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The immune system employs soluble effectors to shape luminal spaces.
Antibodies are soluble molecules that effect immunological responses,
including neutralization, opsonization, antibody-dependent cytotoxicity
and complement activation. These molecules are comprised of immuno-
globulin (Ig) domains. The N-terminal Ig domains recognize antigen,
and the C-terminal domains facilitate their elimination through phago-
cytosis (opsonization). A less-recognized function mediated by the
C-terminal Ig domains of the IgG class of antibodies (Fc region) involves
the formation of multiple low-affinity bonds with the mucus matrix.
This association anchors the antibody molecule to the matrix to entrap
potential pathogens. Even though invertebrates are not known to have
antibodies, protochordates have a class of secreted molecules containing
Ig domains that can bind bacteria and potentially serve a similar
purpose. The VCBPs (V region-containing chitin-binding proteins) possess
a C-terminal chitin-binding domain that helps tether them to chitin-
rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in
mucus. The broad functional similarity of these structurally divergent,
Ig-containing, secreted effectors makes a case for a unique form of conver-
gent evolution within chordates. This opinion essay highlights emerging
evidence that divergent secreted immune effectors with Ig-like domains
evolved to manage immune recognition at mucosal surfaces in strikingly
similar ways.

This article is part of the theme issue ‘Sculpting the microbiome: how
host factors determine and respond to microbial colonization’.
1. Introduction
The vertebrate immune system protects against pathogens using somatically
derived, highly diverse T-cell receptors (TCRs) on the surface of cells or anti-
bodies, which are first displayed as cell-surface receptors, and once selected,
are secreted. These two receptor classes provide effective immune protection
in blood and secretions and include evolved adaptations that mediate impor-
tant interactions with commensal communities. Recent studies have shown
that both IgG, the most abundant class of antibody in mammals, along with
secretory IgA, can combine with mucin to trap and immobilize pathogens
and/or facilitate the retention and colonization of commensal microbes
[1–13]. These antibody-mediated actions can serve as a primary defence
mechanism at the mucosal surfaces, e.g. immune exclusion, and significantly
shape the composition and ecology of commensal communities that colonize
the mucus gels lining epithelial surfaces [14–16]. This mucus-tethered inter-
action is reminiscent of what has been shown to occur in the gut of
invertebrate chordates, in which V region-containing chitin-binding proteins
(VCBPs) are bound to chitin-rich mucus of the gut, by way of their C-terminal
chitin-binding domain (CBD) [17–20]. In aquatic organisms, chitin is thought to
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stabilize mucus, i.e. it reduces the solubility of epithelial
gel mucins. Thus, the tethering of Ig domain effectors to
the mucus matrix represents a fundamental immune effector
mechanism that shapes or ‘sculps’ the ecology of host–
microbe interactions, both pathogenic and commensal, in
mucosal environments. This process arose at least twice
in chordate evolution, suggesting that strong selective
pressures have resulted in a novel functional convergence.
 .org/journal/rstb

Phil.Trans.R.Soc.B
379:20230078
2. The mucosal surface paradox
Throughout metazoan evolution, animals have developed
various defence mechanisms to protect themselves from a
growing number of diverse pathogens [21]. One of the most
significant barriers to infection is the epithelium, which
lines animal tissues both on the outside, such as the skin, and
on the inside, like the gastrointestinal tract or lungs [22,23].
Mucosal environments, which are layered with mucin gels
that are shed on a continuous basis, are particularly effective
at assembling physical barriers that protect the internal
confines of animals [24]. Trillions of microbes generally
colonize animals, many on mucosal surfaces where they are
attracted to and graze on the carbon-rich mucin gels [25,26].
The ‘restaurant hypothesis’ posits that nutrient-mediated
selection helps drive the initial colonization events of the
gut, mostly by commensal organisms, making access more dif-
ficult for potential pathogens [27,28]. This process, especially
early in the developmental maturation of the gut, serves prin-
cipal roles in shaping downstream immune responses [29–31].
Most of the microbes colonizing mucosal surface niches [32]
are harmless or beneficial in mediating protection from
other microbes or supporting animal health via metabolic
exchanges with their host.

A paradox presents for the local immune system, which
must ignore most colonizing microbes while remaining vigi-
lant toward potential pathogens. This challenge has existed
since the origin of metazoans [14]. Diverse strategies that
include the secretion of various immune effector molecules
into the mucosal surface gels have evolved to defend animals
while shaping andmaintaining the outcome of symbiotic inter-
actions with microbes that can improve fitness. Thus, it has
been proposed that the evolution of the adaptive immune
system is intimately associated with a role in managing com-
plex communities of beneficial microbes [33]. In addition to
cellular responses that mediate adaptive immunity, it is likely
that diverse molecules evolved to negotiate the crosstalk
between host and beneficial microbes to promote host survival.

Two effector approaches evolved to protect the mucosal
surface. Membrane-bound effectors, like the TCR or the
Toll-like receptors, bind to antigens and transduce signals
that can trigger a range of effector responses; whereas soluble
effectors can bind and label their targets for phagocytosis,
i.e. opsonization. Soluble effectors also can bind to and
neutralize their targets, e.g. immune exclusion, and are some-
times directly cytotoxic, e.g. defensins or other antimicrobial
peptides (AMPs). Soluble effectors that are secreted at the
epithelial surface are most helpful in mediating a variety of
defensive mechanisms that include preventing potential
pathogens from penetrating mucin gels and accessing the
host epithelium. By binding diverse microbial targets in
the lumen spaces or within the mucin-rich gels, soluble effec-
tors can shape the ecology of the gut, protect the host from
pathogen overgrowth, adherence, penetration or even influ-
ence the outcome of polymicrobial interactions and enhance
settlement or retention of commensal populations. The pro-
duction of microbial proteases and glycosylases is necessary
for breaking down or using mucin gels, but their presence,
along with free glycans, also can signal potential danger
that is monitored closely by the underlying epithelium [34].
3. Mucin-rich gels are an ancient defence
strategy and help define mucosal
environments

It iswidely accepted that themucus gels layering epithelial sur-
faces function as a protective barrier, acting as the first line of
defence of the innate immune system against harmful agents
and pathogens [35–37]. However, the mucus layer is much
more than a simple physical barrier. Because of the extensive
glycosylation of mucin glycoproteins, it serves a primary selec-
tive role and factors in homeostasis with the microbiota by
providing a rich source of nutrients that are targeted by specific
microorganisms [24,38,39]. Because glycosylation patterns
vary across mucosal sites, microbial populations become
spatially dispersed, resulting in the formation of a three-
dimensional scaffold for colonization and providing a source
of signals that can directly impact microbial gene expression
and behaviour [39].

Mucus composition in mammals is well characterized and
has been described as a complex, viscoelastic and adherent
secretion. Mucin is synthesized and secreted by specialized
goblet or mucous-producing cells in organs and glands that
interface and communicate with the external environment.
Mucus contains water, gel-forming mucin glycoproteins,
lipids, DNA, inorganic salts and different proteins, includ-
ing AMPs and other secreted immune factors [40]. The
composition and physicochemical properties of mucus vary
depending on their anatomical location, such as eyes, respirat-
ory tract, gastrointestinal tract, cervix and vagina. Within these
tissues, mucus performs distinct physiological functions
[41,42]. The biology of mucus is dynamic, as the processes of
degradation and biosynthesis are integrated to maintain
continuous mucosal protection against external stressors [43].

Mucins are classified as both membrane-associated and
secretedmolecules and form the glycocalyx at the apical surface
of the epithelium and the overlying gel layer, respectively
[40,41,44]. Mucin glycoproteins are encoded by genes referred
to as ‘MUC’ in mammals. Twenty-two MUC genes have been
identified in humans, and their biosynthetic, biochemical and
anatomical properties have been described [40,41]. Both threo-
nine and serine residues of mucins are heavily glycosylated
via N-acetylgalactosamine (GalNAc) O-linkages, making the
domains resistant to proteolysis and often resulting in a rigid
matrix that can mimic a ‘dense forest’ [36,40,41,43]. The
domains often have repeated sequences and vary in length
depending on the allele, species and individual mucins [45].

Phylogenetic probing of sequenced genomes and tran-
scriptomes reveals that secreted or gel-forming mucins were
present in the early metazoans and are well developed in
Ctenophores and Cnidarians. Diversification of membrane-
anchored mucins appeared later in the chordates [45,46].
Glycosylation patterns among some mucins can include the
polymerization of N-acetylglucosamine (GlcNAc) to form
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Figure 1. Schematic of immunoglobulin (Ig) domain structure in antibodies and the Variable Region Containing Chitin-Binding Protein (VCBP). V-type Ig domains,
involved in antigen or microbial binding, are present in vertebrate antibodies, including IgG and secretory IgA, as well as in protochordate VCBP-C. Secondary effector
functions of these molecules are mediated by the C (constant)-type Ig domain in antibodies and the chitin-binding domain in VCBP-C. In IgG and VCBPs, interactions
with the Fc and CBD domains are the basis for immune effector functions at mucosal surfaces.
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interwoven chitin fibres [47,48]. The peritrophic matrix
(PM) is the glycocalyx barrier found in the midgut of
several arthropods and consists of chitin fibres attached to
peritrophins [49–51], a specialized form of glycoproteins.
The peritrophins possess CBDs that facilitate the anchoring
of chitin fibres and may also contain MUC domains [51].
Peritrophins may have originated in MUC genes by the
acquisition of CBDs; e.g. insects also make purely MUC-
based mucus gels. The PM may complement mucus gels in
some compartments in order to provide additional protection
against physical damage, microbial infection and toxins [52]
while enhancing digestion by compartmentalizing digestive
enzymes in different areas of the midgut [51,53].

Although chitin fibreswere initially observed in arthropods,
recent studies have revealed their presence in invertebrate
chordates like the ascidian Ciona robusta [18], as well as in
non-mammalian vertebrates such as Danio rerio and Salmo
salar fishes and Ambystoma mexicanum amphibians [54,55].
This discovery suggests that chitin fibres within mucus barriers
are more widespread in different species than previously
believed. Chitin-rich mucus gels play a significant role in
decreasing the solubility of mucins in water, thus enhancing
the barriers to infection by adding strength and stability
to the mucus [56–58]. Ciona produces chitin-rich mucus in its
pharynx and throughout the gut [18,55]. Supplementing
this mucus with exogenous chitin microparticles enhances the
mucus barriers and increases protection against chemical-
induced colitis, such as through ingestion of dextran sulfate
sodium [19]. Chitin is abundantly found in nature because it
not only adds structural rigidity but also helps to stabilize
mucin gels in aquatic environments. Chitin in the midgut of
insects may therefore be a vestige of an aquatic existence
among arthropods [54].

It is tempting to speculate that the loss of chitin-rich mucus
barriers in some vertebrates, like mammals, increased suscepti-
bilities and/or reduced barrier protection against some
pathogens. The requirement to enhance barriers may have
resulted in increased selective pressures to include additional
secreted immune effectors in mucus gels and drive the
expansion of membrane-anchored mucin gene families. Sub-
sequently, the intestinal epithelium of most animals produces
a membrane proximal, tightly interwoven glycocalyx that
remains relatively sterile while the outer layers of mucus are
loose and microbe-rich [37]. Colonization of the outer layers
by non-pathogens helps to enhance barriers against settlement
and invasion by potential pathogens.Whereas intestinal mucus
is rich in secreted immune effectors, it is likely that the specific
types found in the inner versus outer layers are distinct. In this
way, the effectormolecules can influence colonizationdynamics
by encouraging the settlement of non-pathogens on the outer
portions of the mucus barrier [10,11,18,59].
4. The Ig domain is a common feature of
immune effectors

Ig domain-containing proteins are a superfamily of proteins
with diverse functions in metazoans [21,60–62]. Because of
their ability to undergo somatic diversification in antibodies
and TCRs, these receptors recognize an extraordinarily large
number of antigenic determinants. The ability of Ig domains to
form homo- and heterodimers is a shared feature of antibodies
that mediate defence capabilities, as well as many adhesion
molecules that help stabilize many cell-to-cell interactions [60].
Variable, or V-type, domains are derived somatically in ver-
tebrates and exhibit highly complex polymorphisms that
define the recognition potential of the antigen-binding region.
C-type, or constant, Ig domains are minimally polymorphic,
provide a range of additional effector functions for antibodies,
and are a common feature of adhesion molecules.

Vertebrate antibodies typically consist of two chains, as
shown in figure 1, with V-type and C-type Ig domains.
Soluble antibodiesperformvarious effector functions, including
antigen neutralization, agglutination and opsonization. The Fab
fragment comprised the entire light chain and a portion of the
heavy chain, consists of both V-type and C-type Ig domains
acting like flexible arms, and is responsible for recognizing
antigens. The Fc region is located at the C-terminal portion of
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the heavy chain and is made up of C-type Ig domains. When
antibodies act as B cell receptors, they are bound to the cell
membrane through an association involving the C-terminal
transmembrane portion of the Fc region. Differential RNA spli-
cing [63,64] replaces the transmembrane portion to create a
secreted form. The Fc region of an antibody molecule can be
changed through class switch recombination [65]. The secreted
antibody molecule is recognized by Fc receptors and affords
specificity to mononuclear phagocytes that, in turn, mediate
essential effector functions such as opsonization, cytokine
secretion and complement activation.

Several isotypes of vertebrate antibodies produce distinct
and overlapping effector functions. For example, IgG is the
most abundant form of antibody in circulation but also is pre-
sent in some mucosal secretions, e.g. it is the most abundant
isotype in cervicovaginal secretions [3]. Copious amounts of
secretory IgA are part of normal mucosal secretions and pro-
vide diverse effector functions that include defence against
pathogens. Antibodies of vertebrates are synthesized in sec-
ondary lymphoid tissues of laminar spaces; distribution into
the lumen requires active transport. Polymeric Ig receptors
(pIg) are expressed on the basolateral surface of the gut
epithelium where they bind polymeric antibodies, such as
IgA or IgM [66], the former being the most abundant antibody
of mucosal secretions. The bound antibody is then transcy-
tosed onto the apical surface where the ectodomain of the
pIg receptor is cleaved and remains attached as a secretory
component to help stabilize the effector molecules in the
physiologically challenging environment of the gut lumen
[67]. The resulting macromolecular complex helps to trap and
physically clump microbes; unbound secretory component
is also able to directly bind bacteria [68–72]. The secretory com-
ponent ofmucosal antibodies helps bridge innate and adaptive
responses and serves important roles in commensal recog-
nition responses, e.g. actively transporting some antigen back
across microfold or M-cells into Peyer’s patches [68,73,74].
Recent efforts have demonstrated an active role of secretory
antibodies, primarily SIgA, in commensal attachment and
colonization of mucosal environments [8–12].

Antibody effector function can be modified via glycosyla-
tion [75–77], e.g. distinct glycosylation patterns of Fc regions
of IgG [4,15,78–81] have been shown to influence low-affinity
interactions with mucins that help to immobilize microorgan-
isms and limit their movement through mucin gels [1,2,4,13].
This newly recognized function has transformed our under-
standing of the functional repertoire of antibodies as
essential mediators of diverse symbiotic interactions at
mucosal surfaces [12,59].
5. The surprising and not-so-surprising antiquity
of Ig-like domains

Ig-like domains have been identified in all kingdoms [82,83],
suggesting a remarkable selective advantage that likely
relates to their exceptional structural adaptability and intrinsic
capacity to form homo- and heterodimers. In some microbes,
Ig-like domain-containing proteins facilitate associations
with components of animalmembranes. Certain animal viruses
and bacteriophages, viruses that infect bacteria, have been
shown to interact with mucins through capsid-associated
proteins that possess Ig-like domains [84]. This interaction facili-
tates viral access to epithelial surfaces and, in the case of phages,
canprovide increased access to diverse bacterial flora colonizing
mucosal surfaces. Interestingly, a variety of distinct virusesmay
have independently acquired some of these domains from their
hosts [83,85]. Some bacteria also have evolved diverse mucin-
utilization programmes and can interact with host surfaces via
Ig-likedomains.Certain bacterial adhesins, such as IgI3, possess
Ig-like domains and can specifically associate with Ig-rich
CEACAMproteins on host epithelial cells [86]. The conjugation
machinery in some bacteria possesses Ig-like domains that
facilitate interactions and associations with other bacteria via
recognition of their flagella and/or pili proteins [87]. Thus,
diverse molecular structures that include Ig-like domains have
evolved or have been recruited to facilitate interactions via
homo- and heterodimer associations. Someof these associations
help microbes access host epithelia or assist in the utilization
of mucus. It is tempting to speculate that animal immunity
via Ig-like domain recognition of microbial surface structures
is itself a borrowed and ancient molecular feature of microbial
recognition of mucosal surface structures.

In a directed search for related Ig-like domain proteins [88]
that have V-type Ig domains, a small family of VCBPs was dis-
covered in protochordates, first in amphioxus Branchiostoma
floridae (namely, VCBP-1 to −5) [89,90] and then in the ascidian
or tunicate Ciona intestinalis type A, or C. robusta (namely,
VCBP-A to -D), where the function of these molecules has
been investigated most thoroughly [17,18,90,91]. However,
further studies using genomic resources from diverse organ-
isms will be important to clarify if related gene families exist
across diverse ascidian species, and protochordates in general.

The VCBPs possess two V-type Ig domains at the N-termi-
nus,whichmediate recognition of bacteria [17,92] and aCBDat
the C-terminus (figure 1), which recognizes chitin polymers
that are present in mucin gels of Ciona, as well as fungi
whose cell membranes are chitin-rich [18,20]. Unlike mucosal
antibodies of vertebrates, VCBPs are directly synthesized by
epithelial cells of the gut that resemble goblet cells. The
VCBPs are directly co-associated with mucus-rich vacuoles
that are actively exuded [18,19].

Haplotype variation and polymorphisms are prominent in
the gene segment encoding the N-terminal V-type Ig domain
of the VCBP-2 and VCBP-5 genes in B. floridae [89,90,93],
suggesting a co-evolving pathogen response. This feature has
not been observed within Ciona VCBPs [17]; however, Ciona
VCBPs A–D are more homologous to amphioxus VCBP-1, −3
and −4, which also lack the polymorphism of VCBP-2 and −5,
paralogous genes that are found clustered in the genome [93].

In vitro binding experiments using polymorphic variants of
VCBP-2 and−5 have yet to be performed on native gut bacteria;
however, it appears that polymorphism of the N-terminal
V-type Ig domain is driven by a variety of factors that include
pathogen selection pressures and genomic instabilities of
the clustered haplotypes [93,94]. VCBPs in Ciona, along with
VCBP-1, −3 and −4 from amphioxus, are likely recognizing
conservedmolecular patterns on the surface ofmicrobes [95,96].
6. Ig-domain proteins are essential in
shaping microbiome settlement in the
gut of chordates

Although the membrane-proximal mucus gel is often dense
and forms a glycocalyx, the outer mucus is impacted by
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digestive enzymes and forms a loose layer that attracts
microbial grazing and settlement [97,98]; it also represents
the site where SIgA interacts with a rich assortment of
microbes [59]. Dense polymicrobial biofilm communities,
in specific regions of the gut, can form due to the glycan
structure of mucins and other biophysical factors, with
microbial nutrition preferences serving as a primary driver
of settlement along with niche preference distributions of
strain variants. A parallel distribution of unique immune rec-
ognition responses and secreted effectors influence these
communities [16,99–101], and remains a guiding principle
of the restaurant hypothesis for microbial settlement in the
gut. Variation in the local distribution of antibody responses
in vertebrates [5,59], and by inference, the VCBPs in proto-
chordates [18,102], could strongly impact the dynamics of
microbial settlement. This ancient selective process likely
plays a significant role in shaping microbial communities of
mucosal environments, with a significant role in ‘sculping
the microbiome’, as per the focus of many companion articles
in this special issue and as proposed in the evolutionary
history of adaptive immune components [33].

Colonizing the animal gut is challenging due to its unique
biophysical properties, distribution of cell types and immune
effectors, and constant mucus shedding and replacement.
Some microbes have developed strategies to overcome this
barrier or work collaboratively with components of the barrier.
One such strategy is the development of secreted antibody-like
effectors with Ig domains, which can bind to either commensal
or pathogenicmicrobeswithin the lumen, favouring settlement
of beneficial microbes while preventing penetration of mucus
layers by pathogens [1,3–5,8,10,59]. Microbes that are bound
by antibodies may remain active and affect the microbiome,
often forming biofilms that permit their interactions as complex
polymicrobial communities. It is worth noting that since
antibodies do not directly kill cells, certain interactions
with microbes may involve structural support through their
entrapment in the outer layer of mucus that may facilitate
their survival [3,14]. Further investigations are required to
improve our understanding of the mechanisms by which IgG
and SIgA impact settlement preferences among commensal
communities [10–12,14].

Animalmucingels have an impact onmicrobial colonization
due to their biochemical and physical makeup. The MUCs
contain many O-glycan arrays, which serve as a carbon source
for commensals while still maintaining an essential role for
mucus, such as lubrication [25,103]. Pathogens have a tendency
to overgraze and secrete proteases that target the barriers and
expose the epithelium [25]. The mucin fibres, which are heavily
glycosylated and cross-linked, produce a distinctive mesh-like
structure, creating a porous network with different pore sizes
on various mucosal surfaces that is linked to a number of
different physiological processes [39]. This structure can directly
obstruct or impede the diffusion of microbes or serve an
adhesive role in facilitating interactions between microbes
and mucins fibres, establishing specific limitations on pore size
accessibility for different members of the microbiome. With a
distinctive ability to entrap within the mucus mesh or gels,
Ig-domain proteins can dramatically influence settlement
behaviours, polymicrobial interactions and other ecological
dynamics of the gut microbiome [3,8,11]. Future studies
shouldhelpdefine if accessory interactions among Ig-containing
effectors and mucus components (i.e. mucin or chitin) impact
settlement dynamics, as does the secretory component for SIgA.
Thus, mucosal antibodies can operate as third-party cross-
linking molecules that reinforce the barrier properties of
mucus, limiting interaction between pathogens and epithelial
cells or facilitating settlement dynamics among commensals
without altering other functions of the mucus gels. Investi-
gations into the mucus-trapping properties of antibodies
have focused significantly on IgG, which is relatively easy to
isolate and store, as opposed to IgA, which is unstable, prone
to aggregate and more challenging to purify [3]. Apart from
the critical roles of the secretory component, as defined
above, studies focused on modifications to the Fc region have
revealed that low-affinity, hydrogen bond interactions with
mucin glycans help impose significant physical limitations on
howpathobionts diffuse throughmucus gels [1–5]. These inter-
actions also may increase the likelihood of collisions with other
microbes, reducing the amount of IgG initially required, i.e. a
complex repertoire of specificity can be maintained. Secreted
effectors, such as antibodies, can have a distinctive impact on
downstream immune responses within the mucosal environ-
ment, depending on how their Ig domain(s), such as the Fc
region, interact with and transmit signals to other types of
membrane-bound effector molecules [101,104–106]. This com-
bination of microbes, antibodies and mucins plays a crucial
role in enabling interactions with innate immune receptors
and regulating inflammation.

The fundamental process of mucus trapping that is
mediated by convergently evolved secreted effectors [14]
is pivotal in controlling microbial colonization of mucosal
surfaces. The Ig domain serves an ancient and fundamental
role in cell-to-cell and microbial recognition [83,107], and its
diverse functionality is well-documented among diverse
invertebrate lineages [96,107]. While various protein domains
likely participate in mucus trapping, the composition of
mucins and the associated glycans undoubtedly serve pivotal
selective roles mediating recognition specificity. For example,
chitin fibres serve as essential constituents of mucus gels in
invertebrates and aquatic vertebrates. The identification of
the VCBP genes and their expression in the digestive tract
during organogenesis and in Ciona adults [17,89,102] led us
to examine the role of these molecules within the gut. Essen-
tial microbe influencing functions of the VCBPs, as secreted
immune effectors at the mucosal sites, have been documen-
ted (reviewed in [96,108]). Follow-up in vitro studies have
been made possible with VCBP-Cs due to their ease of puri-
fication on chitin columns and feasibility for synthesizing
both full-length and partial-sized recombinant versions [17].

Briefly, in vivo and in vitro experiments have shown that
VCBP-C can be tethered to chitin-rich mucus of the gut and/
or branchial basket via the CBD domain [18,55]. It also exits
as a soluble form in the lumen [18] and can bind bacteria and
tag them for opsonization via the N-terminal Ig domain [17].
VCBP-C also can impact biofilm formation among bacteria
[18,109] and influence prophage induction among lysogenized
bacteria [109]. TheCBD can bind to diverse fungi, labelling bud
scars in yeast, and hyphae in filamentous fungi, identifying
sporangia and their spores [20]. Transcriptome data and quan-
titative RT-PCR reveal surprisingly specific VCBP-C responses
during exposure experiments and colonization of naive juven-
ile animals (Natarajan et al., in preparation). VCBP-C plays
crucial roles in shaping host responses to diverse microbial
communities that include both commensal organisms as well
as potential pathogens. The integration of a CBD in VCBPs
and its interaction with chitin-rich mucus support a role in
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the mucus trapping of microorganisms, as has been demon-
strated for the secretory component of pIgs, and the Fc
region-mediated binding of IgG to mucins. However, clear evi-
dence that VCBPs mediate specific roles in pathogen exclusion
or in the selection or retention of commensals remains to be
shown. VCBP-D, which also is produced in the gut, is related
to VCBP-C but lacks a CBD [17], suggesting that mucus trap-
ping with and without tethering to chitin fibres of the mucin
gels may factor in gut homeostasis in Ciona.

Further investigation is warranted into how glycan
structures influence the selective pressures driving domain
acquisition among the secreted effectors that immobilize both
beneficial and harmful microbes in mucosal environments.
Binding to polysaccharide-rich mucins, either directly via
glycosylated Fc domains of antibodies, the secretory com-
ponent, or CBDs of the VCBPs, represents an integral
element in creating the chordate barriers that both trap
microbes and provide the Ig-domain-dependent effector feed-
back for innate immune functionality. The tethering of
antibodies and other secreted effectors, like VCBP to glycans
and subsequent interactions with microbes, may reflect a
common functionality that influences settlement dynamics
by permitting commensals and excluding pathogens at the
mucosal surface
7. Concluding remarks
In this essay, we have explored the critical role that mucus
gels serve in conjunction with secreted immune effectors to
shape microbial ecology of mucosal environments and miti-
gate the effects of pathogenic microbes. It is becoming
increasingly more apparent that major evolutionary differ-
ences exist in the composition and structure of the mucus
gels, notably the addition of diverse glycans onto mucins
and in some cases the coupling of chitin fibres that is
common in aquatic organisms and some terrestrial invert-
ebrates (such as insects). We suggest that in addition to
other physiological effects, diversity in mucus composition
acts as a selective force driving the evolution and selection
of not just the commensal flora but secretory immune effec-
tors serving essential functions. Despite their considerable
difference in the number and complexity of Ig domain
arrangements, antibodies and VCBPs, as secreted immune
effectors, share an essential functional convergence in regu-
lating microbial colonization at mucosal surfaces. Future
research on host–microbial interactions should consider the
mucus composition to identify and investigate additional
secreted immune effectors that may recognize glycans of
the mucin gels, revealing them as essential players in the
overall management of mucosal ecosystems.
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