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Abstract

®
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Aqueous electrolytes are promising in large-scale energy storage applications due to intrinsic
low toxicity, non-flammability, high ion conductivity, and low cost. However, pure water’s
narrow electrochemical stability window (ESW) limits the energy density of aqueous
rechargeable batteries. Water-in-salt electrolytes (WiSE) proposal has expanded the ESW to

over 3 V by changing electrolyte solvation structure. The limited solubility and WIS electrolyte
crystallization have been persistent concerns for imide-based lithium salts. Asymmetric lithium
salts compensate for the above flaws. However, studying the solvation structure of asymmetric
salt aqueous electrolytes is rare. Here, we applied small-angle x-ray scattering (SAXS) and
Raman spectroscope to reveal the solvation structure of imide-based asymmetric lithium salts.

The SAXS spectra show the blue shifts of the lower ¢ peak with decreased intensity as the
increasing of concentration, indicating a decrease in the average distance between solvated
anions. Significantly, an exponential decrease in the d-spacing as a function of concentration
was observed. In addition, we also applied the Raman spectroscopy technique to study the
evolutions of solvent-separated ion pairs (SSIPs), contacted ion pairs (CIPs), and aggregate ions

(AGGs) in the solvation structure of asymmetric salt solutions.

Supplementary material for this article is available online

Keywords: SAXS, water in salt, Raman spectroscopy, solvation structure

1. Introduction

Aqueous electrolytes with intrinsic low toxicity, non-
flammability, higher ion conductivity and low total cost
demonstrate significant potential for large-scale energy stor-
age applications [1-3]. However, the existence of hydrogen
and oxygen evolution leads to the narrow electrochemical
stability window (ESW, 1.23 V) of pure water, which com-
promises the energy density of aqueous rechargeable batteries

3 These authors contributed equally.
“ Author to whom any correspondence should be addressed.

[4-7]. Suo et al proposed the concept of water-in-salt electro-
lytes (WiSE), where the weight and volume of salt both exceed
that of water in 21 m (mol kg~") lithium bis(trifluoromethane
sulfonyl)imide (LiTFSI) electrolyte, thereby expanding ESW
to over 3 V [8]. Water molecules and TFSI™ anion in the
WiSE take part in the primary solvation sheath of Li*, which
profoundly affect the physicochemical properties of WiSE
[9, 10]. The unique Li ion transport mechanisms in WiSE
have been proposed despite the large macroscopic viscosity of
WiSE [11, 12]. More importantly, as anions have more posit-
ive redox potentials than water, the solid electrolyte interphase
(SEI) is predominantly derived from anion reduction in WiSE

© 2024 |OP Publishing Ltd
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[13—15]. The stable anion-derived SEI and absence of free
water prevent the hydrogen evolution reaction (HER) on the
anode [16, 17]. Therefore, anion plays a vital role in the high
round-trip energy efficiency and cyclability of high-voltage
aqueous rechargeable batteries.

Of all the reported anions, organic imide anions are intens-
ively studied [18-21]. The bulky imide anions with weakly
Lewis basic feature effectively diminish water volume and
promote the LiT-water solvation structure [20]. However, the
limited solubility of imide-based salts in water hinders their
potential for further advancement. Ko ef al found that the
asymmetric salts in water are more soluble than symmetric
salts, which makes them more suitable for the WiSE regime
[22]. They enormously widened the ESW to 5 V by mixing
asymmetric ion N(SO,CF3)(SO,C;Fs)(PTFSI) and symmet-
ric ion TFSI with a 55.5 m concentration in water. Another
concern is the low-temperature performance of aqueous bat-
teries. WiSE approaches the salt solubility limit, leading to a
tendency of crystallization during long-term cycling or operat-
ing at low temperatures [17]. Kiihnel et a/ proposed the intro-
duction of asymmetric imide anion to strengthen the electro-
lyte salt’s intermolecular bonding, which effectively enables
the WiSE stability at low temperature [23, 24]. Therefore, the
systematic research of the solvation structure of asymmetric
imide-based lithium salts in water benefits the understanding
of WiSE.

Various characterization techniques have been applied to
reveal the solvation structure of electrolytes, covering different
scales and structural information. Infrared (IR) spectroscopy
and Raman spectroscopy provide local information on the
vibrations of chemical bonds of anions in the electrolyte. X-ray
absorption spectroscopy (XAS) is used to explore the coordin-
ation environment of the elements of interest. However, the
limitations of XAS restrict its use to studying atoms with
high atomic numbers. Zhang et al applied XAS to invest-
igate the coordination environment around Zn>* in mixed
Zn(TFSI), and LiTFSI water-in-salt electrolytes [25]. They
found that Zn>* cations are primarily solvated by six water
molecules in the first solvation shell without the presence of
TFSI~ anions. Distinct from the local information provided
by IR/Raman spectroscopy and XAS, small-angle x-ray scat-
tering (SAXS) offers statistical structural information at the
nanometer scale by measuring electron density discontinuities
in the target material [26—28]. Zhang et al investigated water-
in-salt LiTFSI aqueous electrolytes using this technique [29].
Molecular dynamics (MD) simulations, producing x-ray struc-
ture factors at low q ranges, align well with x-ray total scatter-
ing data and SAXS structure factors. Therefore, SAXS data
can be used as an effective method to validate the accuracy of
the force field used in MD simulations. Consequently, SAXS
is emerging as a pivotal tool in electrolyte characterization,
which plays an irreplaceable role.

Here, we investigated the physicochemical properties
of asymmetric lithium salts with different concentrations
in water. By fixing one (fluorosulfonyl) (FS) side in
lithium bis(fluorosulfonyl)imide (Li(FS-FS)I), extend chain
lengths of the other side in FS-based lithium salts, such
as (pentafluoroethane sulfonyl) (PFS) and (nonafluorobutane

sulfonyl) (NFS), were studied. The SAXS spectra show the
blue shifts of the lower g peak with decreased intensity as the
increasing of concentration, indicating a decrease in the aver-
age distance between solvated anions. The increase in the pop-
ulation of anions and reduction of water molecules in highly
concentrated solution induce the formation of FSI- networks,
which is indicated by the formation of additional peaks at
higher ¢ value. Significantly, an exponential decrease in the d-
spacing as a function of concentration was observed. In addi-
tion, we also applied Raman spectroscopy technique to study
the evolutions of solvent-separated ion pairs (SSIPs), contac-
ted ion pairs (CIPs), and aggregate ions (AGGs) in the solva-
tion structure of asymmetric salt solutions.

2. Experimental section

2.1. Electrolyte preparation

Electrolytes with different concentrations were pre-
pared by dissolving the lithium bis(fluoro sulfonyl)imide
(LiFSI, 99.9%, Sigma-Aldrich), the lithium (fluoro sulf-
onyl)(pentafluoroethane sulfonyl)imide (Li(FS-PFS)I,
>95%, Provisco CS) and the lithium (fluoro sulf-
onyl)(nonafluorobutane sulfonyl)imide (Li(FS-NFS)I, >95%,
Provisco CS) in high purity water which conductivity is
18.2 MQ2 x cm at 25 °C. All the electrolytes were prepared
by molality (mole-salt in kg-solvent) used by abbreviated
concentrations (1 m, 5 m, 10 m, 15 m, 20 m).

2.2. SAXS

SAXS experiments were measured at the Advanced Photon
Source (APS) 12ID-B station of Argonne National Laboratory.
The 2D SAXS data were collected on an Eiger 2S detector
(DECTRIS Ltd) with an incident energy of 13 keV. The two-
dimensional scattering images were radially averaged over all
orientations to produce plots of scattered intensity 1(g) versus
scattering vector ¢, where ¢ = 4 sin 6/\. The scattering vec-
tor, g, was calibrated using silver behenate. The samples were
loaded into 1.5 mm diameter quartz capillary tubes and sealed
with epoxy for the SAXS measurement.

2.3. Raman spectroscopy

Raman spectra of the samples were collected at the
GSECARS (Center for Nanoscale Materials, Argonne
National Laboratory) with an excitation wavelength of
532 nm. The electrolytes were loaded into 1.5 mm diameter
quartz capillary tubes and sealed with epoxy.

3. Results and discussion

3.1. SAXS results

We conducted SAXS measurements on LiFSI, Li(FS-PFS)I,
and Li(FS-NFS)I with the increasing concentration, as illus-
trated in figure 1. As the concentration of Li(FS-FS)I in water
increases, the Peak a shifts to a higher g value, suggesting the
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Figure 1. Molecular structure and corresponding SAXS profiles of (a) Li(FS-FS)L, (b) Li(FS-PFS)L, and (c) Li(FS-NFS)I aqueous solutions

with different concentrations.

decreasing of the average distance between solvated FSI ions.
This phenomenon can be ascribed to the heightened inclina-
tion of FSI anions to displace free water molecules from the
outermost layer, consequently resulting in a diminished sep-
aration distance between solvated FSI anions. Interestingly,
the Peak b located at higher ¢ value appears as the concen-
tration higher than 5 m. The increase in the population of
FSI anions and reduction of water molecules in highly con-
centrated water solutions induce the formation of FSI™ net-
works. Different from the position changes of Peak a, the
Peak b position remains unchanged as the concentration fur-
ther increases. Compared with the symmetric Li(FS-FS)I salt,
two Peaks can also be observed in aqueous solution of asym-
metric Li(FS-PFS)I salt (figure 1(b)). Significantly, the Peak
a shifts to higher g but disappears at high concentrations
(15 m and 20 m), which is consistent with the observed
phenomenon in symmetric Li(TFS-TFS)I salt solution. The
decrease in the Peak a intensity, accompanied by the emer-
gence and intensification of Peak b indicate that the FSI-
solvated structure gradually disappears and the (FS-PFS)I
anion networks form, respectively. A reduction in the relat-
ive abundance of water molecules in a concentrated solution
causes solvation structure changes, which is highly related to
the electrochemical performance. As the chain expands, the
Li(FS-NFS)I water solutions exhibit different physicochem-
ical properties. We noted that Li(FS-NFS)I sample at concen-
trations of 7 and 10 m after cooling from the molten state,
underwent solidification, solidification upon cooling from the
molten state, and attained a gel state at room temperature.
Within the SAXS profile (figure 1(c)), an additional Peak c was

identified, corresponding to the interatomic distance between
either the same anion or neighboring anions [1]. Additionally,
Peak b exhibits an observable positive shift as the concentra-
tion increased, suggesting the diminishing of averaged spacing
between (FS-NFS)I-networks.

We summarized the relationship between d-spacing and
concentration in different salt solutions to study the effect of
chain length on the solvation structure size (figure 2). The
d-spacing for Peak a and Peak b can be calculated using
the formula d = 27/q. As the chain length increases, the
d-spacing values of Peak a and Peak b also increase. The
smaller d-spacing observed for Peak a and Peak b in Li(FS-
FS)I solutions can be attributed to the smaller size of the
anions since the formation of these two Peaks primarily arises
from the anion network. In addition, we noticed an obvi-
ous d-spacing drop of Peak b in Li(FS-NFS)I solutions as
concentration increases, indicating that the anion networks
become increasingly crowded in large molecular weight salt
solutions.

To provide additional evidence for our interpretation, we
analyzed the correlation between the d-spacing and the car-
bon number of different imide-based anions. Specifically, the
d-spacing of Peak a was plotted against the carbon numbers
at concentrations of 1 m, 5 m, 10 m, and 15 m, as depicted
in figure 3(a). The results demonstrate a positive correlation
between the evolution of d-spacing and the number of carbons
present in the fluorocarbon chains of the imide-based anions.
This finding aligns with our previous results obtained for sym-
metric lithium imide salts [21]. The relationship between the
d-spacing and concentration is illustrated in figure 3(b). The
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Figure 2. d-spacing of Peak a and Peak b is plotted as a function of concentrations in Li(FS-FS)I, (b) Li(FS-PFS)L, and Li(FS-NFS)I

aqueous solutions.
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Figure 3. (a) d-spacing of Peak a as a function of carbon numbers at different concentrations. (b) d-spacing changes of Peak a as a function
of concentration in Li(FS-FS)I, (b) Li(FS-PFS)I, and Li(FS-NFS)I aqueous solutions.

results indicate an exponential decrease in the d-spacing as a
function of concentration, with the fitting parameters provided
in table S1.

3.2. Raman results

To elucidate the solvation structures, Raman analysis was
performed at ambient temperature for aqueous electrolytes
such as Li(FS-FS)I, Li(FS-PFS)I, and Li(FS-NFS)I at vary-
ing concentrations, as shown in figures 4(a)—(c). In general,
the intense band that appears at about 720-780 cm™! repres-
ents the S-N-S bending vibration of the anions [30, 31]. As
the electrolyte concentration increased from 0.5 to 20 m, the
bending vibration (S-N-S) experienced a shift towards higher
frequencies. This blue shift is associated with alterations in
the electron density of the anion and the coordination struc-
ture between the cation and anion. The elevated number of
the withdrawing electron groups (CF3) reduces the Coulomb
interaction between anion and Li™ cation [32], leading to a
smaller peak shift in the S-N-S vibrational mode of Li(FS-
PFS)I (744-750 cm™') and Li(FS-NFS)I (732-736 cm™!)

compared to LiFSI (745-756 cm~!). According to previ-
ous reports [33], there are three types of bending vibration
of anions in aqueous solutions originating from (i) solvent-
separated ion pairs (SSIPs), contacted ion pairs (CIPs), and
aggregate ions (AGGs). Curve fitting was performed to sep-
arate each band and the fitting results are illustrated in
figures 4(d) and (e) for Li(FS-FS)I and Li(FS-PFS)I aqueous
solution. At low concentrations, the proportion of SSIPs in
Li(FS-PFS)I aqueous solution surpasses that in Li(FS-FS)I,
indicating the weaker interaction between cation and anion
with increasing CF3 groups. However, at higher concentra-
tions, SSIPs in Li(FS-PFS)I aqueous solution form 15 m dis-
appears, while they still account for approximately 15% in
Li(FS-FS)I solution. Hence, the electrophilic properties and
the geometric size may play pivotal roles in influencing the
solvation structure of asymmetric Li salts in water. Due to the
subtle differences in the S-N-S vibrational mode and the dis-
tinct configurations of the (FS-PFS)I~ anion, an intricate over-
lap occurs among the peak of SSIPs, CIPs and AGGs [34]. This
intricate interplay complicates the precise determination of the
fractions of SSIPs, CIPs, and AGGs.
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Figure 4. Raman analysis of (a) Li(FS-FS)I, (b) Li(FS-PFS)I, and (c) Li(FS-NFS)I aqueous solutions with different concentrations. SSIPs,
CIPs and AGGs d of (d) Li(FS-FS)I, (e) Li(FS-PFS)I at different concentrations.

4. Conclusions

We investigated the physicochemical properties of imide-
based asymmetric lithium salts with different concentrations
in water. The SAXS spectra show the blue shifts of the lower
g peak with decreased intensity as the increasing of concen-
tration, indicating a decrease in the average distance between
solvated anions. The increase in the population of anions and
reduction of water molecules in highly concentrated solu-
tion induce the formation of FSI networks, which is indic-
ated by the formation of additional peak at higher g value.
Significantly, an exponential decrease in the d-spacing as a
function of concentration was observed. In addition, we also
applied the Raman spectroscopy technique to study the evol-
utions of solvent-separated ion pairs (SSIPs), contacted ion
pairs (CIPs), and aggregate ions (AGGs) in the solvation struc-
ture of asymmetric salt solutions. The results obtained in
this work benefit the understanding of the solvation structure
of WISs electrolytes and promote the development of high-
energy density batteries.
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