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ABSTRACT. In order to compare and interpolate signals, we investigate a Riemannian geometry on the
space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing
many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals,
which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We
characterize the metric properties of the space of signals and establish the regularity and stability of geodesics.
Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several
experiments which highlight the nature of the metric.

1. INTRODUCTION

In [30], Miller and Younes introduced a deformation-based geometry on the space of L? functions in
arbitrary dimension. It allows for and measures both horizontal deformations (as does the Wasserstein
metric) and vertical deformations (as does the L? norm). Unlike the Wasserstein distance, it allows for
signals that change signs. We will refer to the resulting geometry as the HV geometry throughout the
paper.

Trouvé and Younes [36] provided some of the foundational results, and subsequent works generalizing
the approach to a variety of distances and settings. However, there have been few works carefully studying
the associated geometry of the signals and theoretically establishing its properties. This is in stark contrast
with the abundance of developments of variants of optimal transportation. In the hope of fostering further
development of this and related geometries, we provide a largely self-contained introduction in perhaps the
simplest setting, namely one-dimensional signals. We then prove new results characterizing the resulting
metric, providing various a priori estimates, and establishing the regularity and stability of minimizing
geodesics. Furthermore, we introduce a simple and efficient scheme to compute the metric.

While this framework of [36] has been used in applications, primarily in image processing, we are
unaware that it has been applied to the setting of one-dimensional signals. Here we argue that when
considered in the space of signals (one-dimensional functions), it provides a viable metric that has
desirable features and can be effectively computed. This opens the door for a variety of applications.

Given a finite interval, which, for simplicity, we set to be [0, 1], we consider the space of signals to
be the L? functions. The paths on the space of signals are described by (weak) solutions of the transport
equation with a source. In particular, a path connecting fo, f1 € L?(0,1) is described by

Orf = —=0gxf-v+2z on0,1] x [0,1],
ey v(0, -) = v(l, ) =0,
f('ao):f(]a f('al):fl-
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FIGURE 1. An example of the computed geodesic in the space of signals according to
the HV geometry for k = 0.1, A = 0.01, and ¢ = 0.0005. We note that for some features,
horizontal transform dominates, while some parts are matched by vertically moving the
signals.

The action measuring the effort of deforming fj to f1 along the particular path is

2) Apre(f,v,2) J J Kkv? —I—)\v —l—svm+z dadt

where kK > 0, A > 0,and ¢ > 0.

The v? term measures the horizontal movement of the signal, while the 2% measures the vertical change.
The parameter « is for modeling flexibility, as it accounts for horizontal and vertical variations differently.
We note that the horizontal transport is modeled by the transport equation term, 0, f - v, instead of the
continuity equation div(fv). Thus, even if z = 0, the integral of f is not preserved unless div v = 0. The
Av2 term measures how far from being conservative the transport is. It is helpful to mention that in a
higher dimensional analog of the metric v, term would be replaced by div v. In essence, it describes how
much space needs to be created/removed to expand/contract the region where f takes a certain value. The
ev?,, term is necessary for regularity. In particular, it ensures that very small regions cannot be inflated
at an arbitrarily small cost, which would create an undesirable shortcut that could become the dominant
transport mechanism. Indeed we discuss in Section [2.1] that the geometry can degenerate if ¢ = 0.

We define the distance between functions fy and f; as the infimum of the action among all admissible
paths connecting them

AdHV (k) = ;r;fz J \/ J k2 + A2 +ev2, + 22de dt = (}gfz) Apre(f,v,2).

The second equality is proved using reparameterization. When parameters «, A, and € are clear in the
context, we use the short-hand notation dgy. See Figure |1 for an example of the computed geodesic
between two signed signals based on the HV geometry.

The metric we describe above is not new; modulo some minor technical details, it is the metric
introduced by Miller and Younes [30] and studied by Trouvé and Younes [37] and belongs to the family of
metamorphoses studied by Trouvé, Younes, and Holm [22]. It is also closely related to the metrics studied
by Charlier, Charon, and Trouvé [10, [11]]. In particular, [37]] and [[10, Theorem 2] show the existence of
geodesics, and [11, Property 1] shows the completeness of the metric. The works [22} [10, [11]] display
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very general frameworks and large families of possible deformation-based ways to compare functions on
both fixed and changing sets and manifolds.

Here we present a simple and self-contained description of the particular metric of interest in the space
of signals. Our problem description is primarily Eulerian instead of the approach based on groups of
diffeomorphisms. The Eulerian point of view, allows us to consider paths between signals with less
regularity. This allows us to prove that metrics that only penalize one derivative do not lead to a geodesic
space, as minimizing geodesics may not exist; see Section [2.1] We prove the existence of geodesics and
the completeness of the resulting metric space of signals, which are analogous to those in [36] and [[11],
respectively. Our approach allows us to characterize the convergence in the resulting space of signals as
the L? convergence; see Theorem We are not aware of such a result in the other frameworks. In
particular, knowing that the resulting metric is not weaker than the L? distance provides clarity about the
distance that deformations induce. Furthermore, we prove a priori estimates on the minimizers, allowing
us to exhibit that the minimizers preserve the regularity of the signals. In particular, Proposition [3.1] shows
the result for signals in /' and Remark [3.2]shows it for smooth signals.

Furthermore, we introduce a numerical algorithm, which iterates between optimizing the action over
v and z with f fixed and optimizing over z and f with v fixed. Each of the subproblems amounts to
minimizing a quadratic functional under a linear constraint (unlike the full problem where the constraint
is nonlinear) and thus can be efficiently performed. We observe that the algorithm quickly (within a
few iterations) converges to a local minimum of the action. By iterating between solving these two
sub-problems, we can show that the action functional (2)) monotonically decreases on the continuous level.
We employ a Lagrangian approach when optimizing over z and f with v fixed, which involves numerical
integration and numerical interpolation. When optimizing the action over v and z with f fixed, we solve a
fourth-order partial differential equation (PDE) through the finite-difference method. Since the geodesic
obtained depends on the initial data, we also propose a velocity initialization for which matches the k
most prominent peaks of each signal. To mitigate the issue of only finding a local minimizer, we optimize
over k€ {0,1,..., knas} to select the initialization that leads to the smallest action value, where ky,q, is
the number we pick, denoting the maximum number of prominent peaks we aim to match. In particular,
k = 0 corresponds to zero-velocity initialization.

1.1. Literature review. Designing and choosing the right way to compare the functions considered are
important in a number of contexts. In inverse problems, such as denoising, deblurring, or wave-form
inversion, choosing an appropriate way to measure loss is crucial to the outcome. If the signals represent
the distribution of mass where the location of the mass is more important than the density, optimal
transportation metrics perform especially well [15 [17]. In the setting of optimal transportation with
quadratic cost, the equation in () is replaced by the continuity equation:

o f = —div(fv)

and the action is
1 pl
Aw (f,v) = f J v2f dzdt.
o Jo

The optimal transportation metrics have the requirement that the functions compared are nonnegative
with the same total mass. The mass requirement was relaxed by the unbalanced optimal transport
[24, [13]], which allows for the change of the mass, but still requires non-negativity. For unbalanced
transport, the continuity equation can have a multiplicative source term, and the action also penalizes
signal amplification:

of = —div(fv) + zf,

and Ayp(f,v) ff v? 4 22) f dadt.
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There is a need to compare general signals with both positive and negative values in many applications,
such as full-waveform inversion [17]]. It poses a limitation for applications of optimal transportation.
Several ideas for adapting optimal transportation approaches to signed signals have been introduced [[17]].
They include adding a constant, exponentiating the signal, comparing positive and negative parts separately,
and considering the transportation between the graphs of functions on the product space (e.g., I'LP metric
[34]]). Comparing the signals on graphs has been shown as effective in full-waveform inversion and related
problems [27]. However, all of these approaches lack one of the key elements, namely the Riemannian
nature that allows for interpolation or the desired invariance d( fo, f1) = d(—fo, —f1).

Geometric ways for comparing shapes and submanifolds of R¢ have received a lot of attention in
computer vision, computational anatomy and geometry processing. Riemannian geometries on the space
of curves have been much studied. Mumford and Michor [28]] showed that if only the L? norm of the
velocity is considered in the action, then the metric degenerates. Bruveris, Michor and Mumford [9}, [8]]
and Nardi, Peyre, and Vialard [31] established that the space of immersed plane curves is geodesically
complete when the Sobolev or, respectively, BV -based metric involves the L? norm of two or more
derivatives. Early works on computational anatomy and nonrigid registration have led to studies of
geometries of the shapes of surfaces, as well as higher dimensional manifolds, many of which are surveyed
in the book by Younes [41]]. Recent results [3} 4] established the local well-posedness of geodesic
equations when the metrics penalize at least one derivative of the deformation field.

A different line of work investigates the spaces of shapes considered as interiors of sets. In some sense,
this takes into account the mass contained in the set, as does the Wasserstein distance. Liu, Pego and
one of the authors, [25], showed that restricting the Wasserstein geometry to the space of characteristic
functions is not viable, as the geodesics do not exist. In fact, minimizing curves converge weakly to the
Wasserstein geodesics in the unconstrained space. Wirth, Bar, Rumpf, and Sapiro [40] considered actions
that penalize the gradient of the velocity field and showed that, in this case, the geometry is viable. The
framework was refined by Rumpf and Wirth [32} 33]], who also provided a numerical method for finding
geodesics.

In parallel with the studies of the geometry of the spaces of curves and shapes, researchers considered
the metrics which allow for comparing signals, such as gray-level images, while allowing for both
deformations of the domain and intensity variations. Trouvé [35] introduced the basic description based
on group actions. This was refined into the description of deformable templates [36]] and metamorphoses
[37] by Trouvé and Younes. As we indicated at the beginning, the geometry we study belongs to this
family. Eulerian description of metamorphosis was carried out in [22]]. Charlier, Charon, and Trouvé
[1O} [11]] considered spaces where one compares manifolds together with functions on them. The authors
of 10, [11]] showed that under sufficient regularity assumptions, in the space of manifold, function pairs
are geodesically complete. Many of the numerical approaches (e.g. [29,20]]) to computing the minimizing
geodesics between the given images relied on the so called shooting methods where one iterates computing
the forward geodesic for the given initial conditions and adjusts the initial conditions. Berkels, Effland,
and Rumpf [6]] took a different approach and gave a variational formulation based on discrete-in-time
paths where one minimizes the deformation between consecutive images in a way that is consistent with
the action integrated in time. This is a promising and well founded approach. One difference to our
approach is that their sub-problems remain nonconvex.

1.2. QOutline. The rest of the paper is organized as follows. In Section |2} we define the HV geometry and
the associated distance and establish their properties. In particular, we present the scaling invariances of
the metric in Proposition [2.1] In Section [2.2] we rigorously identify the tangent space. The identification
is analogous but slightly different from the one [36] in that instead of equivalence classes, we identify the
representatives that achieve the minimal length (just as the gradient vector fields minimize the action for
Wasserstein geometry). In Section[2.3] we provide a number of a priori estimates, prove the existence of
geodesics (in a slightly different way from that in [36]), and obtain representation formulas satisfied by
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geodesics. In Section we prove the completeness of the d gy metric on L2(0, 1) and that the topology
induced by dgy on L?(0,1) is the same as the one induced by the L? norm. Moreover, we show in
Proposition 2.3 that without involving the second-order derivative of the velocity, action minimizers may
not exist. In Section 3] we further study several properties of the geodesics. In Proposition 3.1} we show
that if the starting and the ending signals are in !, then the signals along the minimizing geodesic remain
in H'. Furthermore, Remarkindicates that if the signals are smooth, so is the geodesic connecting
them. Proposition [3.3|establishes the L? stability of minimizing geodesics with respect to perturbations
of the endpoints. We note that this is not a straightforward compactness result since, initially, one only
has control over the L? norms of the signals. Section|3.1]is devoted to establishing first-order optimality
conditions of the action minimizers. We first obtain these conditions for general L? signals. If the signals
are further in H', we show that the Euler-Lagrange equations have the form of differential equations. In
Section ] we introduce our numerical method. We first present the iterative minimization scheme that
uses two sub-problems which are based on Euler-Lagrange equations and representation formulas for the
geodesics. The discretization we use based on finite difference is included in Section[4.2] We describe our
approach to the path initialization in Section[4.3] As the energy often has local minimizers, it is important
to use initialization informed by the signals. In Section[5] we display several illustrative examples that
highlight the properties of the HV signal geometry, as well as the numerical approach we take. We also
apply our scheme to signals from the ECG datasets and seismology. Finally we discuss the parameter
selection in Section

2. HV GEOMETRY AND ITS PROPERTIES.

To rigorously define the HV distance we start by precisely defining the set of admissible paths. Let
V= L?((0,1), H*(0,1) n H3(0,1)). Given fy, f1 € L?(0,1) we define the set of admissible paths to be

A(fo, f1) == {(f,v,2) | f € L*((0,1), L*(0,1)) n C([0, 1], H~*(0,1)),
3) veV, ze L*((0,1), L*(0,1)),
Orf + 0xf -v=2zweakly, f(-,0) = fo, f(-,1) = fl}.

By weak solutions of &;f + 0, f - v = z above we mean that for any test function ¢ € C*([0,1]?),

_Ll Ll f@tqbda;dtJrLl fi(x)o(z, 1)dar:—f01 fo(2)¢(x,0)dx

1 r1 1 r1 1 p1
=f f f¢5zvdxdt+f J f@xqﬁvdxdt+J f ¢z dx dt.
0 JO 0 JO 0 Jo

The HV distance is then defined by

(%) Aduvisae) = o eA o) J \/ J Kv2 4+ M2 + ev2, + 22 dx dt

The definition of the distance implies the following simple, but useful properties.

“

Proposition 2.1. Consider fy, f1 € L*(0,1). Let ¢ > 0. Then

(i) duv(fo, f1) < | fo — fillzz-
(ii) dgv(—fo, —f1) = duv(fo, f1)
(iii) duv(fo + ¢, f1 +¢) = duv(fo, fr)
(iv) dpv(ee,eae2e)(cfo, cfi) = cdpv (e (fo, f1)
To indicate the behavior of the action with respect to rescaling the space extend fo and f1 periodically to
R. Likewise, given a path (f,v, z) consider it extended periodically to R. Then for L € N
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(v) Apzgner2(f(L-, ), 0(L-, - ),2(L-, ) = Axne(f,v,2), where the action is considered
only on [0, 1], as usual.

Property (i) is proved by computing the action of the linear interpolation while the remaining properties
are proved by a straightforward application of the definition of the action.

2.1. Degeneracy without the second derivatives. Before proving rigorous results about dy,, we show
that is we € = 0 the geometry of signals would not have all of the desirable properties. In particular the
show that there exist functions fy and f; such that there does not exist any minimizers for the action.

To be more precise, consider the set of admissible paths to be as in (3), but with V replaced by
L*((0,1), H}(0,1)). Consider the action

1 el
(6) A(f,v,2) = f J v? + Uﬁ + 22dadt.
0 Jo

We start by noting that linear interpolation is not optimal when f and f; are constant functions that
differ sufficiently.

Lemma 2.2. If¢ = 0, then for all X € [0, ) there exists H € R such that the linear interpolation path
between fo = 0 and f1 = H is not optimal.

Proof. Consider fo = 0 and f; = H for some H > 0. One possible path between fy and f; is by L?
interpolation. This path is defined by v = 0 and z = H. Then

1t
A(f,v,2) :j f 22drdt = H?
0 JO

We construct a competitor with nonzero velocity v. In the time interval ¢ € [0,1/3], use an L?
interpolation between f and
H z<s
fa(z) = {

0 xz>s

1
for fixed s € (0,1/2). In this time interval, v = 0, and {3 S; 22dxdt = 3sH?. On the time interval
t € [1/3,2/3], the signal moves from f5 to

f3($)={H r<1l-—s

0 x>1-s

by moving the edge of the step function with a constant speed 3(1 — 2s). The velocity parameterized by

the initial position is w(z) = 3(1 — 2s)% for z € (0, s] and w(z) = 3(1 — 25)=L for x € (s,1). Then

for all ¢ € [1/3,2/3], the velocity is v(z + w(z)(t — 3),t) = w(z). By chainrule 0 < v < 3(1 — 2s)
3(1—2s)

and |v,| < =—=. So

3t A
J f v? + Mvidedt < 3(1 — 2s)? (1 + 2)
1 Jo S

3

The interpolation between f> and f3 is that the signal is constant along the trajectories. Finally use
L? interpolation between f3 and f;. This is symmetric to the time interval [0, 1/3] and adds 3sH? to the
action.

Thus the total action for this path is bounded above by 6sH> + 3(1 — 25)?(1 + 2 ). By picking s < %,
and then H > O such that H? > 2 (1—2s)%(1 + 2), we have that H? > 6sH? +3(1—2s)?(1 + ).
Therefore L? interpolation is not the optimal path between fo = 0 and f; = H. ([l

Proposition 2.3. There exists H > 0 such that there is no path between fy = 0 and fi = H minimizing
the action (0)) .
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Proof. Assume H satisfies the condition of Lemma Consider any path (f, v, z) from fo to f1. We
split the argument into two cases depending on whether v = 0.

Case 1° If v = 0. Then f; = z for all z, ¢, that is the path is linear interpolation. Hence, be Lemma [2.2]
the path does not minimize the action.

Case 2° v % 0. From the path (f, v, z) we can construct a new path (f, 7, Z) by creating two copies of
f shrank to interval %

- f(2x,t r< i
Flat) = {1200 i
1 1
sv(2x,t < 5
O(x,t) = %U( z,1) v %
302 —1,t) x> 3
21, t <3
3o 1) = (2, 1) N
2(2r —1,t) x> 3

A consequence of this is that

VoA
N[ — N[ —=

For the action of this path,
. 1 r3 1,1
A(f,0,2) = f f o2 + 02 +22dxdt+f f 0?2 + 02 + 2Adxdt
0 Jo 0J1
e 2, = 2z 2
= ZU(2$, 1) + 05(22,t)° + Z(2x, t)“dzxdt
0 Jo

1 r1
1
+ J ﬁ 15(295 —1,0)% + 0,(2z — 1,8)* + 2(2z — 1,t)%dxdt
0J3

1
= ff4v2 + 02 + 22dx.

Since v is non-zero, this is strictly less than the action A(f, v, z). Thus the path (f, v, z) is not minimal.
Therefore so no path between fy and f; minimizes the action. O

2.2. Identification of the tangent space. We note that dzy-, defined in (5)), can be seen as the length of a
curve in the space of signals. Indeed, as we show below, (L?(0,1), dyv) is geodesic space. From the
definition of the admissible curves and the action we see that in Eulerian description of the tangent space

(7 Tang puier = {—vfe + 2 : ve H*(0,1) n Hy(0,1), ze L*(0,1)} < H*

where v f, is the element of H~! defined by (—vf,,¢) = Sé Ve fp + vfdydr for all ¢ € HE. We
show below that in the Lagrangian description the tangent space can be identified with a subspace of
(H?(0,1) n H}(0,1)) x L?(0,1).
Lemma 2.4. Given f € L*(0,1), v € H?(0,1) n H}(0,1) and z € L*(0,1) there exists a unique pair
ve H?*(0,1) n H}(0,1), z € L*(0, 1) minimizing the instantaneous action

1

1
() Qf(v,2) = 2L Kkv? + )\vg + 51)326:5 + 22 dx
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under the constraint
1 1

O VoeHI0.1) | fobt foos +zode = | fuut fo6s + 20
0 0

We will denote the solution mapping by S : H*(0,1) n H}(0,1) x L*(0,1) — H?(0,1) n H}(0,1) x
L%(0,1), that is (v, 2) = S(v, 2).

Proof. Let C(f,v,%) be the set of v € H?(0,1) n H}(0,1), z € L?(0, 1) satisfying the constraint (J).
Note that if (vy, 2,) € C(f,9,%), v, — vin H}, 2, — zin L? asn — o and v € H?(0,1) then
(v,2) € C(f,v,%). Namely f¢ € L? ensures that { f(v,),¢dx — § fvy¢dz and v, — v in L implies
§ fondedz — § fog,de asn — oo.

We note that (v,2) € C(f,7,2) and Q¢(v,2) < 0. Let (vn,2,) € C(f,7,%2) be a minimizing
sequence of ). Thus {v, }, is bounded in H? and {z,}, is bounded in L?. Hence there is a subsequence,
which by relabeling we can assume to be the whole sequence, v,, — v in H& and z, — zin L? to some
ve H? n Hj and z € L?. By above (v, z) € C(f, v, 2). Since @ is sequentially lower-somicontinuous
with respect to H'! convergence in v and weak L? convergence in z we conclude that (v, z) minimizes
Qrover C(f,v,%).

The uniqueness follows from the fact that Q) is strictly convex and that C'(f, v, Z) is convex. (]

We now characterize the solution (v, z) = S(v, z) above via the first variation. We note that condition
(©) implies that (v —v) f,. belongs to L2, in the sense that {(v—1) fy, ¢) = Sé(z —z)¢ forall p € HL(0,1),
where (-, -) denotes the dual pairing between H ' and H}. It is straightforward to show that for
feL?0,1)and u € H*(0,1) n H}(0,1) the condition uf, € L*(0,1) is equivalent to uf € H*(0,1).
This motivates us to introduce the space

(10) R(f) = {ue H*(0,1) n Hj(0,1) : uf € H'(0,1)}.

Note that for v € R(f) ufe. = (uf)s — usf € L?. We also remark that if f € H' then R(f) =
H?(0,1) n H}(0,1).

Lemma 2.5. Consider f € L*(0,1), v € H*(0,1) n H}(0,1) and z € L*(0,1). Then (v, z) = S(v,2) if
and only ifv e H?(0,1) n H}(0,1), z € L*(0,1) and

1
(11 Vu € R(f) f KOU 4+ AUgly + EVpptipe + (0 —0) fr + 2)(ufy)dz = 0.
0
Proof. If (v,z) = S(v,2) thenv € H%(0,1) n H}(0,1), z € L*(0,1). Taking u € R(f) and h = uf,
which belongs to L?, since u € R(f) we note that (v + su, z + sh) € C(f,, z). First variation in of Q
at (v, z) gives the condition (TT).
Now assume that v € H2(0,1) n H}(0,1), z € L?(0,1) and that (TT) holds. Let (7,%) = S(v, 2)

above (T1)) holds for (7, 2) in place of (v, z). Furthermore note thatv — 0 = (v — v) — (0 — v) € R(f).
Taking u = v — © and subtracting the two forms of (T1)) gives

f k(v —0)% + A(vg — 02)? + (Vg — V) + (v — D) fz)?da = 0
0

Thus v = v and z = Z. (|
It is useful to note that if f € H'(0,1) and hence R(f) = H?(0,1) n H}(0, 1), the condition (TT))
means that for g = — f,¥ + z, v is a weak solution of

EVzgze — ANVgg + KU + fx2/U = —fzg on (07 1)
(12) v=0 at{0,1}
vee = 0 at {0, 1}.
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The above lemmas allow us to characterize the tangential velocities, namely we define
(13) Tany = {(v,2) € H?(0,1) n H}(0,1) x L*(0,1) : (v,2) = S(v, )}
Lemmagives that a pair (v, z) € H%(0,1) n H}(0,1) x L?(0,1) belongs to Tany if and only if

1
(14) Vu e R(f) J KUU + AMUgly + EVpzlpr + 2ufzdx = 0.
0

) we can characterize Tany as the set of pairs (v, z) where

In the special case that f € H'(0,1
0,1) is a weak solution of

ze L?(0,1) and v e H?(0,1) n HL(0,
EVpgzz — ANVgz + KU = —fzz  on (0,1)
(15) v=0 at{0,1}
Uz =0 at{0,1}.

We furthermore remark that if u € R(f) then, since H' functions in one dimension are continuous we
have that both u f and u are continuous. Thus f = uf/u must be continuous on the set where u # 0. In
other words if f does not have a representative that is continuous at some x then all functions u € R(f)
are equal to zero at z; u(x) = 0. In particular if f in nowhere continuous then the only u in R(f) is the
zero function. Consequently if f is nowhere continuous then Tany = H?(0,1) n HJ(0,1) x L?(0,1),
that every pair is a tangent pair.

2.3. Existence of minimizing paths. Here we show the existence of minimizers of the action (2))

Theorem 2.6. Consider fy, f1 € L?(0,1). There exists an admissible path (f,v,z) € A(fo, f1) minimiz-
ing the action (2).

Before proving Theorem [2.6] we first establish several properties of solutions of the transport equation.
These results and the techniques are standard, we present them for completeness.

Lemma 2.7. Givenv € V, z € L?((0,1)?). Let fo € L?>(0,1). If f € L*((0,1)?) is a weak solution to
the initial value problem

f(70) :f07 8tf+8xf-v=,z on [07 1]27
in the sense that for every ¢ € C*([0,1]?), @) holds, then f has the following representation: for a.e.
x,tin[0,1]%
t

(16) (@ (1)) = fol) + f 2(®(z, 5), 5)ds,

0
where ® is the flow of the vector field v:

(17) 0®(x,t) = v(P(t,x),t), P(0,2)==x.
It follows that the weak solution f is unique.

Proof. Letus extend fy, z, v, f by zero outside of [0, 1], and denote the extensions by Z, fo, v, f Note that
v e L2(0,1, WL (R)) since H2(0, 1) embeds in W1*(0,1), v(0, -) = 0, v(1, -) = 0, and extending
by zero preserves the Lipschitz constant.

Then f € L?(0,1, L?(R)) satisfies that for all test functions ¢ € C (R x [0, 1]) with compact support
inR x [0,1)

- fol J}R forg dzdt — JR Food(z,0)dz = Jol JR F(90,¢ + ¢0,0) dadt + Ll Jol p3dadt.
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Since v is Lipschitz in space, the representation of solutions of the transport equation (see Proposition 2.3

in [1]]), for a.e.
¢

f(é(x,t),t)zfo(:n)jtf HB(x,5),5)ds, te[0.1],

0
where & is the flow of the vector field ¥, which satisfies the differential equation

0 ®(x,t) = 0(P(x,1),t), @(0,2) ==z
for each . Notice that since o(z,t) = 0 for all z € R\(0, 1) and all ¢ € [0, 1], by the uniqueness of flow
map we have that for a.e. z € (0, 1), ®(z,t) € (0,1) for all t. Define ®(z,t) := ®(x,t)1{,4¢[0,1];- Then
® is the flow of v and for a.e. x in [0, 1],
t

F(@(a,0), 1) —fo(x)+f (B(x,5),5)ds, Vi e[0,1]

0
O

Remark 2.8. [Representation formulas for action minimizing paths.] Note that if z € L2((0,1)?) is a
weak solution of 0;z + 0, (zv) = 0 and v satisfies the conditions of the previous lemma, then it is a weak
solution of 0;z + (0y2)v = —z0,v. Thus

¢

2(®(x,t),t) = z(z,0) — J 2(®(x, s), s)vg(P(x, s), s)ds

0
which is an integral form of the ODE whose solution is

(18) 2(®(z,t),t) = z(x,0) e = o va(@(@9), s)ds,
where ® is the flow of v. Here we emphasize that by v, we always denote the partial derivative of v with
respect to the first variable, and not the derivative of the composition.

Let J(z,t) = e~ §o v2(®(2,5).5)ds We have the following representation:
1 1

f1(®(x,1)) = fo(z) + J 2(®(z,t),t)dt = fo(x) + z(x,())f J(z,t)dt.

0 0
where the first equality follows from Lemma 2.7} This allows us to determine z(x, 0) and hence

(19) 2D(x,8),t) = (f1(®(z, 1)) — fola)) J(z,1)
So x,T) dT
Hence we have the following formula for f(®(x,t),t)
(o)1) = o) + [ 20009, 5)ds = o) + (00 1) — fe) BIE20
0 So x,s)ds
e = (L= n(x,8)) fol@) + n(.t) fi(®(x,1)),  where n(a, 1) = §° - j
o J(z,s)ds

Equation implies that at any ¢ € [0, 1] and a fixed x € [0, 1], f(®(z, ), t) is an interpolation between
the initial condition fy(z) = fo(®(x,0)) and the final-time condition f1(®(z, 1)), with a time-dependent
weight function 7)(x, t) determined by the velocity v.

We note that if (f,v, z) € A(fo, f1) then f is a weak solution of f; + f,v = z. We show in Section
3.1} equation that if the path is a critical point of the action then z solves the continuity equation
zt + (2v)5 = 0. The formulas (20) and provide the Lagrangian representation formulas for f and z.
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Lemma 2.9. Let fy € L?(0,1), v € L?(0,1, H*(0,1) n H}(0,1)), 2 € L?((0,1)?). If f has the
representation (16) then

max || f(-,) ||L2(0,1) < eXp(\/§”UHL2(O,1,H2(0,1)))(||f0”L2(0,1) + HZHLQ((OJ)?))-

0<t<1
Proof. Let D®(-,t) be the spatial derivative of ®(-,¢). Notice that that for every x € [0, 1]
OtD(®(z,t)) = D(0:®(x,t)) = D(v(P(x,t),t)) = v (P(x,t), 1)) DP(x, ).
Integrating in ¢, since D®(x,0)) = 1

¢
21 D®(z,t) = exp (J vz@(w,S),S))dS) < exp(V2tvl 201, 52(0,1)))
0

where the constant 1/2 comes form the embedding H}((0,1)) < L*((0,1)). Therefore
(22) eXP(_\/ﬂHUHL2(O,1,H2(0,1))) < DO(z,1) < eXp(\/%HU”L2(0,1,H2(0,1)))

since for every ¢ € [0, 1]

t ¢
(23) f vz(®(-,8),8))ds| < fo [02(@( - 5), )| £2(0,1) ds < V2tV L2(0,1,12(0,1))-

0

By Lemmal2.7} fora.e. y € [0,1], ¢ € [0, 1],

t

(24) f@ﬂ=h@ﬂﬁlwb+fdﬂﬁwﬂ%w@wﬂ&

0
By change of variables, for the first term on the right-hand side of (24)

1 1
Lﬁ@«ﬁ1@»@:Lﬁ@«ﬁl@mw«wlmwwmy

< Hf0\|%2(o,1) exp(ﬁ\|UHL2(0,1,H2(0,1)))-

For the second term on the right-hand side of (24), using estimate (22) twice and applying Jensen’s
inequality,

< exp(V2[v]|z2(0.1,52(0,1)) 1 2 £2((0,1)2)
L2(O,1)

J A®@(- 1)L, 5), 5) ds

0

Plugging the above estimates into (24) we obtain

V2
IF Gz < I foll 220, eXP<2\U|L2(o,1,1qr2(o,1))> +exp(V2[v] r2(0.1,72(0,1)) 12 £2((0,1)2)
< eXp(\FQHUHL2(0,1,H2(0,1)))(Hf0||L2(0,1) + [2llz2(0,1)2))-

Therefore, max 17 ) 22001) < exp(V2]v] 2(0.1,82(0,1)) (Ifoll 20,1y + 120 22((0,1)2)) -
O

Remark 2.10. We note that we can combine Remark [2.8and formula (2I) to get another representation of
the weak solution of 0;z + 0 (vz). Namely z is characterized by

z2(®(x,t),t) D®(z,t) = z(x,0)

for a.e. x,t.
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Lemma 2.11. Givenv eV, z € L*((0,1)?). Let fo € L?>(0,1). If f € L?((0,1)?) is a weak solution to
the initial value problem

f(')o):fba 8tf+61f-v=2,
in the sense that for every ¢ € C*([0,1]?),

- 1 [ ' ebdrdi [ ' fo()o(z,0) d

1 p1 1 1 1 p1
:J J féf)axvdxdt—i-f f f&xqbvdxdt—i—f f ¢z dx dt.
0 JO 0 JO 0 JO

I0:f 20 1,61y < |14 Bollzzgo ) exp (V2020 1,1) | (ol 1) + 2] 20.)-

(25)

Then f € C(0,1, H 1) and

Proof. Forany ¢ € L%((0,1), H'(0,1))

Ll Ll(fﬁxv + 2) ¢ dadt + Jol Jol fvozd dmdt‘

<J01 [FC D r2llozv( ) 2o, )llze + [ f ¢ )z lo(, ) e |02 (-, )] L2dt
+ 202 (0,192 €122 (0,1)2)
<(\f2HfHLOO(o,1,L2) HUHL2(0,1,H1) + HZHLQ((O,1)2)> H<Z5HL2(0,1,Hl)7
Thus if we define 0, f(t) to be the mapping from H'! to R defined by

1 1
0ef(t),9) = L (f(-,0)0z0(- ) + 2(-,t))g dx +J0 f(t)o(-, 1) dg dx

we see that 0, f € L?(0,1, H~1(0, 1)) and its norm is controlled by the right hand side of the inequality
above. Furthermore from the definition of weak solution () follows that ¢, f is indeed a weak derivative
in time of f in H~'. Therefore f € C'(0,1, H~!).

Therefore, combining Lemma and the above estimates, we derive that

”atf”L?(O,l,H—l) < HZHLQ((O,l)Q) + \/EHUHL?(O,LH?)HfHLOO(o,LL?)

(26)
< [1+V2|v]r20,1,m2) exp(V2] 0] £20.1,52))] - (Ifollz20,1) + 12122¢(0,1)2))

O
Now we prove Theorem

Proof of Theorem[2.6] To apply the direct method of calculus of variations to show the existence of a
minimizing path, we show compactness and lower-semicontinuity.

We recall that by claim (i) of Proposition [2.1] we know that there exists a path of finite action. Thus
for any minimizing sequence ( f,,, Uy, 2 ), we have that {v,, } e is bounded in L?(0,1, H n H}) and
{2n}nen is bounded in L2((0,1)2). Since (L?((0,1), H*(0,1)))* = L*((0,1), H~*(0,1)) for any s,
Banach-Alaoglu Theorem allows us to extract a subsequence, still denoted by (v,,, 2,,), such that v,, — v
and z, — 2z weakly in L?(0,1, H2(0,1) n H}(0,1)) and L%((0,1)?), respectively.

Since H2(0,1) = C*(0,1), v, € L*(0,1,0"(0,1)). By Lemmal[2.7] f,, has the representation (I6)
with v, z, ® replaced by v,, 2., P, respectively.

We claim that along a subsequence

27) fo— f in L2(0,1,H"2(0,1)).
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First notice that by Lemma {fn}nen is a bounded set in L*(0, 1, L?(0,1)). There exists f €
L*(0,1, L?(0,1)) such that up to a subsequence, f,, — f in L®(0, 1, L>(0,1)). By relabeling we asume
that the subsequence is the whole sequence. In addition,

11z 0,0, 22(0,1y) < Himinf |l o 0,1,220,1))-

Applying Lemma[2.11]to (fy, Un, 2n), {4 fn}nen is a bounded set in L'(0,1, ~1(0,1)). By Lions-
Aubin lemma [12], since {fn}nen is a bounded set in L2(0,1,L2(0,1)), and H~! — H~2 < L2
compactly, there exists f in L2(0,1, H ~3 (0,1)), such that up to a subsequence (still denoted by f,,)
such that f, — f in L?(0, 1,H7%(0, 1)). In fact, f = f. Namely f is the weak * limit of f, in
L*(0,1, L?(0,1)), and thus the weak limit in L?(0, 1, H 2 (0,1)). By the uniqueness of weak limit,
f=1r

To summarize: there exists f € L2((0,1)?),v € V and 2z € L?((0,1)?) such that

fo=f inL*(0,1,L%(0,1))
fo— f inL%0,1,H2(0,1))
zy — z in L(0,1, L%(0,1))
v, —v in L*(0,1; H*(0,1)).
Now pass to the limit in (@). Since ¢ € C®([0, 1]?). First consider the term Sé Sé fn@d0zvy, dz dt.

1,1
qﬁﬁxvndxdt—f J f(b&xvdxdt‘
0 Jo

1,1 1,1
f fn@Ozvn dx dt — f f foozv, do dt‘
0 Jo 0 Jo

1 p1 1l
J f¢5xvndxdt—f J fqﬁ&xvdxdt‘
0 Jo 0 Jo

1 1 r1
< [ 1= 000l e+ | [ [ 000, — a0y s
sup 60,

<In =101y 0y neN

L2((0,1),H2 (0,1))

J fo(Opvy — Opv) dx dt’ =: A1 + By,
0 JO

Consider A;. 1 < CH(bHHlHam'Un“H% < C| ol H@mvnHH% by multiplication of
Sobolev functions (see Theorem 7.4 of [5]). Then

igg Hqﬁ&xvnHLQ aX ()| 18115111\13 HaﬂcvnHLz( 1), H%(O 1))

o). 01) S
< C¢ sup ||UnHL2((o,1),H2(o,1)),
neN

where the constant Cy, only depends on ¢. Combining with f,, — fin L*(0,1, H ~3 (0,1)), we obtain
that A; — 0 asn — o0. By — 0since ¢f € L%(0,1, L?(0, 1)) which could serve as a test function for
OpVn — Ogv in L2(0,1, H(0,1)). By analogous argument,
1 1 11

f TnvnOpd da dt — J f fvozpdrdt| — 0
0 Jo 0 Jo

For the other terms in (@), passing to the limit is straightforward. Therefore f satisfies (4). By Lemma

feC(0,1,H1(0,1)).
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The lower semicontinuity of the action function follows directly from the lower-semicontinuity of

norms with respect to the weak convergence. Therefore (f, v, z) is a minimizer.
0

Showing that dgy is a metric on L?(0, 1) is straightforward. In particular the triangle inequality is
obtained by concatenating minimizers with arc-length parameterization in which

1 [yt
Aduvisae) = L \/2J0 kv + M2+ ev?, + 22da dt = 4/ Ag e (f, 0, 2).

The existence of such raparameterization follows from reparameterization result which states that any
admissible path (f, v, z) can be reparameterized in time by any absolutely continuous diffeomorphism of
[0, 1]. The lemma is a just variation of the lemma on rescaling of distributional solutions to continuity
equations (see Lemma 8.1.3 of [2]]).

Lemma 2.12. Lett := s € [0, 1] — t(s) € [0, 1] be strictly increasing absolutely continuous map with
absolutely continuous inverse s := t 1. In addition, t(0) = 0,t(1) = 1. Then (f(z,t),v(x,t), 2(x,t)) is
a weak solution of

Of +0xf-v=2z in [0,1] x[0,1]
with boundary condition f(-,0) = fo, f(-,1) = f1 if and only if

~

fla,s) = f(z,t(s)), 0(x,8) = t'(s)o(z,t(s)), Z2(x,s)) :=t'(s)z(w,t(s))
is the weak solution of solution of
Osf+Vf-0=2% in [0,1] x[0,1]
with boundary condition f(-,0) = fo, f(-,1) = f1.
Lemma 2.13. The distance dyy is metric on L*(0,1).

Proof. We claim that the positivity follows from the existence of minimizers in Proposition [2.6] If
fo = f1in L?(0,1), it is obvious that dgv (fo, fi) = 0. Consider the case fy # f1 in L*(0,1).
Observe that for (f,v,z) € A, we could reparameterize by arc length in time to make the quantity

<Sé kv (2, 8) + A2(z, s) + evl (z,8) + 22(z, 5) da:) * constant in s,with the reparameterization de-

noted by (}’, 0, z). In particular, the reparameterization and its inverse are almost everywhere differentiable.
Applying Lemma[2.12]and changing variables, by Jensen’s inequality we have

A(H,)\75) (}7 v, 2) < A(H,)\,&) (fv v, z)

According to Jensen’s inequality, if (f,v, z) is a minimizer of A(f,v, z) then it is simultaneously

the minimizer of Sé \/ i Sé kv? 4+ M2 + ev2, + 22dx dt. The existence of minimizer implies that

drv (fo, f1) > 0, since otherwise the minimizer f(x,t) is constant and fy = f(-,¢) = f; which yields
contradiction.

The symmetry is direct from the definition. The triangle inequality follows from path concatenation.
Consider fo, f1, f2 € L?(0,1). Let (fo1,v01, 201) be the minimizing path between fy and f; and let
(f12, v12, z12) be the minimizing path between f; and fo. Define

ft) = fo1(2t) fort € [0, 1]
| a2t —1) forte (3,1].

0(t) and Z(t) are defined analogously. It immediately gives that dgv (fo, f2) < duv (fo, f1)+dav (f1, f2).
U
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2.4. Completeness of the d;y metric space and the characterization of its topology. Thus far, we
have shown that dzy is a metric on L2. We now establish completeness.

Proposition 2.14. The metric space (L?(0,1),dyy ) is complete.

Proof. Notice that v, x.¢) = div(1,1,1) it suffices to consider dgy-(11,1).-

Let {gn}nen © L?(0,1) be a Cauchy sequence in dgy. Without a loss of generality, we assume that
foralln € N, dgv (g1, 9n) < 1. By Proposition|2.6| for n > 1, let (g1 5, v1,n, 21,n) denotes the minimizer
of the action A(f, v, z) with the admissible set .A(g1, g). Then Lemma [2.9]and the definition of dpv
give that

A\

lgnlz2(0.1) < exp(V2v1nll 20,1, 520.1))) (191 £2(0.1) + 21,0 £2((0,1)2))
< eXp(\/idHV(gh9n))(|\91HL2(0,1) +duv(g1,9n))
< exp(V2)(lg1lr201) + 1)-

Then Banach-Alaoglu Theorem gives that there exists a subsequence g, converges to some g, € L?(0,1)
weakly in L?(0,1). We denote the subsequence as {g,, }nen-

On the other hand, there exists further subsequences (which we relabel to be the original subsequence)
{vin} {710} and vy o, 21 o such that

V1 — V1,0, Wweakly in L2(0,1, H*(0,1)),
Zin = 2100, weakly in L*((0,1)?),

Meanwhile, by Lemma 2.11| {3:g1  }nen is a bounded set in L2(0,1, H~1(0,1)). Then Lions-Aubin

Lemma gives that up to a subsequence g1, — g1.o0 in L?(0, 1, H -3 (0,1)). Moreover we have g1 ,, —
91,00 weakly *in L®(0,1, L%(0,1)).
Up to a subsequence,

gn — goo in L*(0,1)
Gin — greo  in L%(0,1,L%(0,1))
Gim — g1 in L2(0,1, H2(0,1))
Z1n — 21,00 in L*(0,1,L%(0,1))
Vi — V1, in L2(0,1, H?(0,1)).

By a similar argument as in the proof of Theorem we could verify that (g1, V1,00, 21,00) 18 in the
admissible set A(g1, goo ). Thus

2 .. 2 .. 2 .. 2
dirv (915 goo) < Hminf oy n 720 1 5r2(0,1)) + B0t [|21,0] 720 1)2) < liminf dgry (g1, 9n)-

Then without loss of generality, we could take a further sequence in {g,, }nen such that for every n, for
any m = n, dgy (G, 9p) < % We repeat the above arguments with g; replaced by g,,. Then we have

By (G o) < it iy (G Gr) < .
Now we have a subsequence {g,, }nen that converges to g4 in dy. For any § > 0, there exists K1 € N
such that K% < g. And there exists Ko > 0 such that for all my, me > Ko, de( . Choose
N = max{Kl, Kg},

5
977L179m2) < 2

dHV(gn7gOO) < dHV(Qn;.&N) + dHV(nggOO) < 57
which gives that g, — g, in dpyy . ]
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Our next goal is to show that convergence in dy implies convergence in L?. Towards that goal we
first prove the following estimate.

Lemma 2.15. For any fy, f1 € L?(0,1) and go € C®. Let (f, v, z) be a minimizer of the action with the
admissible set A(fo, f1) and ) := ®(-, 1), where ®(x,t) is the flow map of v(x,t). Define g1 = go o Y1
Then g1 € C, satisfies Sé g} |dz = Sé goldx and

(28) | f1 = a1llz2 < exp(V2duv (fo, £1)) [Ifo — golzz + druv (fo, f1)].

Proof. ¢! is a C" diffeomorphism immediately gives that g; € C' and Sé lgh| do = S(l) |g}| dz. Recall
that by (22)), we have

[D®(-,t)| < eXP(\/%HUHL2(0,1,H2(0,1)))a vt e [0,1].
In particular,
(29) |DY| < exp(V2]v] 12(0,1,m2(0,1)))-

By Lemma[2.7] for a.e. y € [0, 1],
1

Fily) —a1(y) = folo™ () + f 2@ (y),5), 5) ds — go(¥ ™ (y))-

0
By an analogous estimate as in the proof of Lemma[2.9] we have

11— a1l < \ | (@), ), ) ds

+foey ™ —goe L2
L2

(30) V2
< exp(ﬁ”UHL2(O,1,H2(0,1))>HZHLQ((O,I)Q) + eXP<2||UL2(0,1,H2(0,1))> | fo — gol 2

< exp(V2duv (fo, f1))[ fo — gollz2 + duv (fo, f1)]-
]

Theorem 2.16. Let {f,}nen S L?(0,1). If fo — f indyy, then f, — fin L2

Proof. It suffices to show the conclusion d v (1,1,1). We will prove this by showing that for any subse-
quence of { fy, }nen, there exists a further subsequence that converges to f in L2

Let K := 2exp(v/2). Let 0 < § < 1 be arbitrarily chosen. By extracting a subsequence, we can
assume that for every n, dgv (fn, f) < 3% < 1. Since C* is dense in L2, there exists g € C® such
that ||f — g] 72 < %. For any n, let v, be the time-1 flow map of v,,, where (f,,, vy, z,) denotes the
minimizer of the action A(f, v, z) with the admissible set A(f, f). Take g,, := g o ¢, L if f,, # f, and
take g, = g if f, = f.

We will show that {g,, }nen is a bounded set in W12(0, 1). Thus without loss of generality, we assume

fn # f. By Lemma[2.15]
€2)) | fn = gnllze < exp(V2duv (f, ) = glzz + duv (f, fa)] <

On the other hand, by change of variables,

Wl >

lgnlZe < lgl72 D¢l e < lgliz exp(V2lvnl20,1,12(0,1))):
where we use the estimate with v, v replaced by v,,, v,,. Then we have

V2 V2
ol < Lol exp( “Fiv(7.£)) < oz exo (%)
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which implies that {g, },en is a bounded set in L?. Since wn is the time-1 flow of vy, (-, ), by .

LIDgnIde exp(V2[vn| r2(0,1, 120,119 |72 < exp(v2dmv (£, £2) 9|72

which implies that {Dg,, }nen is a bounded set in L2, Thus g, € W2(0,1) and

sup | gn w12 < exp(v2)[lgl 2 + |9'l172].
n

Hence {gy, }nen is a bounded set in W2(0,1). By Morrey’s inequality and Arzela-Ascolli compactness
criterion, there exists a subsequence gy, thatis Cauchy in L2, For sufficiently large N, for any i, > N,
we have | gn;, — gn, |12 < g. Thus

I fr: = fnj 2 < anj - gnjHL2 + ”gnj — 9nill2 + [ fr; = gnill2 <.

This implies that up to a subsequence {fn, }ren is a Cauchy sequence in L?. By completeness of L?, i
converges to some f e L2. f is also the weak limit of the subsequence in L2, by the uniqueness of weak
limit, we should have f = f (recall that f is the weak limit of a subsequence of {frr Hren)

Therefore, up to a subsequence, f,, — f in L?. For any subsequence f,, — f, it admits a further
subsequence that converges to f. This proves that for the whole sequence, f,, — f in L?. (|

3. PROPERTIES OF GEODESICS.

3.1. Euler-Lagrange Equations. Assume (f,v,z) € A(fy, f1) is a minimizer of the action (2)) over
the admissible set (3). Below we describe the first-order optimality conditions, first for general paths,
(33) and (36), and then under assumption that fy, f; € H'(0,1), in which case all conditions are partial
differential equations.

To find the first-order optimality conditions, in other words the Euler-Lagrange equations, we first
fix f and perform the first variation in v and z. Motivated by a similar reasoning as in Section we
introduce the space,

(32) Ry(f) = {ue L*(0,1, H*(0,1) n H}(0,1)) :uf e L*(0,1,H'(0,1))}.

Note that for u € Ry(f), forae. t € [0,1], uf, = (uf)z — usf € L*((0,1)?).

Now we characterize the optimality condition analogous to that in Lemma[2.5] Taking u € Ry (f) and
h = uf,, which belongs to L?((0,1)?), we have that, for any s € R, (f,v + su, z + sh) satisfies the
equation (), and thus (f,v + su, z + sh) € A(fo, f1) . First variation of action (2 gives that (f, v, z)
satisfies:

(33) Yu € Ry (f) f f ROU 4+ AUzl + EVppliyy + 2(uf;) dedt = 0.

We then turn to the optimality of z. To carry out the argument 1et us denote that minimizer of the
action considered by (f,,%). Then (f,Z) is a critical point of A(z So Sl z2dxdt over the set of
(f,v,z) € A(fo, f1) such that v = v. This is a convex functional over hnear constraint. Thus (f, z) is a
global minimizer for fixed .

Furthermore by Lemmal[2.7] the constraint that (f,v, z) € A(fo, f1), with v = ¥ can be expressed as
follows: for a.e. x,t

t

64 F(B(a,0),1) = fola) + | 2(0(a.5),5) ds.
0

In other words z needs to satisfy that for a.e. z € (0,1)
1

35) F@1) = fofe) = | =(0(.0.0)dt
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while f(-,¢) for0 <t < 1is defined by (34). Since f does not enter the action directly, we minimize over
z alone and define f by (34). After the change of variables A(z) = Sé (1) 22(®(x,t),t)D®(x, t)dzdt.
Hence if we define w(x,t) = z(®(z,t),t) the problem is transformed to

1ol
minimizej J w?(x,t) D®(z, t)dxdt
0 Jo

1
under constraint: f1(®(x, 1)) — fo(x) = f w(z,t)dt fora.e. x € (0,1).
0

By Cauchy-Schwarz inequality, the minimizer w of this problem should satisfy that w(z, ) D®(z,) is
independent of time. Thus z which minimizes A satisfies that for a.e. x

z2(®(x,t),t)DP(x,t) =: z(x,0).
By Remark[2.10] this implies that z is a weak solution of
(36) 01z + 0x(2v) =0 on (0,1)2,
which is the desired first-order condition on z.
If fo, f1 € H'(0,1) then we establish in the Proposition below that the minimizing path f €

L?(0,1, H'(0,1)). In that case we the resulting Euler—Lagrange equations satisfied by f, v, z, combined
with the condition for belonging to A( fo, f1) can be expressed as follows:

37 EVgrar — Mgz + KU + 2 f, = 0 weakly on (0, 1)2
(38) v=0 and vy, =0 ondQ x [0,1]
(39) 2 + (2v), = 0 weakly on (0,1)?
(40) ft + fzv — 2z = 0 weakly on (0,1)?
(41) f(-,0) = fo, and f(-,1) = fi.

The first equations, and boundary conditions, follow directly from (33)). The other conditions are identical
as before.

3.2. Regularity of geodesics. This subsection presents results regarding the regularity of the geodesics.

Proposition 3.1. Assume fy, f1 € H' and let (f,v, z) € A(fo, f1) be an action minimizing path. Then
fe L*(0,1,HY(0,1)), with quantitative estimates on the norm ({@3]), ([#6).

Proof. We remark that the existence of action minimizing (f, v, z) € A(fo, f1) is guaranteed by Theorem
The argument in Section [3.1]implies that z solves z; + (2v), = 0, weakly. As in Remark 2.8] =
satisfies the formula (19) and f satisfies (20). By Theorem 2.2.2 in [42], since ®(-,t) is bi-Lipschitz in
x it suffices to check if f(®(x,t),t) € H'. We use the composition with ® in several instances below.

Let b := ¢V2I"lr200.1.12), Recall from (22) that for all z € [0,1] and ¢ € [0, 1]
1
;< ID3(@,0)] <.

Note that for all ¢, || §; ve(®( -, ), ) ds| e < [va]r1(0.1.00) < V2|v]£2(0,1.2r2)- Thus for all (z, )
1

(42) 5 <J@,t) < V2Moli200,m2) — p,

Change of variables provides that, for a.e. ¢,

1
J;) (0uv2(®(,1),1))*da < | DP(- 7t)HLOC‘H”zz@)“%%(o;)) < bv] 201,82
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Integrating in ¢ and Cauchy-Schwarz inequality imply that for all ¢ € [0, 1]

¢ 2
00 [ val@(w 59| < th]olr
0 £2(0,1)
Combining with the chain rule and the L® estimate on .J implies that J € L* (0,1, H'(0,1)) and
t
(43) vt e [0,1] J J(z,s)ds < b+ 62 v 2(0.1,12)
0 H(0,1)

Since J > 1,1/ So x,t)dt is in H'(0,1). By chain rule [18],

am<1/fo J(x,t)dt) L ax<£ J(w,t)dt) )

Moreover by change of variables and estimate 22)), |0, f1(®(z,1))| 2 < V/b| 0z f1] 2. From (19), @2).
(@3)), and {@4), via the product rule and using that |gh| 2 < |g] 2|k L=, we obtain

1022(®(x, ), ) r2(01y2) < (102 f1(@(-, 1)) 12 + |00 fol 12)b
+ (11 @, 1) [ + ol ) (07 +52) 0] 201,229
31 full e + [ fol e ) (03 + b2 0] L20.1.82)-

Note also that, via change of variables,

[ 000000 < el <ol - sl
From (20), by a change of variables and estimate (22)), for every ¢ € [0, 1],
(45) [0z f(-,t)llr200,1) < \/Eﬂaxf(‘l’( 1), )2 < 6(|fallm + [ fol g) (1 +0° + bSHUHLQ(O,LH?))a

which using that [v]|z2(91,52) < C:|f1 — folr> can be turned in an estimate where right-hand side
depends only on initial and final signal.
The estimate on | f( -, )| 2 from Lemma[2.9 and the estimate on z above provide that

(46) 1fC )l z20,0) < (] follp2 + Vol fo — fillz2),

which completes the proof. ([

(44)

< b < b%HUHL2(O,1,H2)'

Remark 3.2. The regularity above can be improved to spaces with more regularity. Here we now outline
argument that if fy and f; ate smooth then f(-,t) is smooth for all ¢ € [0,1]. For fo, f1 € H'(0,1)
Proposition [3.1] gives that the minimizing path f € L*(0,1, H'(0,1)) and z € L*(0,1, H'(0,1)). Thus
in equation (37), zf, € L?(0,1) for every t € [0, 1]. The results on elliptic boundary value problems
imply v( -, t) € H*(0,1). Moreover, there exists a constant C' such that

[v(- D)0, < Cllzfa(- ) L2 + [o(-, D) lar2)-
Thus
lvlz20,1,m4) < C|2] 20,1, 50 fl 220,1,51) + (V] 2200,1,52)),

where the right-hand side, by Proposition is a function only depending on fj and f7.

According the differentiability of ODE solution with respect to parameters, we obtain that for fixed
t, the flow map ®(z,t) € C3(0, 1). In addition, ®(x,t) € L®(0,1,C3). Indeed, D?®(z, t) satisfies the
equation:

0y D?®(x,t) = (ve(®(2,1),1))2(DP(2,1))* + va(B(2, 1), 1) D?*® (2, t).

By Gronwall’s inequality and (22)) we obtain that D?® e L*((0, 1)2). Inductively, ® € L*(0,1,C3).
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Now we assume that fo, fi € H*(0,1). The above discussion gives that v € L?(0,1, H*) and
® e L*(0,1,C3). Applying chain rule to (T9) and following a similar argument as in the proof of
Proposition 3.1, we have that z € L*(0,1, H3(0,1)). Then by @0), f € L*(0,1, H3(0,1)), with
Il (0,1,73(0,1)) bounded by a function of fo and f.

By an iterative argument, we conclude that for any k € N, f,z € L*(0,1, H*(0,1)) and v €
L?(0,1, H*(0,1)), which implies the smoothness of f(-,t).

3.3. Stability of geodesics. Next, we study the stability of the geodesic in terms of a subsequence
approximation.

Proposition 3.3. Assume fo, fi € L*(0,1), f&, f € L*(0,1) foralln € N, and & — fo, fI' — fi
in L?(0,1) as n — oo. Let (™, v, 2") € A(fF, fI*) be action minimizing paths. Then there exists
(f,v,2) € A(fo, f1) such that along a subsequence

5 f in L7((0,1), L(0,1))

f"=f o inC((0,1), (L*(0,1), dnv))

2" — 2z in L*((0,1), L*(0,1))

o™ — v in L*([0,1]; H*(0,1)).
Furthermore (f,v, z) is an action minimizing path between fy and f.

Proof. Since

(47) duv (fo, f1') < |10 = folrz + duv(fo, f1) + 11" = filz2,

we conclude that A(f",v",2") < d3;y (fo, f1) + 1 < | fo — fi]32 + 1 for all n large enough. We can
assume, without loss of generality that the inequalities hold for all n. The proof of weak convergence
mirrors the proof of Theorem To show that (f, v, z) is an action minimizing path, we note that
by lower-semicontinuity A(f,v,2) < liminf, o A(f™,v", 2"). Since A(f™,v", 2") = d%y (f, 1),
from follows that A(f, v, z) < d3;y(fo, f1). Thus A(f,v,2) = d3;y(fo, f1).

We claim that for all ¢, f™( -, t) is precompact in L?. We note that by Lemrnathe sequence [ (-, t)
is uniformly bounded in L2. To show precompactness in L2, by [19][Theorem 2.88] we need to show that
for all 6 > 0 there exists hg > 0 such that for all & € [0, ho] and all n

(48) [ (- + h,t) — (-, )|z <o

We proceed with the proof assuming (48)), and verity the condition at the end.

Observe that ¢ — f™( -, t) is a constant speed curve in (L?(0, 1), dgv), since it is a geodesic. Therefore
that family of functions f” considered as functions between [0, 1] and (L%(0,1), dyyv) are uniformly
Lipschitz and thus equicontinuous. Since we know that { f"( -, #)}nen is precompact in (L2(0,1), | - [12)s
it is precompact in L? with respect to the dz metric. Therefore by the Arzela-Ascoli Theorem, for
metric-space valued functions, we get that f™ is precompact in C'(0, 1, (L?(0,1), dgv ). We note that this
also implies that up to a subequence, f™( -,t) converges to f(-,t) in L2(0, 1) for all ¢ fixed.

We now turn to proving that (8] holds. By ([22), for each t, ®; := ®( -, ¢) : and ®; ! are Lipschitz and
the Lipschitz constant for both maps and for all ¢ € [0, 1] is bounded by b,, := exp(+/2[v"| £2(0,1 H2))

Next we show that the function 7™ (x,t) := % where J"(z,t) = e~ §o v (@7 (@:9),9)ds

Holder continuous in z. Since v} is Holder continuous, we have that for x, y € [0, 1],

" (2, 1) = J"(y, 1) f o8, 8)] 2 (Lip(@7))F sl — ]2 < e bF [u" | a0 1.3l — 9]
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since |vg(y) — ve(y)| < |& — y|2|vse| 2. This implies that for any 0 < ¢ < 1, Sg J"(z,s)ds is in
1
C’O’%(O 1) with Holder constant e b2 0™l £2(0,1,2)- Observe that by @2), b, ' < J"(z,t) < by. Thus
5
So x,7)d7)~! is Holder continuous with constant e b2 |v" £2(0,1,H2)- Therefore for any z,y, for
any t,

1 5 1 z 1
™ (. t) — 0" (y, )] < (bne® b2 + bpe’ b3) 10" | 200,527 — y|2 < 2¢" b lv" [ L2 0,1, 52) |7 — yl2.
By change of variables

Frly,t) = (@) (W), OF5 (@) 7 () + (L= ™27 (y), O) T (21277 (1))
We note that b := sup{b,, : n € N} is finite since HU”H%Q(OJ’HQ) < ¢|fo — fi]32 + 1 by the observation
above, for some ¢ > 0 depending on )\, x, and €.

We extend f", fy and f; by zero to R. We also extend ®} as identity (®}'(z) = x) outside of [0, 1].
Choose go, g1 € CZ(R) such that | fo — gol 2®) < # and | f1 — g1ll2m) < 100b3 Choose N(0)
such that, then for any n > N(9), | f — folr2 < ﬁ, If = fillre < ﬁ. Then for n > N (9),

15 (@) (y + W)= f5 (@)~ ()l L2y

<[fSU@) "y + 1) = 90((@7) "y + 1))l 2wy
+ g0((@7) " (y + h) = 90((2F) ™ (1))l L2ry
+ g0 (@)™ (W) = (@) ™ ()| 2wy

<2||D(<I’?)_1H%oo 175 = gollzz + lgo (7)™ (y + h) — o (7)™ (1)) L2 ry

)
25b2 + bLip(go)h,
Similarly,
(RN (HN)— RN (HN)— 1)
IF2(@7(@) " (y + h) — [T (TN (W) 2wy < Soppe T b* Lip(g1)h.

Moreover

- n n\— n n L L
(49) I (@) y + h), t) — " ((27) " (y), )|z (01) < 2eb b v lr2(0,1,m52)h? < Ch2,
where C := 2exp(b)b*(\/c| f1 — follp2 + 1).

Therefore,

L Cot) = (- + bt ey
<7 (@)~ + ), O3 (@) +h) =" (@) M) S (@) M) e
H@ =™ (@7 (- + R, ) (@10 (- 4+ h) = (L= (), P19, (+))] 12
<™ e 1 £5(@F) (- + h) = £ (@F) ()2
+ " (@)1 4+ ), t) = (@) (), )z | £5 o (@F) 12
T =0 oo [ AT (@T(@F) (- + h) — fR(@TT) ()2
+ " (@) 4+ h), ) =" (@F) (), )|z | fT 0 BF o (BF) 7 12

) 10 0 1
<b2( 02 + bLlp(gg)h) + Chébeo Iz + (1 + b2)< 02 + b2 Llp(gl)h> + Chébel | 2

36 . . 1
<ot 26 (Lip(go) + Lip(g1))h + Cb(2 + [ fol z2 + | f1ll12) A2
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We pick hgy, which depend on fo, f1, go, g1, such that for all ¢, for all b € [0, hy], and n > N(J),
(#8) holds. For n < N(4), there exists hy, such that for all & € [0, hy], (8) holds for f". Take
h := min{ho, hi, ..., hy)}. Forallt, for all h € [0, h], and for all n, (48) holds. O

4. NUMERICAL SCHEME

We propose an iterative minimization scheme to find the minimizers of the action (50) over the
admissible paths (51)). We first present two convex sub-problems on the continuous level by fixing v and
f, respectively. By solving each of the sub-problems, the action functional decays monotonically. We
then present our discretization scheme of finding the optimal path based on this problem splitting.

4.1. Two sub-problems. Recall that we are interested in minimizing

10
(50) Apre(fov,2) = 3 f J K2 4+ M2 4 v, + 22 dadt,
0 Jo

over the set of admissible paths defined by

5D A={(f,v,2): fr = —fov+2,0(0,)) =v(1,-) =0, f(-,0) = fo, f(-,1) = f1}.

The Euler-Lagrange equations for this variational problem are given in (37)-(1]) under the assumption
that fo, f1 € H'((0,1)). The numerical methods presented in this section and the experiments in Section
are based on the assumptions that the signals are C?((0, 1)). Due to the regularity results of Proposition
[3.1]and Remark [3.2]as well as the stability result proved in Proposition [3.3] we expect that the geodesics
for regular signals can be used to approximate those for general signals.

We point out that among ( f, v, z), the three variables we optimize over, z is determined by f and v due
to the constraint set (51]). However, it is still impractical to directly minimize (50) over (51) due to the
nonlinear constraint. Next, we translate the optimization problem to a fixed-point problem by working
with the system of Euler-Lagrange equations (37)-#1I).

More specifically, we find a solution to the Euler-Lagrange equations through two convex optimization
sub-problems. The method alternates between fixing v while finding the optimal ( f, z) and fixing f while
searching the optimal (v, z), both for problem (50)-(51). This method shares similar flavors with many
existing optimization algorithms. First, it is related to the so-called block coordinate descent method [38]]
since we alternatingly update (f, z) and (v, z), the coordinate blocks in our problem. Based on [26]
P. 266], our algorithm also has local convergence since the action function has a unique minimum in each
coordinate block. The fact that our updated new (f, z) or (v, z) is the exact minimizer for each of the
sub-problem, sharing similar features with ADMM [39]. The corresponding optimal (f, z) or (v, z) are
weighted projections onto the linear constraints determined by - (1) (with the other variable fixed).

Lastly, our method shares the same spirit with the so-called sequential quadratic programming (SQP) [[7].
For quadratic programming with nonlinear constraints, SQP solves a sequence of optimization sub-
problems using a linearization of the constraints. In our method, we achieve linearization of (51)) by fixing
v or f. Next, we will discuss in detail the two important sub-problems.

4.1.1. From v to (f,z). First, for a given v, we consider the sub-problem of finding (f,z) which
minimize the action (50) under the constraint that ( f, v, z) € A for the v fixed. We note that this reduces
to minimizing a convex (in fact, quadratic) objective functional under a linear constraint:

1!t
(52) minJ J 22dzdt, st (f,v,2) € A
£z 2 Jo Jo
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The first-order optimality conditions are given by equations (39), and @1):
2zt + (2v), = 0,
(53) Je+ fav—2 =0,
f(-,0) = fo, f(-.1) = f1.

To solve (53)), we can use the Lagrangian approach. First, we can obtain a flow map ®(z, t) solving (I7),
and an analytical solution for z(®(z, t), t) presented in (I9). Note that we still need to find the quantity

J in (19). To do so, we observe that, by Lemma J(x,t) = exp(— S[t) vz (P (x, 8), s)ds) is the weak
solution of the following auxiliary initial value problem:
Ji + (Jv)z =0 on [0,1]%, with J(z,0) = 1.
Hence, by (19), we have an analytic formulation for z(®(x, t),t):
J(x,t
(54 (@2, 1),1) = (@ 1) ~ fole)) o
§o J(,s)ds
We also have an analytic formulation for f(®(z,t),t) given by (20),
S(t) J(z,s)ds

G f@( 0,8 = A =u(w) fol) +ale. ) A2 1), wherenle,t) = a7 "0

As a final step, through a change of coordinate, we obtain functions f and z at the (z, t) coordinate
(which are used for v), rather than the flow map coordinate (®(x,t),t). At the discrete level, this will
amount to an interpolation step between the points where f and z are computed along the flow, and the
desired grid points.

Combining all steps above, we have defined a continuous operator

Gr:v— (Za f)a
which solves (53) and (52). Note that we have (f, v, z) € A automatically if (f, z) = Gi(v). If we denote
the (f, v, z) from the previous step by (f°!4, v°l4, 2014) 'where (f4, 414, 201) & A, we then have
AH,)\,E(fa Uold7 Z) < 14&)\78(.]001d7 Uold7 ZOld).

The steps above yield functions (f, v, 2) satisfying (38), (39), (@0), and (@) for the given v°'9, but
they do not necessarily satisfy in the Euler—Lagrange equations. Otherwise, we have found a set of
solutions satisfying the first-order optimality conditions of (50).

4.1.2. From f to (v, z). Given f from the previous step, we consider the second sub-problem of finding
the pair (v"%, 2"V) that minimizes the action (50)) under the constraint that (f, v, z) € A. This again is a
quadratic optimization problem under linear constraint:

1!t
(56) min 5 f f ko2 + A2+ ev?, + 22 dadt, st (f,v,2) € A
v,z 0 0

Using the Euler—Lagrange equation and the constraint z = f; + v f, yields the following fourth
order boundary value problem for v:

EVppar — Magg + (’f + |fx’2>v _ft f:L" on (07 1)27
(57) v=0 on{0,1} x (0,1),
Vye =0  on{0,1} x (0,1).

Given f and the solution v, we also obtain z. Let us denote the solution operator by Gy : f +— (v"V, z"V).
We note that

(58) A xe(f,0"Y,2"Y) < A ao(f,07, 2).
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Therefore, combining G with the previous step in Section 4.1.1] we have the following inequalities
with respect to the action functional:

1d 1d 1d 1d
An,A,e(fnewa ,Unew’ ZneW) < An,)\,a(f7 v° ) Z) < AH,A,E(fO ) v° ) 2° )7
(", 2"V) = Ga(f), frV=f (f,2) = G1(v*)

where (f7€%, p"eW, 2MeW) (f 0ld 2) (fold gold 2old) e A all satisfying the constraints. If we define a
new operator G by composing Go with Gy, i.e.,

(59) G=00G: A A,
it gives an update formula after which the action functional decays:

(60) AnJ\,s(g(fy v, Z)) < An,/\,a(fa v, Z)~

We can then repetitively applying G until finding a set of solution (f*,v*, z*) where G(f*,v*, 2*) =
(f*,v*, z*). Thatis, (f*, v* 2*) is a fixed point of G, while (60) indicates the contractivity of the
fixed-point operator with respect to the action functional. It is easy to verify that (f*, v*, z*) also solves
the Euler—Lagrange equations (37)-(41).

Algorithm 1 An iterative scheme for minimizing (50).

1: Given an initial guess (f(©),v(®) 2(9)) € A, maximum number of iterations N, tolerance § > 0.
2: forn =1to N do ~
3: Compute (f, %) = G1(v(™) with G; described in Sectionand set f(nt1) — f,

4 Set (vt 2 (1)) = G, (1)) with G, described in Sectionm

5 if ‘A/{,/\,s(f(nJrl), U(n+1)’ Z(n+1)) - An,)\,s(f(n)v 'U(n)v Z(n))’ < ¢ then

6: Return (f(”“)7 Z(nt1) v(”“)) and the minimum action value; Break.
7 end if

8: end for

Algorithm 2 An iterative scheme for minimizing (50)) with damping.

1: Given an initial guess (f(©),v(?), 2(0)) € A, maximum number of iterations NV, tolerance § > 0.
2: forn =1to N do
3: Compute (f,%) = G1(v™) and set f*+1) = oy f + (1 — o) f™), with o given by Algorithm
and G; described in Section|4.1.1
Compute (7,2) = Go(f™+1) and set (v *+D, 2("+1)) = 09(3,2) + (1 — ) (0™, 2(+2)), with
o given by Algorithm [3]and G described in Section4.1.2]
if A (FOFD 00D 20D >4, (f 0 2(0) — 5 then
Return (1), 2(n+1 4("+1)) and the minimum action value; Break.
9: end if
10: end for

® >0k
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Algorithm 3 Back-tracking line search for the damping parameter.

1: Given the old iterate (f, v, z), the proposed new iterate (j}, 0, ), the objective function A, » ., and
the maximum number of search steps N. Set o = 1, A = A, .(f, v, %) and FLAG = 0.
fori = 1to N do

2:

3: if A c(fasVa,za) < Awhere (fo,Va,2a) = (1 —a)(f,0,2) + off,,%) then
4: Return « and set FLAG = 1; Break.

5: end if

6: a— a/2.

7: end for

8: if FLAG = 0 then

9: Return oo = 0.

10: end if

Algorithm 4 Searching for a path minimizing action (50) via different initializations.

1: Given the maximum number of iterations N € N, § > 0, kpaz € N.

2: for k = 0to ke do

3: Use the prominence-based matching initialization described in Section [4.3| with parameter k& and
4 obtain (f(©), v(©) )y,

5 Run Algorithm 2| with IV iterations and tolerance §. Obtain the minimum action value 7 (k).
6: end for

7: Find k* = argmin J (k).

8: Return the optimal path (f, v, z) and its action value [J (k™) for initialization with parameter £*.

4.2. The discrete scheme. Next, we use a simple first-order numerical scheme to solve the two sub-
problems discussed above. If the signals fy and f; are known to be smooth, higher-order discretization
schemes would be recommended for better efficiency and accuracy. If the signals are discontinuous,
first-order schemes, on the other hand, are known to mitigate the Gibbs phenomenon [23]] that higher-order
methods may suffer.

To evaluate (f,z) = Gi1(v), we compute z(P(z,t),t) and f(P(x,t),t) using first-order numerical
integration based on (54) and (53). We obtain z(z,t) and f(z,t) from z(®(z,t),t) and f(P(x,t),t)
through first-order numerical interpolation in the x variable alone. This step can be implemented in a
parallel fashion.

To evaluate (v, z) = Ga(f), we have a fourth-order PDE for v(-, ¢) for every fixed ¢, with v = 0 and
vz = 0 (if € # 0) on the boundaries {0, 1}.

Consider a uniform mesh over the spatial domain [0, 1] and the time domain [0, 1]. The spatial spacing
Az = 1/N, and the time-domain spacing At = 1/N;. Let v; € RN=*1 be a vector approximating
[v(0,jAt),...,v(iAx, jAL),...,v(1,jAt)]T. The PDE then becomes the following linear system
under the finite-difference discretization,

(A + dlag(w] @Wj)) V= —T; @Wj,
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where ® denotes the Hadamard product, diag(x) denotes a diagonal matrix with elements of vector x

being its diagonal entries, A € RW=+1)x(Na+1) i5 given by
_ 1 _
4e A 2\ 5¢ 4e A €
TA T A2 BT A2 AT TR T AL Aot
3 4e A 2\ 6e 4e A €
Azt NN k+ Az? + AzE T Azt T A2 Azt
€ 4e A 2\ 6e 4e A €
Azt T AzT T Ax? k+ Azx2 + Azt T AzT T A2 Azt
€ 4e A 2\ 5e 4e A
Azx? T AT T A2 K+ Azx2 + Azt T AT T Az?
L 1 .

and w;, 7; € RN=*1 approximating f,(-,¢;) and f;(-,¢;), respectively, are given by

wi= [0 (Fast) = flent) o (Flennt) = fanat) 0]
mi= [0 Pt = fa ) o (Flowtie) = fant) 0],

with f(x;,t;) = f(iAx, jAt). We remark that the first and last elements of the right-hand side are set to
be zero while the first and last rows of the left-hand side are also modified. These two linear equations
are to enforce v = 0 on the boundary; see (57). The fact that v,, = 0 on the boundary implies that the
ghost points v(—Ax,-) = —v(Az,-), and v(1 + Az, ) = —v(1 — Az, -), which is used in the second
and the N,-th rows of A. The remaining N, — 3 equations in the linear system are to enforce the linear
PDE (57). Note that with a given f, we can solve for {v;} in parallel for all time {¢;}, or construct a large
sparse linear system with respect to v = [v{ .. .V]I,t +1]T in one single sparse linear solve. When fy, f1
are smooth, it is preferable to use the central difference method to obtain 7;.

Now we have two steps: G; : v — (f, z) through first-order numerical integration and interpolation,
and Gy : f — (v, z) through a linear PDE solver. On the continuous level, we have a monotonic
energy decay based on (60). Algorithm [I]combines these two steps to iteratively find approximate local
minimizers of (50).

While this algorithm works well for many signals, on the discrete level, due to numerical errors from
interpolation, integration, and the PDE solver, (60) may not hold for every iteration of the fixed-point
update. To ensure that the discretized variational problem still has a monotonically decaying action
functional, we can introduce damping parameter oy and v, similar to the step size in a gradient descent
algorithm; see Algorithm@] for details. We remark that most of the time, «v; = a9 = 1 is sufficient to
ensure decay of the action value, which is the case on the continuous level. Only when it is close to
the target solution, and the numerical errors dominate, one may observe that the action value no longer
monotonically decreases when iterating between the two sub-problems. There damping helps obtain more
accurate minima. We use back-tracking line search with a shrinking factor 1/2 to find a proper damping
coefficient; see details in Algorithm 3]

4.3. Finding a good initialization. We remark that the fixed points of G solve the Euler—Lagrange

equations (37)-(@T)), but they may not minimize (50) over (51)) due to the possible local minima. In other

words, the fixed-point operator G has multiple fixed points. One can start with different initial guesses and

investigate the convergence behavior while choosing the solution with the smallest objective function.
We propose two different types of initial guesses.
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(1) Zero-velocity initialization. We set v(9) (z,¢) = 0, and compute (f(?), 2(0) = G, (v(?)). Note
that in this case, we have f(O)(z,t) = (1 —t) fo(z) + tf1(2) and 2O (z, 1) = fi(z) — fo().

(2) Prominence-matching initialization. We expect that if there exists a path with action that is
substantially smaller than linear interpolation, that path will match nearby large peaks. We observe
that matching the tallest peaks is not stable under perturbations as there may be spurious nearby
peaks, for example, due to oscillations as in Figure 3| For this reason, we use a more stable notion
of how large the peaks are. Namely, we use the notion of prominence coming from topography,
which describes how large the peaks are compared to their surroundings. The prominence of
a signal is defined as the least drop in height necessary to get to another local maximum with
a higher value. Consider a positive integer k. For the given fy and f1, we each select k local
maxima with the largest & prominence. The location of the local maxima are denoted by {x;} and
{yi}, 1 <@ < k, respectively. We then construct a map 7'(x) such that T'(z;) = y; for each ¢, and
T(0) = 0,7(1) = 1. We use linear interpolation to define its function value for z € (0, 1)\{z;}.
We then set the initial velocity to be v(0)(z,t) = T'(z) — z, which is constant in time, and use
(f©, 200)) = G (v(0) as the initial guess for f and z. Also, if the minima in fy and f; are more
significant than the maxima, one can also initialize by matching the prominence of — fy and — f7.

The zero-velocity initialization is equivalent to a degenerate case of the prominence-matching initialization
where k£ = 0. In this scenario, we have T'(x) = z through linear interpolation between 7'(0) = 0 and
T'(1) = 1. Later, we will refer to the “zero-velocity initialization” as k& = 0. We also comment that the
initialization is different for various integer &, which may lead to different convergence behavior and local
minima of the action functional (50). We suggest trying for a few & values. While there are many variants
on how one can incorporate the prominence-matching initialization into the optimization scheme, we
outline an Algorithm 4 as an example, which we use to produce the numerical results in Section[5] To be
more efficient, one can use fewer iterations when searching for an initialization compared to running the
entire Algorithm [1|or Algorithm [2|to find the minimizer of the optimization problem.

5. NUMERICAL EXPERIMENTS

In this section, we present a few examples illustrating the geodesic using the HV geometryﬂ Throughout
this section, we plot the source signal fj in blue and the target signal f; in red, while their barycenter
under the HV geometry is shown using the color purple. We use dashed lines to indicate the signals at
t=1tandt =3

4 4

Example 5.1. Nonuniqueness of minimizing geodesics. We consider an example where the source and
target signals have two bumps. We use 300 spatial and 290 time intervals to discretize the space-time
domain. For all plots in Figure 2] we set the hyperparameters x = 0.02, A = 0.001, and ¢ = 0.002. In
Figure[2a] each signal has a large bump and a small bump. The large bumps are much bigger. The geodesic
is dominated by horizontal transport. In Figure [2b] the two bumps in each signal are of comparable size
while their locations remain the same. The geodesics, in this case, is dominated by vertical changes
instead of horizontal transport in the previous example. Finally, by adjusting the ratio of the bump heights
while fixing their locations, we find a scenario where horizontal transport and vertical changes result in
the same action value; see Figure That is, we found local minimizers, which we believe to be global,
where the paths have the same action. Thus, we believe the geodesics are not unique, indicating that the
signal space is, at least partly, positively curved.

IThe codes based on the numerical scheme described in Sectionthat reproduce these examples can be found at https:
//github.com/yunany/Compute-HV-distance-between—-signals.git,


https://github.com/yunany/Compute-HV-distance-between-signals.git
https://github.com/yunany/Compute-HV-distance-between-signals.git
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FIGURE 2. Example of the nonuniqueness of the length-minimizing geodesic. We set
k = 0.02, A = 0.001, and € = 0.002. We use 300 spatial and 290 time intervals.

Example 5.2. Bumps with high frequency perturbations. Here we use the prominence-matching ini-
tialization introduced in the previous section to find a good starting point for our iterative scheme to
converge to the global minimizer of the action function (50). In Figure [3a] we show the geodesics for
hyperparameters x = 1073, A = 5 x 107%, and ¢ = 2.5 x 107°. We used 300 space intervals and 290
time intervals. In Figure [3b] we show the flow map based on the prominence-matching initial velocity,
which maps the source signal’s two most prominent peaks to the target signal’s two most prominent peaks.
The trajectories matching the peaks are indicated in red, while the remaining trajectories are obtained
by linear interpolation. The flow map with respect to the final converged velocity is shown in Figure |3c}
which is relatively close to Figure [3b]

Example 5.3. Signal with discontinuities. In Figure ] we consider a non-smooth source signal and a
smooth target signal. Here, we use the hyperparameters x = 0.02, A = 0.001, and € = 0.002. We used
300 space intervals and 290 time intervals. The finite difference discretization on a static mesh implicitly
regularizes the signal fy. Since we use a first-order numerical scheme, the computed solutions do not
suffer from the Gibbs phenomenon as reflected by the geodesic in Figure[d Moreover, we also observe
the gradual transition between the discontinuous feature and the discontinuous feature both in horizontal
and vertical directions.

Example 5.4. Growth and expansion. In Figure 5] we consider a “growth” example where the target signal
is much bigger in width and height than the source signal. Here, we use the hyperparameters x = 0.2,
A = 0.01, and € = 0.02. We used 300 space intervals and 290 time intervals. We comment that this
example is somewhat sensitive to the choice of hyperparameters, which directly affects the location of the
barycenter between f and f; under the HV geometry.
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+ 05’

0 | I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

(B) flow map for the initial velocity (red trajectories denote the initial match-
ing of the most prominent two peaks between fo and f1)
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FIGURE 3. We use prominence-matching initialization to find the action-minimizing
path. We show in (A) the initial signal (blue), final signal (red), and signals at ¢ = 0.25,
t = 0.5, and t = 0.75 along the computed geodesic for hyperparameters x = 1073,
A=5x107% and e = 2.5 x 107°. We used 300 space intervals and 290 time intervals.
The flow for the initial velocity is shown in (B), and the flow for the optimal velocity is
shown in (C).

Example 5.5. In Figure [f] we compare two signed signals with a single bump where the bumps’ widths
and locations do not agree. We compute geodesic between them under the HV geometry for the chosen
hyperparameters decided by the parameter estimate (61)) discussed in Section[5.1] Roughly estimate that
L=0.3,W =04and H = 0.4, which yields K = 0.1, A = 0.01 and £ = 0.005. We note that a wide set
of parameters would have produced similar geodesics. The path is discretized using 300 spatial and 290
time intervals. The flow map corresponding to the optimal velocity v is plotted at the bottom of Figure [6]
where one can observe the transport feature mapping the peak of the source signal (blue) to the peak of
the target signal (red).



30 RUIYU HAN, DEJAN SLEPCEV, AND YUNAN YANG

0.8~

signal value

FIGURE 4. Algorithm allows for non-smooth data. Here, we use the hyperparameters
k= 0.02, A = 0.001, ¢ = 0.002, 300 space intervals, and 290 time intervals.
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FIGURE 5. The dgy geodesic balances horizontal expansion and vertical growth. We
use k = 0.2, A = 0.01, € = 0.02, 300 space intervals, and 290 time intervals.
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FIGURE 6. We show the initial signals along the computed geodesic for hyperparameters
given by formula (61) with L = 0.3, W = 0.4 and H = 0.4. The bottom image shows
the flow of the optimal velocity v.
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(A) original signals (B) normalized signals }0 and }”1 for OT
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FIGURE 7. We compare the matching of two 1D seismic signals by the flow map
induced by the HV geometry and optimal transportation with a quadratic cost (applied to
normalized signals). (A): the original signal used in the HV geometry; (B): the normalized
signal to satisfy the OT requirements; (C) optlmlzer f(x,t) from the HV geometry; (D)
the displacement interpolation between f o and f 1 based on the optimal transport map.

Example 5.6. (Seismic signals) Using optimal transportation (OT) for seismic applications has faced
difficulties from the constraints that the signals should be nonnegative with equal total mass [16} [17]].
In this example, we test the proposed HV geometry for comparing synthetic seismic signals shown in
Figure[7al To compare them using OT, we may normalize the signals first so that they are nonnegative
with equal total mass; see Figure [7b{for the normalized signals }’0, j‘l, squared and then scaled to integrate
to one [[16]. Figures [7c|and [7d|show the HV and OT geometry velocity flow maps, respectively. We
use a quadratic cost function for OT. For the HV geometry, we set H = 2, L = 0.1 and W = 0.02 for
parameters in (61) presented in Section[5.1] Note that in the classic OT, all mass has to be transported

through the monotonic map 7' such that Sg fo(y So y)dy. This may lead to mass being
transported far away and unevenly, as illustrated in Flgure @ The proposed HV geometry not only
can handle signed signals naturally, avoiding the artifacts by preprocessing the signal but also enforces
regularity to the velocity.

Example 5.7. Finally, we consider a real-world example. We compare two heartbeats from the ECG
database PhysioNet 2017 Challenge [14, 21]]; see Figure[8] The geodesic is computed in the space of
signals according to the HV geometry for hyperparameters given by (6I) below in Section [5.1] with
L =W =0.1and H = 300, which one estimates from the given data. We use 600 space intervals and
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FIGURE 8. Shown is the geodesic between two ECG signals under the HV geometry.
‘We note that the horizontal transform dominates for some features, while some parts
are matched by vertically moving the graph. We set k, A, and € based on (61) with
L =W =0.1and H = 300. We use 600 space intervals and 150 time intervals.

150 time intervals. We note that large features (R-peaks and T-waves) are matched in a desirable way via
horizontal transport, while perturbations of small amplitude are matched via a vertical adjustment. This
illustrates the benefits of the HV geometry.

5.1. Parameter selection. An important element in using HV geometry to analyze signals is how to
select the parameters k, A, and €. This depends on the length scales present in the data. Here we give a
simple rule for selecting the parameters based on the scaling properties of the distance; see Proposition
[2.1] Let H be the average vertical variation in the data, W be the typical width of features in the data, and
L be the maximum horizontal distance between the features to be matched. Then we suggest using

2

H
(61) K= 0.01ﬁ, A =0.02H2, and ¢ = 0.2H*W?.

As we mentioned, the scaling of the parameters respects the invariances of the distance. The real number
coefficients (0.01, 0.02, 0.2) are based on numerical experiments with different signal types.
We note that given a data set ¥ = {f1,..., f,} a good suggestion for H would be the typical L?

distance between the signals:
1
H = = 3 0= il
i

We also note that H? is twice the variance and can thus be computed as a sum over one index:

1
an

We remark that, for most signals, the outcome is not very sensitive to the parameters.

2
2
o = 2515l -2
7 12
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