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Artificial Intelligence (AI) aims at mimicking
human intelligence through computer programmes.
Machine learning (ML), especially deep learning
technologies, aiming at inferring insights from
complex data through mathematical modelling,
offers an effective way of achieving Al and has
achieved great success in many disciplines, such as
computer vision and natural language processing.
Over the past decade, many ML models have
also been developed with the goal of improving
healthcare, such as predicting the risk of sepsis
shock for patients in critical care,’ identifying
patients who are at high risk of developing post-
partum depression from their historical clinical
records” and screening patients who are infected
by SARS-CoV-2 according to their routine blood
test results.’

Real-world clinical trials are essential for
proving that Al applications are safe, effective and
fit for use in healthcare by assessing their perfor-
mance across diverse conditions and populations,
ensuring regulatory compliance and addressing
ethical concerns. Despite the need for clinical trials
and the promising results reported in research
papers, the ratio of these models that have been
implemented in real-world clinical workflows is
relatively small. One of the inherent reasons is the
complex interactions among multiple stakeholders
in the healthcare system including patients,
providers, policymakers and insurance companies.
In a recent review, Li et al* identified 19 technical/
algorithm, stakeholder and social levels barriers
to the application of Al in healthcare and called
for future endeavours to address them. With this
demand, there has been more and more efforts
focusing on particular aspects of these barriers®
or exemplar implementations in different disease
contexts,' 7 but guidelines for the holistic process
of implementating Al models in clinical workflows
are still sporadic.

To fill in this gap, in this perspective, we provide
an Al model implementation roadmap in clinical
workflows, including three main phases: pre-
implementation, peri-implementation and post-
implementation. Key modules of each phase and
how they are interconnected to impact the overall
outcome of the entire solution are discussed, with
the goal of providing a comprehensive picture on
the lifecycle of Al model implementation. Figure 1
summarises these different stages and the critical
components that we will discuss as follows:

Pre-implementation
Pre-implementation refers to the stage when the
model has been developed and demonstrated

strong promise during retrospective analysis.
Before we integrate the model into the actual
clinical workflow, we need to make sure of the
following items:

Model performance. The model’s performance
needs to be extensively evaluated before it can be
deployed. In a recent paper, Wong et al® reported
a significant drop of the performance of the sepsis
risk prediction model integrated in the Epic system.
Finlayson et al® stated that ‘this was a case in
which the dataset shift fundamentally altered the
relationship between fevers and bacterial sepsis.
Although external validation has been emphasised
as an important step to ensure the generalisability
of the developed model, researchers have recently
argued that such external validation could be
unrealistic due to various reasons including popu-
lation and measurement differences, and it has
been suggested to conduct repeated local valida-
tion instead. Therefore, retrospective evaluation
using the local data from the site that the model
will be deployed to is critical. During localisation,
the operating characteristics and threshold deter-
mination can be made based on the specific use
case.

Data and infrastructure. After the model is
developed and appropriately evaluated for perfor-
mance and bias, we need to map out the entire
data flow of the model deployment cycle and
understand where the data will be fed into the
model and how the model output will be demon-
strated to the end user. For example, a clinical
risk prediction model can be implemented within
the electronic health record (EHR) system, such as
Epic, through their provided applied programming
interfaces. During this process, the model devel-
opers need to work closely with the information
technology service (ITS) team to build appro-
priate connectors (eg, through the Fast Healthcare
Interoperability Resources) so that the EHR data
can be fed into the model and model outputs can
be transmitted back to the EHR system. We also
need to consider where the model will be stored
and how frequently the model inference will be
needed. Costs and resources to complete this work
should be incorporated into the value assessment
of the tool.

Model integration. In addition to the tech-
nical aspects involving model, data and infra-
structure, incentives for the integration of the
solution should be aligned as the stakeholder
who made the request may not be the same
as those that will be responsible for acting on
the results. It is imperative to understand the
current and future state care delivery process
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as adoption of the tool will be dependent on its fit into a
given workflow. The five rights of clinical decision support
can be used as a guide: the right person, information, time,
context and channel.” A user-centred design approach should
be taken, and an effector arm should be implemented.'® Patient
and provider input provides valuable insights into the user-
friendliness, effectiveness and overall impact of Al appli-
cations on care. At this stage, it is appropriate to consider
engaging the community for feedback through groups such as
a patient advisory council.

Peri-implementation

Peri-implementation refers to the stage right before and during
the model is implemented in the clinical workflow. During this
phase, the following items are critical.

Measurement of success. It is critical to define the measure-
ment of success during model deployment and ensure the data
to quantify this measurement is captured during implemen-
tation. Typically, such measurement is not directly the model
performance, but it is derived from the model’s inference. For
example, Adams et al' used mortality reduction to measure
the effectiveness of a sepsis shock prediction algorithm, where
the doctors who act on the best practice advisory alert would
prescribe antibiotics earlier and may improve patient outcomes
such as mortality. In clinical operations, metrics in the EHR,
such as Epic’s ‘Pyjama Time’, are used to track interventions
aimed at reducing physician administrative burden." The
measurement of success should be compared against the pre-
deployment standard of care to understand the impact of the
tool.

Implementation management. The oversight of medical Al
is crucial to ensure its safety and effectiveness, not only on a
centralised scale, like the US Food and Drug Administration,
but also at the local level to address variations in care, patients
and system performance.'”> A clear local governance structure
is needed during the model deployment process, as this will
involve coordination and collaborations across multiple teams.
These teams may include information technology, informatics,
data science, health equity, legal, compliance, and information
security. An efficient and effective communication mechanism
is also required across these teams and with the leadership and
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end-users. A well-organised documentation structure is needed
so that problems and troubles can be resolved in time.

Silent validation and initial pilot. Before the model is inte-
grated in the actual clinical workflow, a silent validation and a
pilot study are needed to check production data feeds and under-
stand how such a model will impact the clinical workflow. Here
‘silent’ validation means the end-users do not have access to
the model results, with the goal of recording information on the
data input and the model output to ensure it is in line with the
retrospective evaluation. A subsequent pilot study, typically in a
smaller subset of the final intended population, allows assessment
of education materials, communication plan, user interface and
potential effector arm.

Post-implementation

Al model deployment is not a one-stop procedure. After deploying
the model, its performance and the impact to the entire workflow
should be closely monitored. Necessary actions, such as model
updating, re-training and even decommissioning, should be taken
when the model’s behaviour deviates from its original intention or
becomes harmful to patients.

Monitoring and surveillance. Most of the disease conditions
progress over time, and thus, the model trained using patient data
collected from a certain period may not work in the future. For
example, with COVID-19, the different SARS-CoV-2 variant waves
have been associated with different acute infection outcomes.
Therefore, a clinical risk prediction model built during the first
wave, which is associated with the most severe clinical outcomes
in the acute phase for patients who were infected, may not work
for later waves. In addition, public health policies and resource
abundance may also impact model performance. For instance,
Yang et al? created a COVID-19 risk prediction model using patient
blood test results collected during the first wave of the pandemic
in the New York city area. During that time, resources needed for
conducting the reverse transcription polymerase chain reaction
(RT-PCR) test—the golden standard for confirming a patient is
infected by SARS-CoV-2—is limited. Consequently, patients could
only take the test if they had relevant symptoms such as fever and
cough, which led to a high positive rate (close to 50%). However,
after the first wave, such resources became much more available,
and the policy also changed so anyone can take the test if they
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wanted, which reduced the positive rate to around 2%. Yang et
al” found that the routine blood test profile distributions of the
patients who took the RT-PCR test had changed significantly, and
the model performance was drastically decreased. Therefore, the
model performance needs to be closely monitored, and appro-
priate actions are needed when there are abnormal observations.

Solution performance. After model deployment, its behaviour
will interact with clinicians’ practice, which may impact the
model’s performance, and further model tuning or retraining
is needed. Vaid et al'* systematically studied this problem in a
simulation framework and found that such model adjustment
would further deteriorate the model’s performance and lead to
unintended consequences. Therefore, it is critical to carefully
log all details of the model deployment process, including when
the model was deployed, how it interacted with clinicians and
how the model performance was changing over time. Liu et al'®
proposed a medical algorithmic audit framework to better under-
stand the mechanism of the Al model failure and encourage feed-
back between the end-user, model developer and ITS team, which
can better ensure a safe model deployment process.

Bias

Evaluation of bias should be done at each phase of model deploy-
ment to ensure that the model does not introduce or perpetuate
healthcare inequities. During retrospective evaluation, model
developers should review the training data to ensure that patients
represented in the data match the intended target population.'® If
race or inputs from other protected classes are used as features,
then the rationale for inclusion of that input should be clearly
understood and communicated. The use of surrogate variables for
inputs or outcome labels should be reviewed.'” Model performance
should be measured across demographics retrospectively and
prospectively to identify potential disparate performance across
groups, which could lead to the introduction or perpetuation of
bias. Lastly, the favourable outcome (eg, resource, intervention)
should be identified, and during the post-implementation period,
the distribution of the favourable outcome should be measured
to determine whether the model interventions are equitable or
as expected. Xu et al'® summarised various potential causes of
biased decisions made by algorithms. To deal with this challenge,
researchers have developed different checklists for potential algo-
rithmic bias. For example, Finlayson et al® developed an ‘Al safety
checklist’ to recognise and mitigate dataset shifts in Al models.
WOolff et al'® created the Prediction model Risk Of Bias ASsessment
Tool for assessing the risk of bias of the predictive models. These
checklists and tools should be used as references for assessing the
potential bias in Al algorithms.

In summary, we provided an overview of the lifecycle of imple-
menting Al models in clinical workflows. Different from existing
studies focusing on model development or a particular phase of the
model implementation process, we provided a complete picture of
the aspects at its different phases and how they are interconnected
to impact the outcome of the overall solution, which aligns well
with the real-world scenario when we actually implement these
models. We hope our paper can provide a roadmap and trigger
holistic thinking in our communities.
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