dy) da.

d d
4 JR

@ a
4.2 -1+ = —
(4.2) +5 <1<y
and

(4.3) —1+%<7(p—1)+c<%.

Let v(z) :=u(z)h ™7 (z). Then, for each z € R% and y € R\ {0},
[u(@)P2u(@)h (@) (2u(@) — uy () = u-y (@)
—p_lvxuxp_qu “(x Y(x)—h)(z) —hY (x
= o) () u(e)he (@) (207 () = W) () — 2, (x) )

p—1 P=20 (e Vhe(z) (B (x T (x
+ 5 v(x)|u(x)] (z)h( )(hy( )+h*y( ))

1 e CD)ie “D)te
+ @l (@) (2D e(@) — gD ¥e (@) - YT (@)

1 e
@)l (2) (rye Do) + 1004 @)

= [u(@) [P~ ?u(@)h () (vy(x)hZ(w) + vfy(x)hly(x))
5
(4.4) =3 Ii(z,y).
k=1

Recall that, in this paper, negative powers of 0 are defined as 0. By (4.2), we can
apply Corollary 3.7 to get
LhY (x)=—-Nh""%(z),

with a constant N > 0. Thus,

/ Lz, ) w(dy) = — 2=
RI\{0}

— No(a) u(a)]P~2u(2)h )k~ (x)
(4.5) — Nlu(2)|Ph** (2) = Nlu(x)[Pa5 .

Lo (@) ) P2 () L7 (2)
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Similarly, one can obtain
(46) [ e vds) = Nua)pas e,
R4\ {0}
Next, we deal with 1. Since v is symmetric, for € > 0, the Fubini theorem yields
/ / ) [PRY (2)h]P~IF (2) v(dy)da
]Rd |y|>5
= [ [ @ @@ davtay)
|ly|>e JRRE '

= [ L @t a0 devay)

-/ / o=y (@R (7P 0) () o
Rd ly|>e

/Rd /|y|>8 Iy(z,y)v(dy)dx

— ] @@ @) vdy)da
P Jrd Jly|ze
+1/ / |v_y(x)|ph1y(x)h7(p_1)+c(x) v(dy)dz.
D Jrd Jjy|>e ‘

Thus,

Using this, we have

leiﬁjl/w /y|>€ (L2(z,y) + La(z,y) + Is(z,y)) v(dy)dz

=i [ [ I = RGP =P @)y )]

el0p
X hy(x )hw’ D*e (@) v(dy)da
st [ e = b @l e, @) - o)
40 P JR Jiy|>e
(4.7) x B (2)h P (@) v (dy)da,
Due to the convexity of function a — |a|P, we have

bl — lal” —pla[’"a(b —a) >0, a,bER.

Thus, we conclude that

i [ / (Ia(,) + Tal,y) + T () v(dy)da > 0.

Combining this with (4.1) and (4.4)—(4.6), we have the desired result. The lemma is
proved. ]

Now we deal with C1™ open sets.
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LEMMA 4.2. Let D be a bounded CY7 convex domain, 1 < p < oo, —1 + o —
ap/2 <c<p—1+a—ap/2, and u € CX(D). Then, under Assumption 2.1, for
a reqularized distance 1 satisfying (3.5), there exist constants N1 and No depending
only on d,a,c, 7,p,\, A, and D such that

(4.8) / [u|Pyp— da < —Nl/ |u|p72ume/;cd:c—N2/ |u|P~*uLudz.
D D D
Moreover, if D is a bounded C™7 open set, then the claim still holds, provided
that a/2 —ap/2 < c < af2.
Proof. We first prove
(4.9) / [Py dz < —N; / lu|P~2uLuy® dz + N |u|? de,
D D Ds

where Ds:={zx € D:d, > d}. N
We repeat the proof of Lemma 4.1 by substituting ¢ (x) for h = (21)+. Then, as
in (4.4) and (4.7),

~ -1 ~ ~
- / lu[P~2uLug®de > -2~ / [P LY dz
D p D

1 ~ ~
(4.10) — ,/ ‘u|p,(/}—’Y(P—1)Lw’y(p—l)+c dz,
PJp

where « satisfies (4.2) and (4.3). By Lemma 3.10, there exists § > 0 such that
(4.11)
/ |u|p1;c—a de < —N/ |u|”1;c_'YL1Z'V de — N |u|p1;—’y(p—1)Lizv(p—l)+c dz,
Es Es Es

where Es:={z € D:0<d; <d§}. Since ¥ is a regularized distance, for v > —1, Ly
is bounded on Djs:={xz € D:d, >§}. Thus, we have

(4.12) / P L () + / LGV d < N [ Juf? da.
Dgs Dgs Ds

Therefore, (4.9) follows from (4.10)—(4.12).
Now we consider interior estimates for u. We again repeat the proof of Lemma 4.1
with h(z) =1p(z). Then, by Lemma 3.12, we have

/D |u(z)|P dx < —N/D |u(z)|PL1p(z) dx < —NQ/D |u(2)|P~2u(z) Lu(z) dz.

This together with (4.9) yields (4.8).
Lastly, we deal with the case when D is a bounded C!'7 open set. Due to the
range of ¢, we can take v € R satisfying

o
O<y< =
73
and
a
0<vy(p—1)+ec< 5
Then, by repeating the above proof with Lemma 3.11 in place of Lemma 3.10, we
have the desired result. The lemma is proved. 0
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LEMMA 43. Let 1 < p< o0, 0<T <o00,d=—1<0<d—-14p, and u €
Cee([0,T] x Ri). Then, under Assumption 2.2, there exists N = N(d,p,a,0,\) such
that

T
//|u|pm?_d_ap/2dxdt+/ |u(T)|px§_d_a”/2+adm
0 Ri Ri
T
(4.13) <N / / [Pl dgdt + N[ [u(0)[Pat TP
0 JRY R

where u(t) :=u(t,-) and
(4.14) f=0u— L.

Proof. We first multiply both sides of (4.14) by |u|P~2uz$§, where ¢ := 0 —d —
ap/2+ a. Then

1 /T T
*/ O (Ju|P)x§ dadt —/ / Lyu|u|P~2ux§ dadt
PJo ]Ri 0 Ri

(4.15) .
:/ flulP~?uxs dzdt.
o Jrd

Notice that, by the fundamental theorem of calculus,

T
/ O (Jul?)x§ dxdt:/ |u(T)|Paf dgc—/ |w(0) [P da.
0 JRY R4 RY
Since v, satisfies Assumption 2.1 for each t, we can apply Lemma 4.1 and Hoélder’s
inequality to get

T
/ / |u|Pa{™ dedt + / |u(T)|pm§7d7ap/2+a dx
0o Jrd R

T
<N \u(0)|pm‘{dx+N/ / fluP~2ua§ dadt
0 Jrt

d
RY

<N [ |u(0)Pat do

d
R+

T Vp /oo
+N / / |fIPaSToP~ dadt / / [Pz~ dadt
0 JRE 0 JRY

This gives (4.13). The lemma is proved. 0

(»—1)/p

Now we consider bounded C''7 convex domains.

LEMMA 4.4. Let D be a bounded C*™ convex domain, 1 < p < oo, 0 < T < 00,
d—1<0<d—a+ap/2, andu € C*([0,T] x D). Then, under Assumption 2.2, there
exists N=N(0,d,a,p, 7, \,A, D) >0 such that

T
/ / |U|pdi—d—ap/2d.rdt+/ |u(T)|PdZ—d—ap/2+adx
0 D D

T
SN/ / \flpdg—d+ap/2dxdt+]v/ |u(0)[Pdf—d=op/2Her gy
0 D D

where u(t) :=wu(t,-) and f:=dwu — Lu.
Moreover, if D is a bounded C1'7 open set, then the claim still holds, provided
that d —a/2 <0 <d—a+ ap/2.
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Proof. Let 1} be a regularized distance satisfying (3.5), and let N; and Na be the
constants taken from Lemma 4.2 with ¢:=6 —d — ap/2 + «. Here, the possible range

of § is determined according to the conditions of D. As in (4.15), by multiplying both
sides of f=dyu — Lu by |u[P~2u(N19° + Na),

1 (T B T B
f/ /8t(|u|p)(N1wC+N2)dxdt—/ /Lu|u\p_2u(le/JC+N2)d:cdt
PJo Jp 0o JD
T
:/ /f|u|p’2u(N1wc+N2)dxdt.
0 D

Then, by following the proof of Lemma 4.3 with Lemma 4.2 instead of Lemma 4.1,
we get

T ~ ~
Py~ p,/C
/0 /D|u| P dmdt+/[)|u(T)| Yedz
<N [ P+ 5 ds
D
T
—1 c
+N/O /D|f|\u|p (1+9°) dzdt
<N 0)[P¢° d
<N [ )it s

+N (/OT/Dchmpa dxdt) " (/OT/DIu|quca da:dt>(

Here, for the last inequality, we used the fact that D is bounded and ¢ <0. Thus, the
desired result follows from N~1¢(z) <d, < Ni(x). The lemma is proved. 0

Remark 4.5. In the proofs of Lemmas 4.3 and 4.4, the condition (2.5) is not
necessary. In other words, those lemmas can be proved for vy, which satisfies As-
sumption 2.1 for each ¢.

p—1)/p

Remark 4.6. When D is a convex domain such that sup,.pd; < oo, the same
result of Lemma 4.4 can be obtained by following the proof of Lemmas 4.2 and 4.4
with Remark 3.13 in place of Lemma 3.12.

4.2. Higher order estimates. In this subsection, we obtain higher order regu-
larity of solutions. To prove this, we extend the ideas of [7], which treats the fractional
Laplacian A®/2,

Throughout this subsection, we fix a collection of functions {(, : n € Z} satisfying
(2.7)-(2.9) with (c1,c2) = (1,€%). We also take {n, : n € Z} satisfying (,n, = ¢, and
(2.7)-(2.9) with (c1,ca) = (e72,e%).

LEMMA 4.7. Let D be an open set with nonempty boundary, vy € R, 1 <p < oo, and
u € C°(D). Then, under Assumption 2.1, there exists a constant N = N(d,a, A, D)
such that for any n € Z,

| E(weim-n)(e™)) = c-nte™) L ((un-n)(e™) )|

< N[22/ (un-n)(e™))]

Hy

iy N (e .
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Proof. Since v is symmetric, by (1.3),

L((uCom-)(€")) (2) — Cn(e"0) L {(um_) (") ()
(116) (DL () w) = [ Pl vld)

where
Fo(@,y) = [(un—n)(e"(z +y)) — (un—n)(€"@)][(—n(e"(x +y)) — (—nle"2)].
Due to (2.8), we have
1D (C—n(e™(x +y)) — Con(e@))| < N(LAJy]),

and thus (_p(e"(z +y)) — (—n(e"x) becomes a pointwise multiplier in H) (see, e.g.,
[31, Lemma 5.2]). Hence, we can apply [49, Lemma 2.1] to get

1)l < NOUATDI ) (€ -+ ) = () (e |z
< N (Jlule™ (€™ )y ALl 1A (e (™) 11 )

Fn<~7y>u<dy>H < NIA (e -nle) g [ 101 vlay)

lyl<

Thus, by Minkowski’s inequality,
]Rd
N (€™ (e a3 / (dy)

|
ly|>1
(4.17) < NAY ((un-n) (€ )|y + Nlu(e™ )n—n(e™) |-

On the other hand, by (2.8), one can find that |[D7*L(¢_,(e™))| is uniformly bounded
with respect to n. Therefore, [31, Lemma 5.2] yields

[ue"™ )n—n(e" ) LC-n (€™ )y < Nllu(e™ )n—n(e™ ) ;-

This, (4.16), and (4.17) lead to the desired result. The lemma is proved. 0
The following lemma is an extension of [7, Lemma 4.2].

LEMMA 4.8. Let D be a conver domain with nonempty boundary, 1 < p < oo,
u€eCXP(D), andd—1—ap/2<0<d+p—1+ap/2. Then, under Assumption 2.1,

S eneer|lc (e L ([t = n-nlemJutem) |

nez

< Nlull7

p.0—ap/2(D)’
P

where N depends only on d,p,a,0,D, and A.
Moreover, if D is an open set with nonempty boundary, then the claim still holds,
provided that d — ap/2 <0 <d+ ap/2.

Proof. 1. We first treat the case in which D is a convex domain with nonempty
boundary. Notice that

Conlemr)(I=n-n(e"(x+y))) =0 if |yl <do,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/02/24 to 128.148.225.163 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4644 HONGJIE DONG AND JUNHEE RYU

where Jp:=1 — e~ 1. Hence, due to the (1.3) (recall that v is symmetric),

Conlema) LT = non(e™]u(e™)) ()
—Calen) [ ulen @t )L = (e o+ )] vld)
y|>do

SNC(e) [ e o )] vldy) = Fuo)
y|>do
Thus, we only need to show

(4.18) Zen(efap/Q)HFnHip < N||u||’2p,97ap/2(D).
neZ

Let 8 € (0,a) be given. Since d—1—ap/2 <0 <d+p—1+ ap/2, we can take
v € R such that

(4.19) l—p<yp<ap-—PBp
and
(4.20) —1<0—d—ap/2+~yp+ Bp< Bp.

By Holder’s inequality,
1/p
R <caler) ([ [ a0 Pt dnan)
Sd=1tJr>8,

1/p
(4.21) / / d“n’: o T drp(do) ,
gd—1 > 60 e z+r

where p’ :=p/(p—1) and p is the spherical part of v. By a change of variables, (4.19),
and Corollary 3.4 with (p, k1, Kk2) = (™o, (a — B)p’,yp"), for © € supp(¢_n(e™)),

/Sd 1 />5 dzf(acﬂ"e pt e drp(de)
e ﬂ)p/ / d’evpx_we,rl*(afﬂ)p’ drp(df)
Sd—1 >endg

<Nd7pm a—pB)p’ ena—B)p’ < Nem?'

This and (4.21) yield

1/p
Fo(z) < Ne™(_y (") ( /| Lo el lu(e"<x+y>>|pu5p<dy>> ,
Yl=90

where vg), is a measure taking the form (3.2). Then, by the Fubini theorem and the
change of variables (e"z,e"y) — (x,vy),
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(4.22)
n(0—ap/2) p
>oe IFallZ,
neZ
<y ermenzion [ [ e (P Jule o+ o) P dev, ()
nez ly|>d0 JRY
= N(d) Z en(0—d—ap/2+vp+Bp) / / [ \pdm+y|u(3§ +9)|P devs, (dy)
n€eZ ly|>emdo
D [ H@d (o) da.
D
where

H(z):= Y en0=d-ap/ztap+sp) / 1oz — )P vsp(dy).

nez ly|>emdo

Here, for the last equality in (4.22), we used the change of variables z — z — y.
Now we estimate H(x). For fixed € D, there exists ng =ng(x) € Z such that

eno+3 < dz < eng+4.

If n < ngand z —y € supp((_n,), then e" < d,_, < e"t? < "0 t2 < 714, and
consequently |y| > d, — dy—, > Ne™. Using this relation, (4.20), and Corollary 3.4
with (p, k1,k2) = (Ne™, 8p,0 —d — ap/2 + vp+ Bp) (recall that v is symmetric),

S ertmaentziwein [ e @yl ()

n<no ly|>emdo
06— d a
<N > (nla = y) Aoy P (dy)
ly|>Nemo n<no
<N dG d— ap/2+w+ﬁp (dy)
a ly|>Nemo i
0—d—a
(4.23) < Ndl—d—ap/2+vp,

Now we consider the summation for n > ng. Due to § —d — ap/2 + yp <0,

o eremaerzirtan [ (o) s ()

n>ng ly|>doe™
0—d— 2
<N Y enlo—d-ap/zrumesn / Van(dy)
n>ng ly|>doem™

<N Z e(0—d—ap/2+7p) _ Neno(0—d—ap/2+yp) < ng—d—ap/%'vp_
n>ng
This together with (4.23) leads to
H(z) < dgfdfap/%rw.
Thus, by (4.22), we obtain (4.18).
2. Now we deal with open sets with nonempty boundary. This case can be

obtained by repeating the above argument. More specifically, for given 8 € (0, ),
take v € R such that

0<~yp<ap-pp

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/02/24 to 128.148.225.163 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4646 HONGJIE DONG AND JUNHEE RYU

and
0<0—d—ap/2+yp+ Bp < Bp,

instead of (4.19) and (4.20), respectively. For instance, in this case, we can choose
v =0. Then proceed with the proof with Lemma 3.3 instead of Corollary 3.4. The
lemma is proved. ]

LEMMA 4.9. Let D be a convex domain with nonempty boundary, v <0, 1 <p<
00, d—1—ap/2<0<d—1+p+ap/2, andu € C* (D). Then, under Assumption 2.1,
there exists a constant N = N(d,p,«,0, D, ) such that

S e |1 (u(en)en(e) — el )|
nez ’
(4.24) <Ny~ 2u\lf{%m+a/2)w)-

Moreover, if D is an open set with nonempty boundary, then the claim still holds,
provided that d — ap/2 <0 <d+ ap/2.

Proof. Since 1—n(—y, = (—n, by the triangle inequality and the relation L, C HJ,
|2 (uercnte) = ey Luem |,

<L (@ mm-a)(e)) = Cntem )L ((wn-n) ()|

||¢ntem )2 (11 = non(e™ ute™) )|

Thus, by Lemmas 4.7 and 4.8, (2.10), and the relation

Hy

L,

oll sy + 1A 40l 3 < N0l sz,
we have (4.24). The lemma is proved. o

For a distribution u on an open set U C R%, the action of u on ¢ € C°(U) is
denoted by
(4.25) (u, @)y :=u(d).
Due to Lemma 2.4(iii), for U = D and u € H)) ,(D), (4.25), defined on CZ°(D), can
be extended by continuity to H, 7}, (D).
s E[gl)e following lemma shows the boundedness of L from 1/)0‘/2H1‘}79 (D) to yp~/?
p,0 :

LEMMA 4.10. Let 1 <p < oo and let Assumption 2.1 hold.
(i) Let D be a convex domain with nonempty boundary, and d —1 — ap/2 <6 <
d—1+p+ap/2. Then, for any u € CX(D), we have Lu € p)~*/%2L, 4(D) and

12 Lullz,, o (p) < Nlv~ullge , (p),

where N = N(d,p,a,0,D,\,A).
(ii) Under the same conditions in (i), for u € z/;a/QHZ‘iG(D), Lu defined as

(Lu7¢)D:(U/7L¢)D7 ¢€CSO(D)7

is well defined and belongs to ~=*/2L, ¢(D).
Moreover, if D is an open set with nonempty boundary, then all the claims
above still hold, provided that d — ap/2 < <d+ ap/2.
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Proof. First, we prove (i). By [40, Proposition 1], we have
(4.26) N7 A2y, <||Lvl|, < N[A 0],

Then the claim of (i) easily follows from Lemma 4.9 with v =0 and the relations
(4.26) and Lv(e™z) =e " L(v(e™))(z).

Now we consider (ii). By (i) and Lemma 2.4(iii), for ¢ € C°(D), L¢ is in the
dual space of 1/ *H3»(D). This actually proves (ii). The lemma is proved. O

Now we are ready to prove higher order regularity of solutions.

LEMMA 4.11. Let D be a convex domain with nonempty boundary, 1 < p < oo,
0<T<oo,d—1—ap/2<8<d—1+p+ap/2, and let v; satisfy Assumption 2.2.
Suppose that f € 1/17Q/2]Lp,9(D,T), ug € 1/)0‘/27”‘/7’35;;;/1)(1)), and u is a solution to
(2.11) such that u € /%L, ¢(D,T). Then u € 959(D,T) and

lullsg 0.7y < NIY™2ulle, o (o) + Nl flln, o0,7)
(4.27) + Nlly=2 gl g o .

where N = N(d,p,a,0,\, A, D).
Moreover, if D is an open set with nonempty boundary, then the claim still holds,
provided that d — ap/2 <0 <d+ ap/2.

Proof. 1t suffices to assume that T' < co. We first prove that

\|¢_°‘/2u||H:/92(D,T) < N||¢_a/2u||n_p,3(D,T) + N||¢a/2leLp,e(D,T)
—a/24a/p
(4.28) + N|lv uOHB;ﬂ/p(D).
Let

unp(t,x) :=u(e"t, e"x), folt,x):=f(e"*,e"x), uop(zr):=ule"x), neZ.

Then u, (t,2){_n(e"z) € L,(e~"*T) := L,((0,e "*T); L,(R%)) is a weak solution to
the equation

O0 = Lo+ Fy, (t,2) € (0,e7"T) x RY,
v(0,) =ugn(-)(n(e™), z€RY
where

Fo(t,z) i=e"(fult,-)Cn(e™)) (¢ 2)
= Lun (- )Con(e™))(t,2) + (n(e"x) Lun(t, x).

Due to Lemma 4.9 with v=—a/2,

Z en(9—ap/2) ||Fn(€_nat7 ) H};{—aﬂ
nez P
(4.29) < NIw™2u(t, oI, o) + NI FEN, e -
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This implies that F}, € H;Q/Q(e_"o‘T) =L,((0,e="T); pra/z). By Lemma B.3 with
v=—a/2, we have up (-, ), (e") € Hg/Q(e_”O‘T) and

/2 L on. n_\\||P

A2 I DIy

__ na a/2 L. n_\\||P

=e ||A (u'ﬂ( ) )C*n(e ))HH;Q/Q(e_naT)

< Ne"™||Fy(-, ')”;;"/Z(KWT) + Ne™||lugn ()¢_n(e™)
(4.30) = NEn(e™™*IE a2 g T N Nuon()Gan (€™ a/aarp-

P P

H%g/Z—a/p

(T)

By (4.29), (4.30), and the relation
loll o2 < N (10l gyoorn + A0 /o)

we have
(4.31)

—a/2, ||P
97l

< Nzen(e_ap/g) (H’U,(en')c—n(en')”i];(x/Q —+ IAQ/Q(U(6"~)C—n(en'))||I;_Ip—a/2>

SN 2ull} ooy + NIVAT oy + NI~ PP,

Pp,p;0 (D)7

which gives (4.28).
Now we prove (4.27). By repeating the above argument, one can obtain
16 ullgg 0,77 < NI~ 2ullge 252y + NI, a(0,1)
—a/24a
(4.32) + N/ /PuOIIBa-z/p(D).

p,pP

This together with (4.28) easily yields (4.27). Moreover, by Lemma 4.10, Ou €
Y~/2L, ¢(D,T), and thus u € 95 9(D,T). The lemma is proved. 0

In the following lemma, the corresponding result for the elliptic equations is ob-
tained.

LEMMA 4.12. Let D be a convex domain with nonempty boundary, 1 < p < oo,
d—1—ap/2<<d—1+p+ap/2, and let v satisfy Assumption 2.1. Suppose that
f e ™2L,4(D), and u is a solution to (2.12) such that u € ¥*/?L, o(D). Then
u e wo‘/zHg‘)e(D), and
(433) 1 2ulluz, ) < N 2ull1, o0) + NIV2F 1, 0(0):

where N = N(d,p,«,0,\, A, D).
Moreover, if D is an open set with nonempty boundary, then the claim still holds,
provided that d — ap/2 <0 <d+ ap/2.

Proof. As in the proof of Lemma 4.11, we first show
@38) Il yea ) < NIl o0+ NI,
For n € Z, denote u, (x) :=u(e™z) and f,(x):= f(e™x). Then we have

(4.35) L(un()¢-n(e™))(z) = Fy(x), z€RY,
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where

Fo(z) =" fn(z)Cn(e"x) = (L(un()C-n(e"))(x) — (—n(e"x) Lun(z)) .
By Lemma 4.9 with v = —a/2,
D enl0mer/2) [Enll gparz < N~ *"?ullp, o0y + N2 fllz, (D)
nez

Thus, from (4.26) and (4.35),
1872 (un (Y Cn (€™ NIy - < NIL(un(Yn (€™ ) pme = NIEnllfy -

Thus, as in (4.31), we have (4.34).
Finally, as in (4.32), one can obtain (4.33) by repeating the above argument. The
lemma is proved. O

5. Proof of Theorems 2.7 and 2.8. We first introduce a probabilistic repre-
sentation of the solution. A rotationally symmetric a-stable d-dimensional process
X ={X;,t >0} is a Lévy process defined on a probability space (2, F,P) such that

Ee Xt =~ lI"t we e RY

For z € RY, let kp := k% :=inf{t > 0: 2+ X; & D} be the first exit time of X from
D. For bounded measurable functions f, we denote

PP f(z) =E[f(x+ X,;);kp >1], t>0,z€R™L

Obviously, PP f(z) =0 for z € D°. It is known that {P};>¢ is a Feller semigroup in
Loo(D) if D is a C%7 open set (see page 68 of [8]).

LEMMA 5.1. Let D be a bounded C*7 open set, p € (1,00), T € (0,00), a € (0,2),
and 6 € (d—1,00). Then, for any ug € C°(D) and f € C*((0,T) x D),

u(t,z) ;= PPug(x t D F(s,-)(z)ds
(t,2):= P <>+/0P f(s,)(@)d

belongs to */?L, ¢(D,T) and is a (weak) solution to (2.11) with L = —(—A)%/2.

Proof. First, one can show that u is a weak solution to (2.11) by following the
proof of [50, Lemma 8.4], which treats the case uy = 0. The general case can be
handled similarly. Thus, it remains to show u € w"‘/QILp,g(D,T).

Let 9 be a regularized distance, and take § from Lemma 3.11. Due to the condition
0 >d—1, we take 8 such that 8 € (0,/2) and

(5.1) Bp—ap/24+60—d>—1.
Notice that u is bounded since ug and f are bounded. Therefore, there exists suf-
ficiently large Ny > 0 (depending also on ug and f) such that vg(x) := No?(x)

satisfies

uo(z)| <wg(z), zeD,

lu(t,z)| <wvg(z), te(0,T),d;>9,
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and
Lug(x) < —NNotb?~*(x) < —|f(t,z)|, t€(0,T),dy <é.
Thus, from the last inequality above, we have
(u—wvg)y—L(u—vg) <0, t€(0,T),d,<é.

By applying the maximum principle to u — vg over (0,T) x {0 < d, < 0} (see, e.g.,
[Theorem 3.2]), u < vg for x € D. Using the same argument for —u, we conclude
lu| <wg. Thus, by (5.1), u € /%L, 4(D,T). The lemma is proved. d

Here we deal with the representation of the solution to the elliptic equations.

LEMMA 5.2. Let D be a bounded CY7 open set, p € (1,00), a € (0,2), and
0e(d—1,00). Then, for any f € C(D),

u(zx) = —/DO PP f(x)dt

0
belongs to /2L, ¢(D) and is a (weak) solution to (2.12) with L= —(—A)*/2.

Proof. By [50, Lemma 5.9], if D is a bounded domain, then E(x%)? < N, where
N is independent of x. Here, we remark that [50] is proved only for domains, but the
estimate still holds even for open sets. Hence, using this,

xT : 1 x
PP @) < 1o <0 < 1oy min {1, 5 B65)° .

which implies that u is well defined, and PP f(z) — 0 uniformly with respect to x as
t — co. Thus, one can show that u is a solution to (2.12) by repeating the proof of
[7, Lemma 3.4(ii)].

Now we prove u € wo‘/QLpﬁg(D). As in the proof of Lemma 5.1, we take a regular-
ized distance ¢ and ¢ from Lemma 3.11. Then, for 3 € (0, /2) satisfying (5.1), there
exists Ny > 0 such that vg(z) := Noi? () satisfies

u(@)| <vs(x), dp >34,
and
Lvg(z) < =NNop?~(2) < =| f(2)], dn <0.

Hence, applying the maximum principle to u — vg over {0 < d, < d} (see, e.g.,
[6, Theorem 5.2]), we have |u| <wvg. Thus, from (5.1), we have u € /2L, (D). The
lemma is proved. ]

Proof of Theorem 2.7. Note that the case T' = oo can be easily treated if the
theorem is proved for any T' < co. Thus, we assume T' < oco.

1. Assume that D =R%. Since C°([0,7] x D) is dense in 959(D,T) (see [32,
Remark 5.5]), the a priori estimate (2.13) easily follows from Lemmas 4.3 and 4.11.
Next, the solvability of (2.11) with L; = —(—A)®/? is treated in [7, Theorems 2.2 and
2.9]. Thus, thanks to the method of continuity, we obtain the solvability for general
operators.

2. Suppose that D is bounded and 6 < d+ ap/2 — «. As in case 1, Lemmas 4.4
and 4.11 yield the a priori estimate (2.13). Thus, again by the method of continuity,
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we only need to show the solvability of (2.11) with L = —(—A)%/2. By Lemmas 4.11
and 5.1, for ug € C¢°(D) and f € C2°((0,T)x D), there exists a solution u € $7 , (D, T)
o (2.11). For general ug € 1*/?~ D‘/I’B;;‘p()‘/p(D) and f € ~%?L, (D, T), take a
sequence ug, € C*(D) and f, € C*((0,T) x D) such that ug, — u and f, = f
in /2= O‘/Z)BO‘ a/cp( D) and ¢~/2LL, 4(D,T), respectively. For each n, u, denotes a
solution to (2. 11) with u, and f,, in place of u and f, respectively. Then, by (2.13),

ot — )l (o)
< Ny~ a/2+a/p(u0 _uOm)”Bcx a/p(D)—|—NH1/)a/2( fm)H]Lp o(D,T)>

which actually implies u,, is Cauchy in $7,(D,T). Hence, the limit of the sequence,
say u, is a solution to (2.11), and u € 7 o(D,T).

3. Lastly, we assume D is bounded and 6 > d+ ap/2 — a. We will use a du-
ality argument to prove the a priori estimate. Let u,v € C°([0,T] x D). Then, by
integration by parts,

T T
/ / u(Opv + Lv) dedt = — / / v(Oyu — Lu) dxdt
o Jp o Jp

n /D w(T)o(T) da: — /D u(0)v(0) da.

By Lemma 2.4(iii)

/ (Opv + L) dxdt

< N[ (dpu — Lu)|lv, ,(p,1) Hw_a/QUH]Lp/YQ/(D,T)
+ NHw_a/Q—Hx/pua))||L,,19(D)||'(/J_a/2+a/plv(0)||Lp/‘0,(D)
+ N[~/ 2P| g, oy [~ (T2, L0y,

where 1/p+1/p’ =1 and 6/p+6'/p’ = d. Since ' < d+ ap’/2 — «, by applying
Lemma 4.4 to v(T —t,z), we have

H"/)_a/%—a/p/v(o)HL””("(D)
< N62@ + D), oy + N u(D)s, )

Moreover, by the result for the case 2, for any g € 1/170‘/2Lp,9(D,T), one can find a
solution w to

Ow(t,r)=—Lw(t,z) +g(t,z), (t,z)e€(0,T)x D
w(T,z) =0, zeD,
w(t,x) =0, (t,x) €(0,T) x D¢,

satisfying w € H o(D,T'), and
1= wllgs , (o) < NIY*2gllL, o (0.1

Here, note that the initial condition is defined at ¢ =T and the sign of the operator
is reversed. Thus, this solvability and the denseness of ¢~%/2L, 4(D,T) actually
imply that for any g € ¢y=*/2LL, (D, T), there exists v, € C°([0,T] x D) such that
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v (T) = 0, v, = w, and dyvy, + Lv, — g in their corresponding spaces. Therefore, for
any g € w_o‘/Qijg(D,T),

T
/ / ug dzxdt
0o JD

Thus, by Lemma 2.4(iii),

1= 2ully, .1y < NI 2(ue — Lu) ||, oo,y + N~ 2TPu(0)||1, (D)

< NJ[9*2(uy — Lu) |, 0.0 19?9l (.7

+ Nwp=/2rePu(0)||, o) Vgl o (D7)

This together with Lemma 4.11 yields the a priori estimate (2.13). Now one can obtain
the solvability of (2.11) by repeating the argument used in step 2. The theorem is
proved. 0

Proof of Theorem 2.8. We first prove the a priori estimate (2.14) by following the
proof of [34, Theorem 2.6]. Here, by Lemma 2.4(i), we only need to prove (2.14) for
ue CP(D).

Let n € C((0,00)) and uw € C°(D). Then v(t,x) :=n(t/n)u(x) satisfies

opv(t,x) = Lo(t,z) + g(t,z), (t,2) € (0,00) x D,
0,z) =0, r €D,
t,z)=0, (t,x) € (0,00) x D¢,

where g(t,x) := Ln/(t/n)u(z) — n(t/n) Lu(xz). Observe that

(|op=/ 2] %Z,S(D>OO) = nN1||1/J_a/2UHI;1;9(D)
and
1072918, b,y = N (RN 2 Lt o () + 1 P Nal|0 20l 1, (1))
where

N ::/ [n|P dt, Na ::/ |n'|P dt.
0 0

This and (2.13) with T = co yield (2.14).

Due to the method of continuity, we only need to prove the solvability of (2.12)
with L = —(—=A)®/2. For the case D = R%, see [7, Theorems 2.3 and 2.10]. Now
we consider the general open sets. For f € C°(D), Lemmas 4.12 and 5.2 easily lead
to the solvability. Then the standard approximation argument as in the proof of
Theorem 2.7 yields the desired result. The theorem is proved. ]

Appendix A. One-dimensional distance functions.

LEMMA A.1. Let d=1 and let L be an operator of the form (2.2) with o # 1. Let
u(x) = (‘r-‘r)ﬁa 66(_17(X)'
Then

Lu(e) = Kapla:)’~", acRy,
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where
Kop= —%F(—Q)F(l + 8T (a — B) cos(am/2) sin((8 — a/2) 7).
In particular,

Ka,B>07 56(71,71+a/2)u(a/2,a),
(A1) Kop=0, B=—-14+0a/2ora/2,
Kop<0, Be(-1+a/2,a/2).

Proof. We first assume that « € (0,1). Using Euler’s reflection formula

Fz)Ir(1-z2)= , 2¢Z,

sin(7z)

one can easily prove the case § = 0. Thus, we only consider 5 # 0. By a change of
variables, for z > 0,

Lu@) = [ (@)~ )l

— 00

- ( JCE 1>|y|—1-ady) (24)P~ = Mo p(z4).

—00

Here,

—1 0
Maﬁ:_/ Iyl‘l‘o‘der/ (L+y) = 1)y~ dy
—1

— 00

T / GER LIRS

1
——at+ [ (=P -y [ () oy
0 0
(A.2) = —a '+ L(o, B) + Ir(c, B).
By the definition of the beta function B(a,b),
1
I]_(Oé,ﬁ) - I]_(Oé,ﬂ + 1) :/0 ((1 — y)ﬁ — (1 — y)ﬁ"rl) y—l—ady
1
(A.3) :/ (1—-9y)Py “dy=B(1—a,B+1).
0

Since 8+ 1> 0, we can use the Fubini theorem to get

Li(a,B+1)= B+1//1y 1= Bdzdy

“(B+1) / (1—(1-2)"%)2dz
0
(A.4) =al—a'(B+1)B(1—a,B+1).
Combining (A.3) and (A.4),
(A.5) L(a,f)=a ' +a(a—B-1)B(1l—a,f+1).
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Now we consider I5(3). By the fundamental theorem of calculus and the Fubini

theorem,
0oy
Lo, B) = 1+ 2)° 7y~ "%dzd
) =5 /%o( 2y dzdy
— 1 1 Bs—1 —aq
! B/O (142" z7%z
(A.6) =a " 'BB(1 - a,a—p).

Here, for the last equality, we used a well-known formula
(A7) B(a,b) :/ (147 b dt.
0

Thus, by Euler’s reflection formula and equalities (A.2), (A.5), and (A.6),

My g =aa-B-1)B(l—-a,f+1)+a 'BB(1—a,a—p)
I'l-—a) ( T(B+1) (o —B)
o (m —ath) | T(-p) )

_ al(l-o) < 1 1 )
o1 — o+ BT(—P) \sin((a— B)m) _ sm(m)
_ (1 — a) <2cos(a7r/2) sin((8 — a/2)7r)>
al'(1—a+ B)T(-P) sin((a — B) ) sin(B)
(A.8) =K, 5.

Hence, the case a € (0,1) is proved.
Next, we consider a € (1,2). As above, we assume 3 # 1. By a change of variables,

Lu(z) = My g(x4)?~*, 2>0.

where
M= [ ()~ 1= sl
:/_:...+/°...+/°°
e [
(4.9) a4 Bla— 1) 4 (a0 B) + o B).
As in (A.3),

Ji(a,B) — Ji(a, B+ 2)=Ji (e, ) — Ji(e, B+ 1)+ Ji(a, f+ 1) — Ji(a, B+ 2)
=hLa—1,8)+L(a—1,8+1)
=2(a-1)" 4+ (a-1)"a-B-2)B2—a,B+1)
(A.10) +(@—1)"a—-B—-3)B2—a,B3+2).

Here, for the last equality, we used (A.5). By the fundamental theorem of calculus
and the Fubini theorem,
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Ji(o, B+2) = (B+2)( 5+1// / )Py~ dtdzdy

=(B+2) ﬂ+1/// (1—t) Py~ dydzdt
0

:—(ﬁ”gﬂﬂ)/ (1—t)ﬁ( o 2 +t> dt

0 l-a 1-a

_B+2 (B+2)(B+1)
l—a a(l—a)

$ THDEHD) o g 1)

B(2_Oé76+1>

Combining this and (A.10), we obtain

(A.11) Ji(a, B) = é T f}a - Fé?lazroﬁ;)l)'

For Ja(«, B), by the fundamental theorem of calculus and (A.7),

Jo(a, B) = —1/ // (1+t)° 2y~ 1= dtdzdy

. 5(5 f-241-a
= a(l_a) i (1+t) dt
BB o 0
04(1704)3(2 ’ 8)
(A.12) P(l;izi(;;_ )

Thus, as in (A.8), Euler’s reflection formula and equalities (A.9), (A.11), and (A.12)
lead to

Ma,g=Kap.

The lemma is proved. O

LEMMA A.2. Let d=1 and L=—(—A)"2. Let
u(@) = (z4)°, Be(-11).
Then
Lu(z) =K1 p(e1)"", zeRy,
where

_/8 COS(ﬁ?T), ﬁ € (0’ l)a
Kl;ﬁz 71/71" =0,
Beos(fm),  pe(—1,0).
Moreover, (A.1) still holds true with o= 1.

Proof. See [10, Proposition 4.4] for the case 8 € (0,1). Now we consider 3 < 0.
Let
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v(z) = B+1(x+)5+1.

Then, since 8+ 1 >0, for z > 0,

Lu(ac) — %(3?) — _(ﬁ + 1);0i(gﬁ + 1)71')) %(;CJF),H _ 5COS(57T)(£L’+)B_1.

Lastly, the case 8§ =0 can be easily obtained from (2.2). The lemma is proved. ]

Appendix B. Parabolic equations in the whole space. In this section, we
present the L,-maximal regularity of nonlocal parabolic equations in the whole space.
We consider more general operators than in the main sections above.

We first impose the assumption on a family of Lévy measures (v¢):e(o,1)-

Assumption B.1.
(i) If f is integrable with respect to v for all ¢ € (0,7T), then the mapping

t—>/Rdf(y)Vt(dy)

is measurable.
(ii) For any o > a,

/ Iy1° vi(dy) < oo.
ly|<1

(iii) There exist aq, a2 and Ny > 0 such that for any R >0,

Ra—Ou/ ly|* yt(dy)+Ra‘a2/ ly|** v (dy) < No,
ly|I<R ly|>R

where ai,az € (0,1] if a € (0,1); aj,az € (1,2] if a € (1,2); a1 € (1,2] and
az €[0,1) if a=1.
(iv) If @ € (1,2), then

B.1 Uy d Q.
(B.1) /| lyl e (dy) <
(v) We have

sup min{1, |y|*} v(dy) < oo.
te(0,T) JRR4

Let 1 satisfy Assumption B.1 for some « € (0,2). Now we define the nonlocal
operator L; as

(B.2) Liu:= /Rd (u(x +y) —u(x) —y - Vu(a:)) ve(dy),

where y(®) = (11<a<2 + lazll‘mgl) y. Here, due to (B.1), (B.2) is well defined for
any u € CZ(R?). We also denote the adjoint operator

Liw= [ (e +y) = ul@) -y V(o)) v(~dy).
Rd
For the nondegeneracy of the operator, in Lemma B.3 below, we will assume that

v <y, for some (nonsymmetric) a-stable Lévy measure v(1). Here, we state the
assumption on ™).
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Assumption B.2.
(i) There exist A, A >0 such that

A< inf/ 1p- 011D (dB)
peSi—1 Jga—1

and

/ M (dh) < A < oo,
Sd—l

where 11 is the spherical part of v(1),
(ii) When v =1,

(B.3) /Sd_l 0u™ (dh) = 0.

Note that (B.3) is equivalent to
/ yy(l)(dy):(), 0<r<R<oo0.
r<|y|<R

LEMMA B.3. Let a €(0,2), 1<p<oo, 0<T < o0, y€ER, and let vV be an a-
stable Lévy measure. Suppose that Lévy measures v, and vV satisfy Assumptions B.1
and B.2, respectively. Assume that

V(l) S U,

f € Ly((0,T); HY), and ug € B;;;“*"‘/p. Then there exists a unique solution u €
L,((0 N Ls((0,7); HY) to

{Gtu(t,m) = Lyu(t,z) + f(t,x), (t,z)€(0,T) x RY,

u(0,z) = up(x), r €RY.

More precisely, for any ¢ € C°(R?) and t € (0,T),

t t
(ult, ), B)s = (s ) + [ (s, Li)mads + [ (7(5.),0)na s
0 0
Moreover, for this solution u,

(B.5) I(=2)*"2ullp,, o,7)03) < N (HUOHB;;wa/p + ||f||Lp((o,T);H3)) ,

where N = N(d,p,a,v,\, A, Ny) is independent of u and T

Proof. 1. Since the isometry (1 — A)%0/2 Hyt" — HY commutes with L;, we
only need to prove the claim for v=0.

2. Suppose that v, = v for all t € (0,7). In this case, one can check that v
satisfies all the assumptions in [41, Theorem 1]. Thus, by [41, Theorem 1], we have
u € Ly((0,T); H)"*) together with (B.5). Here, we note that the constant N depends
only on d,p,a, A, and A. Thus, it remains to show u € Lo ((0,T); L,).

For general functions h, denote

he(x) =h* ®°(z), ®°(z):=e ®(x/e),
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where ® is a standard mollifier on R?, and * denotes the convolution. Then one can
easily find

t t
us(t,x)zug(x)—k/ Lsus(s,m)ds—&—/ fe(s,x)ds, te(0,T), zecR%
0 0

By the Minkowski inequality and Hoélder’s inequality, we have

¢
I 0y < il + [ Va0l st [ 1725,
<lusllz, +T(pfl)/”llLsue||L,,((0,T);L,,) +T(” D721 21 L (0.0,
Letting € | 0, due to (B.5) and the continuity of L; (see [41, Lemma 14]),
(B.6) lullzo0,7);2,) < N(T) (IIUOIIB;;&/p + ”fHLp((O,T);Lp)) .

Thus, we have u € Loo((0,T); Lp).

3. Now we deal with the existence and (B.5) for general v;. To consider time-
dependent nonlocal operators, we use probabilistic arguments. Let 7 := vy — (1),
and let p(dt,dy) be the Poisson random measure on [0,7) x R? with intensity mea-
sure ¢(dy)dt. For the compensated Poisson random measure g(dt,dy) := p(dt,dy) —
V¢ (dy)dt, we define the stochastic process with independent increments

// @ q(dr, dy) // y—yl@ (drdy) 0<t<T.
R R

Let f € C((0,T) x R?) and up € C°(R4). By case 2, there exists a solution v
satisfying

dvt,w) =L v(t,a) + f(t.x ~Yi), (@) € (0,T) x R,
u(0,z) = uo(x), r €RY,

where L is the operator associated to v(!). Note that, by the representation formula

of solution (see (4.9) of [41]), v is well defined (measurable) on the probability space

where Y; is defined. Since f and wug are smooth, we have v(t,-) € C?(RY) for each
t € (0,7). Thus, by the It6—Wentzell formula (see7 e.g., [39, Proposition 1]), we have

t
oot YD) =v(0a)+ [ [ 4 Vols.o Yo aldsdy)
0 JRd
t
+// y—y(o‘) -Vv(s,x—f—YS,)p(dsdy)
Rd

Z (s,z+Ys) —v(s,z+Ys_) — AY; - Vu(s,z + Ys)]

—|—/ Osv(s,x +Ys)ds,
0
where AY, :=Y, —Y,_. Thus,

v(t,x+Y})

— oz // @) . Vu(s,z + Y,_) q(dsdy)
Rd
+// y_y(a) -Vv(s,x—l—st)p(dey)
0 JRd
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+/O /}Rd (s, z+Ys_ +y) —v(s,z+ Ys_) —y - Vo(s,z + Y;)] p(dsdy)

(B.7) + /Ot (Ll’(l)v(s,x +Y:)+ f(s,m)) ds.

Since ¢(dsdy) is a martingale measure, by taking expectation of both sides of (B.7),
for u(t,x) :=Elv(t,z + Y3)],

u(t,xz) =up(x) + /Ot /Rd [u(s,x +y) —u(s,z) —yl® Vu(s,:c)} (Vt - 1/(1)) (dy) ds
—|—/0 (L”(ju(s,x) +f(s,a:)) ds
=wup(x) —l—/o (Lyu(s,z) + f(s,x)) ds.

Since v(t,-) € C?(R%), we have u(t,-) € C?(R?), and thus u is a solution to (B.4).
Moreover, by using the Minkowski inequality, (B.5) easily follows from the one for v.

For general f and ug, the desired result can be obtained from the denseness of
C'%° functions in the spaces L,((0,7);L,) and Bﬁ;a/p, (B.6), and the continuity of
L;. Here, we note that under Assumptions B.1 and B.2, the constant N depends only
on d,p,a, A\, A, and Nj.

4. Lastly, we show the uniqueness. Suppose that u is a solution to (B.4) with
up =0 and f=0. Let ty € (0,T), vo € C>(R?), take a solution v € Ly ((0,%0); Hyy ) N
Lo ((0,t0); L,y) to the adjoint backward equation

Ow(t,z) =—Liv(t,z), (t,x)€ (0,t9) x R4,
U(t071‘):’00(1'), meRd7

where p’ = (p — 1) /p. Then, for any ¢ € (0,¢y) and x € R?,

t
ua(t7x):/ Lsu®(s,x)ds,
0

and
to

e (t, ) = vg(x) —|—/ Liv®(s,z) ds.

to—t

Thus, u,v € Loo((0,T); L,) implies that, for each # € R%, both u¢(-,z) and v*(-,z) are
Lipschitz continuous in the time variable. Hence, by integration by parts,

u® (tg, x)vg(x) — us(0,2)v°(0,2) = ; ' 0s (uf (-, 2)v° (-, x)) ds

to
:/ (Lsu(s,z)v°(s,2) — u®(s,2)Liv°(s,2)) ds.
0
Thus, if we integrate both sides of the above over R, then we have

/ u®(to, x)vg(x) de = 0.
Rd

Letting ¢ | 0, since vg € C2°(RY) is arbitrary, u(tg, ) = 0. The lemma is proved. d
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