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Multi-stage screening pipelines are ubiquitous throughout experimental and
computational science. Much of the effort in developing screening pipelines
focuses on improving generative methods or surrogate models in an attempt to
make each screening step effective for a specific application. Little focus has
been placed on characterizing a generic screening pipeline’s performance with
respect to the problem or problem parameters. Here, we develop methods to
codify and simulate features and properties about the screening procedure in
general. We outline and model common problem settings and identify poten-
tial opportunities to perform decision-making under uncertainty for optimiz-
ing the execution of screening pipelines. We then illustrate the developed
methods through several simulation studies. We finally show how such studies
can provide a quantification of the screening pipeline performance with re-
spect to problem parameters, specifically identifying the significance of stage-
wise covariance structure. We show how such structure can lead to qualita-
tively different screening behaviors and how screening can even perform
worse than random in some cases.

INTRODUCTION

Multi-stage screening pipelines are ubiquitous
throughout experimental and computational
science. In such a pipeline, a set of initial candidates
is passed through several evaluative stages. Based
on the collective performance of the candidates at
any particular stage of the pipeline, a subset of
candidates is selected to advance to the next stage;
the rest are ‘‘screened out.’’ Typically, this screening
is done to minimize how many candidates are
evaluated throughout the pipeline, with the goal of
identifying promising or optimal candidates with
respect to some experimental objective. Often, later
stages are more costly, in time, money or other
measures of effort.

For example, experimental and virtual screenings
are used in drug-design,1–4 chemistry5 and material
science.6–8 Here, candidate drugs, molecules or
materials designs are first tested using preliminary
computer models, and promising candidates are
then tested in real-world experiments. Another
example is multi-modal characterization of materi-
als. In this context, a material sample is character-
ized using one of several techniques, from atomic
force microscopy available in many labs to x-ray
scattering at a synchrotron. Here, a materials
scientist may employ an ad hoc screening procedure
to identify which materials sample candidates are
passed through this characterization pipeline. As
autonomous materials platforms begin to incorpo-
rate more complex experimental or hybrid compu-
tational/experimental structure,9–11 understanding
how screening pipelines could operate in an auton-
omous manner could allow such platforms the
ability to make optimal screening pipeline decisions
as well.
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The use of a screening procedure relies on a
heuristic belief that the screening pipeline will
effectively narrow down a search space to a small
set of promising leads. However, there is no generic
guarantee this will work. Consider, for example, the
case of identifying promising drugs, where the ‘‘gold
standard’’ measure for effectiveness occurs at the
last stage of a screening pipeline, which could be
performing physical trials of the drug. Imagine the
first stage is a machine learning (ML) model meant
to predict this effectiveness based on a candidate
drug’s descriptors, but its predictions are only
slightly correlated or even anti-correlated with the
gold standard measure. In this case, the first stage
of the pipeline may aggressively and prematurely
screen out good candidates.

To mitigate against this threat, much of the
development around screening pipelines has been
the development of stages and models that are more
strongly correlated to the experimental objectives,
either through better surrogate models12–15 or
through better generative models16–18 that deter-
mine the initial candidate pool to begin with. Yet
fundamental and generic questions persist: What
aspects of a problem make the screening procedure
effective? Can we quantify the effectiveness of the
screening procedure? How do we deal with the
uncertainties behind the relationships between
stages? Are our current pipeline strategies or ad
hoc decision-making policies sufficient in executing
an effective pipeline? Coming back to the drug-
design example above, we may wish to quantify how
poorly the screening procedure performs as a func-
tion of the anti-correlation between the first and
final stages.

To answer such questions, we must develop a
theory where the general pipeline itself is the
subject of study, specifically from a perspective of
uncertainty quantification and decision-making
under uncertainty. In this article, we outline a
formalization of a family of screening pipeline
problems and simulation-based policies that we
use to make decisions before and during the screen-
ing procedure. To accomplish this, we build a model
of statistical structure between candidates and
stages and offer algorithms for efficient simula-
tion-based decision-making based on the assumed
statistical structure model. Lastly, we present some
simulation results to illustrate how such models,
simulations and policies can be used to characterize
and optimize screening pipelines.

PROBLEM DEFINITIONS

We consider a screening procedure with m initial
sampled candidates, x1; x2; :::; xm. These candidates
can represent drugs, molecules, materials or even
synthesis recipes. Often, these initial candidates are
obtained via generative models, ensemble methods
or evolutionary techniques—methods capable of
proposing a batch of candidates to test.

We will also consider n stages f1; f2; ::; fn, which we
shall view as functions mapping candidates xi to
corresponding scalar quantities of interest Yi;j ¼
fjðxiÞ as measured by the j-th stage. For example, in
drug design, the stages could represent molecular
property predictors, docking score calculations,
density functional theory or molecular dynamics
simulations, or physical trials. The outcomes for
these stages could be computed binding efficacy,
free energy calculations or measures toxicity and
synthesizability. In manufacturing, the stages could
include low- and high-fidelity finite element simu-
lations, rapid physical prototyping via 3D printers
and fabrication of a final deliverable. The outcomes
for these stages could be measures of mechanical
toughness or resiliency.

In the abstract, we call these values scores, so that
Yi;j is the score assigned to candidate xi at stage j.
We interpret these scores as the averaged ground
truth values. That is, if we were to repeatedly
evaluate a candidate xi through the j-th stage, the
average of the set of obtained scores will approach
the number Yi;j. Thus, the Yi;j represents the score
of candidate xi through the j-th stage, averaging
over noise or any inherent randomness implicit in
making the appropriate measurement and obtain-
ing the quantity of interest.

Throughout, we assume we do not know the
scores prior to evaluating the candidates through
each stage. As a priori uncertain quantities, we
treat the scores within a Bayesian context by
modeling such scores using a multivariate proba-
bility distribution. That is, throughout the screen-
ing procedure, we can maintain a probability
distribution for the scores Yi;j that captures pre-
dicted estimates of scores not yet evaluated as well
as an uncertainty quantification of those predictions
and an estimated correlation between different
scores. As more data are obtained through the
screening procedure, we can update this probability
distribution through Bayes’s law.

Objectives

These scores allow us to define two objectives.
First is stage-wise multi-fidelity optimization, in
which we view each stage as measuring the same
quantity, but with variable accuracies (i.e., fideli-
ties) and costs. In general, we will assume that the
last stage fn is the ground truth or gold standard
that we ultimately care about and is the most
expensive. The prior stages exist to perform cheaper
screening of candidates. For example, fn could be
performing a real experiment, while prior stages
could be a sequence of increasingly accurate (and
increasingly costly) simulations. A common pipeline
in this setting consists of three stages: f1 is an ML
model, f2 is a physics-based simulation, while f3 is a
physical experiment. Each stage could produce as
an output some figure of merit, such as some
material property to optimize, and the goal is to
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find the candidate that optimizes this property in
the real-life experiment. Another similar setting is
when stages correspond to different materials char-
acterization methods, where the final such method
could be a costly trip to a beamline. The stage-wise
multi-fidelity optimization problem shall be the
main focus of this article.

Another objective is stage-wise multi-objective
optimization. In this setting, we view each stage
as characterizing different quantities of interest.
For any given candidate xi, the scores
Yi;1;Yi;2; :::;Yi;n encode a set of different character-
izations of candidate xi’s material properties or
structure, for example. Under the multi-objective
objective, we want to identify those candidates x
that either (1) optimize some scalar utility uðxÞ ¼
uðf1ðxÞ; f2ðxÞ; :::; fnðxÞÞ or (2) lie on the n-dimensional
Pareto frontier.19

Both objectives can be characterized by defining
the final reward obtained at the end of the screening
procedure. For any screening procedure, we obtain a
subset XS � xif gmi¼1 of candidates that ‘‘survived’’
the screening process. For the multi-fidelity objec-
tive, we may define the reward as the maximum of
the final scores for all such screened candidates,
R ¼ maxXS

fmðxÞ. For multi-objective optimization,
the final score could be either the maximum scalar
utility over all surviving candidates,
R ¼ maxXS

uðxÞ, or some measure of improvement
to the Pareto front, such as a hypervolume improve-
ment,20, R ¼ HðXSÞ �H0: Here, HðXSÞ and H0 are
respectively the hypervolumes defined by the Pareto
front generated by the surviving points X s and prior
data points and the Pareto front obtained from just
the prior data points.

Pipeline Policies for the Optimal Allocation
Design Problem

Regardless of how we define the reward, the goal
in executing the pipeline is to do so in a way that
maximizes the realized reward on average.
Throughout, we shall refer to how we execute the
pipeline as a pipeline policy. The specific decisions
we make during the execution of the pipeline will
ultimately impact the rewards we gain at the end of
the pipeline. Examples of such decisions include: (1)
how many or what proportion of candidates may
pass from one stage to the next, (2) how costly each
stage is (to the extent that this cost is possible to
tune) and (3) how many or which initial candidates
we generate.

In this article, we shall decompose a pipeline
policy into two policies. The inter-stage policy selects
which candidates pass to the next stage based on
the scores they receive at the current stage. In
contrast, the pipeline meta-policy selects hyperpa-
rameters and constraints that the inter-stage policy
must satisfy. The main example used throughout
this article is selecting an allocation m ¼
ðm1; :::;mnÞ via a meta-policy. An allocation specifies

how many candidates are evaluated at each stage.
In this notation, m1 ¼ m candidates are evaluated
in the first stage, and then m2 candidates are
selected (by the inter-stage policy) for the second
stage, and so on. Throughout, we require each stage
to screen out at least one candidate and that some
candidates survive to the end. That is, we require
m1 ¼ m>m2 > � � � >mn � 1:

The meta-policy selects allocations, while the
inter-stage policy selects candidates given an allo-
cation. This distinction is not fundamental. We can
imagine an inter-stage policy that selects both the
number of candidates to pass trough to the next
stage and which specific candidates do so. However,
for this article, we focus on the decomposition of
decision variables described above. We have previ-
ously studied a similar nested-batch decision-mak-
ing policy in the case of Bayesian optimization for
the co-design of materials and devices21 and have
found the decomposition computationally favorable
in practice.

We employ this nested decision policy to solve the
optimal allocation problem. Here, we must select
the allocation m? that is likely to result in maximal
rewards under a specific inter-stage policy. The
meta-policy performs this selection prior to the
actual execution of the pipeline. Instead, it relies
on limited prior knowledge about the scores to
design an allocation. We encode this prior knowl-
edge using a probability distribution, a (Bayesian)
prior on the scores. This prior captures uncertain-
ties about the scores and the assumed statistical
relationship (the covariance) between them.

To design an allocation using a prior, we will
simulate the pipeline under some inter-stage policy.
That is, we can sample a ground truth y ¼ ðyi;jÞ from
the prior and use this sample to execute the
screening pipeline. That is, scores are obtained from
the sampled ground truth, fjðxiÞ ¼ yi;j, perhaps with
some noise added in. Using these scores, the inter-
policy screens out candidates for the next stage, and
so on. Executing the pipeline this way yields a
sample of rewards for the given sampled score and
allocation, rðy;mÞ. Repeating the simulations under
different samples of ground truth yields a represen-
tative sample of rewards. We treat this sample as an
empirical estimate of the distribution of the reward
RðmÞ for a given allocation m. Given this distribu-
tion for each allocation m, the meta-policy selects an
allocation m?.

Meta-policies for Closed-loop Versus
Single-shot Settings

The distribution on rewards RðmÞ is a quantifi-
cation of uncertainty. The meta-policy may consider
this uncertainty, especially when in a closed-loop
setting. In this setting, the meta-policy selects an
allocation m?

1 based the reward distribution that the
prior distribution induces. We then implement this
decision, running the pipeline in real-life subject to
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this allocation. Doing so yields observations of the
true scores, which we use to update the Bayesian
prior. The updated prior induces a new reward
distribution, and so the meta-policy can select a
second allocation m?

2. This procedure is iterated
until some total budget is expended. If the meta-
policy is effective, by the end of the campaign, it will
have identified a near-optimal allocation.

In this closed-loop setting, we can use relevant
policies from Bayesian optimization.22 They
acknowledge the uncertainties present in the
reward distribution RðmÞ by balancing between
exploration (suggesting random m or the one corre-
sponding to the distribution RðmÞ with the most
variance) and exploitation (suggesting the m that
maximizes the average, or expected, value of RðmÞ).
For example, the upper confidence bound (UCB)
policy23 explicitly encodes this balance by selecting
the allocation m that maximizes the value:

AUCBðmÞ ¼ E RðmÞ½ � þ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var RðmÞ½ �
p

;

where E½RðmÞ� is the expected value of the reward
distribution and Var RðmÞ½ � is the variance of the
distribution. The square root of the variance is the
standard deviation, which measures the spread of
the distribution. The expectation term favors allo-
cations that have a high expected value (exploita-
tion), while the variance term favors allocations
with more reward uncertainty (exploration). The
parameter c balances the two terms.

Such policies are truly effective if we can execute
several iterations of the closed loop. They are
limited in the case where a budget reduces the
number of times the entire pipeline can be executed
to a few iterations. In the extreme one-shot setting,
the pipeline can be executed once. In this case, we
do not have the luxury to be explorative in our
selection of m. Hence, the only reasonable meta-
policy in the one-shot setting is pure exploitation
(XPLT):

AXPLTðmÞ ¼ E RðmÞ½ �:

While this limits our choice of the meta-policy, we
may still consider different inter-stage policies to
guide the single execution of the pipeline. However,
for this article, we shall focus explicitly on the one-
shot setting and the XPLT meta-policy. However,
we note that the development and analysis of proper
inter-stage policies specifically for multi-stage
pipelines could be a fruitful topic of study.

The Cost-Constrained Problem

In practice, later stages of the pipeline can be
significantly more expensive than earlier ones. They
represent real experiments, high-fidelity simula-
tions or material characterization at a high-demand
user facility. Let c ¼ ðc1; c2; ; cnÞ be a cost vector so
that cj is the cost to evaluate a candidate at stage j.

We assume the costs are additive and that we
cannot amortize costs or parallelize evaluations.
Therefore, the costs to evaluate mj candidates in
stage j is simply mjcj, and the total cost CðmÞ for an
allocation is CðmÞ ¼ m � c, which we require to be
less than some budget Cmax.

We frame the XPLT meta-policy via the (linearly)
constrained integer program:

maximize
m2Zn

AXPLT mð Þ

Subject to :
m1 ¼ m>m2 > . . .mn � 1

m � c � Cmax

The meta-policy selects the allocation that solves
this program. While the function AXPLT is non-linear
in m, it is monotone with respect to the dominance
partial order on points in Zn. That is, for two
allocations m ¼ ðm1; ;mnÞ and m0 ¼ ðm0

1; ;m
0
nÞ such

that m0
j � mj for all j ¼ 1; 2; ;n, we have

AXPLTðm0Þ � AXPLTðmÞ. In other words, it is never
optimal to consider fewer candidates than what we
have the capacity for. This monotone property
means we only have to consider extremal points in
the feasible set defined by the linear constraints
above to solve the integer program.

A Rich Problem Landscape

Multi-stage screening is a rich and multi-faceted
problem that can be studied in various contexts.
Above, we outlined a few dimensions of interest. To
summarize, we identified two objectives: multi-
objective and multi-fidelity optimizations. We must
specify what aspects of the pipeline can be opti-
mized or controlled. There are a variety of such
pipeline design or decision variables, but above we
identified two: the stage-wise allocations and, given
a fixed allocation, which candidates to pass between
stages. We outlined a few policies in which each
selects specific settings of the design variables,
including the XPLT policy that selects allocations
based on maximizing the expected reward. We then
identified some constraints. First, we distinguished
between a closed-loop setting versus a one-shot
scenario, which is a constraint on the number of
times we can execute the full real-world pipeline.
We also discussed budget constraints to limit the
cost of one execution of the pipeline.

By varying objectives, design variables, policies
and constraints, we obtain a rich problem land-
scape. In what follows, we shall focus on a small
portion of this landscape. Specifically, we turn our
attention to selecting optimal allocations which
maximize the multi-fidelity reward function in the
one-shot setting, using the XPLT policy. In ‘‘Results
and Discussion’’ section, we detail some simulation
studies that measure the impact of various pipeline
parameters on the overall effectiveness of the
screening procedure in this setting.
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A PRIOR MODEL FOR STAGE-WISE SCORES

As described above, we shall model the scores
within a Bayesian context by maintaining a multi-
variate probability distribution of the scores. This
distribution captures predictions for the scores, an
uncertainty quantification for such predictions and
estimated correlation between different scores.
Starting from a prior distribution of such scores,
we can integrate observed scores for candidates
selected by a policy using Bayes’s law. This results
in an updated posterior distribution on scores. Key
to this procedure is the prior distribution, which
reflects our initial assumptions about the scores.
Also essential is the ability to efficiently sample
scores from this prior distribution, which we use to
simulate the pipeline. Below, we detail these two
aspects.

We shall consider a flattened representation of
the scores Y ¼ ðYi;jÞ so that Y is an nm-long vector
whose ðjmþ iÞ-th entry is Yi;j ¼ fjðxiÞ. For our
simulation studies, we shall assume that the scores
follow a multivariate normal prior distribution,
Y � N ð0;CÞ. That is, we assume that the scores on
average are centered at 0, which we view as a
nominal baseline value. Statistically significant
deviations away from this baseline value will rep-
resent ‘‘good’’ candidates. The covariance matrix C
is an nm	 nm matrix, whose entries describe the
statistical relationship between the scores.

For our problem, we assume that the covariance
is separable. That is, we can decompose C into the
Kronecker product C ¼ R
 X; where R and X are
n	 n and m	m covariance matrices, respectively.
Here, R represents the relationship between stages
and X represents the relationship between candi-
dates. Namely, the covariance CovðYi;j;Yk;‘Þ is given
by the product Rj;‘ � Xi;k of the ðj; ‘Þ-th and (i, k)-th
entries of R and X, respectively. That is, the
relationship between the scores of different candi-
dates at different stages ‘‘factors through’’ assumed
inherent statistical relationships between stages
and candidates.

The assumption of separability is not a funda-
mental one, and we may imagine problem settings
where the covariance relationship between different
scores is non-separable. However, we choose this
setting to perform our simulation studies for several
reasons. First, it is computationally efficient (see
section ‘‘Lazy Stage-wise Sampling’’). The assump-
tion also allows us to study the impact of stages and
candidates covariance structure independently.
Lastly, in contrast to other methods that consider
similar separable structure (such as fitting a multi-
task Gaussian process24 to model several responses
or tasks at once as a function of input variables), the
assumption of separability is more natural in our
multi-fidelity setting. Specifically, the different
tasks we are fitting a multivariate distribution to
are different models predicting the same response,
albeit at different levels of fidelity. In this setting, it

is more natural to assume correlations between
scores of two different candidates persist to some
degree between different fidelity levels, i.e., the
covariance is separable.

The optimal allocation problem is, in part, defined
by this distribution. It serves as the prior distribu-
tion from which we sample ground truths to esti-
mate expected rewards. Different distributions will
result in varying effectiveness of the screening
procedure. We wish to characterize the connection
between the distribution and the screening proce-
dure’s efficacy. To do this, we generate distributions
as follows.

Pick dimensions dx and ds. Then, independently
and uniformly sample m vectors x1; :::;xmf g from

the dx-dimensional unit hypercube, xi � Unif ½0; 1�dx .
With these samples, define the candidate covariance
matrix X

Xi;j ¼ r2
x exp �kxi � xjk2

2

2‘2
x

" #

; i; j ¼ 1; 2; ;m: ð1Þ

Here, rx; ‘x are free parameters. Similarly define the
stage covariance R matrix using n independent

samples s1; snf g, where sj � Unif ½0; 1�ds :

Ri;j ¼ r2
s exp �ksi � sjk2

2

2‘2
s

" #

; i; j ¼ 1; 2; ;n; ð2Þ

for free parameters rs; ‘s. We call the samples X ¼
xif gmi¼1 and S ¼ sj

� �n

j¼1
the latent representations of

candidates and stages. Different latent samples
yield different covariance matrices and hence dif-
ferent prior distributions. The parameters rx and rs
capture the magnitude of the scores assumed by the
prior model. Without loss of generality, we shall
assume both are equal to 1 for our simulation
studies.

In reality, the covariance structure is problem-
specific, yet the procedure above provides a method
for systematically varying the covariance structure
in a parametric way to study the impact of such
structure on the effectiveness of the screening
pipeline. Implicit in this generation procedure is
the assumption that the covariances are stationary
in the latent spaces. That is, scores between differ-
ent candidates or stages are considered statistically
similar if their latent representations are close
together in the latent space, and the notion of
closeness is the same wherever the latent represen-
tations are. This assumption of closeness in latent
space as a proxy for similarity between candidates is
used in many generative design methods (e.g.,17).
Below, we study the impact of the latent dimensions
ds;dx and length scales ‘s; ‘x, which impact this
measure of closeness. There are other ways to
sample or otherwise construct the covariance matri-
ces, such as sampling such matrices from an inverse
Wishart distribution25 or considering a non-
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stationary covariance structure over the latent
space. Regardless of the sampling procedure, we
can perform a similar simulation analysis below
given the covariance matrices, R;X.

Lazy Stage-wise Sampling

Once the prior N ð0;CÞ is defined, we can use it to
sample ground truth for simulations. Naı̈vely, we
may sample the entire set of nm scores at once. This
is wasteful because many candidates are screened
out of the pipeline, obviating the need for many of
these scores in later stages. In reality, only M ¼
Pn

j¼1 mj scores are needed to simulate the pipeline,

and this sum is typically much smaller than nm.
Indeed, in many applications, the stage costs
increase exponentially, necessitating that alloca-
tions decrease by an order of magnitude at each
stage. In this case, M is essentially km, for some
constant k.

Computationally, naı̈vely sampling from a fixed

distribution N ð0;CÞ incurs a one-time OððnmÞ3Þ
computational cost and a per-sample costs of (1) nm
samples from a univariate standard normal distri-

bution and (2) an OððnmÞ2Þ matrix-vector multipli-
cation. Such per-sample costs are incurred for every
simulation we run to obtain a reward distribution
for a specific allocation. These costs are further
multiplied by the number of allocations considered
when solving the integer program to identify the
optimal allocation. This is all to say that naı̈ve
sampling can increase the costs of our simulation-
based analysis drastically. Improving how we sam-
ple scores is therefore important for efficient simu-
lation studies.

We can gain significant speed-ups in a straight-
forward way using lazy stage-wise sampling. We
sample scores for stage j only when the simulation
of the pipeline arrives at this stage. At this point, we
will know the subset of candidates that had sur-
vived up to this stage, and hence we shall only
sample those scores. Suppose candidates xi1 ; ximj

have made it to stage j. Then, we can sample the
scores Yi1;j; ;Yimj

;j conditional on all the previously

sampled scores from prior stages. By properties of
the multivariate normal distribution, these condi-
tional scores are also multivariate normally dis-
tributed. By additionally taking advantage of the
separable structure of the covariance matrix, we can
perform the sampling in an efficient manner. See
supplementary Sect. SI.1 for details (refer to online
supplementary material).

Simulating a Pipeline with an Inter-stage
Policy

With the ability to sample ground truth scores, we
can simulate the execution of the pipeline under
some pre-specified inter-stage policy and some fixed
allocation m. For the first stage, we evaluate all

m1 ¼ m initial candidates xi by sampling scores yi;1
for i ¼ 1; :::;m. Using the sampled scores, an inter-
stage policy selects m2 candidates to advance to
stage 2. For example, the pure-exploitation inter-
stage policy simply selects the m2 candidates with
highest stage-1 scores.

Other inter-stage policies may consider the con-
ditional distribution of the final-stage scores in
light of the observed data. That is, conditioned on
the observations yi;1

� �

, we can consider the distri-
bution of final scores Yi;n and select candidates for
the second round based on this distribution. This
distribution is also multivariate normally dis-
tributed. We may, for example, use a delayed
exploitation policy, where we select candidates
corresponding to the largest expected final scores
under this distribution. We can attempt to balance
between exploration and exploitation as well, using
polices such as UCB. We do not dwell on other
inter-stage policies in this article. Instead, we will
focus solely on the pure-exploitation inter-stage
policy.

Once the inter-stage policy selects the m2 candi-
dates for the second stage, their scores for this stage
are sampled, conditioned on the sampled scores
yi;1

� �

of the previous stage. Then, the process
repeats: based on these scores, the appropriate
number of candidates is selected for the next stage
per the pre-specified allocation. For these candi-
dates, scores from the next stage are sampled
conditionally on the previously sampled scores,
and so on. This is repeated until the evaluation of
the last stage. After simulating the pipeline through
the last stage, we compute the reward obtained for
this simulation. Then, the procedure is repeated
several times more, each simulation using a differ-
ent ground truth sample drawn from the prior.
These simulations yield an empirical distribution of
the reward RðmÞ for the given allocation m. As
described above, the meta-policy will use this
reward distribution to select an allocation m?.

In practice, this decision m? would be then
implemented, running the real-life pipeline with
this allocation. In the closed-loop design setting, we
would use the data obtained from this real-life
execution of the pipeline to update the Bayesian
prior, which we would use in turn to select another
allocation to try. In the one-shot setting, we receive
a single realized reward rðm?Þ from the sole execu-
tion of the pipeline. Assuming the prior is repre-
sentative of the real ground truth, this realized
reward should be consistent with the distribution of
rewards obtained via simulation. That is, under the
truth-from-prior assumption (that the real ground
truth is sampled from the prior distribution), the
distribution of realized reward rðm?Þ is exactly that
of Rðm?Þ, the simulated reward distribution used to
select m? in the first place. In the simulations below,
we explicitly enforce this truth-from-prior
assumption.

Reyes, Liu, and Vargas2902



RESULTS AND DISCUSSION

In this section, we report results of simulation
studies where we simulate the entire pipeline
definition and optimization procedure:

1. Sample latent representations of candidates and
stages to define a prior distribution on scores.

2. Given the prior distribution, use an inter-stage
policy to simulate the pipeline via lazy stage-
wise sampling and obtain samples of reward.

3. Solve the integer program defining the meta-
policy to select an optimal allocation m?, per-
forming (2) above as an inner loop.

4. Characterize how well the meta-policy selects
optimal allocations through further out-of-sam-
ple simulations, here serving as a proxy for real-
world implementation of the selected allocation
m?.

The outcome of step (4) above is a distribution for
realized reward for the allocation selected by the
meta-policy. Under the truth-from-prior assump-
tions, the distribution of the realized reward is the
same as the distribution of the simulated rewards,
and so we shall use the two interchangeably.
Specifically, below we will simply refer to the
expected optimal rewards,

Rðm?Þ ¼ E½Rðm?Þ�

¼ E½rðm?Þ�; ðunder truth � from � prior assumption:Þ

In the simulation studies below, we characterize
how different pipeline parameters impact the
screening procedure’s efficacy, as measured by the
expected optimal rewards obtained. We compare
against a baseline policy, which we refer to as the
random policy. Under the random policy, we expend
as much of the budget Cmax by testing candidates
solely on the final stage, without any screening. We
select candidates uniformly at random, with
replacement. Once the budget is spent on these
random final-stage trials, we calculate the reward in
the same manner as the screening procedure: select
the maximum score from among the randomly
selected candidates. Repeating this exhaustive ran-
dom selection several times results in an expected

reward, R, for the random policy.

We consider a three-stage pipeline, with the three
stages representing a cheap machine-learning
material property predictor, an expensive physics-
based model and a physical experiment, respec-
tively. We assign nominal exponentially increasing
costs c ¼ ð1; 10; 100Þ for the stages. Unless other-
wise stated, the simulations use a set of base
parameters listed in Table I.

Effect of Budget Cmax and Number of Initial
Candidates m

One reason to carry out simulation studies is to
assess the sensitivity of the screening procedure on
specific parameters. The supplemental information
(supplementary Sect. SI.2) provides results for sev-
eral such simulation results, in which specific
parameters were varied. Here, we focus on two for
illustration.

Figure 1a shows the expected reward obtained as
a function of the budget Cmax, which is varied from
1000 to 50,000. We note that a budget of 50,000 is
exactly the cost to exhaustively evaluate the m ¼
500 candidates once during the final stage, each
evaluation incurring a cost of c3 ¼ 100. The solid
blue lines plot the expected optimal reward under
the XPLT meta-policy, while the dashed black line
shows the expected rewards under the random
policy. The four plots each correspond to four
different choices of priors and hence represent four
different problems, each with unique statistical
relations between candidates and stages. We note
that, in general, the performance of both policies
increases as the computational budget increases.
Yet, depending on the distribution, the marginal
returns obtained from increasing the budget varies.
For example, in panel C, there is little marginal
improvement to the expected reward even as we
increase the budget by an order of magnitude. In
panel B, we obtain good marginal improvement only
up to Cmax ¼ 3000. The bottom-right panel (panel
D) shows it is possible for the screening procedure to
consistently perform worse than random for some
problem settings.

Figure 1b shows the expected reward obtained
versus the number of initial candidates m, varying
this number between 500 and 2000. We note that
the performance of the random policy is not

Table I. Base parameter values used throughout the simulation studies

Parameter Description Value

m Number of initial candidates 500
Cmax Total budget 2500
dx Dimensionality of latent candidate representation 8
‘x; rx Parameters to candidate covariance function (Eq. (1)) 1, 1
ds Dimensionality of latent stage representation 1
‘s; rs Parameters to stage covariance function (Eq. (2)) 0.2, 1
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sensitive to this value. With the fixed budget
Cmax ¼ 2500 and a final-stage cost c3 ¼ 100, the
random policy can try 25 out of m total candidates.
As the simulations suggest, the chance that 1 of 25
selected candidates yields a large reward is rela-
tively stable (and low) for m between 500 and 2000.
In contrast, the expected optimal rewards obtained
from the XPLT policy show varying behavior
depending on the prior distribution. In panel A,
the expected optimal rewards are relatively insen-
sitive to m, while in panel C, these rewards increase
with m. Panels B and D show the opposite behavior,
where the performance decreases with respect to m.
As with the previous study, we see that the screen-
ing procedure performs worse than random in panel
D.

It is interesting to note the different trends in
expected optimal reward versus different problem
parameters or distributions of the ground truth and
how such trends compare to random. The above
simulations and those detailed in supplementary
Sect. SI.2 make clear that the analysis is not
straightforward and that there is no one general
‘‘rule of thumb’’ when it comes to setting these
parameters. Therefore, in practice, it is important to
assess the problem setting (in the above: which of A,
B, C or D) prior to executing a screening pipeline or
even selecting policy parameters using ad hoc or
heuristic methods. Simulations offer a systematic
way of studying such effects.

Effect of Prior Distribution

As we see above, the trends of expected rewards
could depend on the prior distribution, since the real
ground truth is sampled from this distribution in
these truth-from-prior studies. It is therefore desir-
able to characterize this dependence further and see
whether there are any features of a distribution or
problem that predict effectiveness of the screening
procedure. The prior distribution is characterized by
the latent samples of candidates, X ¼ xif gmi¼1, of

stages S ¼ sj
� �n

j¼1
, and parameters such at the

dimensionality of such samples dx and ds, and the
covariance function hyperparameters ‘x; ‘s; rx and
rs. The SI details simulation studies for these
parameters. Here, we study the impact of the
samples X and S.

By considering several such latent samples, we
obtain distributions of expected rewards, which are
shown in Fig. 2. The left panel shows the induced
distribution on expected reward as we vary the
latent samples on candidates X for both the XPLT
policy and the random baseline policy. As we see,
the distributions for both policies are insensitive to
the specific choice of latent samples, typified by the
tight induced distributions. In contrast, the right
panel shows these distributions as we vary stage
latent samples S. Here, we see that the expected
reward is highly sensitive to the actual latent
samples of stages, implying that the stage-wise
covariance structure significantly impacts the over-
all effectiveness of the screening procedure. We
even see that a significant proportion of sampled

A B

C D

R

R

Cmax Cmax

(a) Expected rewards vs. Cmax

A B

C D

m m

R

R

(b) Expected rewards vs. m

Fig. 1. (a) Expected rewards vs. Cmax . (b) Expected rewards vs. m Expected rewards vs. specific pipeline parameters. Solid blue lines are the
expected optimal rewards obtained from the XPLT-based screening procedure, while the dashed black line shows the expected rewards
obtained under the random (non-screening) policy. Each sub-panel (A, B, C and D) corresponds to a different prior distribution and hence a
different problem. Specifically, the prior distributions differ with respect to stage-wise similarities, as described in ‘‘Effect of Prior Distribution’’
section (Color figure online).
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priors results in the screening procedure performing
worse than random.

To further explore this phenomenon, we consider
the optimal rewards obtained by the XPLT policy for
several samples of S ¼ ðs1; s2; s3Þ and hence for
several different prior distributions. We character-
ize these rewards with respect to two geometric
features derived from the latent stage representa-
tion: the distance between the latent representa-
tions of Stage 1 and Stage 2 ks2 � s1k and the
distance between Stage 1 and Stage 3 ks3 � s1k.
These distances typify the statistical relationship
between the stages. These data are displayed in
Fig. 3.

Each dot in the figure corresponds to a specific
sample of latent stages, i.e., a specific distribution
for ground truth. Dots are located at coordinates

ðks2 � s1k; ks3 � s1kÞ. For example, points in the
lower-left corner correspond to the case where the
three stages are statistically similar, while dots in
the top left corner correspond to the case where
Stages 1 and 2 are similar, but Stages 1 and 3 are
not. The color of a dot indicates the expected optimal
reward given the specific prior distribution corre-
sponding to that dot. The size of the dot is inversely
proportional to the variance of the reward distribu-
tion. Smaller dots are cases where there is a wide
distribution of rewards associated to the selected
optimal allocation. Circles indicate the cases where
the XPLT policy performs better than random given
the same prior distribution, while inverted triangles
show the cases where it performs worse than
random. The points labeled A, B, C and D corre-
spond to the specific prior distributions used in the
single-parameter simulation studies in section
‘‘Effect of Budget Cmax and Number of Initial
Candidates m’’ above and in the SI.

The dashed line indicates the points where Stage
3 and Stage 2 are both equidistant to Stage 1. Points
above this line refer to cases where Stage 1 is more
statistically similar to Stage 2 than to Stage 3.
Points below this line correspond to cases where
Stage 1 is more similar to Stage 3 than to Stage 2. In
this region, the statistical similarities between
stages do not respect the order in which the stages
are executed in the pipeline. From the plot, the
screening procedure is not effective in this region,
often performing worse than random. There is a
general improvement as Stage 2 and Stage 1 become
more similar, i.e., as we move right to left along the
horizontal axis. Interestingly, this trend does not
hold with respect to Stage 3. From the plot, there
appears to be an optimal dissimilarity between
Stages 1 and 3 that yield maximal expected
rewards. For example, among the samples, Point A
corresponds to the largest expected reward. For this
point the distance between s3 and s1 is around 0.42.

This optimal dissimilarity for this model system
again indicates the need to perform such simula-
tions for real systems in practice. In this specific
case, tuning similarity between stages to match the
optimal settings identified through such simulation
studies could mean tuning the accuracy of a ML
model, increasing or decreasing simulation run
times or resolutions, or introducing randomness
(i.e., exploration) in selecting candidates to advance
between stages. Having a proper assessment of the
impact of such pipeline parameters could then
result in more efficient and effective screening.

Throughput and Optimal Reward

Another pipeline study26 examined the pipeline
problem under different design variables and

Different 
Stage 
Priors

Different 
Candidate 

Priors

Random XPLT Random XPLT

Ex
pe

ct
ed

 R
ew

ar
ds

Fig. 2. Expected reward distributions over different priors.

Fig. 3. Similarities between stages dictate expected rewards. This
plot shows expected realized rewards for different prior distributions.
Locations of the plotted points indicate the distance between first and
second stages and first and third stages. Color indicates the
expected realized rewards, while size is inversely proportional to
the variance of the realized rewards. Inverted triangles indicate
cases where the expected reward obtained via screening were less
than that obtained via random sampling (Color figure online).
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objectives. There, authors considered score thresh-
olds (rather than explicit allocations) as the design
variables. They also considered the objective of
optimizing pipeline throughput—the number of
candidates that satisfy all thresholds to make it
past the final stage, under similar cost constraints
as those detailed above. In this setting, the pipeline
is used to maximize the number of good candidates
passing through the screening procedure. While not
the same problem as considered here, we are
nevertheless able to draw some connections
between our work and this optimal throughput
problem.

Figure 4 plots the expected optimal reward Rðm?Þ
versus the final stage allocation m?

3, for different
sampled prior distributions. Each dot corresponds to
the expected optimal reward and final stage alloca-
tion obtained for a specific prior distribution. As
before, the size of the dot is inversely proportional to
the variance of the reward distribution. The red
rectangles call attention to settings with high
expected rewards (top) and those that have large
final allocation (right). The final allocation is the
measure for throughput. While in our study we
optimized for expected rewards rather than
throughput, we observe from the plot that the two
quantities are correlated.

Namely, we note that for the settings resulting in
the highest expected reward (top box), the final
stage allocation m?

3 was around 10 or larger. Given
the final stage cost c3 ¼ 100 and budget
Cmax ¼ 2500, this means that optimal allocations
yielding highest expected rewards were expending

around 40 to 60% of the budget on final stage trials.
We note that for cases where the optimal final
allocation is large (right box), there is a spread of
both high and low expected rewards. Yet, the
concentration is biased toward the high expected
reward regime. Moreover the high-throughput / low
expected reward cases are associated with large
variance of reward distribution. These results show
that while the relationship between throughput and
expected rewards may be complex, there are broad
agreements between the two optimization objec-
tives, though there are cases where this agreement
may not hold.

CONCLUSION

In this arricle, we defined a model and algorithm
for simulating pipelines and identified places where
such methods can be used to perform decision-
making under uncertainty via simulation-based
policies. We codified how various different pipeline
objectives fit inside the common framework of
optimizing expected rewards under uncertainty
and alluded to a multi-faceted, rich problem set
that belies the ubiquitous experimental protocol of
multi-stage screening.

Examining one part of this problem landscape, we
focused on analyzing a popular mode for screening:
simply selecting the top mj candidates from the
previous stage to pass onto the next stage. We
showed how to optimize expected rewards with
respect to a specific design parameter choice, allo-
cation, in a one-shot setting. In this specific context,
our simulation studies showed a variety of trends as
we attempted to characterize the effectiveness of the
screening procedure with respect to pipeline or
problem parameters. We most importantly
described how stage-wise covariance structure
played a significant role in determining this effi-
cacy. We demonstrated how simulated studies
allowed us to quantify the performance, its depen-
dence on parameters, and in comparison with a
random baseline policy.

We hope to have demonstrated the need for
proper modeling and analysis in multi-stage screen-
ing pipeline optimization, decision-making and
parameter calibration. We believe that the models,
policies and simulation methods presented in this
paper provide important tools in this analysis.
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