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1 Introduction

In this paper, we will discuss the uplift of solutions of seven dimensional gauged supergravity
of [1] to eleven dimensions. These solutions describe holographic duals of co-dimension
two defects in six dimensional SCFTs. The defects preserve four dimensional conformal
symmetry as well as transverse rotational symmetry.

There are several approaches to constructing holographic duals of such defects. First,
probe branes can be placed inside the AdS vacuum of the ten or eleven dimensional
theory [2, 3]. The resulting embedding realizes the unbroken symmetries of the defect,
which is localized at the intersection of the probe brane and the boundary of AdS. Second,
one can construct solutions of the ten or eleven dimensional supergravity with the ansatz
of a warped product of AdS and sphere factors which realize the defect symmetries and
solve the supergravity Killing spinor equations to obtain a half-BPS solution. The second
approach is generally quite involved and leads to “bubbling” solutions, see e.g. [4–12].

A more pedestrian approach is to consider a truncation of the ten or eleven dimensional
theory to a lower dimensional gauged supergravity and construct solutions there. Generally,
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the ansatz and the BPS conditions following from the vanishing of the supersymmetry
transformations are easier to solve in the lower dimensions than in higher dimensions.
In many cases, such a lower dimensional solution can then be uplifted to the ten or
eleven-dimensional supergravity and given a microscopic understanding by relating it to
bubbling solutions.

In this paper we will perform an uplift of the solutions found in [1] and embed it
into a class of LLM solutions of M-theory [4, 14]. The seven dimensional solutions are
constructed by warping AdS5 × S1 over an interval with U(1) × U(1) gauge fields along
the circle direction. They are related to hyperbolic (topological) black hole solutions by a
double analytic continuation. These solutions have been used recently to construct spindle
compactifications [15–23].1 In this case, the warping coordinate takes values on a finite
interval and the S1 closes off at the ends of the interval. One ends up with a topological two
sphere with two conical deficits 2π(1− 1

nn/s
), nn/s ∈ Z at the north and south pole of the

sphere. In our solution, the warping coordinate is a semi-infinite interval and the solution
describes a co-dimension two defect in a six-dimensional SCFT. We note that the bulk gauge
fields are dual to conserved currents in the CFT and the supergravity solution corresponds
to turning on a source for these currents in the plane transverse to the defect. This means
that these defects are twist/disorder defects where fields charged under these currents are
picking up a phase when going around the defect. We list some examples of holographic
co-dimension two defect solutions in supergravities in various dimensions [27–29].

The structure of the present paper is as follows: in section 2, we review the defect
solution of [1], in particular, the conditions for a completely non-singular solution with two
non-vanishing gauge fields and a solution with a conical singularity in the bulk with only one
gauge field turned on. In section 3 we use the formulas from [13] to lift the seven dimensional
solution to eleven dimensions and investigate the nature of the conical singularity of the
one charge solution. In section 4 we bring the uplifted one charge solution into canonical
LLM form. Since our solution has an extra rotational symmetry the LLM solution can be
described by an electrostatic potential by a change of variables and we determine the line
charge distribution associated with the one charge solution. This allows us to identify the
conical singularity with a “regular puncture” which was previously discussed in the context
of the LLM construction of duals of d = 4, N = 2 SCFTs by Gaiotto and Maldacena [14].
In addition, it allows us to construct generalized solutions with more complicated line charge
distributions, some of which are completely regular. We calculate holographic observables
namely the on-shell action and the vacuum-subtracted defect central charge. In appendix A
we construct a simple example for a co-dimension two defect in a d = 6, N = (2, 0) SCFT
using the six dimensional free tensor multiplet.

2 Seven dimensional solution

The seven dimensional supergravity theory is a truncation of the maximal d = 7 SO(5)
gauged supergravity, where we keep two scalars and two U(1) gauge fields. The theory is

1The hyperbolic black holes where also used to calculate charged Rényi entropies in holography, see
e.g. [24–26].
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defined by the Lagrangian [13]

S =
∫
d7x

√
−g

(
R− 1

2

2∑
i=1

∂µφi∂
µφi − g2V − 1

4

2∑
i=1

ea⃗iϕ⃗F 2
(i)

)
, (2.1)

where we use

α⃗1 = (
√
2,
√

2
5), α⃗2 = (−

√
2,
√

2
5) (2.2)

to define

X1 = e−
1
2 α⃗1φ⃗, X2 = e−

1
2 α⃗2φ⃗, X0 = (X1X2)−2, (2.3)

and the potential V can the be expressed as

V = −4X1X2 − 2X0X1 − 2X0X2 +
1
2X

2
0 . (2.4)

We consider the following solution of the gauged supergravity which can be obtained
by a double analytic continuation of charged black hole solutions [13, 30, 31]. These
have been used to describe M5 branes wrapped on spindles [17], duals of d = 4, N = 2
Argyres-Douglass theories [32, 33], and co-dimension 2 defects [1] in this theory.

ds2
7 =

(
yP (y)

) 1
5
ds2

AdS5 +
y

6
5P (y)

1
5

4Q(y) dy2 + y
1
5Q(y)
P (y)

4
5
dz2,

P (y) = h1(y)h2(y), Q(y) = −y3 + µy2 + 1
4g

2h1(y)h2(y). (2.5)

The functions hi, i = 1, 2 are given by

h1 = y2 + q1, h2 = y2 + q2. (2.6)

The scalar fields are expressed in terms of hi as follows

X1 = y
2
5
h2(y)

2
5

h1(y)
3
5
, X2 = y

2
5
h1(y)

2
5

h2(y)
3
5
, (2.7)

and the two U(1) gauge fields are given by

A1 =

√
1− µ

q1
q1

h1(y)
dz + a1dz, A2 =

√
1− µ

q2
q2

h2(y)
dz + a2dz. (2.8)

The constant µ is an extremality parameter and supersymmetric solutions are obtained
by setting µ = 0. A solution with both q1, q2 nonzero will preserve one-quarter of the
supersymmetry and, as we shall review in the next section, completely nonsingular solutions
are possible. Setting q2 = 0 produces a solution that preserves half the supersymmetry of the
seven dimensional gauged supergravity but such a solution suffers from conical singularities.
For the gauge field to be non-singular at the location y = y+, where the space closes off, we
have to choose a1 and a2 such that

A1(y+) = A2(y+) = 0. (2.9)

In the following we set the coupling g = 2. As discussed below, this implies that the
asymptotic boundary AdS5 × S1 is conformal to R1,5 without a conical deficit provided z

has standard periodicity 2π.
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Figure 1. Regular two charge solutions. Allowed charges for different values of conical deficits: n = 1
(red) is completely regular. n = 2 (green), n = 3 (orange) correspond to the first two half-spindle
solutions. The dark grey portion is the disallowed region where Q(y) has no real zeros.

2.1 Regular two charge solution

The case of completely regular solutions was analyzed in [1]. These solutions were constructed
by allowing the warping coordinate y to take values in the semi-infinite interval [y+,∞]
where y+ is the largest zero of Q(y) defined in (2.5). The existence of such a positive y+,
which produces no double zero and a regular metric everywhere, is guaranteed as long
as we place conditions (discussed in [1]) on the signs of the charges q1, q2 as well as the
discriminant of the polynomial Q(y).

This interval produces a non-compact space and therefore, unlike in the spindle con-
struction, we approach the asymptotic AdS7 region as y → ∞. In this limit the metric (2.5)
takes the form

lim
y→∞

ds2
7 = yds2

AdS5 + ydz2 + 1
4y2dy

2 + . . .

= dρ2

4ρ2 + 1
ρ

(
ds2

AdS5 + dz2
)
+ . . . , (2.10)

where we make the change of coordinates y = 1/ρ and the dots denote subleading terms.
Note that the boundary of this space is of the form AdS5 × S1 which is conformal to R1,5

with no conical defect as long as the coordinate z parameterizing the S1 has periodicity 2π.
Having fixed the periodicity of z, we can look at the metric in the region y → y+.

Letting y = y+ + ρ, we have that Q(y) ≈ Q′(y+)ρ and P (y) ≈ P (y+) = y3
+ so that the

metric (2.5) takes the form

(yP (y))1/5
(

y

4Q(y)dy
2 + Q(y)

P (y)dz
2
)
≈ y9/5

Q′(y+)

(
dr2 +

(
Q′(y+)
y2

+

)
r2dz2

)
, (2.11)
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where we define the new radial coordinate r = ρ1/2. Notice that at r = 0 (y = y+) the
z-circle shrinks to zero size and the space closes off. At this location, we may fix the values
of q1, q2 such that we either have a regular solution or a R2/Zk singularity by setting:

Q′(y+)
y2

+
= 1
k
. (2.12)

The values k > 1 give the metric with deficit angle 2π(1−1/k) at y = y+. Using the explicit
form of the function Q(y), we can express the constraint (2.12) as

y+
(
4y2

+ − (3 + 1/k)y+ + 2(q1 + q2)
)
= 0. (2.13)

Note that the root y+ itself depends on the charges q1, q2 however we can clearly see that
the above condition will constrain them to lie along a different one dimensional curve for
each choice of k. In figure 1, we have plotted the first three of these families of solutions in
the q1, q2-plane.

2.2 One charge solution

The solution with two nonzero charges is quarter BPS, i.e. preserves eight of the original
thirty-two supersymmetries of the d = 7 gauged supergravity. Our goal is to obtain solutions
which fit into the LLM solutions in 11 dimensions, which preserve sixteen supersymmetries.
We will have to set one of the two charges to zero in order to produce a half BPS solution.
In the following we will set q2 to zero. The metric components of (2.5) in the y and z

direction become (recall that we have set g = 2)

ds2
7 = (y2 + q1)

1
5

4y
2
5
(
y2 + q1 − y

)dy2 +
y3/5(y2 + q1 − y

)
(y2 + q1)

4
5

dz2 + · · · . (2.14)

The larger zero of y is located at

yc =
1
2
(
1 +

√
1− 4q1

)
. (2.15)

With the following change of variable

y = yc +
1
4r

2, (2.16)

the metric near y ∼ yc, i.e. r ∼ 0 behaves as follows

ds2 ∼ 1
2

9
5
√
1− 4q1(1 +

√
1− 4q1)

1
5

(
dr2 + (1− 4q1)r2dz2

)
+ · · · . (2.17)

Consequently, for nonzero q1 there is a conical singularity in the bulk of the spacetime,
whereas q1 = 0 corresponds to the AdS7 vacuum. For a R2/Zk conical singularity with
deficit 2π(1− 1

k ), the charge q1 is given by
1
k
=
√
1− 4q1. (2.18)

In seven dimensions a conical singularity in the bulk is problematic. In some cases uplifting
a singular solution of lower dimensional supergravity to ten or eleven dimensions leads to a
non-singular solution, in other cases the solution may have a well defined interpretation in
terms of branes.
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3 Uplift to eleven dimensions

A solution of seven dimensional gauged supergravity can be uplifted to eleven dimensional
supergravity [13], the metric and the four-form antisymmetric tensor field strength take the
following form

ds2
11 = Ω

1
3ds2

7 +
1

g2Ω
2
3

{
dµ2

0
X0

+
2∑

i=1

1
Xi

(
dµ2

i + µ2
i (dϕi + gAi)2

)}
,

∗11F4 = 2g
2∑

α=0

(
X2

αµ
2
α − ΩXα

)
ϵ7 + gΩX0ϵ7 +

1
2g

2∑
α=0

∗7d lnXα ∧ d(µ2
α) (3.1)

+ 1
2g2

2∑
i=1

1
X2

i

d(µ2
i ) ∧ (dϕi + gAi) ∧ ∗7Fi,

where Fi = dAi and ∗7 is the Hodge dual with respect to the seven dimensional metric (2.5)
and ∗11 the Hodge dual with respect to the eleven dimensional metric (3.1). ϕi, i = 1, 2
are two angular coordinates with period 2π and the variables µα, α = 0, 1, 2 parametrize a
two sphere

µ2
0 + µ2

1 + µ2
2 = 1 (3.2)

and the warp factor Ω is given by

Ω = X0µ
2
0 +X1µ

2
1 +X2µ

2
2. (3.3)

We will parameterize the µi in the following way

µ0 = sinα cos θ, µ1 = sin θ, µ2 = cosα cos θ. (3.4)

3.1 Two charge solution

With our µi parameterization, the warp factor Ω becomes

Ω = (y2 + q1)
2
5 (y2 + q2 sin2 α) cos2 θ

y
8
5 (y2 + q2)

3
5

+ y
2
5 (y2 + q2)

2
5 sin2 θ

(y2 + q1)
3
5

. (3.5)

As discussed in section 2.1, y2 + q1 > 0 and y2 + q2 > 0 for y ≥ yc for the solutions which
satisfy the regularity conditions. Hence, if the seven dimensional metric is regular then the
eleven dimensional metric is also regular and describes a quarter-BPS co-dimension two
defect in M-theory.

3.2 One charge solution

The uplift of the q2 = 0 solution given in section 2.2 and the eleven dimensional metric for
the defect solution takes the following form

ds2
11 = κ

2
3

{
y

1
3 (y2 + q1 cos2 θ)

1
3ds2

AdS5 +
y

4
3 cos2 θ

4(y2 + q1 cos2 θ)
2
3
ds2

S2 +
(y2 + q1 cos2 θ)

1
3

4y
2
3

dθ2

+ (y2 + q1 cos2 θ)
1
3

4y
2
3 (y2 − y + q1)

dy2 +
y

1
3 (y2 + q1 cos2 θ)

1
3
(
y2 − y + q1

)
(y2 + q1)

dz2 (3.6)

+ (y2 + q1) sin2 θ

4y
2
3 (y2 + q1 cos2 θ)

2
3

(
dϕ1 +

2q1
y2 + q1

dz + 2a1dz

)2
}
,

– 6 –
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where we used the parameterization (3.4) for µα, α = 0, 1, 2. The coordinates α and ϕ2 will
parameterize the round two sphere

ds2
S2 = dα+ sin2 α dϕ2

2. (3.7)

The uplifted metric therefore geometrically realizes an SU(2) symmetry, which will be
interpreted as an R-symmetry from the perspective of the four dimensional N = 2 defect
theory. Using the uplift formula (3.1), one obtains for the four form

F4 = κ
{
vol(S2) ∧ (fϕ1dϕ1 + fzdz) ∧ dθ + vol(S2) ∧ (gϕ1dϕ1 + gzdz) ∧ dy

}
(3.8)

with

fϕ1 = (y2 + q1)(3y2 + q1 cos2 θ) cos2 θ sin θ
8(y2 + q1 cos2 θ)2 ,

fz =
(
q1 + a1(y2 + q1)

)
(3y2 + q1 cos2 θ) cos2 θ sin θ

4(y2 + q1 cos2 θ)2 ,

gϕ1 = q1y cos3 θ sin2 θ

4(y2 + q1 cos2 θ)2 , (3.9)

gz = q1y(1 + a1 sin2 θ) cos3 θ

2(y2 + q1 cos2 θ)2 .

Note that in contrast to solutions where y takes values on a compact interval, in our
case the region y → ∞ is part of the spacetime and corresponds to the asymptotic AdS7×S4

region. In this limit, the metric and the four form behave as follows

ds2 ∼κ
2
3
(
ydsAdS5+

1
4 cos

2 θds2
S2+

1
4dθ

2+ 1
4y2dy

2+ydz2+1
4 sin

2 θ(dϕ1+2a1dz)2+O(1/y),

F4 ∼κ
3
8 cos

2 θ sinθ vol(S2)∧(dϕ1+2a1dz)∧dθ+O(1/y). (3.10)

The angular coordinates z, ϕ1 have period 2π. We can define a new angular coordinate
ϕ̃ = ϕ1 +2a1z, which has standard period 2π for a1 = k/2, k ∈ Z. The flux of the four form
on the S4 is given by ∫

F4 = κ
3
8

∫
S2
vol(S2)

∫ π

0
dθ cos2 θ sin θ

∫ 2π

0
dϕ̃

= 2π2κ = 16
g3 π

2κ (3.11)

where we restored the gauge coupling g. The condition for charge quantization for the four
form F4 in M-theory is given by

1
(2π)3ℓ3p

∫
F4 = N, N ∈ Z, (3.12)

where N can be interpreted as the number of fivebranes leading to the AdS7 × S4 vacuum
in the near horizon limit and hence, the constant κ in the uplift formula is

κ = π

2 g
3N ℓ3p. (3.13)

– 7 –
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Recall that the seven dimensional metric for the one charge solution has a conical singularity
at y = yc (2.15). Defining y = yc + r2 and expanding around r = 0, the eleven dimensional
metric takes the following form

ds2 ∼ (y2
c +q1 cos2 θ)

1
3

y
2
3
c

{
ycds

2
AdS5+

y2
c cos2 θ

4(y2
c +q1 cos2 θ)ds

2
S2+

dθ2

4 + dr2
√
1−4q1

+
√
1−4q1r

2dz2+
√
1−4q1 sin2 θ

1+
√
1−4q1−2q1 sin2 θ

(
dϕ1+(1−

√
1−4q1+2a1)dz

)2
}
+O(r2)

(3.14)

There are three potential conical singularities in the θ, z, r, ϕ1 part of the metric. At θ = π/2
the two sphere shrinks to zero size in a smooth way, and at r = 0 there is a R2/Zk conical
singularity if 1/k =

√
1− 4q1 which is inherited from the seven dimensional metric. At

θ = 0 we can define a new angular variable

ϕ̂ = ϕ1 +
(
1 + 2a1 −

1
k

)
z. (3.15)

As argued above from the regularity in the asymptotic AdS7 × S4 limit, 2a1 is an integer
and both ϕ1 and z have period 2π. Hence the new angular variable ϕ̂ has period 2π/n and
the metric displays a R4/Zk singularity near the point r = 0, θ = 0.

4 Lin-Lunin-Maldacena solutions

The M-theory LLM solutions [4] are examples of “bubbling” supergravity solutions which
holographically are the deformation of the d = 6, N = 2 SCFT by half-BPS states
of dimension ∆ ∼ N2. In the same paper a double analytic continuation related these
solutions to a general solution of eleven dimensional supergravity with SO(2, 4)×SU(2)×U(1)
symmetry. These solutions have been used to find holographic duals [14] of a large class
of d = 4, N = 2 SCFTs constructed in [34]. The goal of the present section is to show
that our uplifted solution can be written in the LLM form. We briefly review the salient
features of the LLM solution [14]. The metric is given by an AdS5 × S2 warped over a four
dimensional space, which is a U(1) fibration over a three dimensional base space spanned
by coordinates ξ, x1, x2

ds2
11,LLM = κ

2
3
11e

2λ

{
4ds2

AdS5 + ξ2e−6λds2
S2 +

4
1− ξ∂ξD

(
dχ− 1

2vidx
i
)2

− ∂ξD

ξ

(
dξ2 + eD(dx2

1 + dx2
2)
)}
. (4.1)

The four form field strength takes the following form

F4 =2κ11vol(S2)∧
(
dχ+v)∧d(ξ3e−6λ)+(ξ−ξ3e−6λ)dv− 1

2∂ξe
Ddx1∧dx2

)
. (4.2)

The dimensionful quantity κ11 = π
2 ℓ

3
p is the standard choice, note that our κ has both

N and g in it, this way we have to absorb the charges to D which makes the comparison
easier to [14]. Therefore, we identify κ = g3Nκ11.

– 8 –
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The solution is completely determined in terms of a single function D(ξ, x1, x2)

e−6λ = −∂ξD

ξ(1− ξ∂ξD) , dv =
∑

i

vidx
i, v1 = −∂x2D, v2 = ∂x1D. (4.3)

The function D(ξ, x1, x2) satisfies the partial differential equation of Toda type(
∂2

x1 + ∂2
x2

)
D + ∂2

ξ e
D = 0. (4.4)

Our goal is to find the LLM form of our uplifted solution (3.6). We note that our solution
has an additional rotational symmetry in the x1, x2 plane which allows us to write the
metric as

ds2
11,LLM = κ

2
3
11e

2λ
{
4ds2

AdS5 + ξ2e−6λds2
S2 +

4
1− ξ∂ξD

(
dχ− ρ

2∂ρD dβ

)2

− ∂ξDξ
(
dξ2 + eD(dρ2 + ρ2dβ2)

)}
. (4.5)

As we will review in section 4.2, this additional symmetry allows for a reformulation in
terms of an electrostatic problem [14, 36–39] which replaces the Toda equation with a linear
Laplace equation.

4.1 Map to LLM

In order to find the map of the metric (3.6) to an LLM form (4.5), we note that the
metric (3.6) depends on the two coordinates y, θ while the LLM metric with the additional
U(1) isometry also depends on two coordinates ξ, ρ. In addition there are two angular
coordinates ϕ, z which have to be related to χ, β.

By comparing the AdS5 and S2 parts of the two metrics, we can determine the radial
coordinate ξ in terms of y, θ as well as an expression for λ in (4.5)

ξ = Ny cos θ, e6λ = N2 y(y2 + q1 cos2 θ), (4.6)

and we can choose an ansatz for the second radial coordinate ρ

ρ = sin θ g(y) (4.7)

for some function g(y). Using these relations, the gξξ, gρρ and the gξρ components of (4.5)
can be expressed in terms of the y, θ coordinates and be matched to the uplifted metric (3.6).
This gives us a differential equation for the function g(y)

d

dy
ln g(y) = y

y2 − y + q1
, (4.8)

which can be integrated to obtain

g(y)=
(
y− 1

2(1+
√
1−4q1)

) 1
2

(
1+ 1√

1−4q1

)(
y− 1

2(1−
√
1−4q1)

) 1
2

(
1− 1√

1−4q1

)
(4.9)
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as well as an expression for the function D expressed as a function of y

eD = N2
(
y2 − y + q1

)
g(y)2 . (4.10)

The function D satisfies the Toda equation (4.4), which can be verified using the map-
ping (4.6). The mapping is complete by finding the identification of angular variables

z = c1χ+ c2β, ϕ = c3χ+ c4β. (4.11)

Matching the angular components of the metric gives the following relations for ci, i =
1, · · · , 4

c1 = ±1, c2 = 0, c3 = ∓2(1 + a1), c4 = ∓1. (4.12)

To match the metric components, both signs in (4.12) are possible, however, matching the
four form components (3.8) and (4.2) selects the upper signs.

For the choice of the upper signs in (4.12), the relations for the angular variables become

z = χ, ϕ = −β − 2(1 + a1)χ, (4.13)

which means that the periodicity of both sets of angular variables is 2π.

4.2 U(1) symmetric solutions

The LLM metric (4.5) has an additional U(1) symmetry associated with shifts of the angle
β. For such geometries, it is possible to find an implicit change of variables that turns the
nonlinear Toda equation (4.4) into a linear Laplace equation. This idea goes back to the
paper by Ward [35] and has been applied to the LLM solution in [14, 36–39]. Note that in
some of these papers the U(1) circle is compactified to obtain a type IIA solution from the
M-theory one.

We map the LLM coordinates ξ, ρ to the new ones r, η and relate the function D to an
electrostatic potential

ρ2eD(ξ,ρ) = r2, ξ = r∂rV ≡ V̇ , ln ρ = ∂ηV ≡ V ′. (4.14)

The function V (r, η) satisfies the Laplace equation in cylindrical coordinates

1
r
∂r(r∂rV ) + ∂2

ηV = 0. (4.15)

The four dimensional metric and the three form potential are given by

ds2
11 = κ

2
3
11

(
V̇∆
2V ′′

) 1
3
{
4ds2

AdS5 +
2V ′′V̇

∆ ds2
S2 +

2V ′′

V̇

(
dr2 + 2V̇

2V̇ − V̈
r2dχ2 + dη2

)

+ 2(2V̇ − V̈ )
V̇∆

(
dβ + 2V̇ V̇ ′

2V̇ − V̈
dχ

)2}
,

C3 = 2κ11

(
−2 V̇

2V ′′

∆ dχ+
(
V̇ V̇ ′

∆ − η

)
dβ

)
∧ dΩS2 (4.16)
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where dΩS2 is the volume form on S2 and ∆ is defined as

∆ = (2V̇ − V̈ )V ′′ + (V̇ ′)2. (4.17)

To determine the mapping to electrostatic coordinates we are following appendix C in [39].
The relation (4.14) gives r = r(ξ, ρ) and the expression for the other variable η = η(ξ, ρ)
implies the exact differential

dη = ∂η

∂ξ
dξ + ∂η

∂ρ
dρ = ρ

r
∂ρrdξ −

r

ρ
∂ξrdρ. (4.18)

The electrostatic potential can be obtained from the exact differential

dV =
(
−r
ρ
∂ξr ln ρ+

ξ

r
∂ρr

)
dρ+

(
ξ

r
∂ξr +

ρ

r
∂ρr ln ρ

)
dξ. (4.19)

The boundary condition that the sphere closes at ξ = 0 implies

∂rV |η=0= 0. (4.20)

The rotational symmetric solution corresponds to a conducting disk at η = 0, which is
equivalent to (4.20) since ∂rV is the electrical field in the r direction which vanishes for a
conductor at η = 0.

The potential V is determined by a line charge λ(η) localized at r = 0

λ(η) = r∂rV |r=0= ξ(r = 0, η). (4.21)

Hence determining the change of variables gives the line charge density. The potential can
then be obtained via the Green’s function

V = −1
2

∫
dη′G(r, η, η′)λ(η′) (4.22)

where the Green’s function can be obtained by the method of images (adding a line charge
at negative η)

G(r, η, η′) = 1√
r2 + (η − η′)2 − 1√

r2 + (η + η′)2 . (4.23)

A set of rules for the charge distributions λ(η) which leads to regular solutions (or those
with only Ak singularities) was found in [14]. The line charges must be piecewise linear and
convex with integer slopes. Furthermore, the slopes can only change at integer values of η.
We will say more about these conditions later, but a final point that we want to explore in
this subsection is the relationship between the intercepts of these line segments and the
flux of the four form field strength F4.

To do this, we first note that at r = 0 the χ circle shrinks to zero size and at η = 0 the
S2 shrinks. This means that we can form a closed four-cycle by considering the χ circle,
the S2 and an arc in the r, η-plane which intercepts the η-axis near a region of constant
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Figure 2. Left: an arc in the r, η-plane that can be combined with S1
χ, S

2 to form a four cycle
which measures flux N in the uplifted solution. Right: a generic solution with many kinks in the line
charge. There are more choices of four cycles that can be used to count the number of fivebranes
creating each kink.

slope (see figure 2). Note that at this point, V̇ ′ is the constant slope of this segment and
the C3 field (4.16) takes the following form:

C3 ≈ 2κ11

[
(−V̇ + ηV̇ ′)dχ+

(
V̇ V̇ ′

∆̃
− η

)
(dβ + V̇ ′dχ)

]
∧ dΩS2 . (4.24)

We may now find the flux of F4 on this cycle by using (4.24) to calculate the difference
between C3 at the two endpoints of the arc. If λ(η) takes the form siη + λi along the
segment under consideration, we find that Q4 = 2λi. We can therefore interpret these
intercepts as counting the number of fivebranes at each location where the slope changes.

4.3 Electrostatic solution for uplifted solution

Using the map of our original coordinates y, θ to LLM coordinates ξ, ρ, we can express the
electrostatic variables in terms of y, θ. The first relation in (4.14) gives

r = N
√
y2 − y + q1 sin θ. (4.25)

The exact differential dη (4.18) expressed in terms of the y, θ variables is given by

dη = N

(1
2 − y

)
sin θdθ +N cos θdy (4.26)

which can be integrated to give the map from y, θ to η, ξ

η = N

(
y − 1

2

)
cos θ, ξ = Ny cos θ. (4.27)

It follows from (4.25) that r = 0 corresponds to either y = yc or θ = 0. Plugging this
relation into (4.21) determines the line charge

λ(η) =


yc

yc− 1
2
η 0 < η < N

(
yc − 1

2

)
η + N

2 η > N
(
yc − 1

2

)
.

(4.28)
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Using the relation of the charge q1 (2.18) and yc (2.15) for a R4/Zk conical singularity with
n = 2, 3, · · · then gives

λ(η) =

 (k + 1)η 0 < η < N
2k

η + N
2 η > N

2k .
(4.29)

We note that k = 1 corresponds to q1 = 0 and hence the AdS7 × S4 vacuum. We have
λ(η = 0) = N/2 which corresponds to a four form flux of N . Note that at y = yc = N/(2k)
the slope of the line charge density λ(η) changes from 1 to k + 1.

4.4 Generalization of electrostatic solution

We showed in the previous section that the uplifted defect solution corresponds to a specific
line charge in electrostatic formulation. In [14] general conditions on the line charge
distribution which are imposed by charge conservation and regularity, which we will briefly
review.

First, we previously remarked upon the relationship between the F4 flux and the
intercepts of the line charge. Imposing charge quantization therefore quantizes these
intercepts. Next, in order to find constraints on the slopes, we zoom into a region of
constant charge density near r = 0 where (4.16) takes the form

ds2 ≈κ
2/3
11

(
V̇ ∆̃
2V ′′

)1/3(
4d2

AdS5+
2V ′′V̇

∆̃
ds2

S2+
2V ′′

V̇
(dr2+r2dχ2+dη2)+ 4

∆̃
(dβ+V̇ ′dχ)2

)
,

∆̃≈ 2V̇ V ′′+(V̇ ′)2. (4.30)

As we mentioned previously, at r = 0 the χ-circle is shrinking however the circle β + V̇ ′χ is
not and so we can use it to define a new periodic coordinate provided that V̇ ′ takes integer
values there. Since V̇ ′(r = 0, η) is just the slope of the constant line segment, we find that
regularity imposes our next quantization condition on λ(η).

There are further constraints on the changes in slope which we can deduce by zooming
in on the region η = ηi where two slopes meet. Here V ′′ has a delta function source which
means that

V ′′ ≈ k

2
1√

r2 + (η − ηi)2 (4.31)

where k is the change in slope. When we insert this into the metric (4.30), we find that
the r, η and circle directions give us a space that is locally R4/Zk. Imposing regularity,
therefore, quantizes the change in slope so that it takes on (positive) integer values. It can
be shown that these Ak−1 (k > 1) singularities give rise to non-abelian gauge fields in AdS5
corresponding to global symmetries [14].

Finally, we can consider the geometry of our solution along the η-axis between two
points ηi, ηi+1 at which the slope of λ changes. Along any of these segments, we can form
a closed four cycle by considering the segment [ηi, ηi+1], the S2, and the circle β + V̇ ′χ.
Notice that at either endpoint, V ′′ and hence ∆̃ blows up causing the circle to shrink. One
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can then use (4.24) to find that the flux of F4 on this cycle is ηi+1 − ηi. This can also be
done for the first segment [0, η1] since the S2 (but not the circle) shrinks at η = 0. Flux
quantization thus constrains all ηi’s to take on integer values.

In summary, we find that charge distributions give rise to regular (or with Ak singulari-
ties) solutions provided that they are piecewise linear, have (decreasing) integer slopes and
half-integer intercepts, and change slope only at integer values of η. Putting these together,
we can write a multi-kink generalization of the uplifted flux N solution:

λ(η) =



s1η η ∈ [0, η1]
s2η + λ2 η ∈ [η1, η2]
s3η + λ3 η ∈ [η2, η3]
. . . . . .

η +N/2 η ∈ [ηnkink ,∞).

(4.32)

Note that the continuity of λ(η) alone is enough to determine the ηi’s in terms of the
slope and intercept data. That is, ηi = (λi+1 − λi)/(si − si+1) which can be written in
terms of the slope changes ki ∈ Z and the number of fivebranes creating the punctures Ni

to give ηi = Ni/2ki ∈ Z. Substituting these into (4.32) gives

λ(η) =



(1 +
∑nkink

i=1 ki) η η ∈ [0, N1/2k1]
(1 +

∑nkink
i=2 ki) η +N1/2 η ∈ [N1/2k1, N2/2k2]

(1 +
∑nkink

i=3 ki) η + (N1 +N2)/2 η ∈ [N2/2k2, N3/2k3]
. . . . . .

η +N/2 η ∈ [Nnkink/2knkink ,∞).

(4.33)

where N =
∑nkinks

i=1 Ni is the total F4 flux. One can plug this general solution into (4.16)
and find that it produces the same asymptotic AdS7 × S4 region (3.10) as the original
uplifted solution.

5 Holographic observables

The supergravity solutions presented in the previous section can be used to calculate
holographic observables. Examples of such observables are the entanglement entropy of
a surface around the defect and the on-shell action. Due to the infinite volume of the
asymptotic AdS7 × S4 region, the holographic observables are divergent and have to be
regularized. We can define a general cutoff surface

η(ϵ, θ) = yc(ϵ, θ) sin θ, r(ϵ, θ) = yc(ϵ, θ) cos θ, (5.1)

where

yc(ϵ, θ) =
1
ϵ
+ f0(θ) + f1(θ)ϵ+ f2(θ)ϵ2 (5.2)

and fi(θ) are arbitrary bounded functions of the angle θ ∈ [0, π
2 ]. The observables which we

will consider here turn out to be integrals of total derivatives and become integrals over the
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Figure 3. Integration region in the η, r-plane. We consider observables which reduce to integrals
over the boundary comprised of the η-axis, r-axis, and a generic θ-dependent cutoff surface.

boundary of the integration regions which is given by the integral along the η and r axis as
well as the cutoff surface at large yc. The cutoff of the integral along the η and r axis is
given by setting θ = π/2 and θ = 0 in (5.1) respectively. The simplest choice for a cutoff
surface would be given by setting all fi = 0 which corresponds to a circular quarter arc in
the η, r plane whose radius will go to infinity as ϵ→ 0.

In order to obtain finite results we use vacuum subtraction, i.e. we subtract the
regularized result by the result for the AdS7 ×S4 vacuum using the same cutoff surface. We
use this prescription since a full set of covariant counterterms is not known for the eleven-
dimensional supergravity and the standard method of holographic renormalization [40, 41]
which can be used for AdS solutions of gauged supergravities in lower dimensions is
not available.

The contributions from the cutoff surface can all be expressed in terms of moments of
the large yc expansion of derivatives of the potential V̇ , V ′′ (4.22)

V̇ = yc sin θ +m1 sin θ −m3
cos2 θ sin θ

2y2
c

+O
( 1
y4

c

)
,

V ′′ = m1
sin θ
y2

c

−m3
sin θ(1 + 5 cos 2θ)

4y4
c

+O
( 1
y6

c

)
. (5.3)

The moments m1 and m3 can be expressed in terms of line charge (4.33)

m1 =
nkinks∑
i=1

(si − si+1)ηi =
1
2

nkinks∑
i=1

Ni =
N

2 , (5.4)

m3 =
nkinks∑
i=1

(si − si+1)η3
i = 1

8

nkinks∑
i=1

N3
i

k2
i

, (5.5)
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where snkinks+1 = 1. When it is unambiguous, we will just write mi but when we refer to
a particular or multiple solutions at once (as in the case of vacuum subtraction), we will
denote the moments with a superscript, e.g. m(nkinks)

i or m(vac)
i .

5.1 Central charge

It was argued in [42, 43] that the holographic dual of the a central charge of a d = 4 SCFT
coming from the 11 dimensional metric

ds2
11 = κ

2/3
11

(
V̇∆
2V ′′

)1/3

[4ds2
AdS5 + ds2

M6 ] (5.6)

is give by the following expression

a = 25π3κ3
11

(2πℓp)9

∫
M6

(
V̇∆
2V ′′

)3/2

dΩM6 , (5.7)

where ℓp is the 11 dimensional Planck length and dΩM6 is the volume form of ds2
M6

. For
holographic duals of d = 4, N = 2 SCFTs the six dimensional space is compact and one
obtains a finite result for the integral. As discussed above, for the defect solutions the
integral will be taken over a non-compact space and will be divergent.

dΩM6 = 8
√
2r(V ′′)5/2

V̇ 1/2∆3/2 dΩS2 ∧ dη ∧ dr ∧ dχ ∧ dβ. (5.8)

The central charge is therefore equal to

a = 27π3κ3
11

(2πℓp)9

∫
rV̇ V ′′dΩS2 ∧ dη ∧ dr ∧ dχ ∧ dβ. (5.9)

We can now use the cylindrical Laplace equation (4.15) to write rV̇ V ′′ = −∂r(V̇ 2)/2 and
the fact that χ and β are 2π periodic, as well as κ11 = π

2 ℓ
3
p to write the central charge as

a = 1
4

∫
−∂r(V̇ 2)dr ∧ dη

= 1
4

∫ yc(ϵ,π/2)

0
dη λ(η)2 − 1

4

∫ θ=π/2

θ=0
(V̇ )2d

(
yc(ϵ, θ) sin θ

)
(5.10)

= 1
4

∫ ηnkink

0
dη λ(η)2 + 1

4

∫ yc(ϵ,π/2)

ηnkink

dη (η +m1)2 − 1
4

∫ θ=π/2

θ=0
(V̇ )2d

(
yc(ϵ, θ) sin θ

)
,

where we obtain the final line by noticing that λ(η) has a universal form in the region
beyond the final kink ηnkink . Notice above that the first integral in the third line is finite.
Inserting the generic cutoff surface (5.2) into this expression and integrating over θ gives
us following:

a= m1/3+f0(π/2)
4ϵ2 +2m2

1/3+2m1f0(π/2)+f0(π/2)2+f1(π/2)
4ϵ

+1
4

∫ ηnkink

0
dη λ(η)2+ 1

60
[
2m3+15m2

1(−ηnkink+f0(π/2))+15m1(−η2
nkink+f0(π/2)2)

+5(−η3
nkink+f0(π/2)3)+30(m1+f0(π/2))f1(π/2)+15f2(π/2)

]
+
∫ π/2

0
Im1,fi

(ϵ,θ)dθ+O(ϵ), (5.11)
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where in the final line, Im1,fi
(ϵ, θ) is an expression that depends on the cutoff surface

functions fi but only m1 and therefore, since this is the same for all solutions, it will be
eliminated by subtracting the contribution from the AdS7 × S4 vacuum solution:

a(vac) =
m1/3 + f0(π/2)

4ϵ2 + 2m2
1/3 + 2m1f0(π/2) + f0(π/2)2 + f1(π/2)

4ϵ
+ 1

60
[
− 13m3

1 + 15m2
1f0(π/2) + 15m1f0(π/2)2

+ 5f0(π/2)3 + 30(m1 + f0(π/2))f1(π/2) + 15f2(π/2)
]

+
∫ π/2

0
Im1,fi

(ϵ, θ)dθ +O(ϵ). (5.12)

This expression can be obtained from (5.11) by noticing that m(vac)
3 = m3

1 and η
(vac)
nkink =

η
(vac)
1 = m1. All of the divergent terms depend only on m1. Furthermore, the cutoff surface

functions, fi, only appear in the finite term with m1 (and no higher moments) so after
vacuum subtraction we will be left with something finite and independent of the choice
of cutoff:

a− a(vac) =
1
4

∫ ηnkink

0
dη λ(η)2 + 1

60(13m
3
1 + 2m3 − 15m2

1ηnkink − 15m1η
2
nkink − 5η3

nkink).

(5.13)

It is useful to rewrite these expressions in terms of the more physical parameters ki

and Ni. For one and two kinks these become

a(2) − a(vac) =
(−3 + k1(−10 + 13k1)− 5k2)N3

1
480k2

1
+ 39N2

1N2
480

+ 3(−5 + 13k2)N1N
2
2

480k2
+ (−1 + k2)(3 + 13k2)N3

2
480k2

2
(5.14)

and

a(1) − a(vac) =
(k − 1)(3 + 13k)N3

480k2 . (5.15)

5.2 On-shell action

For holographic defect solutions, among the simplest observables is the vacuum subtracted
on-shell action which gives the defect partition function in the semi-classical approximation.
Other observables, which we will not discuss here, include one-point functions of bulk
operators in the presence of the defect or the entanglement entropy in the presence of
the defect.

The action of eleven dimensional supergravity is given by

S = 1
2k2

11

∫
M

√
−g

(
R− 1

48FµνρλF
µνρλ

)
+ 1

2k2
11

∫
∂M

√
h 2K + SCS . (5.16)

Here SCS is the Chern-Simons term which vanishes for the LLM solutions and is dropped
in the following. The second term is the Gibbons-Hawking term which is needed for a good
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variational principle for spacetimes with boundary. Here hab is the induced metric on the
boundary and K is the trace of the second fundamental form Kµν = −1

2(∇µnν +∇νnµ)
where nµ is the outward pointing normal vector to the boundary ∂M. Using the equations
of motion for the metric and the three form potential, it is easy to show that the bulk part
of the on-shell action is a total derivative and the total action is given by a boundary term

Son shell =
1

2k2
11

∫
∂M

(
−1
3

)
C3 ∧ ∗F4 +

1
2k2

11

∫
∂M

√
h 2K. (5.17)

Presently, we will compute this for the simple cutoff (fi = 0 for all i) and later comment
on generic cutoff-dependence. To start, we notice that the boundary region η = 0 gives no
contribution since here the S2 shrinks to zero volume. The contribution coming from the
cutoff surface has a universal form for all solutions in terms of moments m1 and m3:

Sbulk,cutoff = V ol(AdS5)V ol(S2)
2k2

11

(
−64(−2m1 + 5m3)

15m1ϵ
− 128(m3

1 + 2m3)
15

)
(5.18)

and

SGH,cutoff = V ol(AdS5)V ol(S2)
2k2

11

(
128
ϵ3

+ 512m1
3ϵ2 + 512m2

1
15ϵ + 128(m3

1 − 3m3)
15

)
. (5.19)

This is not unexpected since we take this boundary to be at a distance far away from the
region where the slopes of λ(η) are changing (yc(ϵ, θ) ≫ ηnkink).

The final contribution comes from the region along the η-axis. Since this involves an
integral over 0 < η < yc(ϵ, π/2), it will be sensitive to line charge data beyond just the
moments. These integrals quickly become unwieldy for more complicated λ(η) so in lieu of
a generic expression, we can write down the answer for nkink = 2 from which the nkink = 1
case can be easily derived by setting N1 → 0 and N2 → N . We have that

S
(2)
bulk,r=0 =

V ol(AdS5)V ol(S2)
2k2

11

(
− 64
3ϵ3 −

64m1
ϵ2

− 64(4m3
1−m

(2)
3 )

3m1ϵ
+S(2),finite

bulk,r=0

)
, (5.20)

S
(2),finite
bulk,r=0 =

64
3
[
(1+4s1−2s2)(s1−s2)η3

1+6(s1−s2)(s2−1)η1η
2
2+(s2−1)(4s2−1)η2

2

]
,

S
(2)
GH,r=0 =

V ol(AdS5)V ol(S2)
2k2

11

(
128
2ϵ3 +128m1

ϵ2
+128m2

1
ϵ

+S(2),finite
GH,r=0

)
, (5.21)

S
(2),finite
GH,r=0 = −128

3
[
m

(2)
3 (2s1−s2)+(s2−1)(3m1−2(s1−1))η2

2

]
.

One can quickly inspect that the ϵ−3 and ϵ−2 divergences only depend on m1 and so will
cancel once we subtract the vacuum contribution. There are m3’s which appear in the ϵ−1

divergent term, however they cancel between (5.18) and (5.20). Combining all of the terms,
we obtain the following

S
(2)
on shell =

2πV ol(AdS5)
k2

11

(
448
3ϵ3 + 704m1

3ϵ2 + 256m2
1

3ϵ − 64
3 m

(2)
3

)
(5.22)
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and after subtracting the AdS7 × S4 vacuum, we are left with

S
(2)
on shell − S

(vac)
on shell =

−2πV ol(AdS5)
k2

11

64
3 (m(2)

3 −m
(vac)
3 )

= 16πV ol(AdS5)
3k2

11

(
(N1 +N2)3 − N3

1
k2

1
+ N3

2
k2

2

)
. (5.23)

From this, we can set N1 = 0, N2 = N and k2 = k to obtain the expression for one kink:

S
(1)
on shell − S

(vac)
on shell =

16V ol(AdS5)
3k2

11
N3

(
1− 1

k2

)
= −2πV ol(AdS5)

k2
11

64
3 (m(1)

3 −m
(vac)
3 ). (5.24)

The terms with 1
ϵ2n divergences cancel out of the vacuum subtracted on shell action.

However, the result still has a divergence due to the infinite volume of AdS5. For a
more complete treatment one should introduce a Fefferman-Graham like cutoff which
regularizes all divergences, see e.g. [45, 46] for discussions of such cutoffs in other holographic
defect theories.

Another possible related feature of the vacuum subtracted on shell action is that
the detailed form of finite terms depend on the choice of the cutoff surface. This is
analogous to the possibility of finite counter terms in a covariant regularization procedure
in lower dimensional supergravity. Such ambiguities can often be fixed by demanding the
finite counter terms preserve supersymmetry, but how this implemented in the vacuum
subtraction is not clear to us at this moment. While the results for a simple cutoff we have
presented in this section are compellingly simple, it is not clear at the moment whether
they are unambiguous.

5.3 Defects in the dual SCFT

A co-dimension two conformal defect in a six dimensional CFT preserves a SO(4, 2)× SO(2)
subgroup of SO(6, 2). For the d = 6, N = (2, 0) SCFT which are dual to the AdS7×S4 vacua
of M-theory, the superconformal symmetry is OSp(8∗|2) and a half BPS-defect co-dimension
two defect that our supergravity solutions preserve a SU(2, 2|2) defect conformal sub algebra.
See [44] for a classification of conformal sub algebras which correspond to half-BPS defects
of maximally supersymmetric SCFTs. The general analysis for less supersymmetry and
arbitrary co-dimension has not been performed to our knowledge, see however [47] for a
complete analysis for conformal line defects in SCFTs.

It is a challenge to construct explicit duals on the CFT side of the supergravity solutions
describing defects constructed in this paper, since the d = 6, N = (2, 0) SCFT does not have
a Lagrangian formulation. It is often useful to construct a defect in a simpler theory and we
do this using in appendix A for the theory of a free six dimensional N = 2 hypermultiplet.
The field theory defect solution is given by a nontrivial profile of for two of the five scalars
in the tensor multiplet in the two directions transverse to the defect. This construction
is analogous to the construction of surface defects in d = 4, N = 4 SYM due to Gukov
and Witten [48]. The free tensor multiplet provides only a simple model for the “center

– 19 –



J
H
E
P
1
1
(
2
0
2
3
)
1
9
1

of mass” degrees of freedom and the construction of the defect solution for the strongly
coupled interacting d = 6, N = (2, 0) is a much harder problem.

As mentioned above the defect theory has SU(2, 2|2) superconformal symmetry which
is the same as N = 2, d = 4 SCFTs. This is no surprise since our supergravity solutions are
closely related to LLM and Gaiotto-Maldacena solutions as discussed above, which can be
interpreted as coming from compatifications of M5-branes on compact Riemann surfaces
with punctures. It is interesting to contrast these holographic solutions with the ones used
to describe d = 4, N = 2 SCFTs [14, 37–39] as well as more recent ones constructing duals
of Argyres-Douglas theories [32, 33, 43]. In the former, the η, r is compact and will be
related to Maldacena-Nunez [49] solutions and class S N = 2, d = 4 theory [34] coming from
compactifying a d = 6, N = (2, 0) theory on a Riemann surface with (regular) punctures.
In the latter, one considers a disk in the η, r plane with 5-brane source smeared on the
boundary of the disk. This behavior is to be contrasted to our solutions where the η, r space
is non-compact and the solutions are asymptotically AdS7 ×S4 in the limit where η, r go to
infinity. Hence the supergravity solutions are holographically dual to co-dimension 2 defects
in d = 6, N = (2, 0) SCFTs. Most solutions are singular with singularities corresponding to
a finite number of regular punctures, associated with the kinks in the linear charge density.
It is however possible to construct solutions where the slope of the kinks only changes by
one and hence they are be completely regular.

Since the superconformal symmetry preserved by the defect is the same as the one of
d = 4, N = 2 SCFTs it is natural that these SCFTs describe the defect degrees of freedom.
For solutions with regular punctures is likely that the defect theories can be related to the
generalized quiver theories of [34]. It is an open questions how to interpret the completely
regular solutions. The calculation of some holographic observables given in this paper is a
first step in checking any identification of defect theories. It may be possible to check the
identification by matching holographic calculation with calculations on the field theory side
using localization. These interesting questions are currently under investigation.

6 Discussion

In this paper we constructed solutions of eleven dimensional supergravity, which are
holographic duals of co-dimension two defects in six dimensional SCFTs. The solutions
preserve sixteen of the thirty two supersymmetries.

While it is possible to construct completely regular quarter-BPS solutions which carry
two nonzero charges, the seven dimensional half-BPS solution with only one nonzero charge
turned on suffers from a conical singularity in the bulk. Upon uplifting to eleven dimensions
we showed that the singularity is also present in eleven dimensions. The uplift allows us
to identify this type of singularity with a regular puncture which is locally R4/Zk and
was discussed already in the original paper of Gaiotto and Maldacena [14] that constructs
holographic duals of d = 4, N = 2 SCFTs.

One of the main results in the present paper is to use the electrostatic formulation of
the LLM solution to construct new defect solutions based on more general linear charge
densities. It is possible to obey all the conditions that charge quantization and periodicity
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of the angular coordinates impose. The generic solutions have singularities corresponding to
a finite number of regular punctures, associated with the kinks in the linear charge density.
It is however possible to construct solutions which can be completely regular.

We note that the electromagnetic formulation involves an approximation where we
consider a rotationally symmetric distribution of sources for the Toda equation and smear
them. It would be interesting to consider solutions of the Toda equation corresponding
to co-dimension two defect solutions. This would involve placing line sources in the three
dimensional half space spanned by ξ, x1, x2. The holographic defects would correspond
to solutions where this space is non-compact and the large ξ, xi limit corresponds to the
asymptotic AdS7 ×S4 region. The nonlinear nature of the Toda equation which determines
the solution makes the construction of such solutions very challenging, however. It would
also be interesting to find generalizations of the uplifts of the quarter-BPS defect solutions
which are completely regular already in 7 dimensions. Since no general “bubbling” solution à
la LLM exists for eight instead of sixteen preserved supersymmetries, this also is a question
which we will leave for the future.
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A Defects for the d = 6, N = (2, 0) tensor multiplet

In this appendix we construct a conformal co-dimension two defect for the free d = 6, N =
(2, 0) tensor multiplet. The field content of the multiplet is a rank 2 antisymmetric tensor
field Bµν with self-dual field strength Hµνρ, five scalars Φi, i = 1, · · · , 5 which transform as a
5 under the SO(5) R-symmetry and four symplectic Majorana-Weyl spinors ψa, a = 1, · · · , 4
which transform as 4 under the USp(4) ≡ SO(5).

The super(conformal) symmetry transformations are given by [50]

δψ = 1
2γ

µ∂µϕiΓiϵ− 1
6Hµνργ

µνρϵ+ 2ϕiΓiη0,

δϕi = −2ϵ̄(Γi)ψ,
δBµν = −2ϵ̄γµνλ. (A.1)

Here Γi, i = 1, 2, · · · , 5 are SO(5) gamma matrices and γµ are six dimensions gamma-
matrices. The spinors are contracted using the symplectic metric Ωab. The supersymmetry
transformation parameter ϵ is given by

ϵ = ϵ0 + γµx
µη0, (A.2)

where ϵ0 is a left handed constant symplectic Majorana spinor parameterizing the Poincare
supersymmetries annd η0 is a constant right handed symplectic Majorana spinor, parameter-
izing the superconformal transformations. We are constructing a co-dimension two defect in
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this six dimensional theory, which preserves some part of the superconformal symmetry. The
simplest set-up is to consider a flat defect with a four dimensional world-volume directions,
on which all fields do not depend. The two directions transverse to the defect are spanned
by x1, x2 and we choose the defect to be located at x1 = x2 = 0. From the symmetries we
can deduce that the antisymmetric tensor field is vanishing and hence only the scalars are
turned on. It is useful to introduce complex coordinates z = x1 + ix2 and gamma matrices

γz = 1√
2

(
γ1 + iγ2

)
, γ z̄ = 1√

2

(
γ1 − iγ2

)
. (A.3)

From the supergravity solutions it follows that for a defect that preserves half the super-
symmetries the SO(5) R-symmetry is broken to SU(2), hence we make the following ansatz
for the scalar fields. The following complex combination of the scalar fields is nontrivial

ϕω = 1√
2

(
ϕ1 + iϕ2

)
= α+ iβ

z
. (A.4)

Unbroken supersymmetries satisfy δψ = 0, it is easy to see that the supersymmetry
transformation rules (A.1) lead to the condition on the Poincare supersymmetry

γaΓωϵ0 = 0 ⇔ γ12Γ12ϵ0 = ϵ0. (A.5)

The second condition is a projection which implies that half the Poincare supersymmetries
are preserved. It is also easy to verify that for an η0 satisfying the same projection
condition (A.5) and the z dependence of the scalar (A.4) half of the superconformal
symmetries are preserved and hence the defect is half BPS.

For a defect preserving a quarter of the supersymmetry we have a nontrivial profile for
four scalars, breaking the SO(5) R-symmetry to U(1)×U(1).

ϕω1 = 1√
2

(
ϕ1 + iϕ2

)
= α1 + iβ1

z
, ϕω2 = 1√

2

(
ϕ3 + iϕ4

)
= α2 + iβ2

z
, (A.6)

which leads to two projectors

γ12Γ12ϵ0 = ϵ0, γ12Γ34ϵ0 = ϵ0. (A.7)

Hence a quarter of the supersymmetries are preserved (as well as a quarter of the super-
conformal symmetries). The free tensor multiplet can be used to construct the N = (2, 0)
superconformal current multiplet which contains the SO(5) R-symmetry current and the
stress tensor [51]. The free tensor multiplet corresponds to the “center of mass” degrees
of freedom and the construction of the defect solution for the strongly coupled interacting
d = 6, N = (2, 0) theory is beyond the scope of this appendix.

Open Access. This article is distributed under the terms of the Creative Commons
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