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ARTICLE INFO ABSTRACT

Keywords: Many cities are experiencing more frequent extreme heat during hot summers. With the rise of
Urban heat metrics global temperature, the thermal comfort in urban areas become even worse. Quantitative infor-
Land surface temperature mation of the spatial distributions of urban heat has become increasingly important for resilience

Mean radiant temperature
SOLWEIG model

and adaptation to climate change in cities. This study compares satellite-derived land surface
temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for
mapping the urban heat distributions in Philadelphia, Pennsylvania, USA.

The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around
100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery
program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both
LST and Tmrt show a similar general pattern of the urban heat across the study area, while the
Tmrt presents much more details of the heat variations street by street and neighborhood by
neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs,
which are usually not the place for human activities. This studyprovides evidence for choosing

more appropriate metrics in urban heat-related studies.

1. Introduction

Extreme heat events have increasingly become a severe threat to public health, particularly in heavily populated urban areas, due
to both global warming and rapid urbanization (Lin et al., 2012; Luber and McGeehin, 2008; Watts et al., 2015). The frequency of these
events is increasing in large U.S. cities, and, on average, they are responsible for a greater number of climate-related annual fatalities
than any other forms of extreme weather (Stone et al., 2010; Borden and Cutter, 2008). There is evidence showing increases in
mortality in cities during heat waves, with implications for future climate (Laaidi et al., 2012; Gabriel and Endlicher, 2011). Moreover,

ambient heat stress can deteriorate livability and walkability in cities (Lee et al., 2013).

A quantitative understanding of the heat distributions in cities is important for monitoring vulnerability and building resilience,
particularly for adaptation to climate change (Li, 2021; Hsu et al., 2021; Reid et al., 2009). Air temperature is a critical factor for
human heat risk and has been widely used to understand human heat stress’s relation to public health (Noelke et al., 2016; Ho and
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Wong, 2019; Wang et al., 2018). Nevertheless, air temperature is typically measured at a limited number of fixed weather stations,
which hinders its ability to accurately represent the spatial variations of air temperature within cities. Comparatively, satellite-derived
land surface temperature (LST) offers an efficient method to map the spatial distributions of urban heat across scales. Previous studies
have reported a weak correlation between LST and ambient air temperature, though a stronger relationship was observed during
nighttime (Cao et al., 2021; Mutiibwa et al., 2015; Vancutsem et al., 2010; Venter et al., 2021; Zhang et al., 2014). Therefore, LST has
been used to estimate the spatial distribution of nighttime air temperature (Mutiibwa et al., 2015; Vancutsem et al., 2010; Zhu et al.,
2013). LST has also been widely used in urban heat-related studies with the assumption that it serves as a reasonable proxy for
quantifying urban heat exposure (Chen et al., 2006; Harlan et al., 2013; Jenerette et al., 2016; Pearsall, 2017; Chakraborty et al., 2019;
Hsu et al., 2021) and has been employed in conjunction with other socio-economic factors to develop heat vulnerability indices (Reid
et al.,, 2009; Hammer et al., 2020; Weber et al., 2015). However, satellite-derived LST cannot comprehensively capture human heat
stress on the ground, since human heat stress is influenced by ambient temperature, radiation, humidity, and many other factors
(Norton et al., 2015; Klemm et al., 2015; Li and Wang, 2021; Li, 2021; Chakraborty et al., 2022). Moreover, coarse-resolution satellite
imagery cannot resolve the shade of trees and building blocks (Yu et al., 2020).

An important and understudied aspect of heat exposure in cities is solar radiation. A person directly exposed to solar radiation gets
significantly more heat exposure than someone staying in the shade. However, LST, air temperature, and many commonly used metrics
of moist heat stress do not account for solar radiation. Fine scale microclimate modeling based on high-resolution, three-dimensional
urban models and local meteorological data provides a more comprehensive way to model the dynamically changing urban thermal
environment (Lindberg et al., 2008; Lindberg et al., 2018; Lindberg and Grimmond, 2011; Li, 2021; Li and Wang, 2021; Matzarakis
et al., 2007, 2010; Maronga et al., 2015). By simulating the solar radiation reaching the ground, it is possible to compute the mean
radiant temperature (Tp,t), which is the total net short and longwave radiation that a human is exposed to from the surrounding
environment. It plays a significant role in influencing the human energy balance (Ali-Toudert and Mayer, 2006; Matzarakis et al., 2010;
Mayer and Hoppe, 1987; Thorsson et al., 2014; Vanos et al., 2012; Aviv et al., 2021; Middel and Krayenhoff, 2019). A strong cor-
relation has been observed between Ty, and heat-related mortalities (Thorsson et al., 2014). However, there are only a few studies that
use Ty for city-scale analyses (Kong et al., 2022; Li, 2021; Li and Wang, 2021; Kianmehr et al., 2023). The reason for this limitation
stems from the substantial computational costs associated with conducting radiation simulations based on high resolution urban 3D
models. Recently developed GPU-accelerated algorithms for urban microclimate modeling can efficiently generate Tyt with high
spatio-temporal resolution at large scales (Li and Wang, 2021). As high-resolution urban 3D models become more widely accessible for
numerous cities, Ty iS emerging as a new promising heat exposure metric for conducting urban-scale heat-related studies.

In this study, computed fine-resolution Ty, from 3D models was compared with medium-resolution LST obtained from Landsat
imagery to create urban heat maps for the city of Philadelphia in the United States. The findings of this analysis offer valuable insights
for selecting more appropriate heat exposure metrics to investigate urban heat and its intra-urban variability.

2. Methodology
2.1. Study area and data preparation

Our study area is the city of Philadelphia in the United States (Fig. 1). The datasets used in this study include a high resolution (1 m)

Developed, low intensity Developed, high intensity

Developed, Open space Developed, Medium intensity Deciduous Forest Building  Tree Grass Water Road Impervious

75.300W _75.250W_75.200W _75.150°W__75.100W __75.050W__75.000W__ 74950W

40100°N
40.100°N

40.050°N
40.050°N!

40.000°N}-

39.950°N

A +439.900N
39.900°N

@

Fig. 1. The location and datasets used in the study area, (a) the National Land Cover Dataset for Philadelphia, (b) the fine level resolution land use
data in Philadelphia, (c) the normalized digital surface model of the downtown Philadelphia, and (d) the land use map in the downtown of the
Philadelphia.
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land use map, LiDAR cloud point data, medium resolution Landsat 8 thermal imagery, National Land Cover Dataset (NLCD), and
meteorological data from National Renewable Energy Laboratory (NREL) (Fig. 1). The high-resolution land use map was created semi-
automatically based on high-resolution aerial imageries and LiDAR data with accuracy as high as 90% by Urban Tree Canopy Project
from University of Vermont. The high-resolution LiDAR data are in the form of pre-processed x, y, z points cloud files from United
States Geological Survey 3D Elevation Program (https://usgs.entwine.io/). In this study, the open-sourced tool Point Data Abstraction
Library (PDAL) was used to convert the LiDAR cloud points into digital elevation model (DEM) and digital surface model (DSM)
automatically. The high-resolution land use map and the generated DSM were combined to generate the building height model and the
tree canopy height model. In addition, the NLCD data of 2019 with the spatial resolution of 30 m and the Landsat 8 thermal imageries
with the spatial resolution of ~100 m in the summer of 2019 were also collected for the study area. The meteorological data in 2019
was collected from NREL (https://nsrdb.nrel.gov/). The meteorological data include the hourly global horizontal radiation, direct
radiation, diffuse radiation, relative humidity, etc.

2.2. Land surface temperature mapping

In this study, the land surface temperature (LST) was calculated for each approximately 100-m pixel from all available cloud-free
Landsat 8 Collection 2 images captured during the northern hemisphere summer months (June, July, August) in 2019 over the city of
Philadelphia. This LST was derived from top of the atmosphere thermal infrared radiation between 10.60 and 11.19 pm measured by
Landsat after taking into consideration land surface properties (emissivity, vegetation cover, etc.) and atmospheric auxiliary data
(Hulley et al., 2015). The summertime composites were for June 2nd, July 4th, July 20th, August 5th, and August 21st, 2019, with an
overpass time around 11:30 am local time. Pixel-level quality control flags were applied to the observations to identify and exclude
areas affected by cloud contamination. The cloud-free Landsat image captured on July 20, 2019 was further used in comparison of LST
with the corresponding Tp,. Due to the method of observation, the LST represents a directional measure of the radiative temperature
of all objects viewed by Landsat and, it is also somewhat sensitive to the retrieval algorithms used (Sekertekin and Bonafoni, 2020) and
the method for specifying surface emissivity (Chakraborty et al., 2021).
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Fig. 2. The calculation of the mean radiant temperature (Tp,) using the SOLWEIG model based on high resolution land use map, digital surface

model, building footprint map, and meteorological data using the GPU-accelerated algorithm, (a) the SOLWEIG model for computing the Ty, (b)
the GPU-accelerated algorithm, (c) the spatial distribution of the computed Ty, in part of the study area.
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2.3. Mean radiant temperature estimation

The mean radiant temperature (Tp,,¢) is the integrated net shortwave and longwave radiation that human body is exposed to from
the surrounding environment and the Ty, is the most significant meteorological input parameter for human energy balance, especially
on clear and calm summer days (Mayer and Hoppe, 1987). In urban areas, solar radiation undergoes various processes including
reflection, absorption, and re-reflection by vertical urban surfaces. A portion of this radiation is trapped within street canyons and re-
emitted as longwave radiation. Obstructions, such as buildings and trees, act as barriers that block the solar radiation, thereby further
reducing the amount of solar radiation reaching the street canyons. In this study, the SOlar and LongWave Environmental Irradiance
Geometry model (SOLWEIG) was used to calculate Tpy (Thorsson et al., 2014; Lindberg and Grimmond, 2011; Lindberg et al., 2008)
based on high resolution building height model, tree canopy height model, together with radiation, air temperature, and air humidity
collected from local weather stations as inputs (Fig. 2). The SOLWEIG is a three-dimensional solar radiation model designed to estimate
the fluctuations of shortwave and longwave radiation fluxes. This model considers shadow patterns and the reflection and absorption
of solar radiation by geometrical characteristics of buildings and trees. The SOLWEIG model has been validated worldwide in different
climate zones with high accuracy (Chen et al., 2016; Lindberg and Grimmond, 2011; Gal and Kantor, 2020; Buo et al., 2023). In
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Fig. 3. The spatial distributions of the land surface temperature (LST) on July 20th, 2019 at 11:30 am local time (a), the mean radiant temperature
(Tmre) on July 20th, 2019 at 11:30 am (b), the averaged LST in summer of 2019 (c), and the averaged Ty, at the same periods of LST (d).
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SOLWEIG model, the Ty, can be calculated as (Lindberg et al., 2008; Lindberg and Grimmond, 2011),

Tore = ¢ R/Spc —273.15 (€D)]

where o is the Boltzmann constant, ¢, is the emissivity of the human body, and R is the radiation that a human body exposed and can be
estimated as,

R= ékZTKiFi + SpZTLiFi 2

where K; is the shortwave radiation component from 6 directions (north, south, west, east, top, and bottom), L; is the longwave ra-
diation, F; is the angular factor between a person and the surrounding environment, &, is the absorption coefficient for shortwave
radiation (standard value 0.7), g, is the emissivity of the human body (standard value 0.97) (Fig. 2(a)). The SOLWEIG model is
computationally expensive when running on CPUs at fine resolutions (Li, 2021; Li and Wang, 2021). This study adopted the previously
developed GPU-based method to accelerate the SOLWEIG model (Li and Wang, 2021). The NVIDIA computing framework PyCUDA
was used in this study to combine the Python and C programming languages for pixel-level computation. The Python was used to
handle the spatial information of pixels, and the C was used to conduct massive pixel-level operations for modeling the radiation on
GPU in parallel. Fig. 2(b) shows the computational model of the GPU-accelerated model for computing the Ty, based on the input
urban 3D model and meteorological data.

3. Results

Fig. 3a and Fig. 3b show the spatial distributions of LST and Ty, in the city of Philadelphia on July 20th, 2019. Since the mete-
orological data that was used for urban microclimate modeling is only available every 30 min, therefore, Tpt was calculated for 11:30
am (closest to Landsat overpass time at 11:39 am). In the LST map of July 20th (Fig. 3a), the LST distribution pattern aligns well with
the distribution of tree canopies (Fig. 1). This is because the surface temperature of vegetation is lower than the surface temperature of
developed land and impervious land (Paschalis et al., 2021). Water bodies also have much lower LST values than land pixels, but they
are not a big presence in the city of Philadelphia. The LST map shows the general pattern of the heat distribution in the study area,
while details of the temperature variance within neighborhoods are not clear due to the ~100 m resolution. Fig. 3b shows the spatial
distribution of the Ty, on July 20th at 11:30 am local time, and the water bodies pixels are not included. The Ty, has a much higher
spatial resolution (1 m) and presents a more detailed heat distribution across the study area (Fig. 3b). Similar to LST, Ty, has a
generally similar distribution with the tree canopy cover in Philadelphia. This is because tree canopies provide shade and help to lower
the direct solar exposure on the ground. In the Ty, map, the downtown areas have significant lower Ty, values, because of the shade
provided by the high-rise buildings (Fig. 3b). While in the LST map, such a pattern is not clear because the satellite view angle and the
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Fig. 4. The scatter plots of the mean radiant temperature (Tp,) and the land surface temperature (LST) at the pixel level in the study area by
resampling the Ty, map to the same resolution as the LST, (a) the scatter plot of LST and Ty, on July 20, 2019, (b) the scatter plot in the LST and
Tmre in the summertime from June to August of 2019.
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resolution are insufficient to discern building shadows.

Fig. 3c shows the spatial distribution of the averaged LST from all available images (June 2nd, July 4th, July 20th, August 5th,
August 21st) for summer 2019 after pixel-level quality-control for cloud contamination. The averaged LST map has a clearer spatial
distribution of the LST than the LST map of July 20th in the study area. However, the spatial variations of the heat distribution across
streets and neighborhoods are still not clear in the LST because of the coarse resolution. Fig. 3d shows the averaged Ty, at 11:30 am
local time for the same dates as the LST maps in order to make the data comparable. In the averaged Tyt map, more heterogeneous
heat distributions across neighborhoods and streets are seen.

In order to compare the LST and the Ty, values, the 1 m Ty, data were resampled to the same resolution as the Landsat LST using
bilinear interpolation. Fig. 4 shows the scatter plots of the LST and T, values for all non-water pixels in the city of Philadelphia for
July 20, 2019 (Fig. 4a) and the summertime of 2019 (Fig. 4b). The Ty, has a significant and positive correlation with the LST for both
July 20th and the summertime of 2019 (Fig. 4). Although the Ty, and LST have similar trend, Tp,t shows higher value than the LST for
most pixels.

The Landsat-derived LST is not able to disentangle the surface temperature of different land use categories, while the high reso-
lution Ty, map reflects the different heat exposures on different land use types. On further examination, we compared the LST and Tyt
pixels overlaying different land use types. Fig. 5 shows the overlap of ~100 m LST pixel and the ~1 m Ty, for building blocks, open
space and road, forest, and grasslands in the study area. For each LST pixel, the Tt values were calculated as the mean values of all
Tmre pixels inside of the spatial extent of the LST pixels for each land use type. Fig. 6 shows the scatter plots of the summertime LST pixel
values and the corresponding Tp, values for buildings, open space and road, forest, and grass. For the developed land cover types
based on NLCD (including land use types of building blocks, and open space and road), the LST value has a stronger correlation with
Tmrt over the building block than over the open space and road (Table 1), which indicates the stronger relationship of LST with rooftop
temperatures rather than roads. For the vegetated land cover types based on NLCD (including land use types of forest and grassland),
the LST has a stronger correlation with Ty, for the forest component than the grassland (Table 1).

Fig. 7 shows the spatio-temporal distribution of the Ty, over time on July 20th, 2019. The Ty, distribution changes significantly
over time due to the different solar positions and the meteorological conditions. While the Landsat-derived LST data cannot indicate
the temporal change of the surface temperature at details in the time other than the visiting time of the satellite.

4. Discussion

Extreme heat in urban areas is an increasingly dangerous threat to human well-being, particularly when exacerbated by global
climate change. Quantitative understanding of the urban heat distribution is of great importance for monitoring heat vulnerability
within cities, devising effective mitigation strategies, and ensuring climate resilience. This study, using the city of Philadelphia as a
study area, investigated the comparability of satellite-derived LST, often used in multi-city studies to identify local urban warming and
detect heat exposure hotspots, with Tr,t, a metric that provides a more physiologically relevant measure of heat exposure. Our findings
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Fig. 5. The overlay of high resolution (1 m) mean radiant temperature (Ty,,) of different land use components on the coarse resolution (100 m) land
surface temperature (LST), (a) the LST and Ty, maps for a portion of the study area, (b) the land use map, (c) the overlay of T, of different land use
types on LST.
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Fig. 6. The correlations of the LST and Ty, components from building block, open space and road, forest, and grassland.

Table 1

The correlation coefficients between the land surface temperature (LST) and the mean radiant temperature (Tp,) of different land use

components for the study area.

Different land use components

Correlation coefficient

Significant level (N = 168,795)

Building blocks
Open space and road
Forest

Grassland

0.230
0.150
0.353
0.086

0.000**
0.000**
0.000**
0.000**

" Significant at the 0.01 level (2-tailed).
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Fig. 7. The spatio-temporal distribution of Ty, on July 20th, 2019 at different time points.

reveal a robust and statistically significant positive correlation LST and Ty, which indicates that both the LST and Ty, can effectively
present the overall distribution of urban heat across the city. The finer resolution Tp,x computed here provides more detailed infor-
mation of the urban heat distribution with consideration of the impact of different urban landscape features, such as, street trees,
building blocks, and other shading structures. This detailed information is crucial for identifying neighborhoods that are vulnerable to
heat exposure (Li, 2021), which is also relevant for understanding heat-related environmental disparities in cities (Chakraborty et al.,
2019; Hsu et al., 2021).

The study further disentangled the relationship between the Landsat-derived LST and modeled 1 m resolution Ty, over different
land use categories, such as building blocks, open space and road, forests, and grassland. Results show that the Landsat-derived LST has
a stronger correlation with Tp over buildings than the open space and roads. However, it is important to note that building roofs are
not directly relevant to pedestrian-scale thermal discomfort, and using the Landsat-derived LST cannot adequately capture outdoor
heat exposure in densely built-up regions. Interestingly, LST and Tp, over forests have a relatively strong correlation, suggesting
similar variability of the top of the canopy temperature with the heat exposure below the tree canopies. While for the grassland, Tp¢
has a relatively weak correlation with the LST, because the Ty, on grassland is relatively high with no shade, but the surface tem-
perature of grassland is generally cool.

Satellite observations of LST are constrained to the time of satellite overpass. However, the distribution of urban heat changes
significantly over time, as seen from Tp,. Thus, although more computationally expensive to generate, the high-temporal resolution
Tmrt can provide more timely information of the dynamic changes in urban heat distribution throughout the day. The GPU-accelerated
urban microclimate modeling is proved to be a highly efficient approach for generating city- and neighborhood-scale urban heat maps
(Li and Wang, 2021). This methodology presents a powerful tool for understanding the dynamics of urban heat exposure in future
studies. However, the modeling of T, relies heavily on high-resolution spatial data as input. Developed countries benefit from robust
data infrastructure and make it easy to generate such data. However, developing countries or regions lacking similar data infra-
structure may face challenges in implementing this method. In areas where high resolution geospatial datasets are unavailable, the LST
may still be a decent surrogate, especially when looking at the heat variability across the city.

The current study has several limitations that should be acknowledged. Firstly, we only examined the daytime urban outdoor heat
exposure levels, and the nighttime heat exposure was not considered. This is because the Landsat LST is primarily captured during the
daytime satellite overpass. However, nighttime and indoor heat exposure also impact human well-being. Previous studies show that
the nighttime LST agrees well with the ambient air temperature (Zhang et al., 2014; Zhu et al., 2013). Therefore, using MODIS and
ECOSTRESS LST may be able to estimate the ambient air temperature at nighttime, which can be further used as an input to estimate
the Tyt at night. Moreover, actual human heat exposure is also impacted significantly by adaptation as well as movement, clothing,
use of parasols, etc., while these factors are not considered in this study.

This study only compared the medium-resolution Landsat-derived LST and Ty, at different spatial and temporal resolution. Future
studies should consider using higher-resolution LST for the comparison. Additionally, no field measurements were conducted to
directly map actual human heat exposure in this study. Therefore, it is essential for future studies to incorporate ground measurements
for further validation of the model. In the urban microclimate modeling, the albedo of the ground surface was assigned as a universal
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value for each land use type, which does not consider the internal variations of albedo within the land use type. However, different
pavement materials like concrete and asphalt may have very different reflectance of solar radiation. In future studies, a more detailed
albedo map should be incorporated to better model the impact of the pavement types on human thermal comfort.

In addition, the Ty, calculations also require fine temporal resolution meteorological data, such as air temperature, humidity, and
radiation. In the present study, we used data from NREL, which cannot indicate the spatial variations throughout the city. Therefore,
future studies should consider using finer level meteorological data to generate a smore objective method of the urban heat distribution
at the city scale.

5. Conclusion

This study compared Landsat-derived land surface temperature (LST) and urban microclimate modeling-computed mean radiant
temperature (Tp) for mapping urban-scale heat exposure distribution in Philadelphia. The fine resolution Ty, is able to detect much
more detailed information about urban heat with consideration of the fine level landscape factors, such as street trees, building blocks,
etc. However, the Tp, calculations require finer spatial resolution spatial data as input and are more computationally expensive to
calculate, which limits the applicability of the method to those areas with good data infrastructure and computational resources. In
contrast, the Landsat-derived LST can efficiently cover large areas. However, the coarse resolution LST is only able to show the general
pattern of the urban heat distribution. It also cannot disentangle the heat contributions from different land use components, building
roofs, top of tree canopies, grassland, and open land and road. The stronger correlation between LST and Ty, on building roofs than the
ground surface indicates that the coarse resolution LST may not provide a comprehensive understanding of pedestrian-level human
heat exposure on the ground. In addition, the Tp can generate urban heat distribution at high temporal resolution, while the Landsat-
derived LST is fixed to the satellite overpass times. This comparison provides a valuable reference for selecting more appropriate
metrics in urban heat-related studies.
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