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Abstract
A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary
r-colouring of the complete k-uniform hypergraph Kk

n when k≥ 2 and k ∈ {r − 1, r}. We prove a result
which says that if one replaces Kk

n in Gyárfás’ theorem by any ‘expansive’ k-uniform hypergraph on n
vertices (that is, a k-uniform hypergraph G on n vertices in which e(V1, . . . ,Vk)> 0 for all disjoint sets
V1, . . . ,Vk ⊆V(G) with |Vi| > α for all i ∈ [k]), then one gets a largest monochromatic component of
essentially the same size (within a small error term depending on r and α). As corollaries we recover a
number of known results about large monochromatic components in random hypergraphs and random
Steiner triple systems, often with drastically improved bounds on the error terms.
Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of
an arbitrary r-partite r-uniform hypergraph H with n edges in which every set of k edges has a common
intersection. In this language, our result says that if one replaces the condition that every set of k edges
has a common intersection with the condition that for every collection of k disjoint sets E1, . . . , Ek ⊆ E(H)
with |Ei| > α, there exists (e1, . . . , ek) ∈ E1 × · · · × Ek such that e1 ∩ · · · ∩ ek ̸= ∅, then the smallest possible
maximum degree ofH is essentially the same (within a small error term depending on r and α). We prove
our results in this dual setting.
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1. Introduction
We say that a hypergraph G is connected if the 2-shadow of G is connected (the 2-shadow of
G is the graph on vertex set V(G) and edge set {e ∈

(V(G)
2
)
: ∃f ∈ E(G), e⊆ f }). A component in

a hypergraph is a maximal connected subgraph. Given a hypergraph G and a positive integer
r, let mcr(G) be the largest integer t such that every r-colouring of the edges of G contains a
monochromatic component of order at least t. Let Kk

n denote the complete k-uniform hypergraph
on n vertices (and Kn =K2

n as usual). A well-studied problem has been determining the value of
mcr(Kk

n); however, this problem is still open for most values of r and k. On the other hand, Gyárfás
proved the following well-known results.
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2 D. Bal and L. DeBiasio

Theorem 1.1 (Gyárfás [12]).
(i) For all n≥ r ≥ 2, mcr(Kn)≥ n

r−1 . This is best possible when (r − 1)2 divides n and there
exists an affine plane of order r − 1.

(ii) For all n≥ r ≥ 2,mcr(Kr
n)= n.

(iii) For all n≥ r ≥ 4,mcr(Kr−1
n )≥ (r−1)n

r . This is best possible for all such r and n.

A natural question which has received attention lately has been to determine conditions
under which a k-uniform hypergraph G on n vertices satisfies mcr(G)=mcr(Kk

n) or mcr(G)≥
(1− o(1))mcr(Kk

n); or, if this is too restrictive, determining the value of mcr(G) in terms of some
natural parameters of G.

Perhaps the first such result is due to Füredi [9] who proved that for all graphs G on n ver-
tices, mcr(G)≥ n

(r−1)α(G) , which is best possible when an affine plane of order r − 1 exists (see
Section 2.1.2 for more details). But note that the value of mcr(G) is far from mcr(Kn) in this
case. In a sense that will be made precise in the coming pages, our paper is essentially a variant
of Füredi’s result using a different (but related) parameter in place of independence number for
which we can guarantee that mcr(G) is close to mcr(Kn).

Note that for 1≤ r ≤ k, mcr(G)= n=mcr(Kk
n) if and only if the r-shadow of G is complete.1

On the other hand, as first noted by Gyárfás and Sárközy [11], when r > k= 2 it is surprisingly
possible for mcr(G)=mcr(Kn) provided G has large enough minimum degree. See [11], [17], and
[10] for the best known results on this minimum degree threshold in the case k= 2, and [3] for a
precise result on the minimum codegree threshold in the case r = k+ 1≥ 4.

For hypergraphs, Bennett, DeBiasio, Dudek, and English [5] proved that if G is an (r − 1)-
uniform hypergraph on n vertices with e(G)≥ (1− o(1))

( n
r−1
)
, then mcr−1(G)≥ (1− o(1))n and

mcr(G)≥ ( r−1
r − o(1))n.

As for random graphs, it was independently determined in [2], [8] that with high probability,2
mcr(G(n, p))≥ (1− o(1)) n

r−1 provided p= ω(1)
n , and it was determined (using the result men-

tioned in the previous paragraph) in [5] that mcr(Hr(n, p))≥ (1− o(1))n provided p= ω(1)
nr−1 , and

mcr(Hr−1(n, p))≥ (1− o(1)) (r−1)n
r provided p= ω(1)

nr−2 . All of these results for random graphs use
the sparse regularity lemma and thus only provide weak bounds on the error terms. Additionally,
it was determined in [6] that for almost all Steiner triple systems S on n vertices, mc3(S)=
(1− o(1))n. In this case, there is an explicit bound on the error term, but their result is specific to
3 colours and 3-uniform hypergraphs in which every pair of vertices is contained in at least one
edge.

In this paper, we study a common generalisation which implies all of the results from the
previous two paragraphs with more precise error terms.

1.1. Relationship betweenmonochromatic components and partite holes
Given a hypergraphG, a k-partite hole of size α is a collection of pairwise disjoint setsX1, . . . , Xk ⊆
V(G) such that |X1| = · · · = |Xk| = α and no edge e ∈ E(G) satisfies e∩ Xi ̸= ∅ for all i ∈ [k]. Define
the k-partite hole number αk(G) to be the largest integer α such that G contains an k-partite hole
of size α. Note that if G is a k-uniform hypergraph with αk(G)≤ α, then for all disjoint sets
V1, . . . ,Vk ⊆V(G) with |Vi| > α for all i ∈ [k] there exists e ∈ E(G) such that e∩Vi ̸= ∅ for all
i ∈ [k]. Note that this implies that G is ‘expansive’ in a certain sense which will be made explicit in

1Indeed, if every r-set of G is contained an edge, then since mcr(Kr
n)= n, we have mcr(G)= n. Furthermore, if some r-set

{x1, . . . , xr} is not contained in an edge, then we can colour the edges of G with r-colours such that colour i is never used on
xi and thus mcr(G)< n (c.f. Observation 3.1).

2An event is said to happen with high probability or w.h.p. if the probability that the event occurs tends to 1 as n→ ∞.
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Section 2.2. As a point of comparison, note that small (ordinary) independence number does not
imply expansiveness; that is, if G is a k-uniform hypergraph, then α(G)≤ α does not even imply
that G has a connected component of order larger than n

α (again, see Section 2.2 for a discussion
about the relationship between α(G) and αk(G)).

All of the results mentioned above regarding random hypergraphs and random Steiner triple
systems either implicitly or explicitly make use of the fact that the k-partite hole number is
bounded (for further discussion, see Section 5). In this paper we consider the following general
problemwhich attempts to pin down amore precise relationship between a k-uniform hypergraph
having bounding k-partite hole number (i.e. being ‘expansive’) and having large monochromatic
components in arbitrary r-colourings.
Problem 1.2. Prove that for all integers r, k≥ 2, there exists cr,k, dr,k > 0 such that for all k-uniform
hypergraphs G on n vertices, if αk(G)< cr,kn, then

mcr(G)≥mcr(Kk
n)− dr,kαk(G).

Furthermore, determine the optimal values of cr,k, dr,k.
We solve Problem 1.2 for all 1≤ r ≤ k+ 1, give the optimal values of cr,k, dr,k in the case of

k= 2= r, give the optimal value of cr,k in the case k= 3= r, and give reasonable estimates on
cr,k, dr,k in the other cases. The formal statements will be given below.

Our first result covers the case k= r = 2 and thus generalises Theorem 1.1(i) in the case r = 2
(i.e. a graph or its complement is connected). This is the result for which we have the tightest
bounds.
Theorem 1.3.

(i) (a) For all graphs G on n vertices, if α2(G)< n/6, thenmc2(G)≥ n− 2α2(G).
(b) Furthermore, the bound on α2(G) is best possible in the sense that there exists a graph

on n vertices with α2(G)= n/6 such thatmc2(G)≤ n/3.
(ii) For all graphs G on n vertices,mc2(G)≤ n− α2(G).
(iii) For all integers n and a with 0≤ a≤ n/4, there exists a graph on n vertices with α2(G)= a

such thatmc2(G)≤ n− 2a.

Our second result covers the case when k= 2 and r = 3 and thus generalises Theorem 1.1(i)
in the case r = 3. (Extending this result to the case r ≥ 4 is the main open problem raised by this
paper. See Conjecture 4.12 and the discussion which precedes it for more details about this open
case.)
Theorem 1.4.

(i) For all graphs G on n vertices, if α2(G)≤ n
39 , thenmc3(G)≥ n

2 − 2α2(G).
(ii) For all 0≤ a≤ n/2, there exists a graph on n vertices with α2(G)= a such that mc3(G)≤

n−a
2 .

Our third result covers the case when k= r ≥ 3 and thus generalises Theorem 1.1(ii).
Theorem 1.5. Let r be an integer with r ≥ 3.

(i) There exists cr > 0 such that for all r-uniform hypergraphs G on n vertices, if αr(G)< crn,
then n− αr(G)≥mcr(G)≥ n− (r − 1)αr(G).

(ii) For all 0≤ a≤ n/(r + 2), there exists a r-uniform hypergraph G on n vertices with αr(G)= a
such thatmcr(G)≤ n− 2αr(G).

Our fourth result covers the case when r = k+ 1≥ 4 and thus generalises Theorem 1.1(iii).
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4 D. Bal and L. DeBiasio

Theorem 1.6. Let r be an integer with r ≥ 4.

(i) There exists cr > 0 such that for all (r − 1)-uniform hypergraphs G on n vertices, if αr−1(G)<
crn, thenmcr(G)≥ r−1

r n−
(r
2
)
αr−1(G).

(ii) For all 0≤ a≤ n/(r − 1), there exists an (r − 1)-uniform hypergraph on n vertices with
αr−1(G)= a such thatmcr(G)≤ r−1

r (n− a).

While this is not the main focus of the current paper, it would also be interesting to improve
the error terms in the above theorems. In particular, for Theorem 1.5 we currently have (in the
context of Problem 1.2) that 2≤ dr,r ≤ (r − 1).

Regarding upper bounds on mcr(G), note that because of the results mentioned above regard-
ing (hyper)graphs with large minimum (co)degree, when r = k+ 1≥ 3 we can’t necessarily get a
d′
r,k > 0 such that mcr(G)≤mcr(Kn)− d′

r,kαk(G) (because it is possible to have large minimum
(co)degree and large αk(G)). However, when r = k, it is the case that mcr(G)≤mcr(Kr

n)− αr(G)
(see Observation 3.1).

1.2. Corollaries
As mentioned earlier, there have been a number of results showing that mcr(Hk(n, p))=
(1− o(1))mcr(Kk

n) whereHk(n, p) is the binomial random k-uniform hypergraph. However, those
results have all used the sparse regularity lemma and thus there are no reasonable estimates on
the error terms. Since the value of αk(Hk(n, p)) is easy to estimate, we automatically recover
mcr(Hk(n, p))= (1− o(1))mcr(Kk

n) (for all values of k and r for which Theorems 1.3–1.6 hold)
with very good estimates on the error terms.

Corollary 1.7. For all r ≥ 2 and p= d
nr−1 with d → ∞, we have that with high probability,

mcr(Hr(n, p))= n− #r

(( log d
d

) 1
r−1

n
)

.

Additionally,

mc3(H2(n, p))≥ n
2

−Or

( log d
d n

)

and for all r ≥ 3,

mcr+1(Hr(n, p))≥ r
r + 1

n−Or

(( log d
d

) 1
r−1

n
)

Proof. The statements above follow from Theorems 1.3–1.6 and the fact that for p as in the

statement, w.h.p., αr(Hr(n, p))= #r

((
log d
d

) 1
r−1 n

)
. The upper bound can be shown using a stan-

dard first moment calculation. The lower bound follows by taking an independent set of size

#r

((
log d
d

) 1
r−1 n

)
and partitioning it into r equal sized sets (see Observation 2.2). Independent

sets of this size are known to exist (see e.g. [15]). !
See Observation 3.6 and Problem 3.7 for a discussion about upper bounds on the terms in the

second and third statements.
Let Sn be the family of all Steiner triple systems on n vertices. DeBiasio and Tait [6] proved

that for all 3-uniform hypergraphs G on n vertices in which every pair of vertices is contained
in at least one edge, mc3(G)≥ n− 2α3(G) (note that Theorem 1.5(i) is stronger in the sense that
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there is no requirement that every pair of vertices is contained in at least one edge). They used
this to prove that for all S ∈ Sn, mc3(S)≥ 2n/3+ 1, and furthermore there exists δ > 0 such that
for almost all S ∈ Sn, mc3(S)≥ n− n1−δ . This latter result was proved by showing that for almost
all S ∈ Sn, α3(S)≤ n1−δ . Gyárfás [13] proved in particular that for all S ∈ Sn, mc4(S)≥ n

3 (and this
is best possible for infinitely many n). On the other hand, we show that for almost all S ∈ Sn, the
value of mc4(S) is much larger. More precisely, using the fact (from [6]) that for almost all S ∈ Sn,
α3(S)≤ n1−δ , we obtain the following corollary of Theorem 1.6(i) (with r = 4).

Corollary 1.8. There exists δ > 0 such that for almost all S ∈ Sn,mc4(S)≥ 3n
4 −O(n1−δ).

1.3. Outline of paper
In Section 2.1, we discuss a reformulation of our problem in the dual language of r-partite
r-uniform hypergraphs which we will work with for the remainder of the paper. In Section 2.2, we
discuss a reformulation of the notion of having bounded k-partite holes in terms of expansion in
hypergraphs. In Section 3, we provide examples which show the tightness of our results. In partic-
ular, this section contains proofs of Theorem 1.3(i)(b), (ii), (iii), Theorem 1.4 (ii), Theorem 1.5 (ii)
and Theorem 1.6 (ii). In Section 4, we prove Theorem 1.3(i)(a), Theorem 1.4(i), Theorem 1.5(i),
and Theorem 1.6(i).

2. Duality and expansion
2.1. Duality
Throughout the rest of the paper we will be talking about multi-hypergraphs and we will always
assume that all of the edges are distinguishable (and more generally, we assume that all of the ele-
ments in a multi-set are distinguishable). This means, for example, that if an edge has multiplicity
5, we can partition those five edges into two disjoint sets of say 3 and 2 edges respectively.

Let r, k≥ 2 be integers. Given an r-partite r-uniform multi-hypergraph H and multisets of
edges E1, . . . , Ek, we say that E1, . . . , Ek is cross-intersecting if there exists (e1, e2, . . . , ek) ∈ E1 ×
E2 × · · · × Ek such that e1 ∩ · · · ∩ ek ̸= ∅. Furthermore, if S⊆V(H), we say that E1, . . . , Ek is
cross-intersecting in S if there exists (e1, e2, . . . , ek) ∈ E1 × E2 × · · · × Ek such that S∩ e1 ∩ · · · ∩
ek ̸= ∅.

Let νk(H) be the largest integer m such that there exists multisets of edges E1, . . . , Ek with
|Ei| =m for all i ∈ [k] and Ei ∩ Ej = ∅ for all distinct i, j ∈ [k] such that E1, . . . , Ek is not cross-
intersecting; that is, e1 ∩ e2 ∩ · · · ∩ ek = ∅ for all e1 ∈ E1, e2 ∈ E2, . . ., ek ∈ Ek.

2.1.1. Monochromatic components and k-partite holes
The following observation precisely describes what we mean by ‘duality’.
Observation 2.1 (Duality). Let n≥ 1, r, k≥ 2, and s, t ≥ 0. The following are equivalent:

(i) Let H be an r-partite r-uniform multi-hypergraph with n edges. If νk(H)≤ s, then &(H)≥ t.
(ii) Let G be a k-uniform hypergraph on n vertices. If αk(G)≤ s, thenmcr(G)≥ t

Proof. ((i)⇒(ii)) Suppose that (i) holds and let G be a k-uniform hypergraph with αk(G)≤ s.
Suppose we are given an r-colouring of G. We will use the r-coloured hypergraph G to define
an r-partite r-uniform multi-hypergraph having the property that νk(H)≤ αk(G)≤ s and every
vertex in H with degree d corresponds to a monochromatic component in G with order d.

For all i ∈ [r], let Ci
1, . . . , Ci

ki be the components of G of colour i (note that a vertex which is
incident with no edges of colour i is itself a component of colour i). LetH be an r-partite r-uniform
multi-hypergraph with parts Ci = {Ci

1, . . . , Ci
ki} for all i ∈ [r] where {C1

j1 , . . . , C
r
jr } ∈ E(H) is
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6 D. Bal and L. DeBiasio

an edge of multiplicitym if and only if |⋂i∈[r] V(Ci
ji)| =m (inG); note that an edge of multiplicity

0 just means a non-edge. Note that V(G)= E(H) since every vertex in G is in exactly one com-
ponent of each colour. If there exists E1, E2, . . . , Ek ⊆ E(H) such that Ei ∩ Ej = ∅ for all distinct
i, j ∈ [k] and e1 ∩ e2 ∩ · · · ∩ ek = ∅ for all (e1, . . . , ek) ∈ E1 × · · · × Ek, then eG(E1, E2, . . . , Ek)= 0
because any such edge intersecting all of E1, . . . , Ek (in G) would violate e1 ∩ e2 ∩ · · · ∩ ek = ∅ (in
H). So we have νk(H)≤ αk(G)≤ s which by the assumption implies &(H)≥ t. Without loss of
generality, suppose dH(C1

1)= &(H)≥ t which means C1
1 is a component of colour 1 in G with at

least t vertices.
((ii)⇒(i)) Suppose that (ii) holds and let H be an r-partite r-uniform multi-hypergraph with

νk(H)≤ s and let the parts of H be labelled as Ci = {Ci
1, . . . , Ci

ki} for all i ∈ [r] (so we have
V(H)= ∪i∈[r]Ci). We will use the r-partite r-uniformmulti-hypergraphH to define an r-coloured
k-uniform hypergraph G having the property that αk(G)≤ νk(H)≤ s and where the components
of colour i in G correspond to the vertices Ci = {Ci

1, . . . , Ci
ki} in such a way that the order of the

component in G corresponding to Ci
ij is equal to the degree (in H) of Ci

ij .
Let G be an r-edge coloured k-uniform hypergraph with V(G)= E(H) where {e1, . . . , ek} ∈

E(G) and of colour i if and only if (e1 ∩ · · · ∩ ek)∩ Ci ̸= ∅ (in H); note that an edge of G may
receive multiple colours. Consider a component of colour i in G (the vertex set of which cor-
responds to a collection of edges in H). By the definition of connectivity in hypergraphs, these
edges of H must all pairwise intersect in Ci and since H is r-partite, they must pairwise inter-
sect in a single vertex Ci

ij of C
i (and in this way, we can say that there is a bijection between the

monochromatic components of G and the vertices ofH). Now, if E1, E2, . . . , Ek ⊆V(G) such that
eG(E1, E2, . . . , Ek)= 0, then

⋂
i∈[k] (

⋃
e∈Ei e)= ∅ (inH). So we have αk(G)≤ νk(H)≤ s, which by

the assumption implies thatG has a monochromatic component of order at least t. Without loss of
generality suppose this monochromatic component corresponds to C1

1 and thus by the comments
above, we have that C1

1 has degree at least t. !

2.1.2. Monochromatic components and independence number
For expository reasons and as a comparison to the result in the last subsection, we describe
Füredi’s classic example of the use of duality.

For a hypergraph H, let τ (H) denote the vertex cover number, let ν(H) denote the matching
number and let τ ∗(H) and ν∗(H) denote the respective fractional versions. Ryser conjectured
that for every r-partite (multi)hypergraph H, τ (H)≤ (r − 1)ν(H). Füredi [9] proved a fractional
version; that is, for every r-partite (multi)hypergraph H, τ ∗(H)≤ (r − 1)ν(H). Now since

n
&(H)

≤ ν∗(H)= τ ∗(H)≤ (r − 1)ν(H),

it follows that for every r-partite (multi)hypergraphH with n edges, &(H)≥ n
(r−1)ν(H) . In the dual

language, this says for every graph G on n vertices, mcr(G)≥ n
(r−1)α(G) .

2.2. Expansion
The purpose of this section is formalise what we mean when we say that k-uniform hypergraphs
with small k-partite hole number are ‘expansive’.

Let G be a k-uniform hypergraph G on n vertices and let S1, . . . , Sk−1 ⊆V(G). Define
N(S1, . . . , Sk−1)= {v : {v1, . . . , vk−1, v} ∈ E(G), vi ∈ Si for all i ∈ [k− 1]} and N+(S1, . . . , Sk−1)=
{v ∈V(G) \ (S1 ∪ · · · ∪ Sk−1) : {v1, . . . , vk−1, v} ∈ E(G), vi ∈ Si for all i ∈ [k− 1]}.

We say that a k-uniform hypergraph G on n vertices is a (p, q)-expander if for all sets
S1, . . . , Sk−1 ⊆V(G) with |Si| > p for all i ∈ [k− 1], we have |N(S1, . . . , Sk−1)| ≥ q.
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We say that a k-uniform hypergraph G on n vertices is a (p, q)-outer-expander if for all disjoint
sets S1, . . . , Sk−1 ⊆V(G) with |Si| > p for all i ∈ [k− 1], we have |N+(S1, . . . , Sk−1)| + |S1 ∪ · · · ∪
Sk−1| ≥ q.

Given a hypergraph G and an integer r ≥ 2, let α̂r(G) be the largest integer a such that there
exists (not-necessarily disjoint) sets V1, . . . ,Vr with |Vi| = a for all i ∈ [r] such that there are no
edges e such that e∩Vi ̸= ∅ for all i ∈ [r].

We first make an observation regarding the relationship between αk(G), α̂k(G), α(G). One
takeaway from this observation is that it would make very little difference in our results if we con-
sidered bounding α̂k(G) instead of αk(G). However, it is possible for α(G) to be small and αk(G)
to be large (the disjoint union of cliques of order n/k for instance), so it makes a big difference if
we were to consider bounding α(G) instead of αk(G).
Observation 2.2. For all k-uniform hypergraphs G,

⌊
α(G)
k

⌋
≤
⌊

α̂k(G)
k

⌋
≤ αk(G)≤ α̂k(G).

Proof. First note that if S is an independent set, then by letting V1 = · · · =Vk = S, we have
α̂k(G)≥ |S|. So α(G)≤ α̂k(G). Also we clearly have αk(G)≤ α̂k(G) since α̂k is computed over a
strictly larger domain than αk (all collections of sets vs. all collections of disjoint sets).

Now let V1, . . . ,Vk ⊆V(G) (not-necessarily-disjoint) be sets such that |V1| = · · · = |Vk|, and
there are no edges e such that e∩ Xi ̸= ∅. For all i ∈ [k], there existsV ′

i ⊆Vi with |V ′
i | ≥ ⌊ |Vi|

k ⌋ such
thatV ′

i ∩V ′
j = ∅ for all distinct i, j ∈ [k]. Since there are no edges which intersect all of V1, . . . ,Vk,

there are no edges which intersect all of V ′
1, . . . ,V ′

k and thus we have αk(G)≥ ⌊ α̂k(G)
k ⌋. !

We now make an observation which provides the relationship between small k-partite holes
and expansion.
Observation 2.3. Let G= (V , E) be a k-uniform hypergraph on n vertices.

(i) G is a (p, n− p)-expander if and only if α̂k(G)≤ p.
(ii) G is a (p, n− p)-outer-expander if and only if αk(G)≤ p.

Proof. (i) Let S1, . . . , Sk−1 ⊆V with |Si| > p for all i ∈ [k− 1]. If |N(S1, . . . , Sk−1)| < n− p, then
|V \N(S1, . . . , Sk−1)| > p and there are no edges touching all of S1, . . . , Sk−1,V \N(S1, . . . , Sk−1)
which implies α̂k(G)> p.

Now suppose G is a (p, n− p)-expander and let S1, . . . , Sk ⊆V with |Si| > p for all i ∈ [k].
Since |N(S1, . . . , Sk−1)| ≥ n− p, we have Sk ∩N(S1, . . . , Sk−1) ̸= ∅; that is, there is an edge which
touches all of S1, . . . , Sk and thus α̂k(G)≤ p.

(ii) Let S1, . . . , Sk−1 ⊆V be disjoint sets with |Si| > p for all i ∈ [k− 1]. If |N+(S1, . . . , Sk−1)| +
|S1 ∪ · · · ∪ Sk−1| < n− p, then |V \ (N+(S1, . . . , Sk−1)∪ (S1 ∪ · · · ∪ Sk−1))| > p and there are
no edges touching all of S1, . . . , Sk−1,V \ (N+(S1, . . . , Sk−1)∪ (S1 ∪ · · · ∪ Sk−1)) which implies
αk(G)> p.

Now suppose G is a (p, n− p)-outer-expander and let S1, . . . , Sk ⊆V be disjoint sets
with |Si| > p for all i ∈ [k]. Since |N+(S1, . . . , Sk−1)| + |S1 ∪ · · · ∪ Sk−1| ≥ n− p, we have Sk ∩
N+(S1, . . . , Sk−1) ̸= ∅; that is, there is an edge which touches all of S1, . . . , Sk and thus
αk(G)≤ p. !

3. Examples
The first example provides the upper bound in Theorem 1.3.(ii).
Observation 3.1. Let 2≤ r ≤ k. For all k-uniform hypergraphs G on n vertices, mcr(G)≤ n−
αr(G).
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8 D. Bal and L. DeBiasio

Proof. Let X1, . . . , Xr be disjoint sets which witness the value of αr(G); that is, disjoint sets with
|Xi| = αr(G) for all i ∈ [r] such that e(X1, . . . , Xr)= ∅. For all i ∈ [r], colour all edges not incident
with Xi with colour i (so edges may receive many colours). Since every edge misses some Xi, every
edge receives at least one colour. So every component of colour i avoids Xi and thus has order at
most n− αr(G). !

The next example provides the proof of Theorem 1.3.(iii) and Theorem 1.5.(ii).
Example 3.2. For all integers n≥ r ≥ 2 and 0≤ a≤ n/(r + 2), there exists a r-uniform hypergraph
G on n vertices with αr(G)= a such that mcr(G)≤ n− 2αr(G).
Proof. Let V be a set of order n and let {V0,V1, . . . ,Vr ,Vr+1} be a partition of V with |V0| =
n− (r + 1)a, |V1| = · · · = |Vr| = |Vr+1| = a. For j ∈ [r], define Xj =Vj ∪Vr+1 and Yj =V \Xj =
V0 ∪⋃i∈[r]\{j} Vi. Let G be an r-uniform hypergraph on V with edge set

⋃
j∈[r]

(Xj
r
)
∪
(Yj
r
)
. If e ∈

(Xj
r
)
∪
(Yj
r
)
colour e with j (so edges can receive more than one colour). Note that for all j ∈ [r], Xj,

and Yj form disjoint monochromatic components of colour j and thus the largest monochromatic
component has order max{n− 2a, 2a} = n− 2a as desired.

We now check that αr(G)= a. Note that V1, . . . ,Vr is an r-partite hole of size a. Suppose
U1, . . . ,Ur is an r-partite hole of size a+ 1. First note that for all j ∈ [r], there exists j ∈ [r] such
that Ui ⊆Xj. If not, then there exists j ∈ [r] such that every Ui intersects Yj, but since every r-set
in Yj is an edge, this is a contradiction. Also note that we cannot have Ui,Uj ⊆Xk for i ̸= j since
|Xk| = 2a< |Ui ∪Uj|. So without loss of generality, we may assume that for all j ∈ [r], Uj ⊆Xj. So
for all j ∈ [r], Uj intersects Vr+1 since |Uj| > |Vj|. But since every r-set in Vr+1 is an edge, this is a
contradiction. !

For expository reasons, we give the same example as above in the dual language.
Example 3.3. For all integers n≥ r ≥ 2 and a≥ 0 with a≤ n/(r + 2), there exists an r-uniform
hypergraph H on n vertices with νr(H)= a such that &(H)= n− 2νr(H).
Proof. Let H be an r-partite hypergraph with two vertices ui, vi in each part. Let {v1, . . . , vr} be
an edge of multiplicity a. For all i ∈ [r], let {u1, . . . , ui−1, vi, ui+1, . . . , ur} be an edge of multi-
plicity a. Finally, let {u1, . . . , ur} be an edge of multiplicity n− (r + 1)a. Note that every vertex
in {u1, . . . , ur} has degree n− 2a and every vertex in {v1, . . . , vn} has degree 2a, so &(H)=
max{n− 2a, 2a} = n− 2a as desired.

For i ∈ [r], let Fi be the multiset of a edges {u1, . . . , ui−1, vi, ui+1, . . . , ur}. Then the collec-
tion F1, . . . , Fr shows that νr(H)≥ a. Now suppose there is a non-cross intersecting collection
E1 . . . , Er with |Ei| = a+ 1 for all i ∈ [r]. For all j ∈ [r] there is some i ∈ [r] such that no element
of Ei contains uj. So without loss of generality, we may assume that for all j ∈ [r], no element
of Ej contains uj. But now each Ej must contain an edge of the form {v1, . . . , vr} since there
are only a edges of the form {u1, . . . , uj−1, vj, uj+1, . . . , ur}. Thus the sets E1, . . . , Er are in fact
cross-intersecting (in all of v1, . . . , vr), a contradiction. !

The next example provides the proof of Theorem 1.6(ii).
Example 3.4. For all r ≥ 2 and 1≤ a≤ n/k, there exists a k-uniform hypergraph G on n vertices
with αk(G)= a such that mcr(G)=mcr(Kk

n−a)<mcr(Kk
n).

Proof. Let G be a complete k-uniform hypergraph on n− a vertices together with a isolated
vertices. We have mcr(G)=mcr(Kk

n−a)<mcr(Kk
n). !

The next example provides the proof of Theorem 1.3.(i)(b). For instance when s= 3, t = 4,
this gives an example of a graph G with α2(G)= n

6 and a 2-colouring in which the largest
monochromatic component has order n

3 and thus mc2(G)≤ n
3 .
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Example 3.5. Let n≥ t ≥ s be positive integers such that st divides n. The (s, t)-grid on n vertices,
denoted Gn(s, t), is the graph obtained by partitioning [n] into st sets A11, . . . ,A1t , A21, . . . ,A2t ,
. . ., As1, . . . ,Ast , each of order n

st . For all i ∈ [s] let Ai1 ∪ · · · ∪Ait be a clique, and for all j ∈ [t] let
A1j ∪ · · · ∪Asj be a clique.

The natural 2-colouring of Gn(s, t) is defined by colouring all of the edges inside the ‘rows’ Ai1 ∪
· · · ∪Ait red and all of the edges inside the ‘columns’ A1j ∪ · · · ∪Asj blue (the edges inside the sets
Aij can be coloured with either colour).

We have α2(Gn(s, t))=min{ ⌈s/2⌉⌊t/2⌋
st n, ⌊s/2⌋⌈t/2⌉

st n} and the largest monochromatic component
in the natural colouring of Gn(s, t) has order n

s .
Proof. SetG := Gn(s, t) and take the natural 2-colouring ofG. The fact that the largest monochro-
matic component has order n

s is evident by the way the graph and its colouring is defined since
s≤ t. To see that α2(G)= ⌈s/2⌉⌊t/2⌋

st n, let X, Y ⊆V(G) be maximal disjoint sets witnessing the
value of α2(G); that is, min{|X|, |Y|} = α2(G) and e(X, Y)= 0. By the maximality of X, Y and the
structure of G, we have that if X ∩Aij ̸= ∅ then X ∩Aij =Aij and likewise Y ∩Aij ̸= ∅ implies
Y ∩Aij =Aij. Let I = {i ∈ [s] : X ∩Aij ̸= ∅ for some j ∈ [t]} and J = {j ∈ [t] : X ∩Aij ̸= ∅ for some
i ∈ [s]}. This implies that if Y ∩Aij ̸= ∅, then i ∈ [s] \ I and j ∈ [t] \ J. So we have |X| = |I||J|n

st and
|Y| = (s−|I|)(t−|J|)n

st and thus α2(G)=min{|X|, |Y|} is maximised when |I| = ⌈s/2⌉ and |J| = ⌊t/2⌋
(equivalently, |I| = ⌊s/2⌋ and |J| = ⌈t/2⌉). !

For random graphs G(n, p), it was shown in [2] and [8] that for p= ω(1)
n , we have w.h.p.,

mcr(G(n, p))≥
(

1
r−1 − o(1)

)
n and thus (whenever an affine plane of order r − 1 exists) we

have mcr(G(n, p))= (1− o(1))mcr(Kn). Analogously, for random hypergraphs it was shown
in [5] that for r ≥ 4 and p= ω(1)

nr−2 , we have w.h.p., mcr(Hr−1(n, p))≥ ( r−1
r − o(1))n and thus

mcr(Hr−1(n, p))= (1− o(1))mcr(Kr−1
n ).

The following observation shows that for sufficiently small p (but above the thresholds
mentioned above), we have mcr(G(n, p)) is bounded away from mcr(Kn) by a constant and
mcr(Hr−1(n, p)) is bounded away from mcr(Kr−1

n ) by a constant.
Observation 3.6. Let r and C be integers with r ≥ 2 and C ≥ 1.

(i) If an affine plane of order r − 1 exists, then for ω(1)
n = p< 1

2Cr(r−1)2 we have w.h.p.,
( 1
r − 1

− o(1)
)
n=mcr(G(n, p))≤

n
r − 1

− C.

(ii) If r ≥ 4, then for ω(1)
nr−2 = p= o(

√
n)

nr−2 we have w.h.p.,
( r − 1

r − o(1)
)
n=mcr(Hr−1(n, p))≤ r − 1

r n− C(r − 1).

Proof. (i) Note that p is small enough so that with high probability, G(n, p) has an independent
set X with Cr vertices such that |⋃v∈X N(v)| ≤ n−Cr

(r−1)2 . Partition X into r sets {X1, . . . , Xr} each
of order C and partition the vertices of V(G)− X into sets of size n−Cr

(r−1)2 , with one of those sets
containing

⋃
v∈X N(v), and colour the edges of G− X according to the affine plane colouring.

Now colour all edges incident with Xi with colour i for all i ∈ [r]. So every component of colour i
has order at most n−Cr

r−1 + C ≤ n
r−1 − C.

(ii) Note that p is small enough so that with high probability there exists an independent set X
of order Cr. Partition X into r sets {X1, . . . , Xr} each of order C and let Ei = {e : e∩ Xi ̸= ∅} for all
i ∈ [r]. Additionally, p is small enough so that with high probability for all i ∈ [r], |⋃e∈Ei e| ≤

n
r ,

and for all distinct i, j ∈ [r], all ei ∈ Ei, and all ej ∈ Ej, we have ei ∩ ej = ∅.
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10 D. Bal and L. DeBiasio

Let {A1, . . . ,Ar} be a partition of V(G) into sets which are as equally sized as possible having
the property that for all i ∈ [r],

⋃
e∈Ei e⊆Ai. Now for all i ∈ [r] colour the edges in Ei with colour

i. For all e ∈ E(G) \ ∪i∈[r]Ei, note that since |e| = r − 1, there exists i ∈ [r] such that e∩Ai = ∅ and
thus we assign any such colour i to the edge e. So we have that for all i ∈ [r], there is a component
of colour i containing Xi and having order at most n/r and there is a component colour i which
avoids X and Ai and thus has order at most r−1

r n− (r − 1)C. !
On the other hand, when p is sufficiently close to 1, the minimum degree of G(n, p) is close to

n and the results of [10] apply to give mcr(G(n, p))=mcr(Kn). Likewise when p is sufficiently
close to 1, the minimum co-degree of Hr−1(n, p) is close to n and the results of [3] apply to
give mcr(Hr−1(n, p))=mcr(Kr−1

n ). This observation together with Observation 3.6 leads us to
the following problem.
Problem 3.7. Determine the smallest p such that mcr(G(n, p))=mcr(Kn), and for all r ≥ 4,
determine the smallest p such that mcr(Hr−1(n, p))=mcr(Kr−1

n ).

4. Main results in the dual language
All of the results of this section are of the type ‘For all k, r there exists ck,r , dk,r such that if G is
a k-uniform hypergraph on n vertices with αk(G)< ck,rn, then mcr(G)≥mcr(Kk

n)− dk,rαk(G)’;
however we prove these statements in the equivalent dual form ‘For all k, r there exists ck,r , dk,r >
0 such that if H is an r-partite r-uniform multihypergraph with n edges and νk(H)< ck,r , then
&(H)≥mcr(Kk

n)− dk,rνk(G)’.
Theorem 4.1 (Dual of Theorem 1.3(i)(a)). Let H be a bipartite multigraph with n edges. If ν2(H)<
n/6, then &(H)≥ n− 2ν2(H).
Theorem 4.2 (Dual of Theorem 1.4(i)). Let H be an 3-partite 3-uniform multi-hypergraph with n
edges. If ν2(H)≤ n

39 , then &(H)≥ n
2 − 2ν2(H).

Theorem 4.3 (Dual of Theorem 1.5(i)). Let r ≥ 3 and let H be an r-partite r-uniform hypergraph
with n edges. If νr(H)≤ n

3(
r+1
2 )+r

, then &(H)≥ n− (r − 1)νr(H).

Theorem 4.4 (Dual of Theorem 1.6(i)). Let r ≥ 3 and let H be an r-partite r-uniform hypergraph
with n edges. If νr−1(H)≤ n

3(
r+1
2 )+r

, then &(H)≥ (r−1)n
r −

(r
2
)
νr−1(H).

4.1. General lemmas
In this section we collect a number of general lemmas. We begin with an elementary lemma that
will be used throughout the proofs in this section. This lemma basically says that if we have a
collection of edge sets in an r-partite r-uniform hypergraph, then for any part Vi of the partition,
either there is a vertex in Vi which is incident with a large number of edges from each set, or else
there is a large subset of each edge set which does not cross-intersect in Vi.
Lemma 4.5. Let ν, ℓ, a1, . . . , aℓ be positive integers. Let H be an r-partite r-uniform multi-
hypergraph with parts V1, . . . ,Vr and let F1, . . . , Fℓ ⊆ E(H) such that |F1| ≥ 3a1ν + 1 and |Fj| ≥
2ajν + 1 for all j ∈ [2, ℓ]. For all i ∈ [r], either

(B1) there exists u ∈Vi such that for all j ∈ [ℓ], u is incident with at least |Fj| − ajν edges of Fj, or
(B2) there exists a subset F′

1 ⊆ F1 with |F′
1| ≥ a1ν + 1 and a subset F′

j ⊆ Fj for some j ∈ [2, ℓ] with
|F′

j | ≥ ajν + 1 such that F′
1, F2 . . . , Fj−1, F′

j , Fj+1, . . . , Fℓ is not cross-intersecting in Vi.
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Proof. Let i ∈ [r] and suppose (B1) doesn’t hold. If there exists u ∈Vi such that u is incident
with at least |F1| − a1ν edges from F1, then by the assumption, there exists j ∈ [2, ℓ] such that u
is incident with at most |Fj| − ajν − 1 edges of Fj and thus at least ajν + 1 edges of Fj intersect
Vi − u and thus (B2) is satisfied.

So suppose that every u ∈Vi is incident with at most |F1| − a1ν − 1 edges of F1. Let V1
i ⊆Vi

be a minimal set of vertices incident with at least a1ν + 1 edges of F1. By minimality, and the fact
that every u ∈Vi is incident with at most |F1| − a1ν − 1 edges of F1, we have that both V1

i and
V2
i := Vi \V1

i are incident with at least a1ν + 1 edges of F1. Now either V1
i or V2

i is incident with
at least ⌊|F2|/2⌋ ≥ a2ν + 1 edges of F2, and either way (B2) is satisfied. !

A simpler version of the above lemma which suffices whenever we don’t care about the exact
bounds is as follows.
Lemma 4.6. Let ν, ℓ, a1, . . . , aℓ be positive integers. Let H be an r-partite r-uniform multi-
hypergraph with parts V1, . . . ,Vr, and let F1, . . . , Fℓ ⊆ E(H) such that |Fj| ≥ 3ajν + 1 for all j ∈ [ℓ].
For all i ∈ [r], either

(B1′) there exists u ∈Vi such that for all j ∈ [ℓ], u is incident with at least |Fj| − ajν edges of Fj, or
(B2′) for all j ∈ [ℓ] there exists a subset F′

j ⊆ Fj with |F′
j | ≥ ajν + 1 such that F′

1, . . . , F′
ℓ is not cross-

intersecting in Vi.

The following observation explicitly gives a relationship between νs and νt for s≤ t.
Observation 4.7. Let 2≤ s< t ≤ r and let H be an r-partite r-uniformmulti-hypergraph on n edges.
If νt(H)≤ n

t − 1, then νs(H)≤ νt(H).
Proof. Suppose νt(H)≤ n

t − 1 and suppose for contradiction that νs(H)> νt(H). So there exists
disjoint sets E1, . . . , Es with |Ei| = νt(H)+ 1 for all i ∈ [s] such that E1, . . . , Es is not cross-
intersecting. Since νt(H)≤ n

t − 1, we have |Ei| ≤ n
t for all i ∈ [s] and thus |E(H) \ (E1 ∪ · · · ∪

Es)| ≥ n− s nt = (t − s)nt and thus there is a partition of E(H) \ (E1 ∪ · · · ∪ Es) into t − s sets
Es+1, . . . , Et each of order greater than νt(H) such that E1, . . . , Es, Es+1, . . . , Et is not cross-
intersecting. !

We now show that ifH is an r-partite r-uniformmulti-hypergraph on n edges with νs(H) small
enough in terms of n and r, then there must be a vertex of fairly large degree.
Lemma 4.8. Let &, r, s be positive integers with 2≤ s≤ r. Let H be an r-partite r-uniform multi-
hypergraph with n edges and set ν := νs(H). If ν ≤ n

3r& , then &(H)≥ &ν + 1.
Proof. Suppose ν ≤ n

3r& and suppose for contradiction that &(H)≤ &ν. Note that by
Observation 4.7 we have ν2(H)≤ ν ≤ n

3r& .
Let V1, . . . ,Vr be the parts of H. Let V ′

1 ⊆V1 be a minimum set of vertices incident with at
least 3r−1&ν + 1 edges. By minimality, we have

3r−1&ν + 1≤ e(V ′
1)≤ 3r−1&ν + &ν

and consequently, since ν ≤ n
3r& , we have

e(V1 \V ′
1)= n− e(V ′

1)≥ n− 3r−1&ν − &ν > n− 3r−1&ν − 3r−1&ν ≥ 3r−1&ν.

Let F11 and F12 be the sets of edges incident with V ′
1 and V1 \V ′

1 respectively. Now we apply
Lemma 4.6 (with a1 = a2 = 3r−2& and i= 2), and since we are assuming &(H)≤ &ν, (B2′) must
happen. Now we have sets F21 ⊆ F11 and F22 ⊆ F12 such that |F21|, |F22| ≥ 3r−2&ν + 1 and F21 and
F22 are not cross-intersecting in V1 ∪V2. Now we repeatedly apply Lemma 4.6 until we have
sets Fr−1

1 and Fr−1
2 with |Fr−1

1 |, |Fr−1
2 | ≥ 3&ν + 1 and Fr−1

1 and Fr−1
2 are not cross-intersecting

in V1 ∪ · · · ∪Vr−1. In the final step (where we apply Lemma 4.6 with a1 = a2 = & and i= r),
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12 D. Bal and L. DeBiasio

either (B2′) happens and we have a contradiction to ν2(H)≤ ν, or (B1′) happens and we have
&(H)≥ &ν + 1, contradicting the assumption. !

For the last result in this subsection we show that if there is a vertex of fairly large degree, then
either we have an edge of multiplicity at least ν + 1 or there is a vertex of even larger degree.
Lemma 4.9. Let r be an integer with r ≥ 3 and let s ∈ {2, r − 1, r}. Let H be an r-partite r-uniform
multi-hypergraph with n edges and set ν := νs(H). If ν ≤ n

2r and &(H)≥ 3(
r+1
2 )ν + 1, then either H

has an edge of multiplicity at least ν + 1 or

(i) if s= 2, then &(H)≥ n−2ν
r−1 .

(ii) if s= r, then &(H)≥ n− 2ν.
(iii) if s= r − 1≥ 3, then &(H)≥ (r−1)n

r − 2(r − 1)ν.

Proof. LetV1, . . . ,Vr be the parts ofH. For a setU ⊆V(H), let d(U) denote the number of edges,
counting multiplicity, which contain U (i.e. d(U) is the degree of U). Note that since H is r-
partite, d(U)> 0 implies that U contains at most one vertex from each part Vi. Let U ⊆V(H) be
maximum such that d(U)≥ 3(

r+2−|U|
2 )ν + 1 and note that U ̸= ∅ by the degree condition. Without

loss of generality, suppose U = {u1, . . . , uℓ} with ui ∈Vi for all i ∈ [ℓ] and let E be the set of edges
containing U. If ℓ = r, we have an edge of multiplicity at least 3ν + 1≥ ν + 1 and we are done; so
suppose 1≤ ℓ ≤ r − 1.
Case (i) (s= 2). Let F = {f ∈ E(H) : f ∩U = ∅}. If |F| ≤ (r−1−ℓ)n+2ℓν

r−1 , then for some i ∈ [ℓ],

d(ui)≥
n− (r−1−ℓ)n+2ℓν

r−1
ℓ

= n− 2ν
r − 1

and we are done; so suppose |F| > (r−1−ℓ)n+2ℓν
r−1 ≥ 2r−ℓν (where the last inequality holds since

ν ≤ n
2r ) and thus we have |F| ≥ 2r−ℓν + 1.

Applying Lemma 4.5 at most r − ℓ times with E, F and using the fact that ν2(H)≤ ν, it must be
the case that (B1) holds within r − ℓ steps and we obtain a vertex which is incident with at least
3(

r+2−ℓ
2 )−1

3r−ℓ ν + 1= 3(
r+2−(ℓ+1)

2 )ν + 1 edges of E contradicting the maximality of U.
Case (ii) and (iii) (r − 1≤ s≤ r).

Since |E| = d(U)≥ 3(
r+2−ℓ

2 ) ≥ 2(3(
r+2−ℓ

2 )−1ν + 1), we can choose disjoint subsets E1 and E2 of
E, each with at least 3(

r+2−ℓ
2 )−1ν + 1 edges. Applying Lemma 4.6 at most r − ℓ times with E1, E2,

we will either find a vertex which is contained in at least 3(
r+2−ℓ

2 )−1

3r−ℓ ν + 1= 3(
r+2−(ℓ+1)

2 )ν + 1 edges
from both E1 and E2, which would violate the maximality ofU, or else we will get sets E′

1 ⊆ E1 and
E′
2 ⊆ E2 with

|E′
1|, |E′

2| ≥ 3(
r+1−ℓ

2 )ν + 1≥ 3ν + 1 such that for all e1 ∈ E′
1, e2 ∈ E′

2, e1 ∩ e2 =U (1)

(where the last inequality holds since ℓ ≤ r − 1).
Case (ii) (s= r). We have the desired degree condition unless for all i ∈ [ℓ], the set Fi of edges

which avoids ui has order at least 2ν + 1. If ℓ ≤ r − 2, then E′
1, E′

2, F1, . . . , Fℓ is a collection of
ℓ + 2≤ r sets each of order at least ν + 1 which are not cross intersecting, violating the bound on
νr(H).

So suppose ℓ = r − 1. Applying Lemma 4.5 with E, F1, . . . , Fℓ and using the fact that ℓ + 1≤ r
and νr(H)≤ ν, it must be the case that (B1) holds and we obtain a vertex which is incident with at
least 3ν + 1; that is, an edge of multiplicity at least ν + 1.

Case (iii) (s= r − 1≥ 3). We have the desired degree condition unless for all i ∈ [ℓ], the set Fi
of edges which avoids ui has order at least n

r + 2(r − 1)ν + 1. If ℓ ≤ r − 3, then E′
1, E′

2, F1, . . . , Fℓ is
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a family of ℓ + 2≤ r − 1 sets of at least ν + 1 edges each which are not cross intersecting and thus
νr−1(H)≥ νℓ+2(H)≥ ν + 1, contradicting the assumption. If ℓ = r − 2, then applying Lemma 4.5
at most twice with E, F1, . . . , Fℓ and using the fact that ℓ + 1≤ r − 1 and νr−1(H)≤ ν, it must be
the case that (B1) holds within two steps and we obtain a vertex which is incident with at least
3(

4
2)−1

32 ν + 1= 33ν + 1 edges of E contradicting the maximality of U.
So finally suppose ℓ = r − 1. If there exists distinct i, j ∈ [r − 1] such that |Fi ∩ Fj| ≥ 2ν + 1,

without loss of generality say |Fr−2 ∩ Fr−1| ≥ 2ν + 1, then we apply Lemma 4.5 with
E, F1, . . . , Fr−3, Fr−2 ∩ Fr−1 and since (B2) can’t happen, we have (B1) which gives us an
edge of multiplicity at least ν + 1. So suppose |Fi ∩ Fj| ≤ 2ν for all distinct i, j ∈ [r − 1]. For
all i ∈ [r − 1], let F∗

i = Fi \ (
⋃

j∈[r−1]\{i} Fj) and note that by the previous sentence and the
bound on |Fi|, we have |F∗

i | ≥ |Fi| − 2(r − 2)ν ≥ n
r + 2ν + 1. Note that F∗

1 , . . . , F∗
r−1 must be

cross-intersecting and by the way the sets are defined, the cross-intersection must happen
in Vr . Now applying Lemma 4.5 with F∗

1 , . . . , F∗
r−1, we get a vertex in Vr which is adjacent

with at least |F∗
i | − ν ≥ n

r edges from each of F∗
1 , . . . , F∗

r−1 giving us a vertex of degree at least
r−1
r n≥ r−1

r n− 2(r − 1)ν as desired. !

4.2. Theorem 4.1 and Theorem 4.2
Lemma 4.10. Let r ≥ 2 and let H be an r-partite multi-hypergraph with n edges and set ν := ν2(H).
If H has an edge e= {u1, . . . , ur} of multiplicity at least ν + 1, then

(i) there are at least n− ν edges incident with e,
(ii) for all e′ ⊆ e with 1≤ |e′| ≤ r − 1, either the number of edges incident with every vertex in e′

and no vertex in e \ e′ is at most ν, or the number of edges incident with every vertex in e \ e′
and no vertex in e′ is at most ν, and

(iii) either&(H)≥ n
r−1 − 2ν, or for all e′ ⊆ e with 1≤ |e′| ≤ r − 1, there are at least (r−1−|e′|)n

r−1 +
(2|e′| − 1)ν + 1 edges incident with e \ e′ but not e′.

Proof. Note that (i) and (ii) just follow from the condition on ν2(H). To see (iii), let e′ ⊆ e with
1≤ |e′| =: t ≤ r − 1. If the number of edges incident with e′ is at least tn

r−1 − 2tν, then some u ∈ e′
satisfies d(u)≥ n

r−1 − 2ν and we are done. So suppose that e′ is incident with fewer than tn
r−1 − 2tν

edges, which means there are at least

n− ν −
( tn
r − 1

− 2tν
)

+ 1= (r − 1− t)n
r − 1

+ (2t − 1)ν + 1

edges which are incident with e \ e′ but not e′. !
Now we prove that if H is a bipartite multigraph with n edges and ν2(H)< n/6, then &(H)≥

n− 2ν2(H).
Proof of Theorem 4.1. Let V1,V2 be the parts of H and set ν := ν2(H)< n/6.
Case 1 (There exists an edge u1u2 of multiplicity at least ν + 1). By Lemma 4.10(i) and (ii), there
are at least n− ν edges incident with {u1, u2} and without loss of generality, there are at most ν
edges which are incident with u2 but not u1. Thus there are at least n− 2ν edges incident with u1;
that is, &(H)≥ n− 2ν.
Case 2 (Every edge has multiplicity at most ν). Suppose first that there exists u1 ∈V1, u2 ∈V2 so
that d(u1), d(u2)≥ 2ν + 1. Since u1u2 has multiplicity at most ν, there are at least ν + 1 edges
incident with u1 but not u2 and at least ν + 1 edges incident with u2 but not u1, a violation of the
fact that ν2(H)≤ ν. So suppose without loss of generality that

d(u)≤ 2ν for all u ∈V2. (2)
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14 D. Bal and L. DeBiasio

Now let V ′
2 ⊆V2 be minimal such that e(V ′

2,V1)≥ 2ν + 1. By (2) and minimality, we have
2ν + 1≤ e(V ′

2,V1)≤ 4ν. Since 6ν < n, we also have e(V2 \V ′
2,V1)= n− e(V ′

2,V1)≥ 2ν + 1.
Furthermore, by pigeonhole and the fact that 6ν < n, we have either e(V ′

2,V1)≥ 3ν + 1 or
e(V2 \V ′

2,V1)≥ 3ν + 1. So by applying Lemma 4.5 (with a1 = a2 = 1, i= 1, F1 = E(V ′
2,V1), and

F2 = E(V2 \V ′
2,V1)), we either have (B2) (that is, there exists F′

1 ⊆ F1 with |F′
1| ≥ ν + 1 and

F′
2 ⊆ F2 with |F′

2| ≥ ν + 1 such that F′
1 and F′

2 are not cross intersecting in V1) which violates
the fact that ν2(H)≤ ν, or (B1) which implies that there exists a vertex in V1 which is incident
with at least |F1| + |F2| − 2ν = n− 2ν edges; that is, &(H)≥ n− 2ν. !
Proposition 4.11. Let H be an 3-partite 3-uniform multi-hypergraph with n edges and set ν :=
ν2(H). If H has an edge of multiplicity at least ν + 1, then &(H)≥ n

2 − 2ν.
Proof. Let e= {u1, u2, u3} be an edge of multiplicity at least ν + 1. For all distinct i, j, k ∈ [3], let Ei
be the set of edges incident with ui and let E′

i = Ei \ (Ej ∪ Ek). By Lemma 4.10.(iii) we have |(E1 ∪
E2) \ E3| ≥ n

2 + ν + 1 and for all i ∈ [3], |E′
i| ≥ 3ν + 1. So by Lemma 4.10.(ii), |(E1 ∩ E2) \ E3| ≤ ν.

Thus |E′
1| + |E′

2| ≥ n
2 + 1. Now applying Lemma 4.6 with E′

1 and E′
2, we can’t have (B2′), thus (B1′)

holds and we have a vertex in V3 which is incident with more than n
2 − 2ν edges. !

Now we prove that if H is a 3-partite 3-uniform multi-hypergraph with n edges and ν2(H)≤
n
39 = n

19683 , then &(H)≥ n
2 − 2ν2(H).

Proof of Theorem 4.2. Set ν := ν2(H). By Lemma 4.8 (with & = 729= 36), we have &(H)≥
729ν + 1= 3(

3+1
2 )ν + 1. Now by Lemma 4.9, we are done or we have an edge of multiplicity at

least ν + 1 in which case we are done by Proposition 4.11. !
In this subsection we solved Problem 1.2 in the case k= 2 and 2≤ r ≤ 3. Because of Lemma 4.8

and Lemma 4.9, in order to solve Problem 1.2 in the case k= 2 and r ≥ 4 it suffices to prove the
following generalisation of Proposition 4.11.
Conjecture 4.12. Let r ≥ 4 and let H be an r-partite r-uniform multi-hypergraph with n edges and
set ν := ν2(H). There exists dr > 0 such that if H has an edge of multiplicity at least ν + 1, then
&(H)≥ n

r−1 − drν.
The following is essentially a much weaker version of the previous conjecture.

Proposition 4.13. Let r ≥ 4 and let H be an r-partite r-uniform multi-hypergraph with n edges. If
ν2(H)≤ n

3(
r+1
2 )+r

, then &(H)≥ n−ν2(H)
r .

Proof. Set ν := ν2(H). By Lemma 4.8 we have &(H)≥ 3(
r+1
2 )ν + 1. Now by Lemma 4.9, we are

done or we have an edge e of multiplicity at least ν + 1. Thus by Lemma 4.10.(i), we have n− ν
edges incident with e so, by averaging, one of these vertices has degree at least n−ν

r . !

4.3. Theorem 4.3
Proposition 4.14. Let r ≥ 3 and let H be an r-partite r-uniform hypergraph with n edges and set
ν := νr(H). If H has an edge of multiplicity at least ν + 1, then &(H)≥ n− (r − 1)ν.
Proof. Assume there exists an edge e= {u1, . . . , ur} of multiplicity at least ν + 1. For all i ∈ [r], let
Fi be the set of edges which avoid ui. If |Fi| ≤ (r − 1)ν for some i ∈ [r], then d(ui)≥ n− (r − 1)ν
and we are done; so suppose |Fi| ≥ (r − 1)ν + 1 for all i ∈ [r].
Claim 4.15. For all distinct i, j ∈ [r], |Fi ∩ Fj| ≤ ν.
Proof. Suppose for contradiction that |Fi ∩ Fj| ≥ ν + 1 for some distinct i, j ∈ [r] and without
loss of generality suppose {i, j} = [2]. Now e, F1 ∩ F2, F3, . . . , Fr is a collection of r sets violating
νr(H)≤ ν. !
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Now for all i ∈ [r − 1], let F′
i = Fi \

⋃
j∈[r]\{i,i+1} Fj and let F′

r = Fr \⋃j∈[r]\{r,1} Fj. Note that
by Claim 4.15 we have that for all i ∈ [r], |F′

i| ≥ (r − 1)ν + 1− (r − 2)ν = ν + 1. Furthermore, by
construction, we have F′

i ∩ F′
j = ∅ for all distinct i, j ∈ [r]. So we have r disjoint sets F′

1, . . . , Fr ′
each of order at least ν + 1 which are not cross intersecting, violating the assumption. Indeed, let
ei ∈ F′

i for all i ∈ [r] and suppose for contradiction that
⋂

i∈[r] ei ̸= ∅. Let u ∈⋂i∈[r] ei and suppose
without loss of generality that u ∈V1. We cannot have u= u1 since e1 ∈ F′

1 ⊆ F1 misses the vertex
u1, but also we cannot have u ̸= u1 since e2 ∈ F′

2 and F′
2 ∩ F1 = ∅ and thus e2 touches u1. !

Now we prove that if r ≥ 3 and H is an r-partite r-uniform hypergraph with n edges and
νr(H)≤ n

3(
r+1
2 )+r

, then &(H)≥ n− (r − 1)νr(H).

Proof of Theorem 4.3. Set ν := νr(H). By applying Lemma 4.8 with & = 3(
r+1
2 ), we have &(H)≥

3(
r+1
2 )ν + 1. Now by Lemma 4.9, we are done or we have an edge of multiplicity at least ν + 1 in

which case we are done by Proposition 4.14. !

4.4. Theorem 4.4
Proposition 4.16. Let r ≥ 4 and let H be an r-partite multi-hypergraph with n edges and set ν :=
νr−1(H). If H has an edge of multiplicity at least ν + 1, then &(H)≥ r−1

r n−
(r
2
)
ν.

Proof. Assume there exists an edge e= {u1, . . . , ur} of multiplicity at least ν + 1. For all i ∈ [r], let
Fi be the set of edges which avoid ui. If |Fi| ≤ n

r +
(r
2
)
ν for some i ∈ [r], then &(H)≥ r−1

r n−
(r
2
)
ν

and we are done; so suppose |Fi| > n
r +

(r
2
)
ν ≥ (r − 1)ν + 1 for all i ∈ [r]. Let F = F1 ∪ · · · ∪ Fr .

Claim 4.17. For all distinct h, i, j ∈ [r], |Fh ∩ Fi ∩ Fj| ≤ ν.
Proof. Suppose for contradiction that |Fh ∩ Fi ∩ Fj| ≥ ν + 1 for some distinct h, i, j ∈ [r] andwith-
out loss of generality suppose {h, i, j} = [3]. Now e, F1 ∩ F2 ∩ F3, F4, . . . , Fr is a collection of r − 1
sets violating νr−1(H)≤ ν. !
Claim 4.18. For all distinct h, i, j, k ∈ [r], |Fh ∩ Fi| ≤ ν or |Fj ∩ Fk| ≤ ν.
Proof. Suppose for contradiction that |Fh ∩ Fi| ≥ ν + 1 and |Fj ∩ Fk| ≥ ν + 1 for some dis-
tinct h, i, j, k ∈ [r] and without loss of generality suppose {h, i, j, k} = [4]. Now e, F1 ∩ F2, F3 ∩
F4, F5, . . . , Fr is a collection of r − 1 sets violating νr−1(H)≤ ν. !

For all S⊆ [r], let (∩i∈SFi)∗ = (∩i∈SFi) \
(
∪j∈[r]\SFj

)
. In other words (∩i∈SFi)∗ is the collection

of elements which are in all of the sets Fi, i ∈ S, but none of the other sets Fj, j ∈ [r] \ S.
Claim 4.19. For all distinct h, i, j ∈ [r], |(Fh ∩ Fi)∗| ≤ ν or |F∗

j | ≤ ν.

Proof. Suppose for contradiction that |(Fh ∩ Fi)∗| ≥ ν + 1 and |F∗
j | ≥ ν + 1 for some dis-

tinct h, i, j ∈ [r] and without loss of generality suppose {h, i, j} = [3]. Now the sets (F1 ∩
F2)∗, F∗

3 , F4, . . . , Fr is a collection of r − 1 sets violating νr−1(H)≤ ν. !
Since |Fi| > n

r +
(r
2
)
ν for all i ∈ [r], inclusion-exclusion implies that |Fi ∩ Fj| ≥ (r − 1)ν + 1

for some distinct i, j ∈ [r]; without loss of generality, say i= r − 1 and j= r. Furthermore, by
Claim 4.17 we must have that |(Fr−1 ∩ Fr)∗| ≥ ν + 1. Thus by Claim 4.18, we have that for all
distinct i, j ∈ [r − 2], |Fi ∩ Fj| ≤ ν, and by Claim 4.19 we have that for all i ∈ [r − 2], |F∗

i | ≤ ν.
So for all i ∈ [r − 2], we have |Fi \ (F \ Fi)| ≤ ν, |Fi ∩ Fr−1 ∩ Fr| ≤ ν, and for all j ∈ [r − 2] \ {i},

|Fi ∩ Fj| ≤ ν, thus

|Fi ∩ Fr−1| + |Fi ∩ Fr| ≥ |Fi| − (r − 1)ν ≥ n
r +

(r
2

)
ν − (r − 1)ν ≥ n

r + 2ν.
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16 D. Bal and L. DeBiasio

Let i ∈ [r − 2]. Without loss of generality, suppose |Fi ∩ Fr| ≥ 1
2 (|Fi ∩ Fr−1| + |Fi ∩ Fr|)≥ n

2r +
ν > ν. Thus by Claim 4.18 we have that for all j ∈ [r − 2] \ {i}, |Fj ∩ Fr−1| ≤ ν which in turn implies
that for all i ∈ [r − 2], |(Fi ∩ Fr)∗| ≥ |Fi| − rν > n

r + ν. By Claim 4.19 this implies that |F∗
r−1| ≤ ν.

Thus |(Fr−1 ∩ Fr) \ (F1 ∪ · · · ∪ Fr−2)| ≥ |Fr−1| − ν − (r − 2)ν ≥ n
r + ν. Now we have a collection

of r − 1 sets, (F1 ∩ Fr)∗, . . . , (Fr−2 ∩ Fr)∗, (Fr−1 ∩ Fr)∗ all with more than n
r + ν elements. Now

applying Lemma 4.6 (with a1 = · · · = ar−1 = 1) to the collection of r − 1 sets, we cannot have
(B2′) by the bound on νr−1(H), so we must have (B1′) which gives us a vertex in Vr \ {ur} with
degree at least (r − 1)((nr + ν)− ν)= r−1

r n. !
Now we prove that if r ≥ 3 and H is an r-partite r-uniform hypergraph with n edges and

νr−1(H)≤ n
3(

r+1
2 )+r

, then &(H)≥ (r−1)n
r −

(r
2
)
νr−1(H).

Proof of Theorem 4.4. Set ν := νr−1(H). By Lemma 4.8 (with & = 3(
r+1
2 )), we have &(H)≥

3(
r+1
2 )ν + 1. Now by Lemma 4.9 we are done, or we have an edge of multiplicity at least ν + 1

in which case we are done by Proposition 4.16. !

5. Conclusion
We were able to solve Problem 1.2 in all cases corresponding to Theorem 1.1 except when k= 2
and r ≥ 4. However because of Lemma 4.8 and Lemma 4.9, in order to solve the case k= 2 and
r ≥ 4 it suffices to prove Conjecture 4.12. It would be very interesting to prove Conjecture 4.12
even in the case k= 4.

Another possible direction for further study involves replacing large monochromatic compo-
nents with long monochromatic paths. Letzter [16] showed that in every 2-colouring of G(n, p)
with p= ω(1)

n , there is w.h.p., a monochromatic cycle (path) of order at least (2/3− o(1))n.
Bennett, DeBiasio, Dudek, and English [5] generalised this result showing that if p= ω(1)

nk−1 , then
a.a.s. there is a monochromatic loose-cycle (loose-path) of order at least ( 2k−2

2k−1 − o(1))n in every
2-colouring of Hk(n, p). Both of those results use sparse regularity and implicitly only use the fact
αk(H)= o(n), so we can retroactively rephrase their result as follows.
Theorem 5.1 (Bennett, DeBiasio, Dudek, and English [5]). If H is a k-uniform hypergraph on n
vertices with αk(H)= o(n), then in every 2-colouring of the edges of H, there exists a monochromatic
loose-cycle (loose-path) of order at least ( 2k−2

2k−1 − o(1))n.
The idea is that it would be nice to extend the above theorem to hold when αk(G) can be

considerably larger (especially in the case k= 2).
There are two results in the literature which implicitly broach this subject. Balogh, Barát,

Gerbner, Gyárfás, Sárközy [4] proved that in every 2-colouring of the edges of a graph G on n ver-
tices there exist two vertex disjoint monochromatic paths covering at least n− 1000(50α2(G))α2(G)
vertices. Letzter [16] implicitly proved that in every 2-colouring of every graph G on n vertices
there is a monochromatic path of order at least n

2 − 2α2(G).
So a particular case of the general problem we are interested in is the following.

Problem 5.2. Given n sufficiently large, determine the largest value of α such that if G is a graph
on n vertices with α2(G)≤ α, then in every 2-colouring of G there is a monochromatic path of order
greater than n/2.

Finally, we mention that the best upper bounds on the size-Ramsey number of a path come
from random d-regular graphs G(n, d) (see [7]). An upper bound on mc2(G(n, d)) would give an
upper bound on the longest monochromatic path. However, determining an upper bound on the
largest monochromatic component in an arbitrary 2-colouring of G(n, d) for small d falls outside
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the purview of this paper (partly since α2 can be large in this case). So we raise the following
problem.
Problem 5.3. Determine bounds on mc2(G(n, d)) for d ≥ 5. More generally, determine bounds on
mcr(G(n, d)) for d ≥ 2r + 1.

Note that a result of Anastos and Bal [1] implies that mcr(G(n, d))= o(n) when d ≤ 2r.
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