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Abstract

A result of Gydrfés [12] exactly determines the size of a largest monochromatic component in an arbitrary
r-colouring of the complete k-uniform hypergraph K* when k > 2 and k € {r — 1, r}. We prove a result
which says that if one replaces K* in Gyarfas® theorem by any ‘expansive’ k-uniform hypergraph on n
vertices (that is, a k-uniform hypergraph G on n vertices in which e(V,, ..., V,) > 0 for all disjoint sets
Vi,..., Vi € V(G) with |V;| > « for all i € [k]), then one gets a largest monochromatic component of
essentially the same size (within a small error term depending on r and «). As corollaries we recover a
number of known results about large monochromatic components in random hypergraphs and random
Steiner triple systems, often with drastically improved bounds on the error terms.

Gyarfas’ result is equivalent to the dual problem of determining the smallest possible maximum degree of
an arbitrary r-partite r-uniform hypergraph H with n edges in which every set of k edges has a common
intersection. In this language, our result says that if one replaces the condition that every set of k edges
has a common intersection with the condition that for every collection of k disjoint sets E,, . . . , E, € E(H)
with |E;| > «, there exists (e, . . ., €;) € E; X - - - X E; such thate, N - - - N ¢ # @, then the smallest possible
maximum degree of H is essentially the same (within a small error term depending on r and ). We prove
our results in this dual setting.
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1. Introduction

We say that a hypergraph G is connected if the 2-shadow of G is connected (the 2-shadow of
G is the graph on vertex set V(G) and edge set {e € (V(ZG)) :3f € E(G), e S f}). A component in
a hypergraph is a maximal connected subgraph. Given a hypergraph G and a positive integer
1, let mc,(G) be the largest integer ¢ such that every r-colouring of the edges of G contains a
monochromatic component of order at least ¢. Let K,’j denote the complete k-uniform hypergraph
on n vertices (and K, = K2 as usual). A well-studied problem has been determining the value of
mc,(KX); however, this problem is still open for most values of r and k. On the other hand, Gyérfés
proved the following well-known results.
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Theorem 1.1 (Gyarfas [12]).

(i) For all n>r>2, mc,(K,) > r_il This is best possible when (r — 1)2 divides n and there
exists an affine plane of order r — 1.
(ii) Foralln>r>2, mc,(K})=n.

(iii) Foralln>r> 4, mcr(K;_l) > @ This is best possible for all such r and n.

A natural question which has received attention lately has been to determine conditions
under which a k-uniform hypergraph G on » vertices satisfies mc,(G) = mc,(Kﬁ) or mc,(G) >
1- o(l))mcr(KL‘); or, if this is too restrictive, determining the value of mc,(G) in terms of some
natural parameters of G.

Perhaps the first such result is due to Fiiredi [9] who proved that for all graphs G on n ver-
tices, mc,(G) > m, which is best possible when an affine plane of order r — 1 exists (see
Section 2.1.2 for more details). But note that the value of mc,(G) is far from mc,(K;) in this
case. In a sense that will be made precise in the coming pages, our paper is essentially a variant
of Fiiredi’s result using a different (but related) parameter in place of independence number for
which we can guarantee that mc,(G) is close to mc,(Kj,).

Note that for 1 <r <k, mc,(G)=n= mc,(K,]j) if and only if the r-shadow of G is complete.!
On the other hand, as first noted by Gyérfas and Sarkézy [11], when r > k=2 it is surprisingly
possible for mc,(G) = mc,(K},) provided G has large enough minimum degree. See [11], [17], and
[10] for the best known results on this minimum degree threshold in the case k =2, and [3] for a
precise result on the minimum codegree threshold in the case r =k + 1 > 4.

For hypergraphs, Bennett, DeBiasio, Dudek, and English [5] proved that if G is an (r — 1)-
uniform hypergraph on n vertices with e(G) > (1 — o(l))(rfl), then mc¢,_1(G) > (1 — o(1))n and
mey(G) > (5 — o(1)n.

As for random graphs, it was independently determined in [2], [8] that with high probability,?
mc,(G(n, p)) > (1 — o(l))r_i1 provided p = @, and it was determined (using the result men-

(1)
n—1?

tioned in the previous paragraph) in [5] that mc,(H'(n, p)) > (1 — o(1))n provided p = and

me,(H ' (n,p)) > (1 — 0(1))@ provided p = jf_lg. All of these results for random graphs use
the sparse regularity lemma and thus only provide weak bounds on the error terms. Additionally,
it was determined in [6] that for almost all Steiner triple systems S on n vertices, mc3(S) =
(I — o(1))n. In this case, there is an explicit bound on the error term, but their result is specific to
3 colours and 3-uniform hypergraphs in which every pair of vertices is contained in at least one
edge.

In this paper, we study a common generalisation which implies all of the results from the
previous two paragraphs with more precise error terms.

1.1. Relationship between monochromatic components and partite holes

Given a hypergraph G, a k-partite hole of size « is a collection of pairwise disjoint sets X, . . ., X C
V(G)suchthat|X;| = - - =|Xi| = @ and no edge e € E(G) satisfies e N X; # ¥ for all i € [k]. Define
the k-partite hole number oy (G) to be the largest integer o such that G contains an k-partite hole
of size «. Note that if G is a k-uniform hypergraph with o;(G) < «, then for all disjoint sets
Vi ..., Vi C© V(G) with |V;| > « for all i € [k] there exists e € E(G) such that eN V; # @ for all
i € [k]. Note that this implies that G is ‘expansive’ in a certain sense which will be made explicit in

'Indeed, if every r-set of G is contained an edge, then since mc,(K]) = n, we have mc,(G) = n. Furthermore, if some r-set
{x1,..., X} is not contained in an edge, then we can colour the edges of G with r-colours such that colour i is never used on
x; and thus mc,(G) < n (c.f. Observation 3.1).

2 An event is said to happen with high probability or w.h.p. if the probability that the event occurs tends to 1 as 11— co.
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Section 2.2. As a point of comparison, note that small (ordinary) independence number does not
imply expansiveness; that is, if G is a k-uniform hypergraph, then o(G) < « does not even imply
that G has a connected component of order larger than 7 (again, see Section 2.2 for a discussion
about the relationship between «(G) and ax(G)).

All of the results mentioned above regarding random hypergraphs and random Steiner triple
systems either implicitly or explicitly make use of the fact that the k-partite hole number is
bounded (for further discussion, see Section 5). In this paper we consider the following general
problem which attempts to pin down a more precise relationship between a k-uniform hypergraph
having bounding k-partite hole number (i.e. being ‘expansive’) and having large monochromatic
components in arbitrary r-colourings.

Problem 1.2. Prove that for all integers r, k > 2, there exists c.x, d, . > 0 such that for all k-uniform
hypergraphs G on n vertices, if ax(G) < ¢, xn, then

mc,(G) > me,(KX) — d, ra(G).

Furthermore, determine the optimal values of c,, d, .

We solve Problem 1.2 for all 1 <r <k+ 1, give the optimal values of ¢, , d, x in the case of
k=2=r, give the optimal value of ¢, in the case k =3 =r, and give reasonable estimates on
Cr.k» dr i in the other cases. The formal statements will be given below.

Our first result covers the case k = r =2 and thus generalises Theorem 1.1(i) in the case r =2
(i.e. a graph or its complement is connected). This is the result for which we have the tightest
bounds.

Theorem 1.3.

(i) (a) For all graphs G on n vertices, if a2(G) < n/6, then mcy(G) > n — 202(G).
(b) Furthermore, the bound on a2(G) is best possible in the sense that there exists a graph
on n vertices with a3(G) = n/6 such that mc,(G) < n/3.

(ii) For all graphs G on n vertices, mc2(G) < n — a2(G).
(iii) For all integers n and a with 0 < a < n/4, there exists a graph on n vertices with a2(G) =a
such that mcy(G) < n — 2a.

Our second result covers the case when k=2 and r = 3 and thus generalises Theorem 1.1(i)
in the case r = 3. (Extending this result to the case r > 4 is the main open problem raised by this
paper. See Conjecture 4.12 and the discussion which precedes it for more details about this open
case.)

Theorem 1.4.

(i) For all graphs G on n vertices, if a2(G) < 3%, then mc3(G) > 5 — 202(G).

(ii)) For all 0 <a <n/2, there exists a graph on n vertices with az(G) = a such that mc3(G) <
n 5 a .
Our third result covers the case when k = r > 3 and thus generalises Theorem 1.1(ii).

Theorem 1.5. Let r be an integer with r > 3.

(i) There exists ¢, > 0 such that for all r-uniform hypergraphs G on n vertices, if a,(G) < ¢,n,
then n — o, (G) > mc,(G) > n— (r — Do (G).

(ii)) Forall0 <a <mn/(r+ 2), there exists a r-uniform hypergraph G on n vertices with o,(G) = a
such that mc,(G) < n — 20,(G).

Our fourth result covers the case when r = k 4 1 > 4 and thus generalises Theorem 1.1(iii).
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Theorem 1.6. Let r be an integer with r > 4.

(i) There exists ¢, > 0 such that for all (r — 1)-uniform hypergraphs G on n vertices, if o,—1(G) <
crn, then me, (G) > %n — (Dear-1(G).

(ii) For all 0 <a <n/(r — 1), there exists an (r — 1)-uniform hypergraph on n vertices with
or—1(G) = a such that mc,(G) < %(n —a).

While this is not the main focus of the current paper, it would also be interesting to improve
the error terms in the above theorems. In particular, for Theorem 1.5 we currently have (in the
context of Problem 1.2) that2 <d,, < (r —1).

Regarding upper bounds on mc,(G), note that because of the results mentioned above regard-
ing (hyper)graphs with large minimum (co)degree, when r =k 4 1 > 3 we can’t necessarily get a
d/ > 0 such that mc,(G) < mc,(K,) — " kak(G) (because it is possible to have large minimum

(co)degree and large o (G)). However, when r =k, it is the case that mc,(G) < mc.(K]) — o (G)
(see Observation 3.1).

1.2. Corollaries

As mentioned earlier, there have been a number of results showing that me,(H*(n, p)=
1- o(l))mcr(K,’j) where H¥(n, p) is the binomial random k-uniform hypergraph. However, those
results have all used the sparse regularity lemma and thus there are no reasonable estimates on
the error terms. Since the value of ax(H*(n, p)) is easy to estimate, we automatically recover
me, (H*(n, p)=(@1- o(l))mcr(Kﬁ) (for all values of k and r for which Theorems 1.3-1.6 hold)
with very good estimates on the error terms.

Corollary 1.7. Forallr>2 and p = n,;{l with d — oo, we have that with high probability,

me,(H (n,p))=n— 0, ((%) o n) .

mes(H(n,p) = & — O, (1°§d n)

r o logd =
n— n
r+1 r d

Proof. The statements above follow from Theorems 1.3-1.6 and the fact that for p as in the

Additionally,

and for all r > 3,

mcr1(H' (n, p)) >

1
statement, w.h.p., o, (H" (1, p)) = ©, ((105 d) ! n) . The upper bound can be shown using a stan-

dard first moment calculation. The lower bound follows by taking an independent set of size

O, ((1o§d> ! n) and partitioning it into r equal sized sets (see Observation 2.2). Independent
sets of this size are known to exist (see e.g. [15]). O

See Observation 3.6 and Problem 3.7 for a discussion about upper bounds on the terms in the
second and third statements.

Let S, be the family of all Steiner triple systems on # vertices. DeBiasio and Tait [6] proved
that for all 3-uniform hypergraphs G on n vertices in which every pair of vertices is contained
in at least one edge, mc3(G) > n — 2a3(G) (note that Theorem 1.5(i) is stronger in the sense that
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there is no requirement that every pair of vertices is contained in at least one edge). They used
this to prove that for all S € S, mc3(S) > 2n/3 + 1, and furthermore there exists § > 0 such that
for almost all § € S, mc3(S) > n — n' 2. This latter result was proved by showing that for almost
allSe S, a3(S) < n!9. Gyarfas [13] proved in particular that for all S € S,;, mc4(S) > g (and this
is best possible for infinitely many #). On the other hand, we show that for almost all S € S,;, the
value of mc4(S) is much larger. More precisely, using the fact (from [6]) that for almost all S € S,
a3(S) < n'~?%, we obtain the following corollary of Theorem 1.6(i) (with r =4).

Corollary 1.8. There exists § > 0 such that for almost all S € S,,, mc4(S) > % —0(n'~9%).

1.3. Outline of paper

In Section 2.1, we discuss a reformulation of our problem in the dual language of r-partite
r-uniform hypergraphs which we will work with for the remainder of the paper. In Section 2.2, we
discuss a reformulation of the notion of having bounded k-partite holes in terms of expansion in
hypergraphs. In Section 3, we provide examples which show the tightness of our results. In partic-
ular, this section contains proofs of Theorem 1.3(i)(b), (ii), (iii), Theorem 1.4 (ii), Theorem 1.5 (ii)
and Theorem 1.6 (ii). In Section 4, we prove Theorem 1.3(i)(a), Theorem 1.4(i), Theorem 1.5(i),
and Theorem 1.6(i).

2. Duality and expansion
2.1. Duality

Throughout the rest of the paper we will be talking about multi-hypergraphs and we will always
assume that all of the edges are distinguishable (and more generally, we assume that all of the ele-
ments in a multi-set are distinguishable). This means, for example, that if an edge has multiplicity
5, we can partition those five edges into two disjoint sets of say 3 and 2 edges respectively.

Let r, k> 2 be integers. Given an r-partite r-uniform multi-hypergraph H and multisets of
edges Ey, . . ., Ex, we say that Ey, . . ., Ey is cross-intersecting if there exists (e, ez, ..., ex) € E; X
Ej x -+ - x Eg such that e; N - - - N ey # @. Furthermore, if S C V(H), we say that E;, ..., Ey is
cross-intersecting in S if there exists (e1, e2,...,ex) € E} X Ey X - -+ X Ex such that SNe;N---N
ex = 9.

Let v (H) be the largest integer m such that there exists multisets of edges Ej, ..., Ex with
|Ej| = m for all i € [k] and E; N E; = for all distinct i, j € [k] such that Ey, ..., Ey is not cross-
intersecting; thatis,e; Ne; N---Negy =W foralle; € Ey,e; €Ey, .. ., e € Ej.

2.1.1. Monochromatic components and k-partite holes
The following observation precisely describes what we mean by ‘duality’.

Observation 2.1 (Duality). Let n > 1, r, k > 2, and s, t > 0. The following are equivalent:

(i) Let H be an r-partite r-uniform multi-hypergraph with n edges. If vi(H) <s, then A(H) > t.
(ii) Let G be a k-uniform hypergraph on n vertices. If ay(G) <, then mc,(G) > ¢

Proof. ((i)=(ii)) Suppose that (i) holds and let G be a k-uniform hypergraph with ax(G) <s.
Suppose we are given an r-colouring of G. We will use the r-coloured hypergraph G to define
an r-partite r-uniform multi-hypergraph having the property that vi(H) < o (G) <s and every
vertex in H with degree d corresponds to a monochromatic component in G with order d.

For all i € [r], let C’i, AU C;q be the components of G of colour i (note that a vertex which is
incident with no edges of colour i is itself a component of colour 7). Let H be an r-partite r-uniform
multi-hypergraph with parts C'={C!,..., C;;i} for all ie [r] where {lel, ce s err} € E(H) is
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an edge of multiplicity m if and only if | ;[ V(C}i)| = m (in G); note that an edge of multiplicity
0 just means a non-edge. Note that V(G) = E(H) since every vertex in G is in exactly one com-
ponent of each colour. If there exists Ey, Ey, . .., Ex € E(H) such that E; N E; = @ for all distinct
i,jelklande;Ne;N---Ney=0Wforall(e,...,ex) €E X -+ X Ey, theneg(Ey, Ez, ..., E)=0
because any such edge intersecting all of Ey, . . ., E (in G) would violatee; Ne; N - - - Nex =¥ (in
H). So we have vi(H) < ax(G) < s which by the assumption implies A(H) > t. Without loss of
generality, suppose dH(C%) = A(H) > t which means Ci is a component of colour 1 in G with at
least t vertices.

((i))=(1)) Suppose that (ii) holds and let H be an r-partite r-uniform multi-hypergraph with
Ve(H) <s and let the parts of H be labelled as C' = {Ci,...,C;;i} for all i € [r] (so we have

V(H) = Uie[n C'). We will use the r-partite r-uniform multi-hypergraph H to define an r-coloured
k-uniform hypergraph G having the property that o (G) < v (H) < s and where the components
of colour i in G correspond to the vertices C' = {CI, . .., C};Z_} in such a way that the order of the
component in G corresponding to C:J is equal to the degree (in H) of C:]

Let G be an r-edge coloured k-uniform hypergraph with V(G) = E(H) where {es, ..., e} €
E(G) and of colour i if and only if (e; N---Neg) N C' # ¢ (in H); note that an edge of G may
receive multiple colours. Consider a component of colour i in G (the vertex set of which cor-
responds to a collection of edges in H). By the definition of connectivity in hypergraphs, these
edges of H must all pairwise intersect in C' and since H is r-partite, they must pairwise inter-
sect in a single vertex C; of C' (and in this way, we can say that there is a bijection between the

monochromatic components of G and the vertices of H). Now, if E;, Es, . . ., Ex € V(G) such that
eG(E1, Eas . . ., Ex) =0, then ﬂie[k] ( UeeEi e) =¥ (in H). So we have o (G) < vi(H) <s, which by
the assumption implies that G has a monochromatic component of order at least t. Without loss of
generality suppose this monochromatic component corresponds to C} and thus by the comments
above, we have that Ci has degree at least t. O

2.1.2. Monochromatic components and independence number
For expository reasons and as a comparison to the result in the last subsection, we describe
Fiiredi’s classic example of the use of duality.

For a hypergraph H, let 7(H) denote the vertex cover number, let v(H) denote the matching
number and let 7*(H) and v*(H) denote the respective fractional versions. Ryser conjectured
that for every r-partite (multi)hypergraph H, t(H) < (r — 1)v(H). Fiiredi [9] proved a fractional
version; that is, for every r-partite (multi)hypergraph H, t*(H) < (r — 1)v(H). Now since

A =V =D = (= DV,
it follows that for every r-partite (multi)hypergraph H with n edges, A(H) > m In the dual
language, this says for every graph G on #n vertices, mc,(G) > WHa(G)

2.2. Expansion
The purpose of this section is formalise what we mean when we say that k-uniform hypergraphs
with small k-partite hole number are ‘expansive’.

Let G be a k-uniform hypergraph G on n vertices and let Sy, ...,Sk—1 C V(G). Define
NS, S ={v:(vi,..., vi_1, v} €E(G),v;e S; forallie [k — 1]} and N*T(Sy,...,S8—;) =
fveV(G\(S1U---US_1):{¥1,...,Vk_1,v} € E(G),v; € S; for all i € [k — 1]}.

We say that a k-uniform hypergraph G on n vertices is a (p, q)-expander if for all sets
Sty .>8k—1 € V(G) with |S;| > p for all i € [k — 1], we have [N(Sy, . .., Sk—1)| = q.
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We say that a k-uniform hypergraph G on n vertices is a (p, q)-outer-expander if for all disjoint
sets Sy, ..., Sk_1 € V(G) with |S;| > p foralli € [k — 1], we have INT(Sy,...,Sk_1)| +[S1U---U

Sk—11=q.
Given a hypergraph G and an integer r > 2, let &,(G) be the largest integer a such that there
exists (not-necessarily disjoint) sets V1, ..., V, with |V;| = a for all i € [r] such that there are no

edges e such thateN V; £ @ for all i € [r].

We first make an observation regarding the relationship between a(G), &x(G), @(G). One
takeaway from this observation is that it would make very little difference in our results if we con-
sidered bounding & (G) instead of o (G). However, it is possible for «(G) to be small and ax(G)
to be large (the disjoint union of cliques of order n/k for instance), so it makes a big difference if
we were to consider bounding «(G) instead of ok (G).

Observation 2.2. For all k-uniform hypergraphs G,
G ok (G
22| 2 | e <o

k k

Proof. First note that if S is an independent set, then by letting V; =-..- =V, =S, we have
k(G) > |S]. So a(G) < ax(G). Also we clearly have ax(G) < @x(G) since & is computed over a
strictly larger domain than «y (all collections of sets vs. all collections of disjoint sets).

Now let Vi, ..., Vi C V(G) (not-necessarily-disjoint) be sets such that |Vi| =---=|Vj]|, and
there are no edges e such that e N X; # ). For all i € [k], there exists V] C V; with | V]| > LLk"lJ such
that V; N V]’ = ) for all distinct i, j € [k]. Since there are no edges which intersectall of V7, .. ., Vi,

there are no edges which intersect all of V..., V,/C and thus we have o (G) > L@J. O

We now make an observation which provides the relationship between small k-partite holes
and expansion.

Observation 2.3. Let G = (V, E) be a k-uniform hypergraph on n vertices.

(i) Gisa (p,n— p)-expander if and only if &;.(G) < p.
(ii)) Gisa (p, n — p)-outer-expander if and only if ax(G) < p.

Proof. (i) Let Sy, ...,Sk—1 € V with |S;| > pforallie [k — 1]. If IN(S1,. .., Sk—1)| < n — p, then
[VAN(S1,...,Sk1)| > pand there are no edges touching all of Sy, . . ., Sk_1, V\ N(S1, . . ., Sk—1)
which implies & (G) > p.

Now suppose G is a (p, n — p)-expander and let Sj,..., Sk €V with |S;| > p for all i € [k].
Since [N(S1, . .., Sk—1)| = n — p, we have S N N(Sy, . . ., Sk—1) # ¥; that is, there is an edge which
touches all of Sy, . . ., S and thus & (G) < p.

(ii) Let S, . . ., Sk_1 € V be disjoint sets with |S;| > p foralli e [k — 1]. If INT(Sy, ..., Sk_1)| +
IS U---US_1|<n—p, then |[V\(NT(Sy,...,S_1)U(S1U---USt_1))|>p and there are
no edges touching all of Sy, ..., Sk 1, V\(NT(Sy,...,Sk_1) U(S1 U---USk_1)) which implies
ai(G) > p.

Now suppose G is a (p,n — p)-outer-expander and let S;,...,S¢ CV be disjoint sets
with |S;| > p for all i € [k]. Since [NT(Sy,...,Sk—1)| +[S1U---USk_1| >n—p, we have S N
N*t(S1,...,S_1) #0; that is, there is an edge which touches all of Sj,...,S; and thus
ak(G) <p. O

3. Examples
The first example provides the upper bound in Theorem 1.3.(ii).

Observation 3.1. Let 2 <r <k. For all k-uniform hypergraphs G on n vertices, mc,(G) <n —
o (G).
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Proof. Let X1, ..., X, be disjoint sets which witness the value of «,(G); that is, disjoint sets with
|Xi| = & (G) for all i € [r] such that e(X;, . .., X;) =@. For all i € [r], colour all edges not incident
with X; with colour 7 (so edges may receive many colours). Since every edge misses some X;, every
edge receives at least one colour. So every component of colour i avoids X; and thus has order at
most 1 — a,(G). O

The next example provides the proof of Theorem 1.3.(iii) and Theorem 1.5.(ii).

Example 3.2. For all integersn >r > 2 and 0 < a <n/(r + 2), there exists a r-uniform hypergraph
G on n vertices with «,(G) = a such that mc,(G) <n — 20,(G).

Proof. Let V be a set of order n and let {Vy, V1, ..., Vy, Vi11} be a partition of V with |Vy| =
n—(r+a,|Vi|=---=|V;[=|Viy1| =a. Forje [r], define Xj=V;UV,;;and Y=V \ &j =

Vo U Uie[r]\{j} Vi. Let G be an r-uniform hypergraph on V with edge set Uje[,] ()ff) U (Jr]f) Ifee

()ff) U (3;1) colour e with j (so edges can receive more than one colour). Note that for all j € [r], A&},
and Y; form disjoint monochromatic components of colour j and thus the largest monochromatic
component has order max{n — 24, 2a} = n — 2a as desired.

We now check that «,(G) =a. Note that Vy,...,V, is an r-partite hole of size a. Suppose
Ui, ..., Uy is an r-partite hole of size a + 1. First note that for all j € [r], there exists j € [r] such
that U; C &]. If not, then there exists j € [r] such that every U; intersects );, but since every r-set
in ) is an edge, this is a contradiction. Also note that we cannot have Uj, U; C &) for i # j since
| Xk = 2a < |U; U Ujl. So without loss of generality, we may assume that for all j € [r], U; C &j. So
for all j € [r], Uj intersects V. since |Uj| > |V;|. But since every r-set in V. is an edge, this is a
contradiction. O

For expository reasons, we give the same example as above in the dual language.

Example 3.3. For all integers n>r>2 and a> 0 with a <n/(r + 2), there exists an r-uniform
hypergraph H on n vertices with v,(H) = a such that A(H) = n — 2v,(H).

Proof. Let H be an r-partite hypergraph with two vertices u;, v; in each part. Let {v;, ..., v,} be
an edge of multiplicity a. For all i € [r], let {uy, ..., ui—1, Vi, Uiy1,...,U,} be an edge of multi-
plicity a. Finally, let {u, ..., u,} be an edge of multiplicity # — (r + 1)a. Note that every vertex
in {uy,...,u,} has degree n — 2a and every vertex in {v,...,v,} has degree 2a, so A(H)=
max{n — 2a, 2a} = n — 2a as desired.

For i€ [r], let F; be the multiset of a edges {u1, ..., ui—1, Vi, Uit1,...,u}. Then the collec-
tion Fy, ..., F, shows that v,(H) > a. Now suppose there is a non-cross intersecting collection

Ej...,E, with |Ejl=a+ 1 for all i € [r]. For all j € [r] there is some i € [r] such that no element
of E; contains uj. So without loss of generality, we may assume that for all j € [r], no element

of Ej contains ;. But now each E; must contain an edge of the form {vy,...,v;} since there
are only a edges of the form {uy, ..., uj—1, v, 4jt1, ..., u,}. Thus the sets Ey, ..., E, are in fact
cross-intersecting (in all of i, . . ., ¥;), a contradiction. 0

The next example provides the proof of Theorem 1.6(ii).

Example 3.4. For all r > 2 and 1 < a < n/k, there exists a k-uniform hypergraph G on n vertices

with a;(G) = a such that mc,(G) = mc,(K,’jfa) < mc,(K,’j).

Proof. Let G be a complete k-uniform hypergraph on n — a vertices together with a isolated

vertices. We have mc,(G) = mcr(K,lj_a) < mcr(Kﬁ). O
The next example provides the proof of Theorem 1.3.(i)(b). For instance when s =3, t =4,

this gives an example of a graph G with a2(G) = ¢ and a 2-colouring in which the largest

monochromatic component has order % and thus mc,(G) < g
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Example 3.5. Let n >t > s be positive integers such that st divides n. The (s, t)-grid on n vertices,
denoted G,(s, t), is the graph obtained by partitioning [n] into st sets A1, ..., A1, Az, ..., Aop,
o Agt, . .5 Agt, each of order s—"t Forallie [s] let Ay U---U Ay be a clique, and for all j € [t] let
AjjU---UAy; be a clique.
The natural 2-colouring of Gy(s, t) is defined by colouring all of the edges inside the ‘rows” Aj U
- UAj, red and all of the edges inside the ‘columns’ A1jU - - - U Ag; blue (the edges inside the sets
Ajj can be coloured with either colour).

We have a,(G,(s, t)) = min{ FS/21 Lt/zJ LS/ZJ Ft/21 n} and the largest monochromatic component
in the natural colouring of Gy(s, t) has order 2

Proof. Set G:= G,(s, t) and take the natural 2—colouring of G. The fact that the largest monochro-
matic component has order £ is evident by the way the graph and its colouring is defined since
s<t. To see that az(G) = Wﬂ, let X,Y € V(G) be maximal disjoint sets witnessing the
value of »(G); that is, min{|X|, |Y|} = @2(G) and e(X, Y) = 0. By the maximality of X, Y and the
structure of G, we have that if XN Aj;; # ) then X N A;; = A;; and likewise Y N A;; # ) implies
YNA;j=Aj LetI={ic[s]: XN Aj #0 for some j e [t]} and ] = {j € [t] : X N Aj; # ¥ for some
i € [s]}. This implies that if Y N A;; # @, then i € [s] \ I and j € [t] \ J. So we have |X| = ”ls‘# and
Y| = M and thus o (G) = min{|X|, | Y|} is maximised when |I| = [s/2] and |J| = [¢/2]
(equwalently, [I| = s/2] and |J| = [t/2]). O

For random graphs G(n, p), it was shown in [2] and [8] that for p= , we have w.h.p.,

mc,(G(n, p)) > (ﬁ - 0(1)) n and thus (whenever an affine plane of order r—1 exists) we
have mc,(G(n, p)) = (1 — o(1))mc,(K,). Analogously, for random hypergraphs it was shown
in [5] that for r>4 and p= ,( 3, we have w.h.p., mc,(H~!(n, p)) = —o(1))n and thus
me,(H"~ 1(n,p))—(l—0(1))mcr(K,’, b.

The following observation shows that for sufficiently small p (but above the thresholds
mentioned above), we have mc,(G(n, p)) is bounded away from mc,(K,) by a constant and
mcr(H’_l(n,p)) is bounded away from mc,(KZ_l) by a constant.

Observation 3.6. Let r and C be integers withr > 2 and C > 1.

o) _

(i) If an affine plane of order r — 1 exists, then for =~ 7 we have w.h.p.,

=P < 2Cr(r 1

(%1 - 0(1)) n=me,(G(n, p)) < Ll o)

(ii) Ifr > 4, then for ‘“}13 =p= D(f) we have w.h.p.,

(r_ ! —0(1)> n=mc,(H (n,p)) < — ln— C(r—1).

’
Proof. (i) Note that p is small enough so that with high probability, G(n, p) has an independent

set X with Cr vertices such that || J,cx N(v)| < " IC)rZ Partition X into r sets {Xj,...,X,} each

of order C and partition the vertices of V(G) — X into sets of size ;::_lc)rz) with one of those sets

containing | J,x N(v), and colour the edges of G — X according to the affine plane colouring.
Now colour all edges incident with X; with colour i for all i € []. So every component of colour i
has order at most 2= Cr +C=<45-C

(ii) Note that p is small enough so that with high probability there exists an independent set X
of order Cr. Partition X into r sets {Xi, ..., X} each of order C and let E; = {e: e N X; # @} for all
i € [r]. Additionally, p is small enough so that with high probability for all i € [r], | g, el < 7>
and for all distinct i, j € [r], all ¢; € E;, and all ¢; € Ej, we have e; N ej = {.
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Let {A;, ..., A,} be a partition of V(G) into sets which are as equally sized as possible having
the property that for all i € [r], | ,c5, e € Ai. Now for all i € [r] colour the edges in E; with colour
i. For all e € E(G) \ Ujc[,1 Ei, note that since |e| = r — 1, there exists i € [r] such thate N A; =@ and
thus we assign any such colour i to the edge e. So we have that for all i € [r], there is a component
of colour i containing X; and having order at most n/r and there is a component colour i which
avoids X and A; and thus has order at most %n —(r—=1)C. O

On the other hand, when p is sufficiently close to 1, the minimum degree of G(1, p) is close to
n and the results of [10] apply to give mc,(G(n, p)) = mc,(K,,). Likewise when p is sufficiently
close to 1, the minimum co-degree of HY(n, p) is close to n and the results of [3] apply to
give mc,(H " '(n, p)) = mcr(K;*I). This observation together with Observation 3.6 leads us to
the following problem.

Problem 3.7. Determine the smallest p such that mc.(G(n, p)) = mc,.(K,), and for all r> 4,
determine the smallest p such that me,(H ™ (n, p)) = mcr(K;_l).

4. Main results in the dual language

All of the results of this section are of the type ‘For all k, r there exists ¢, dy, such that if G is
a k-uniform hypergraph on n vertices with ax(G) < ¢ ,n, then mc,(G) > mc,(KL‘) — di ok (G)’;
however we prove these statements in the equivalent dual form ‘For all k, r there exists ¢k, d., >
0 such that if H is an r-partite r-uniform multihypergraph with #n edges and vx(H) < ¢k, then

A(H) = me(K) — di v (G)'.

Theorem 4.1 (Dual of Theorem 1.3(i)(a)). Let H be a bipartite multigraph with n edges. If v,(H) <
n/6, then A(H) > n — 2v,(H).

Theorem 4.2 (Dual of Theorem 1.4(i)). Let H be an 3-partite 3-uniform multi-hypergraph with n
edges. If v,(H) < 39, then A(H) > 2 — 2v,(H).

Theorem 4.3 (Dual of Theorem 1.5(i)). Let r > 3 and let H be an r-partite r-uniform hypergraph
with n edges. If v,(H) < r+1 then A(H)>n— (r—1)v,.(H).

Theorem 4.4 (Dual of Theorem 1.6(i)). Let r > 3 and let H be an r-partite r-uniform hypergraph
with n edges. If v,—1(H) < (,+1 , then A(H) > {=n 1)” — () vr—1(H).

4.1. General lemmas

In this section we collect a number of general lemmas. We begin with an elementary lemma that
will be used throughout the proofs in this section. This lemma basically says that if we have a
collection of edge sets in an r-partite r-uniform hypergraph, then for any part V; of the partition,
either there is a vertex in V; which is incident with a large number of edges from each set, or else
there is a large subset of each edge set which does not cross-intersect in V;.

Lemma 4.5. Let v,¢,ay,...,a; be positive integers. Let H be an r-partite r-uniform multi-
hypergraph with parts V1, ..., V, and let Fy, ..., Fy C E(H) such that |Fi| > 3av + 1 and |Fj| >
2ajv + 1 for all j € [2,£]. For alli € [r], either

(B1) there exists u € V; such that for all j € [£], u is incident with at least |Fj| — a;v edges of Fj, or
(B2) there exists a subset F| C Fy with |F{| > ajv+ 1 and a subsetF]f C F; for some j € [2, £] with
|FJf| > ajv + 1 such that F{, F, . . . ,Fj,l,F]f, Fiy1, ..., Fy is not cross-intersecting in V.
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Proof. Let i € [r] and suppose (B1) doesn’t hold. If there exists u € V; such that u is incident
with at least |F1| — ajv edges from Fj, then by the assumption, there exists j € [2, £] such that u
is incident with at most |Fj| — ajv — 1 edges of F; and thus at least a;v + 1 edges of F; intersect
V; — u and thus (B2) is satisfied.

So suppose that every u € V; is incident with at most |F;| —a;v — 1 edges of F. Let Vi1 cV;
be a minimal set of vertices incident with at least a;v + 1 edges of F;. By minimality, and the fact
that every u € V; is incident with at most |F;| — a;v — 1 edges of F;, we have that both Vil and
Vi2 = Vi\ Vl-1 are incident with at least a; v + 1 edges of F;. Now either Vi1 or Vi2 is incident with
atleast | |F2|/2] > ayv + 1 edges of F», and either way (B2) is satisfied. O

A simpler version of the above lemma which suffices whenever we don’t care about the exact
bounds is as follows.

Lemma 4.6. Let v,€,4a;,...,a; be positive integers. Let H be an r-partite r-uniform multi-
hypergraph with parts V1, ..., Vy, and let Fy, . .., F; C E(H) such that |Fj| > 3a;v + 1 for all j € [£].
For all i € [r], either

(BI') there exists u € V; such that for all j € [£], u is incident with at least |Fj| — a;v edges of F;, or

(B2') forallj € [£] there exists a subsetFJf C F; with |FJf| > ajv + 1such that Fy, . . ., F, is not cross-
intersecting in V.

The following observation explicitly gives a relationship between vs and v; for s <t.

Observation4.7. Let2 < s <t <rand let H be an r-partite r-uniform multi-hypergraph on n edges.
If vi(H) < 7 — 1, then vy(H) < v¢(H).

Proof. Suppose v/(H) < % — 1 and suppose for contradiction that vi(H) > v;(H). So there exists
disjoint sets Ej,..., E; with |Ej|=v/(H)+ 1 for all i€ [s] such that Ej,...,E; is not cross-
intersecting. Since v;(H) < % — 1, we have |E;| <} for all i€ [s] and thus |[E(H) \ (E;U---U
Eg)| > n—s% =(t—s)} and thus there is a partition of E(H)\ (E;U---UE;) into t —s sets
Ect1,...,E each of order greater than v,(H) such that Ej,...,E, Esy1,. .., E; is not cross-
intersecting. U

We now show that if H is an r-partite r-uniform multi-hypergraph on » edges with vs(H) small
enough in terms of # and r, then there must be a vertex of fairly large degree.

Lemma 4.8. Let A, r, s be positive integers with 2 <s <r. Let H be an r-partite r-uniform multi-
hypergraph with n edges and set v := vs(H). If v < 57, then A(H) > Av + 1.

Proof. Suppose v < 37x and suppose for contradiction that A(H)< Av. Note that by
Observation 4.7 we have v,(H) <v < ?JLA‘
Let Vi, ..., V;, be the parts of H. Let V] C V; be a minimum set of vertices incident with at

least 3’ "1 Av + 1 edges. By minimality, we have
3 TAV+1<e(V) <3 AV + Av

and consequently, since v < 37%, we have

e(Vi\V])=n—e(V])>n— 3 AV —Av>n—3"1Av=3""1AV >3 A0,
Let F] and F} be the sets of edges incident with V| and V; \ V] respectively. Now we apply
Lemma 4.6 (with a; = a = 3" %A and i = 2), and since we are assuming A(H) < Av, (B2') must
happen. Now we have sets F> C F! and F5 C F} such that |F?|, |F3| > 3"2Av +1 and F? and
F? are not cross-intersecting in V; U V5. Now we repeatedly apply Lemma 4.6 until we have
sets Ffl and F;fl with |Ffl|, |F§71| >3Av+1 and Ffl and F;fl are not cross-intersecting
in ViU---UV,_. In the final step (where we apply Lemma 4.6 with aj =a;=A and i=r),
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either (B2’) happens and we have a contradiction to v,(H) < v, or (B1’) happens and we have
A(H) > Av + 1, contradicting the assumption. U

For the last result in this subsection we show that if there is a vertex of fairly large degree, then
either we have an edge of multiplicity at least v 4 1 or there is a vertex of even larger degree.
Lemma 4.9. Let r be an integer with r > 3 and let s € {2,r — 1, r}. Let H be an r-partite r-uniform

multi-hypergraph with n edges and set v := vs(H). If v < 5 and A(H) > 303Dy 4+ 1, then either H
has an edge of multiplicity at least v + 1 or

(i) ifs=2, then A(H) > "=2V,

r—1

(ii) ifs=r, then A(H) > n — 2v.
(iii) ifs=r—1>3, then A(H) = =2 —2(r — 1.

Proof. Let Vi, ..., V, be the parts of H. For a set U C V(H), let d(U) denote the number of edges,
counting multiplicity, which contain U (i.e. d(U) is the degree of U). Note that since H is r-
partite, d(U) > 0 implies that U contains at most one vertex from each part V;. Let U € V(H) be
maximum such that d(U) > 3751y + 1 and note that U # ) by the degree condition. Without
loss of generality, suppose U = {uy, . . ., ug} with u; € V; for all i € [£] and let E be the set of edges
containing U. If £ = r, we have an edge of multiplicity at least 3v 4+ 1 > v 4 1 and we are done; so
suppose 1 <{ <r—1.

Case (i) (s=2).Let F={f € E(H):fNU=0}.If |F| < %, then for some i € [£],

_ (r=1=0On+42¢v

n —2v
d(u;) > r—1 =
(1) 2 L r—1
and we are done; so suppose |F| > W > 2"ty (where the last inequality holds since

v < 7) and thus we have |F| > 2r=ty 41,
Applying Lemma 4.5 at most r — £ times with E, F and using the fact that v,(H) < v, it must be

the case that (B1) holds within r — £ steps and we obtain a vertex which is incident with at least
r+2—y r+2—( )
%v +1=30" BN + 1 edges of E contradicting the maximality of U.
Case (ii) and (iii) (r — 1 <s<r).
r+2—¢ r+2—¢
Since |E| =d(U) > 3( i) > 2(3( -1 + 1), we can choose disjoint subsets E; and E; of
r+2—¢
E, each with at least 3 RS edges. Applying Lemma 4.6 at most r — £ times with E;, E,
r+2—¢
2 )1

+2—(¢+1)
we will either find a vertex which is contained in at least 2 v+ 1= 37Ty 41 edges

from both E; and E,, which would violate the maximality of U, or else we will get sets E/1 C Ej and
E, C E, with
r+1—¢
|E/1|, |E’2| > 3( e )y + 1 > 3v + 1 such that for all e; EE/I,ez EE/Z, egNey=U (1)

(where the last inequality holds since £ <r — 1).
Case (ii) (s =r). We have the desired degree condition unless for all i € [£], the set F; of edges

which avoids u; has order at least 2v + 1. If £ <r — 2, then E}, E}, Fy, ..., Fg is a collection of
£ + 2 <r sets each of order at least v 4 1 which are not cross intersecting, violating the bound on
v, (H).

So suppose £ =r — 1. Applying Lemma 4.5 with E, Fy, . . ., F; and using the fact that £ + 1 <r
and v,(H) < v, it must be the case that (B1) holds and we obtain a vertex which is incident with at
least 3v + 1; that is, an edge of multiplicity at least v + 1.

Case (iii) (s=r — 1 > 3). We have the desired degree condition unless for all i € [£], the set F;
of edges which avoids u; has order at least g +2(r— v+ 1L.If€ <r—3,thenE},E,,F1,...,Fyis
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afamily of £ + 2 <r — 1 sets of at least v + 1 edges each which are not cross intersecting and thus
Vr—1(H) > vp42(H) > v + 1, contradicting the assumption. If £ = r — 2, then applying Lemma 4.5

at most twice with E, Fy, . . ., F; and using the fact that £ +1 <r — 1 and v,_;(H) < v, it must be

the case that (B1) holds within two steps and we obtain a vertex which is incident with at least
4

31

V1= 3%V + 1 edges of E contradicting the maximality of U.

So finally suppose ¢ =r — 1. If there exists distinct i,j € [r — 1] such that |F; N Fj| > 2v +1,
without loss of generality say |F,—NF,_i|>2v+1, then we apply Lemma 4.5 with
E,Fy,...,F,_3,F,_sNF,_; and since (B2) can’t happen, we have (Bl) which gives us an
edge of multiplicity at least v+ 1. So suppose |F; N F;| <2v for all distinct i,j € [r — 1]. For
all i€ [r—1], let F{ =F;\ (Ujef,—1)\(y Fy) and note that by the previous sentence and the
bound on [Fj|, we have |F}| > |Fi| —2(r —2)v > % +2v + 1. Note that Ff,...,F}_; must be
cross-intersecting and by the way the sets are defined, the cross-intersection must happen

in V,. Now applying Lemma 4.5 with F},...,F; |, we get a vertex in V, which is adjacent
with at least |[F}'| — v > 2 edges from each of Fy,...,F} | giving us a vertex of degree at least
%nz%n—z(r— 1)v as desired. O

4.2. Theorem 4.1 and Theorem 4.2

Lemma 4.10. Let r > 2 and let H be an r-partite multi-hypergraph with n edges and set v := v,(H).
IfH has an edge e = {uy, . . ., u,} of multiplicity at least v + 1, then

(i) there are at least n — v edges incident with e,

(ii) foralle Cewithl < || <r— 1, either the number of edges incident with every vertex in ¢
and no vertex in e \ € is at most v, or the number of edges incident with every vertexine\ €
and no vertex in €’ is at most v, and

/
(iii) either A(H) > 25 —2v, or foralle’ C e with 1 < |¢/| <r — 1, there are at least % +

(2|€'| — 1)v + 1 edges incident with e \ ¢’ but not €'.
Proof. Note that (i) and (ii) just follow from the condition on v;(H). To see (iii), let ¢ C e with
1 <|¢/| =t <r— 1.If the number of edges incident with ¢’ is at least rt_—”l — 2tv, then some u € ¢

satisfies d(u) > - — 2v and we are done. So suppose that ¢ is incident with fewer than - — 2tv
edges, which means there are at least

tn (r—1—1t)n
n—v— 2y ) +l=—T 4 2t— 1) +1
r—1 r—1

edges which are incident with e \ ¢ but not ¢

Now we prove that if H is a bipartite multigraph with n edges and v,(H) < n/6, then A(H) >
n—2v(H).

Proof of Theorem 4.1. Let V1, V; be the parts of H and set v := v,(H) < n/6.

Case 1 (There exists an edge u;u; of multiplicity at least v + 1). By Lemma 4.10(i) and (ii), there
are at least n — v edges incident with {u;, u,} and without loss of generality, there are at most v
edges which are incident with u; but not ;. Thus there are at least n — 2v edges incident with u;;
thatis, A(H) > n — 2v.

Case 2 (Every edge has multiplicity at most v). Suppose first that there exists u; € Vi, uy € V; so
that d(u1), d(uz) > 2v + 1. Since u;u; has multiplicity at most v, there are at least v + 1 edges
incident with u; but not u; and at least v 4 1 edges incident with u, but not u;, a violation of the
fact that v, (H) < v. So suppose without loss of generality that

d(u) <2vforallu € V. (2)
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Now let Vé C V, be minimal such that e(Vé, V1) = 2v + 1. By (2) and minimality, we have
2v+1<e(V), V1) <4v. Since 6v <n, we also have e(V,\ V}, Vi)=n—e(V,, Vi) >2v+ 1.
Furthermore, by pigeonhole and the fact that 6v < n, we have either e(V), Vi) >3v+1 or
e(Vy\ V3, Vi) > 3v + 1. So by applying Lemma 4.5 (with a; = a, =1, i=1, F; = E(V}, V1), and
F, =E(V,\ V5, V1)), we either have (B2) (that is, there exists F; C F; with |F;|>v+1 and
F, C F, with |F)| > v+ 1 such that F| and F, are not cross intersecting in V) which violates
the fact that v,(H) < v, or (B1) which implies that there exists a vertex in V; which is incident
with at least |F;| + |F2| — 2v = n — 2v edges; that is, A(H) > n — 2v. O

Proposition 4.11. Let H be an 3-partite 3-uniform multi-hypergraph with n edges and set v :=
v2(H). If H has an edge of multiplicity at least v + 1, then A(H) > 5 — 2v.

Proof. Let e = {u;, u, u3} be an edge of multiplicity at least v + 1. For all distinct 4, j, k € [3], let E;
be the set of edges incident with u; and let E; = E; \ (Ej U Ex). By Lemma 4.10.(iii) we have |(E; U
E)\E3| > 5+ v—l— 1 and for all i € [3], |E}| > 3v + 1. So by Lemma 4.10.(ii), |(E; N E) \ E3| < v.
Thus |E; | + IE’ | > § + 1. Now applying Lemma 4.6 with E} and E}, we can’t have (B2'), thus (Bl )
holds and we have a vertex in V3 which is incident with more than 5 — 2v edges.

Now we prove that if H is a 3-partite 3-uniform multl—hypergraph with n edges and v,(H) <
3—"9 = Jocgs> then A(H) > 5 — 2v,(H).
Proof of Theorem 4.2. Set v:= v,(H). By Lemma 4.8 (with A =729= 3%), we have A(H) >

3
7290 +1=3C2)v + 1. Now by Lemma 4.9, we are done or we have an edge of multiplicity at
least v 4 1 in which case we are done by Proposition 4.11. U

In this subsection we solved Problem 1.2 in the case k =2 and 2 < r < 3. Because of Lemma 4.8
and Lemma 4.9, in order to solve Problem 1.2 in the case k =2 and r > 4 it suffices to prove the
following generalisation of Proposition 4.11.

Conjecture 4.12. Let r > 4 and let H be an r-partite r-uniform multi-hypergraph with n edges and
set v:= vy(H). There exists d, > 0 such that if H has an edge of multiplicity at least v + 1, then
A(H) = 75 — dyv.

The following is essentially a much weaker version of the previous conjecture.

Proposition 4.13. Let r > 4 and let H be an r-partite r-uniform multi-hypergraph with n edges. If
1 (H) < (,+1 , then A(H) > = VZ(H)

Proof. Set v:= v,(H). By Lemma 4.8 we have A(H) > 3(%1)11 + 1. Now by Lemma 4.9, we are
done or we have an edge e of multiplicity at least v + 1. Thus by Lemma 4.10.(i), we have n — v
edges incident with e so, by averaging, U

4.3. Theorem 4.3

Proposition 4.14. Let r > 3 and let H be an r-partite r-uniform hypergraph with n edges and set
v:= v,(H). If H has an edge of multiplicity at least v + 1, then A(H) > n — (r — 1)v.

Proof. Assume there exists an edge e = {u;, . . ., u,} of multiplicity at least v 4+ 1. For all i € [r], let
F; be the set of edges which avoid w;. If |F;| < (r — 1)v for some i € [r], then d(u;) >n — (r — 1)v
and we are done; so suppose |F;| > (r — 1)v + 1 forall i € [r].

Claim 4.15. For all distinct i, j € [r], |F; N Fj| < v.

Proof. Suppose for contradiction that |F; N Fj| > v +1 for some distinct i,j € [r] and without
loss of generality suppose {i,j} = [2]. Now e, F] N Fy, F3, . .., F, is a collection of r sets violating
v (H) <v. U
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Now for all i € [r — 1], let F; =F;\ Ujetiii+1) Fi and let F =F:\ Uje( (r,1) Fj- Note that
by Claim 4.15 we have that for all i € [r], |F| = (r — 1)v + 1 — (r — 2)v = v + 1. Furthermore, by
construction, we have F; N F]’ = for all distinct i,j € [r]. So we have r disjoint sets F;, ..., F,
each of order at least v + 1 which are not cross intersecting, violating the assumption. Indeed, let
ej € F; forall i € [r] and suppose for contradiction that ﬂie[r] ei~=W.Letue ﬂie[r] e; and suppose
without loss of generality that u € V;. We cannot have u = u; since e; € F; C F; misses the vertex
uy, but also we cannot have u 7 u; since e, € F, and F;, N F; = and thus e, touches u;. 0

Now we Jprove that if » >3 and H is an r-partite r-uniform hypergraph with n edges and
v(H) < (,H ,then A(H) > n — (r — 1)v,(H).

Proof of Theorem 4.3. Set v := v,(H). By applying Lemma 4.8 with A = 3(r§1), we have A(H) >

r+1
3(2)y 4+ 1. Now by Lemma 4.9, we are done or we have an edge of multiplicity at least v 41 in
which case we are done by Proposition 4.14. U

4.4. Theorem 4.4

Proposition 4.16. Let r > 4 and let H be an r-partite multi-hypergraph with n edges and set v :=
vr—1(H). If H has an edge of multiplicity at least v + 1, then A(H) > %n - (;)v

Proof. Assume there exists an edge e = {uy, . . . , u,} of multiplicity at least v 4 1. For all i € [r], let
F; be the set of edges which avoid u, If |Fj| <2 + (})v for some i € [r], then A(H) > =Ln — (v
and we are done; so suppose |F;| > % + ( )v> (r—1v+1forallie[r].Let F=F,U---UF,.

Claim 4.17. For all distinct h, i,j € [r], |F, N F; N Fj| < v.

Proof. Suppose for contradiction that [F, N F; N Fj| > v + 1 for some distinct &, i, j € [r] and with-
out loss of generality suppose {h, i, j} = [3]. Now e, F; N F, N F3, Fy, ..., F,is a collection of r — 1
sets violating v,_; (H) <v. O

Claim 4.18. For all distinct h, i, j, k € [r], |F, N Fi| <v or |[F;N F| < v.

Proof. Suppose for contradiction that |F,NF;|>v+1 and |FjNF|>v+1 for some dis-
tinct h, i, , k € [r] and without loss of generality suppose {#,i,j, k} = [4]. Now e, F| N F,, F3N
Fy,Fs, ..., F, isa collection of r — 1 sets violating v,_; (H) < v.

Forall S C [r], let (NiesFi)* = (NiesFy) \ (Uje(r)\sFj)- In other words (NiesFi)* is the collection
of elements which are in all of the sets F;, i € S, but none of the other sets Fj, j € [r] \ S.

Claim 4.19. For all distinct h, i,j € [r], |(F, N F;)*| < v or |F;‘| <.

Proof. Suppose for contradiction that |[(F,NF;)*|>v+1 and | F]?"| >v+1 for some dis-
tinct h,i,je[r] and without loss of generality suppose {h,i,j} =[3]. Now the sets (F; N
Fy)*, F}, Fy, ..., Fyis a collection of r — 1 sets violating v, 1 (H) < v. O

Since |F;| > 2 + ( )v for all i € [r], inclusion-exclusion implies that |F; N Fj| > (r — )v + 1
for some distinct i,j € [r]; without loss of generality, say i=r — 1 and j =r. Furthermore, by
Claim 4.17 we must have that |(F,—; N F,)*| > v + 1. Thus by Claim 4.18, we have that for all
distinct i, j € [r — 2], |F; N Fj| < v, and by Claim 4.19 we have that for all i € [r — 2], |F/| < v.

Soforallie [r— 2], wehave |F;\ (F\ F;)| <v, |[FiNF_1NF,| <v,andforallje [r— 2]\ {i},
|F;N F]| <v, thus

|F,-mFr1|+|FmFr|z|F,-|—(r—l)vzf+(;)v—<r—1>vzf+zv.
r r
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Let i € [r — 2]. Without loss of generality, suppose |F; N F,| > %(lFi NF_1|+ |FiNF|)> % +
v > v. Thus by Claim 4.18 we have that for all j € [r — 2] \ {i}, |F; N F,—1| < v which in turn implies
that for all i € [r — 2], |(F; N F,)*| > |Fi| — rv > 7 + v. By Claim 4.19 this implies that |F}_;| <v.
Thus [(Fr—1 NE)\ (FiU---UF, 3)| > |F—1] = v — (r — 2)v > % 4 v. Now we have a collection
of r— 1 sets, (F1 NF)*, ..., (F,_p, NF)* (F,_1 NF,)* all with more than % + v elements. Now

applying Lemma 4.6 (with a; =---=a,_1 =1) to the collection of r — 1 sets, we cannot have
(B2') by the bound on v,_1(H), so we must have (B1’) which gives us a vertex in V, \ {u,} with
degree at least (r — 1)((£ +v) —v) = r;rln O

Now we prove that if >3 and H is an r-partite r-uniform hypergraph with »n edges and
Vr— I(H) = (r+1 then A(H) = (r=n l)n ( )VV—I(H)-

Proof of Theorem 4.4. Set v:= v,_;(H). By Lemma 4.8 (with A = 3(r§1)), we have A(H) >

r+1
3(2)) 4+ 1. Now by Lemma 4.9 we are done, or we have an edge of multiplicity at least v + 1
in which case we are done by Proposition 4.16.

5. Conclusion

We were able to solve Problem 1.2 in all cases corresponding to Theorem 1.1 except when k=2
and r > 4. However because of Lemma 4.8 and Lemma 4.9, in order to solve the case k=2 and
r > 4 it suffices to prove Conjecture 4.12. It would be very interesting to prove Conjecture 4.12
even in the case k =4.

Another possible direction for further study involves replacing large monochromatic compo-
nents with long monochromatic paths. Letzter [16] showed that in every 2-colouring of G(#, p)
with p= “’(1)
Bennett, DeBlasm Dudek, and English [5] generalised this result showing that if p = “’(1) , then

, there is w.h.p., a monochromatic cycle (path) of order at least (2/3 — o(1))n.

a.a.s. there is a monochromatic loose-cycle (loose-path) of order at least (2k_—1 - 0(1))n in every

2-colouring of H*(n, p). Both of those results use sparse regularity and implicitly only use the fact
ax(H) = o(n), so we can retroactively rephrase their result as follows.

Theorem 5.1 (Bennett, DeBiasio, Dudek, and English [5]). If H is a k-uniform hypergraph on n
vertices with o (H) = o(n), then in every 2-colouring of the edges of H, there exists a monochromatic

loose-cycle (loose-path) of order at least (2k 2 _o(1))n.

The idea is that it would be nice to extend the above theorem to hold when «4(G) can be
considerably larger (especially in the case k = 2).

There are two results in the literature which implicitly broach this subject. Balogh, Barat,
Gerbner, Gyarfas, Sarkozy [4] proved that in every 2-colouring of the edges of a graph G on n ver-
tices there exist two vertex disjoint monochromatic paths covering at least n — 1000(5002(G))22(S)
vertices. Letzter [16] implicitly proved that in every 2-colouring of every graph G on n vertices
there is a monochromatic path of order at least g —2a2(G).

So a particular case of the general problem we are interested in is the following.

Problem 5.2. Given n sufficiently large, determine the largest value of o such that if G is a graph
on n vertices with az(G) < «, then in every 2-colouring of G there is a monochromatic path of order
greater than n/2.

Finally, we mention that the best upper bounds on the size-Ramsey number of a path come
from random d-regular graphs G(#, d) (see [7]). An upper bound on mc,(G(#n, d)) would give an
upper bound on the longest monochromatic path. However, determining an upper bound on the
largest monochromatic component in an arbitrary 2-colouring of G(n, d) for small d falls outside
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the purview of this paper (partly since o, can be large in this case). So we raise the following
problem.

Problem 5.3. Determine bounds on mc,(G(n, d)) for d > 5. More generally, determine bounds on
mc,(G(n, d)) for d > 2r + 1.

Note that a result of Anastos and Bal [1] implies that mc,(G(n, d)) = o(n) when d < 2r.
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