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edges of G there exists a monochromatic copy of H. In the case
of 2-uniform paths P,, it is known that £2(r’n) = R.(P,) =
0((r? log r)n) with the best bounds essentially due to Krivelevich
(2019). In a recent breakthrough result, Letzter et al. (2021) gave
a linear upper bound on the r-color size-Ramsey number of
the k-uniform tight path Pﬁk); ie. ﬁ,(P,SI<)) = Ork(n). At about
the same time, Winter (2023) gave the first non-trivial lower
bounds on the 2-color size-Ramsey number of P,ﬁ") for k > 3;
ie. Ry(PYY) = 8n—0(1) and Ry(Py”) = [logy(k + 1)1 n — Ok(1)
for k > 4.

We consider the problem of giving a lower bound on the r-
color size-Ramsey number of P,gk) (for fixed k and growing r). Our
main result is that R,(P*) = 2,(r*n) which generalizes the best
known lower bound for graphs mentioned above. One of the key
elements of our proof turns out to be an interesting result of its
own. We prove that R,(P,S’jr)m) = O(r™) for all 1 < m < k; that
is, we determine the correct order of magnitude of the r-color
size-Ramsey number of every sufficiently short tight path.

All of our results generalize to £-overlapping k-uniform paths
P,(,k’”. In particular we note that when 1 < ¢ < % we have
2(r?n) = R(P%Y) = 0((r? logr)n) which essentially matches
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the best known bounds for graphs mentioned above. Addition-
ally, in the case k =3, { = 2 and r = 2, we give a more precise
estimate which implies RZ(Pn ) > ﬁn 0(1), improving on the

above-mentioned lower bound of Winter in the case k = 3.
© 2024 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given hypergraphs G and H and a positive integer r, we write G —, H to mean that in every r-
coloring of the edges of G, there exists a monochromatic copy of H. Given a k-uniform hypergraph H,
the r-color size-Ramsey number of H, denoted by R.(H), is the minimum number of edges in a k-
uniform hypergraph G such that G —, H. The r-color Ramsey number of H, denoted by R.(H), is the
minimum number of vertices in a k-uniform hypergraph G such that G —, H. If r = 2, then we
drop the subscript.

For all integers 0 < ¢ < k — 1 and positive integer m, a k-uniform ¢-overlapping path (or a

(k, £)-path for short) with m edges is a k-uniform graph on vertex set {v1, ..., Vkym—1)k—e)} With
edges {vi—1)k—0)+1> - - - » V(i- 1)(k— o+k} for all i € [m] (note that the case £ = 0 corresponds to a
matching). Note that any pair of consecutive edges has exactly ¢ vertices in common A (k, £)-path

with n vertices, denoted by P k9 has % edges (so whenever we write P k0 we are implicitly

assuming that k — ¢ divides n — £). We sometimes write Pz +m(k o to emphasize that the (k, £)-path
has m edges. If £ = 0, 1, k — 1, then P(k s a k uniform matching, a k- umform loose path and a
k-uniform tight path, respectively. We write P ) and P, for P (k=1 and P,, 2 respectively.

_ For graphs, Beck [6] proved R(P,,) 0(n) and the best known bounds [5,8] are (3.75 — o(1))n <
R(P,) < 74n. For the r-color version, it is known [5,9,10,27] that

2(r’n) = R(Py) = 0((r* logr)n). (1.1)

After a number of partial results, e.g. [7,20,31], Letzter, Pokrovskiy, and Yepremyan [29] recently
proved that forallr >2and 1 <¢ <k -1, R (P H)) = O, k(n) (their result covers more than just
the case of paths, but for simplicity we do not state their general result here). At around the same
time, Winter provided the first non-trivial lower bounds on the size-Ramsey number of P 9 for 2
colors.

Theorem 1.1 (Winter [35,36]). For all integers n > k > 2,

(i) RPP) = §n— 2.
(i) R(PM) > Hogz(k +1)]n—2k2
lo 2k—¢
(iii) For all mtegers <fl<k- (P(k( ) > [gzlgiﬂn — 5k2.

In this paper, we prove a general lower bound on the r-color size- Ramse; number ofP 8 our
lower bound depends on both the r-color Ramsey number of the path P (for which the order
of magnitude R,(Py p )) = @kgrn) is already known; see (1.2) below) and the r-color size-Ramsey

number of the “short” path Pt ‘71'2(;) J( (for which essentially nothing was known). See the first
k—¢ |\

paragraph of Section 3 for an explanation of the significance of pk=1-6=D
— 14{ £ lJ(k o

Theorem 1.2. Letr > 2and 1 < ¢ < k — 1 be integers, and set q == ¢ — 1+ | X | (k — ¢) and
co == co(r, k, £) = 2k2f2,(P,§k_1’l_”). For all integers n > cy, we have

- 1o et (plkt
Ri(P{) = - R(PYETHTIRPLER).

In particular, if ¢ = k — 1, then R,(P") = 1R, (PSR (P, ).

n—cp
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As mentioned above, it is known that Rr(P,(,k’e)) = Oy(rn). More specifically, for all integers
r, k > 2 and sufficiently large n,

=1\ (k.£) )
<1 + k-0 I-k,:2-|> n—0:(1) < R(P;"") < R(P;”) < (14 0(1))rn, (1.2)

where the upper bound follows from a result of Allen, Béttcher, Cooley, Mycroft [1] and the lower
bound is due to Proposition 2.1 (there are more precise results for some specific values of k and r,
but we defer this discussion to Section 2). As a result, in order to get an explicit lower bound from
Theorem 1.2, it remains to get a lower bound on R,(P{ "*~"), where q := ¢ — 1 + | 25 | (k —0).

In fact, we are able to determine }A?,(Pf,kfl’[*”) exactly up to a constant factor depending on k;

N k| N
more specifically, we show Rr(Pf,kfl’e*U ) = O(rL** 1) (or in the case of tight paths, Rr(Pé’,‘;]z)) =
Or(r*=1)). We obtain this result as a consequence of the following more general theorem.

Theorem 1.3. Forallintegers 1 <{ <k—1land1<m < Lﬁj we have
5 k.
Rr(Pl(%&H)(kfe)) = O(r™).

In particular, when £ = k — 1, this says that forall 1 <m <k, IARr(P,E’jfm) = OK(r™).
In Section 6, we have a further discussion about the hidden constants in Theorem 1.3.
From (1.2) and Theorems 1.2 and 1.3 (with the appropriate reindexing — see the proof in

Section 5), we get the following corollary.

R ke
Corollary 1.4. For all integersr,k > 2and 1 < £ <k —1, R(PIY) = Qk(rL"*‘Jn). In particular, if
¢ =k — 1, then R,(P¥) = Q24(r*n).

In the case k = 2, we are able to refine the bound in Theorem 1.3 by determining the r-color
size-Ramsey number of P4 for all r > 2 within a factor of 4.

2

Theorem 1.5. For all integers r > 2, 5 < Ri(Py) < (r + 1)2r + 1).

Additionally we note that for k = r = 2, Harary and Miller [21] proved that

R(Py) =7. (1.3)
So as a consequence of Theorem 1.5 and (1.3), we get a refinement of Corollary 1.4 for tight paths
when k = 3.

Corollary 1.6.

28n )
. 28n _ 390 ifr=2,
R.(P?) > : 3

2
2y o) ifr > 3.

Finallﬁ, when 1 < ¢ < k/2, we slightly improve Corollary 1.4. We show that IAQ,(P,S"’“) =

k
Qk(r{m n) = §(rn), which matches, up to a logr factor, the best known upper bound
(Observation 4.1 implies that Rr(Pr(,k’l)) < R/(P;) and as mentioned above, Krivelevich [27] proved
that R.(P,) = O((r? log r)n)).

’[heolnzm 1.7. For all integers r,k > 2,1 < £ < k/2, and n > 12r%(k — £) + £, we have
Re(P{0) = s2u(r?n).

1.1. Notation

We sometimes write k-graph to mean k-uniform hypergraph and k-path to mean k-uniform tight
path. Given a k-graph H and a vertex v € V(H), the link graph of v in H, denoted by H,, is the

3
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(k —1)-graph on V(H) such thate € (‘;EH])) is an edge of H, if and only if e U {v} is an edge of H. For
a subset S € V(H), we write H \ S to be the sub-k-graph of H obtained by deleting vertices of S.
We sometimes also identify H with its edge set.

We write f(r, k, d) = O 4(g(r, k, d)) to mean that there exists a constant Cy 4, possibly depending
on k and d, such that f(r, k,d) < Cygq - g(r, k, d) for sufficiently large r. Likewise for f(r, k,d) =
21,4(g(r, k, d)) and f(r, k, d) = O 4(g(r, k).

For integers a and b, we write [b] for {1, ..., b} and [a, b] for {a,a+ 1, ..., b}.

1.2. Organization of paper

In Section 2, we give lower bounds on the Ramsey numbers of (k, £)-paths and upper bounds on
the size Ramsey numbers of short tight paths. In Section 3 we prove Theorem 1.2, and in Section 4
we prove Theorem 1.3. Section 5 contains proofs of the remaining results discussed above. Finally,
we discuss some open problems in Section 6.

2. Relationship between size-Ramsey numbers, Ramsey numbers, and Turan numbers of paths

While there are many papers which give exact results [15,17], asymptotic results [18,22,23,30],
and bounds [26] on R ( ) for some particular values of r, k, £, the general problem of (asymptot-
(k £)
ically) determining R.(P, ) is completely wide open. For our purposes we will only need a lower
bound on R(P (k. e)) which holds for all n, and an upper bound on R( ) which holds for n = 0(k).
We note that even if the exact value of R.(P, (’)) was known for all r, k,n > 2, the only effect it
would have on our results is slightly improving the hidden constants in Corollary 1.4.

2.1. A lower bound on the Ramsey number of (k, £)-paths

Recall that P,?’%[O is the k-uniform matching of size m. The following proposition gives a lower
bound on R,(P{")), which is based on the construction of Alon, Frankl, and Lovasz [3] giving a lower
bound on R,(P,E'r‘n’o)), and was essentially already observed in [23].

Proposition 2.1. For all integersr,k>2, m>1,1<{¢ <k—1,and n = ¢+ m(k — £), we have

1
Rr(P,(lk*“))z(r—l)’V n- _‘ —r+l><1+r>n—2(r—1).
(k— [k 7 (k= O[]

In particular, when k — £ divides k, we have R ( (k. 0) = “"n 2(r — 1) and when 1 < £ < k/2, we

have R,(P{")) > =1+2k=) ;ji(’g) On —2(r — 1).

Proof. Let m' = [m/[%;]] and note that P%Y contains a matching of size m'.

Let Ay, ..., A,_1 be disjoint vertex sets each of order m’ — 1 and one vertex set A, of order n— 1.
Then take a complete k-graph on A; U --- U A; and color each edge e with the smallest index i
such that e N A; # (. Note that for all i € [r — 1], there is no matching of color i of order m’
and thus there is no (k, £)-path of color i of order n. Also, all edges of color r are contained in A,
which is of order n — 1, so there is no (k, £)-path of color r of order n. So we have Rr(P,(,k’”) >
(r—1)m —-1)4+n—1= (o —1)m" +n—r, as desired. O

We also note that in the case of graphs it is known [37] that R,(P;) > (r —1)(n—1) forall r > 3,
which is better than the bound above when k = 2 and r > 4.

We now consider the case when r is sufficiently large compared to k and n, in which case we
can improve the lower bound by a factor of k for infinitely many r.Let K; ) pe the complete k-graph
on n vertices. A K decomposmon of K ) is a collection IC ) of edge-disjoint K ) such that every
edge of K,E,k) is contained in exactly one copy of K,(l ) Keevash [25] proved that a Kn —decomposition

4
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of I<,£,k) exists for sufficiently large N subject to some necessary divisibility conditions. Glock, Kiihn,
Lo, and Osthus [16] gave an alternative proof.?

Theorem 2.2 (Keevash [25], Glock, Kiihn, Lo, and Osthus [16]) ! For all integers 1 < k < n, there exists
No = No(n, k) such that there is a K,(lk)-decomposition of K( for all integers N > Ny with (k l)|(',Z_’,.l)
forall0<i<k-1.

We use Theorem 2.2 to extend a result of Axenovich, Gyarfas, Liu, and Mubayi [4, Theorem 11]
who proved that Rr(Pf)) > 2r(1 — o(1)) for all r > 2. As in [4], we use the following result of
Pippenger and Spencer [34] (stated here only for regular hypergraphs).

Theorem 2.3 (Pippenger and Spencer [34]). Every D-regular, m-uniform hypergraph having the property
that every pair of vertices is contained together in o(D) edges can be decomposed into (1+ o(1))D many
matchings.

Proposition 2.4. For all integers n > k > 2 there exists an ro = ro(n, k) such that for infinitely many
integers r > ro, R/(P%) > r(n — k)(1 — o(1)).

Proof. Let Ny = Ng(n — 1,k) be given by Theorem 2.2. Let N > Ny be an integer such that
("D forall 0 < i < k — 1. So there exists a K" -decomposition £, of K. Let
V = V(K). Define an (i=1)-graph H with V(H) = (,*,) and EH) = {(}*)) : K € Jouns
The degree of every S € V(H) in H is the number of K,Elil € IC(k)] containing S, which is
(N=(k—=1))/(n—=1)—(k—1)) = (N —k+1)/(n—k). Given any two distinct S, S’ € V(H), note that
S US’ contains an edge of K", so there is at most one K,"; € ICEIkEI containing S U S’. Hence every
pair of vertices in H is contained together in at most one edge. Now Theorem 2.3 implies that H
can be decomposed into at most (1 + o(1))(N — k 4+ 1)/(n — k) matchings, and we color each such
matching with a distinct color. Let r be the number of colors used, so N = (1 — o(1))r(n — k). Each

matching corresponds to a set of K ")1 which pairwise intersect in at most k — 2 vertices, so the
largest tight component has order n — 1 and thus there are no monochromatic copies of P,(Ik). O

2.2. An upper bound on the size-Ramsey number of short tight paths

We will later need an upper bound on R (Péﬁrf") k—)) for all integers 1 < £ < k — 1 and
2 <m < [£]+ 1; however, we will prove in Lemma 4.2 that Rr(Pgiﬁ1 ) < < R(PI")). As

a result, we only discuss tight paths in this subsection.
For graphs, it is known that

r—+1 ifriseven

R.(Ps) =
r(Ps) {r—}-Z if r is odd

which is equivalent to determining the edge chromatic number of complete graphs. Bierbrauer [6]
proved the following surprisingly difficult result

6 ifr =3,
Ri(P4)=432r+2 ifr=1mod 3, (2.1)
2r + 1 otherwise.
For 3-uniform hypergraphs, Axenovich, Gyarfas, Liu, and Mubayi [4, Theorem 7] determine

R (P( )) exactly for all r > 2 (it is either r + 1, r + 2 or r + 3 depending on divisibility conditions
on r). They also prove [4, Theorem 11] that 2r(1 — o(1)) < Rr(P(3 y<2r+3forallr > 2.

3 Note that the results in [16,25] are phrased in terms of designs, so the reader should note that a K,(,k)—decomposition
of K,E,k) is equivalent to a k-(N, n, 1) design.
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Given a k-graph H, let ex(n, H) be the maximum number of edges in a k-graph G on n vertices
such that H € G. Note that if G is a k-graph on n vertices with more than ex(n, H) edges, then
HCG.

Kalai conjectured (see [11]) that for all integers N > n > k > 2, ex(N, P,(,k)) <
Kalai’s conjecture is still open, a straightforward bound of

k(N While

N
ex(N,PY) < (n— 1)<k - 1) (2.2)

was given explicitly by Gyori, Katona, and Lemons [19, Theorem 1.11], and in more generality by
Fiiredi and Jiang [12] (see [13] for further discussion). The best known bounds are due to Fiiredi,
Jiang, Kostochka, Mubayi, and Verstraéte [14], but as their result depends on the parity of k and
only improves on (2.2) by about a factor of 2, we will use the simpler bound given in (2.2).

We will also use the following trivial observation

R(H) < (Rri” )). (2.3)

Combining (2.2) and (2.3) we have the following corollary (which will be useful when n = 0(k)).
Corollary 2.5. For all integers n, r, k > 2, R(P) < rkn and thus R.(P{") < (") < (enr)*.
Proof. We first show that R(P{) < rkn. Note that
1 (rkn rkn —k+1( rkn rkn
- = >(Mn-1) ,
r\ k rk k—1 k—1
so the majority color class in any r-coloring of Kr(,f,z contains a copy of P,Sk) by (2.2).
Thus by (2.3), we have R,(P{) < (" < (ern)* as desired. O

Note that if Kalai's conjecture is true, then we would have IAQT(P,(Ik)) < (m). (So for example, if

k
n < 2k, we would have R.(P") < (7) < (%)k < (2er)k)

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 (which can be thought of as a generalization of [5,
Lemma 2.4, Corollary 2.5]). Given a (k, £)-path P = wvqv,...vp, let the exterior of P, denoted
by Pex:, be the set consisting of the first ¢ vertices and the last £ vertices of P; that is Peyy =
{v1, ..., v }U{vp_r41, ..., vp}, and let the interior of P, denoted by Pin¢, be V(P)\ Pex; (so for example
in the case k = 2, the endpoints of the path form the exterior and the remaining vertices form the
interior). The key observation is that if v € Py, then the link graph of v in P is either a (k— 1, £ —1)-
path with | %, | edges or a (k — 1, ¢ — 1)-path with [ %, ] edges (and this is not necessarily the
case if v € Pey).

Proof of Theorem 1.2. Recall thatq = ¢ — 1+ [ % |(k — ¢), setd = R (Pf,kil‘gfl)), and set
n’ = n — 2k%d. Let H = (V, E) be a k-graph with

a
El < Re(Py ). (3.1)

We will show that there is an r-coloring of H with no monochromatic P,(Ik‘g).

Let S = {v € V : d(v) < d). Since
d-v\S| <> dw)=k-[E| <d-R(PED),

veV
6
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we have |[V\ S| < Rr(P(“ ) and thus we can color H \ S with r colors so there is no monochro-
matic Pqu YinH \S.

Let Es be the set of edges from E which intersect S and let Hs be the k-graph induced by edges
in Es. Note that for every vertex m the interior of a (k, £)-path, its link graph contains a (k—1, £—1)-
path with kazJ edges; i.e. P ) Recall that every v € S has degree less than d= Rr(P(k L= U)

in Hs. So if we can color the edges of Hs so that there is no monochromatic qu 14D in the link
graph of every v € S, then no vertex of S will be in the interior of any monochromatic (k, £)-paths.
Thus H would have no monochromatic (k, £)-path of order n’ + 2¢ (as there are no monochromatic
(k, £)-paths of order n’ in H — S and there are 2¢ vertices in the exterior of a (k, £)-path). However,
we cannot color each link graph of v € S independently since it is possible for an edge to contain
more than one vertex from S. Instead, we are able to provide an r-coloring having the property that
if a vertex of S is in the interior of a monochromatic (k, £)-path, then it must be within distance Kd
from an endpoint of P (which explains the reason for the definition of n’).

We begin by partitioning S into sets Sy, ..., S. such that for alle € Es and all i € [c], [eN S| <1
with ¢ as small as possible. Since Hs is a k-uniform hypergraph with maximum degree at most d—1,
the usual greedy coloring algorithm (color the vertices one by one and note that each vertex is
contained in an edge with at most (k — 1)(d — 1) vertices which have already been colored) implies
that

c<(k—1)d—-1)+1<kd.

For all i € [c], let E; be the set of edges which are incident with a vertex in S; but no vertices
in S{U---US;_; and let H; be the k-graph induced by edges in E;. Note that {Eq, ..., E.} is a partition
of Es. For each i € [c], E; can be further partitioned based on which vertex in S; they are adjacent
to. For all i € [c] and all v € Sl, we color the edges of E; incident with v so that there are no
monochromatic copies of P ~1Uin the link graph of v in H; (which is possible by the definition
of d and the previous sentences).

We now show that H does not contain a monochromatic (k, £)-path on n vertices. Suppose
P = viv,...vp is @ monochromatic (k, £)-path in H. The next claim shows that if v; € S, then
vj is not far from v; or vp.

Claim 3.1. Ifv; €S, then min{j,p —j+ 1} < £+ (k—1)c.

Proof of Claim 3.1. Let jo = jand iy € [c] be such that vj, € S;,. If vj, € Pex, then min{j, p—j+1} < ¢
and so we are done. If vj, € Pjy, then we will show that there is a vertex v;, € §; such that
lit —jol < k—1and i; < ip. We then repeat this argument for v;, and note that this will stop
within ¢ rounds.

Formally, we will show that there exists b € [c], jo,j1,.--,Jb € [pl, and iy > i3 > -+ >
i, > 1 such that vj, € Pex and, for all a € [b], lja —jo—11 < k — 1. Since vj, € Pex, we have
jp € 1U[p — €+ 1, p]. If j, € [£], then we have

jo=Js+ Y Ga1—ia) <o+ Y _ lia-1 —Jal < €+ clk—1)

ae[b] ae[b]

and a similar calculation shows that if j, € [p— €+ 1, p], then p —j+ 1 < £+ (k — 1)c. This implies
the claim.

Suppose that we have found j, and i, for some a > 0. If j, € [¢]U [p — £ + 1, p], then we are
done. Suppose that j, ¢ [£]U[p — £ 4 1, p], that is, vj, € Pin.. Note that the link graph of vj, in P
contains P (=161 Thus by the coloring of the edges in Es, there must exist jo41 € [jq—k+1, jo+k—1]
and igyq < i such that vy, €5;,,,. ®

By Claim 3.1, we know that if we remove ¢ 4+ c(k — 1) vertices from each end of P, then the
resulting (k, £)-path lies in H\ S, which has order at most n’ — 1 by the coloring of H \ S. Therefore,
we have p < 2(£ 4+ c(k—1))+n' — 1 < 2k*d 4+ n’ = n as required. O

7
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4. Size-Ramsey numbers of short (k, £)-paths
4.1. Upper bound

Dudek, La Fleur, Mubayi, and Rodl [7] observed that forall 1 < £ < % IAQ(Pﬁ,k’Z)) < ﬁ(Pn) and Han,
Kohayakawa, Letzter, Mota, and Parczyk [20] observed that if 3 divides k, then 1%(13,&"’2"/ 3')) < IA?(P,S‘Q’)).
We begin with a generalization of these observations (the first part was already mentioned by
Winter [35] in the case r = 2).

Observation 4.1. Let n,r, k > 2 be integers.
(i) Forall 1 < ¢ < % R(P") < kr(P%ﬂ).
(ii) Foralln > k > ¢ > 1and d > 1 such that d divides n, k, and £, R,(P{"") < Ry(P{/®),
k5 pke) 5 plk—1,6—1)
(iii) For 1 <€ <k—1,and 1 <m < =5, Ri(P miyie) < Re(P 1y imiie)):
Proof. For (i), let m = % so that P,(Ik‘l) has m edges. Begin with a graph G such that G —; Py41.
Now replace each vertex with a set of ¢ vertices and add an additional k — 2¢ unique vertices to
each edge to get a k-graph H with the same number of edges as G such that H —, P,S"*" (any
r-coloring of H corresponds to an r-coloring of G, and any monochromatic Py,.¢ in G corresponds
to a monochromatic P,ﬁ"’” in H).

For (ii), begin with a (k/d)-graph G such that G —, P,(q%d‘(/ 9 Now replace each vertex with a set

of d vertices to get a k-graph H with the same number of edges as G such that H —, po,

For (iii), note that szi(% +1)k—¢) CONtains a vertex v such that its link graph is precisely

Pé(’i_lkfr;j—)l)(k—l)' Begin with a (k — 1)-graph G such that G —, Pyi_lkfm_-}—)l)(k—ﬁ)' Now let y be a new

vertex and aﬁ%)y to each edge of G to get a k-graph H with the same number of edges as G such
<,

that H =, Py motyp—y O

The following lemma provides an upper bound on the r-color size-Ramsey number of every
sufficiently short (k, £)-path.

Lemma 4.2. For all integersr >2,1<¢<k—1,and1<m < Lﬁj

I R
R (P 1y-0)) < Re(PS) < (2emr)™,
In particular (when m = 1), we have IAQr(ng{’Q) =r+1

Proof. First suppose that k — ¢ divides k and m = X;. In this case we have 5, = &, —1=m—1

k—¢* k—¢
and “HESY — 9m. So by Observation 4.1(ii) and Corollary 2.5, we have Rr(Pffif,LH)(k_[)) <
R(PV) < (2emr)™,

Next suppose that m < k—fz In this case, there is a (non-empty) set of k—m(k— £) vertices which

are contained in every edge of Pé’ifr)nﬁ)(k_l). Take an (m(k — €))-graph H with I?,(Pé”n:((',‘;ﬁ))’(m_1)("—“))
edges such that H —, IAQT(P%((’;:?)'(W”("*“)) and create a k-graph H’ having the same number

of edges as H by adding a set U of k — m(k — £) vertices which are contained in every edge
of H. Now in every r-coloring of the edges of H' (and by extension H), there is a monochromatic

copy of Pt ™Y in 1 and thus a monochromatic copy of P() ) in H'. Now by

Observation 4.1(ii) and Corollary 2.5, we have
Re(Pog ™) = Re(PE) < 2emry™.

Note that when m = 1 we get the more precise bound because we trivially have }A(r(Pénr;)) =r+1. O

8
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4.2. Lower bound

r—1

The following lemma will be applied with Lm

k
Re(PE i) forall 1< m < [ 24 .

J in place of r to give us a lower bound on

Lemma 4.3. Letr,k > 2, 1<Z<I<—1and1<m<L, eremtegers For all j € [m + 1], set
ti=k—({— 1)k —¢£) and set

(i2)

ti1/)

k ¢
f(k, €, m):= (z) Z (tjﬂ> and g(k, £, m) :=

jelm] jelm—1]
If H is a k-graph with |H| < % then there exists a (2r - f(k, £, m) + 1)-edge-coloring of H without
a monochromatic PKJr (m+1)(k—0)"
Note that if £ = k — 1, then we have g(k,k — 1,m) = k(k — 1)---(k — (m — 2)) and

flkk—1,m) =k (5.

Before beginning the proof, we give a high level overview. We are given a k-uniform hyper-
graph H with a suff1c1ently small number of edges which we must color in such a way that there is
no monochromatic Péjfm k=) In order to produce such a coloring, we actually prove something
stronger. We say that a pair of edges (e, f) € E(H) x E(H) is “dangerous” if |eNf| = £ and they
satisfy an additional special property (see (4.1) below). As we will prove, every copy of P, +(er)n Y k—0)
contains a dangerous pair of edges. Furthermore, the definition of dangerous will lmply that for
every edge e € E(H), there are only a bounded number of f € E(H) for which (e, f) is a dangerous
pair. This allows us to greedily color the edges of H so that no dangerous pair of edges receives the
same color and therefore there is no monochromatic copy of Pg . )- Now we proceed to the

+(m+1)(k—
formal proof.

Proof of Lemma 4.3. Set By = H. For all j € [2, m + 1], let B; be the tj-graph on V(H) such that

B; = {S € <V> : degg_(S) > r} .
tj )

In words, for all j € [2, m+4-1], B; is a tj-graph, whose edges are those with degree “too large” in B;_;.
We first establish the following claim.

Claim 44. B, . =10.

Note that when m = Lk’f‘eJ and k — ¢ divides k, By, is the 0-graph and we take By, 1 = ¢ to

mean that the empty set is not an edge of B, 1; that is, B, has at most r edges.

Proof of Claim. If B, # ¢, then there is some t;,1-set which has degree greater than r in By,
and thus |B,| > r. Observe that for all j € [2, m],

ti_
riBj| < ) degs (S)< (ft,l)w,-_n.
)

SeB;

Hence
rmfl rm rm
|Ba| > -+ > G Bm| > =

() - () @ () gk tm)’

tm

|E(H)| = B1] >

r
S
(1)
a contradiction. M

We say that a pair of edges (e, e’) € E(H) x E(H) is dangerous if

ene
lene|=¢and 3/* € [m] and S € (t ) \ Bj=11 such that SU (e’ \ e) € Bj. (4.1)
1

We now prove that every copy of P}j (k—0) in H contains a dangerous pair of edges.

+(m+1)
9
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Claim 4.5. Let P be a copy of Péif;l +1)k—r) i H with consecutive edges e, ..., en1. Then there exists
i* € [m] such that (e, ej1) is dangerous.

Proof of Claim. First note that for alli,i’ € [m+ 1] withi <7, |e;Ney| =k— (7' —i)(k—£€) = ty_iy1.
We begin by showing that there exist i*,j* € [m] such that e N ep jx_1, €41 N Exyjx € Bj
and e Neqyjpx ¢ Bpyq. For all j € [m 4 1], let Q; be the (t;, tj+1)-path with consecutive edges
e1Ne,...,emp2—j Nepyr. Note that Q € H = By and Qui1 € Bpy by Claim 4.4 (Again, if
m= ka(J and k — ¢ divides k, then Q,,,1 contains the empty set as an edge but B, 1 does not.).
Thus there exists a smallest j* € [m] such that Qi C Bj» and Q41 € Bjey1. Since Q41 € Bjry1,
there exists i* such that e N Ejyjx € Qj*+1 \Bj*-H‘
We now show that (e, e;+1) is dangerous. Let S = ejNej4j+ S exNej1q,50S € ( *[rle ’;*‘)\BJ +1-

Note that (eimr] \e,-*) ns = @, (ei*+1 \e,-*) C ejx4q N €y e and

k—€=lext1\ewx| > |(err1 \ €)M e | = leppr Nepyye| — S| =g — b =k — £
Hence S U (€41 \ €3) = ej=1 N ey« € Bjx. Therefore, (e, ej+y1) is dangerous. W

We next show that for every e € E(H), there are a bounded number of ¢’ € E(H) such that (e, €’)
is dangerous.

Claim 4.6. Forall e € E(H), there are at most r-f(k, £, m) many e’ € E(H) such that (e, €’) is dangerous.

Proof of Claim. Let e € E(H). For all j € [m], we count the number of ¢’ € E(H) such that (e, €)
satisfy (4.1) with j* = j. There are at most (}) choices for e N ¢’ and at most (tji]) choices for

S e (‘;Tl/) \ Bj41. Since S ¢ Bj;1 and S U (¢’ \ e) € B;, there are at most r choices for e’ \ e. Hence

there are at most r(’l‘) (tjil) many e e E(H) such that (e, ¢') satisfy (4.1) with j* = j. Therefore the
total number of ¢’ € E(H) such that (e, ') satisfy (4.1) is at most

k ¢
r(g) Z (m]) =r-f(k, £, m)

Jjelm]
as required. H

Finally, we use Claim 4.6 to color the edges of H such that no dangerous pair receives the same

color. Since every copy of P€+£131+1)(k 0 contains a dangerous pair of edges by Claim 4.5, this implies
that such a coloring of H does not contain a monochromatic P€+(m Dk—0)-

Let D be the auxiliary digraph such that V(D) = E(H) and (e, e’) € E(D) if and only if (e, €’)
is dangerous. Let G be the underlying undirected graph of D. A proper vertex-coloring of G gives
an edge-coloring of H (with the same set of colors) without a monochromatic Péif; 1)) NOte
that for all U € V(D), G[U] has at most A™(D)|U| edges and so §(G[U]) < 2A™*(D). This implies
x(G) < 2AT(D)+ 1 < 2r - f(k, £, m) + 1 where the last inequality follows from Claim 4.6. O

We now prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 4.2 we have RT(P€+(r)n+1)(k Z)) (2emr)™. By Lemma 4.3 with
LWJ in place of r (noting that 2 Lme(k, £,m)+ 1 <r), we have

m
(Lt )
(k,0) 2f(k.€,m)
Re(P i) >

e+(m+1 2(k.C.m) = Qem(r™). O

5. Corollaries, more precise bounds, and a further extension

First we prove Corollary 1.4, then we obtain the more precise bounds given in Theorem 1.5,
Corollary 1.6, and Theorem 1.7. At the end, we mention one more extension of our results.

10
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Proof of Corollary 1.4. By Theorem 1.3 (with k—1,£—1, Lﬁj — 1 in place of k, £, m respectively
k|-
— noting that | % | — 1 < | %5} |), we have R,(P(k Le=D) )= Qk(rLHJ h.

14 L J(k )

Thus by Theorem 1.2 and Proposition 2.1, we have

5 kO < L5 pk=1,0-1) =1 ||
Ri(P"") = —~R.(P JM)) <1+(k—£ fk'ﬂ>( —o()n = (rt*""In). O

ket

To give an improved lower bound on &(P4), we first need a few definitions. The arboricity of a
graph G, denoted by arb(G), is the smallest number of forests needed to decompose the edge set of G.
The star arboricity of a graph G, denoted by arb,(G), is the smallest number of star-forests needed
to decompose the edge set of G. Note that since every forest can be decomposed into at most two
star-forests we have that for all G, arb,(G) < 2arb(G). A well-known result of Nash-Williams [32,33]
says that arb(G) < k if and only if |[E(H)| < k(|V(H)| — 1) for all subgraphs H C G.

Proof of Theorem 1.5. Note that (2.3) and (2.1) imply that

R(Ps) < (Rr(zp“)> < <2r;2) = (r 4 1)@2r +1).

It remains to show that IAQr(P4) > % Let G be a graph with |E(G)| < % Note that a star-forest is
P4-free, so it suffices to show that arb,(G) < r.If H C G with |V(H)| <r, then
IVHI(IVH)-1) _r
EH)| £ ————— = -(lV(H) - 1)
2 2
and if |[V(H)| > r + 1, then
T r
[E(H)| < [E(G)] = 5 = E(IV(H)I - 1.

Now Nash-Williams’ theorem mentioned above implies that arb,(G) < 2arb(G) < 2% =r, and thus
G has an r-coloring with no monochromatic P4. O

Proof of Corollary 1.6. Theorem 1.2 and Proposition 2.1 (with k = 3 and £ = 2) imply that

R(PP)) > R +(P4)R (P )

n—18R(Pg)

R( >(r+ Re) 2 — 1)) |0 0 =2
- e (n—lSRP)—Zr—])z

370 s A 22y _ o5y ifr = 3,

where the last inequality holds by (1.3) and Theorem 1.5 respectively. O

To prove Theorem 1.7, we use the following result of Alon, Ding, Oporowski, and Vertigan [2].

Theorem 5.1 ([2, Theorem 4.1]). Every graph with maximum degree A can be vertex [%ﬂw-colored
such that every connected subgraph in every color class has at most 12A? vertices.

Proof of Theorem 1.7. Let n > 12r%(k — £) + £. We will show that R,(P%?) > L RLZ, 2J(P (k0.
from which the result will follow.
Let H = (V, E) be a k-graph with

|E| < kszlzr ZJ(Pr(,k'l))-

Let S = {v € V : d(v) < {}. So we have
r - r (k.0)
VASIE < D dw)=KEI < (Rjaca (P9,
veV(H)
11
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and thus [V \ S| < Ry 5_, ((PY*?). Thus we may color H \ S with | #52 | colors without creating a
3
monochromatic P,(f"z).

Now let Es be the set of edges in H that are incident to S. We will use the remaining r —
| 252 | = [22] colors on the edges incident to Es. Form an auxiliary graph G whose vertex set
is Es and ey, e; are adjacent in G if and only if |e; Ne;|] = £. By the definition of S we have
AG) < k- % = r. By Theorem 5.1, we may use [%1 new colors to color the vertices of G such
that every connected subgraph in every color class has at most 12A? vertices. Thus applying these
colors to the corresponding edges in Es, we obtain a coloring of H with no monochromatic Pnk") for
alln > 12r2(k — £) + £.

Finally, by Proposition 2.1, we have R.(P") > kLZRLMJ(P’EM)) = 2(r*n). O
3

We conclude this section with one more extension of our results. Qur proof of Theorem 1.2 can
also be used to prove the following theorem.

Theorem 5.2. Let k,r > 2 be integers, let H be a family of k-graphs, and let F be a (k — 1)-graph such
that for all H € H the link graph of every vertex in H contains a copy of F. Then

R0 = AP R0,

Proof. This is just a generalization of Theorem 1.2, but the proof is easier since we are assuming
that every vertex in H contains a copy of F in its link graph. Indeed, if we color the edges as in
the proof of Theorem 1.2, there can be no monochromatic copy of any H € # which intersects S
(otherwise, if i € [c] is minimum such that V(H)NS; # @, then v € V(H)NS; has no monochromatic
copy of F in its link graph). O

As an application, let ), denote the family of k-uniform tight cycles on at least 2k—1 vertices.

Note that for all C € Cg‘%k_l and all v € V(C), the link graph of v in C contains a copy of Péi:?. We

obtain the following corollary of Theorem 5.2, Theorem 1.3, and Proposition 2.4.

Corollary 5.3. For all integers k > 2 and infinitely many integers r > 2, we have fir(cg‘%k_l) = 2u(r").
The significance of this corollary is that fer(cﬁ‘;kf]) = 2i(r*) whereas Theorem 1.3 implies that

A ~ z

Re(P ) = Ourk1).

Proof. By Theorems 5.2 and 1.3 we have

~ 14
k k—1 k — k
Re(CE 1) 2 L R(PYCS) Re(el 1) = @) Re(eyy ).

k
Since Rr(Cgkq) > Rr(Pglf(ll) and Proposition 2.4 implies that for infinitely many r, Rr(PSf(ll) >
(1 —o(1))(k — 1)r, we have that for infinitely many r, kr(Cgk,J =%, O

6. Conclusion

In the proof of Theorem 1.3 (for simplicity, restricted to the case £ = k — 1 and using estimates
f(k,k—1,m) < k(ek/m)™ and g(k, k — 1, m) < k™) we show that forall 1 <m <k,

1 m o -
(W) ™ < R(PY) < R(PSY) < (2em)™r™. (6.1)

It would be nice to improve these bounds; in particular, the lower bound. A related question is as
follows.

Problem 6.1. Is it true that for all positive integers m there exists constants c,,, C,, such that for

all k,r > 2, cpr™ < IAQ,(Pgifr)nH)(k_[)) < Cpr™.

12
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One approach to Problem 6.1 and improving the bounds in (6.1) is as follows. Note that
Lemma 4.2 implies that Rr(Pgif?nﬂ)(k%)) < R(PM")yforall1 <m < | £ |. At the moment we
have no evidence to refute the possibility that these are equal. So formally, we raise the following
problem. In either case, if the answer is yes, then the answer is yes in Problem 6.1 and improves

the lower bound in (6.1).

Problem 6.2. Is it true that Ry(P{" (), 1)) = Re(PS) for all integers 1 < m < | %, |2 If not, is it

et ¢
true that R.(P 0 1yuey) = 2m(Re(PSR))?

In Theorem 1.7 we are able to improve the lower bound coming from Corollary 1.4 by an extra
factor of r. It would be interesting to do this for all k/2 < ¢ < k — 1 where k — £ does not divide k.
In Theorem 1.2, we use the fact that for every vertex v in the interior of a (k, £)-path, the link graph
of visa(k— 1,¢ — 1)-path with at least [k’T‘ZJ edges, but perhaps there is some alternate proof
which is able to make use of the fact that every edge of the path contains some vertex whose link

. i
graph is a (k— 1, £ — 1)-path with [ %, edges. If so, this would imply R.( (k) — Qk(r{"—‘f]n) (see

the proof of Corollary 1.4 and note that [ ;] — 1 < | &2 ).

Problem 6.3. In Theorem 1.2 can we replace ‘¢ = ¢ — 1 + Lk’T‘eJ (k — €)” with the term
“q=L—1+ [ k—0)7?

Regarding Corollary 5.3, it would be interesting to know if R,(Cg‘z)k_]) = Ok(r). If so, this would
imply by (2.3) and Corollary 5.3 that for infinitely many r, fzr(cg‘;kq) = OK(r").

Problem 6.4. Is it true that for all integers k, r > 2, Rr(cgkq) = O(r)?

One thing to note about Problem 6.4 is that unlike in Corollary 2.5 (where we show that
R,(Pé’,?_]) < rk(2k—1)), Problem 6.4 cannot be solved by applying a Turan-type result to the majority
color class. B. Janzer [24] proved that there exists k-uniform hypergraphs on N vertices with

(N1 101};?0[; ~) edges which have no tight cycles at all. On the other hand, a result of Letzter [28]

says that every k-uniform hypergraph on N vertices with no tight cycles has O((log N)N*~1) edges.*
As in Corollary 2.5, this implies that Rr(Cg‘%kq) = Oi(r(logr)°).

Finally, our lower bounds on IAQT(P,(Ik)) are for fixed k and growing r. Can we say anything about
the case of fixed r and growing k (like Winter did for r = 2)?

Problem 6.5. What is the growth rate of IAZr(Péﬁ)) for fixed r and growing k? In particular, when
r=2,is R(Péi) ) = w(klog, k)? If so, then Theorem 1.2 would give an improvement over Winter’s
result.
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