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SUMMARY

The advent of single-cell multi-omics sequencing technology makes it possible
for researchers to leverage multiple modalities for individual cells. Here, we pre-
sent a protocol to perform integrative analysis of high-dimensional single-cell
multimodal data using an interpretable deep learning technique called moETM.
We describe steps for data preprocessing, multi-omics integration, inclusion of
prior pathway knowledge, and cross-omics imputation. As a demonstration, we
used the single-cell multi-omics data collected from bone marrow mononuclear
cells (GSE194122) as in our original study.
For complete details on the use and execution of this protocol, please refer to
Zhou et al.1
BEFORE YOU BEGIN

This section includes the software installation as well as the data collection.
Hardware requirement

The implementation of moETM requires GPU usage. In this protocol, we used a GPU (Tesla P100-

PCIE-16GB), a CPU with 32 cores and 257 GB RAM on Linux (Rocky 9.0), and the cuda version is

cuda_11.8.r11.8.
Software installation

Timing: <30 min

1. Clone the code repository https://github.com/manqizhou/moETM as following:
> git clone https://github.com/manqizhou/moETM.git.
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2. Create folders to store results:
> mkdir data

> mkdir result_fig

> mkdir Result
3. Install packages according to the requirements file as following:

> mkdir Trained_model
4. Install PyTorch from the website https://pytorch.org/ by choosing the one that matches your

CUDA version. The original study was conducted under CUDA 11.8.

> pip install -r requirements.txt
> conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
Data collection

Timing: <30 min

Single-cell RNA sequencing (scRNA-seq) combined with assay for transposase-accessible chromatin

using sequencing (ATAC-seq) simultaneously measure the transcriptome and chromatin accessi-

bility in the same cells.2 Cellular indexing of transcriptomes and epitopes by sequencing (CITE-

seq) measures surface protein and transcriptome data using oligonucleotide-labeled antibodies.3

Here, we take either scRNA-seq + scATAC-seq (gene+peak case) or CITE-seq (gene+protein

case) in the h5ad format as the input of moETM.

5. Download scRNA-seq + scATAC-seq data (GSE194122_openproblems_neurips2021_multio-

me_BMMC_processed.h5ad.gz) and CITE-seq (GSE194122_openproblems_neurips2021_ci-

te_BMMC_processed.h5ad.gz) from the GSE194122 website https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE194122.

6. Preprocess data to h5ad format.

Note: The GSE194122 data is already in h5ad format, so no further steps are needed. If the

downloaded data is not in the h5ad format, e.g. the mouse kidney cell sci-CAR data

(GSE117089)4 used in the original study, it needs to be transformed to h5ad format. The

h5ad data format comprises three key components: the expression value matrix X, the cell in-

formation stored in the obs attribute, and the feature information stored in the var attribute.

For data not stored in the h5ad format, we need to create an h5ad format and then manually

assign the X and obs/var attributes using the python pakcage AnnData. The expression value

matrix X and feature information are typically contained within the gene/peak/protein count

file. The cell information is stored either in the barcode or cell type file. The detailed imple-

mentation of converting a non-h5ad format GSE117089 data to an h5ad format data for is

in the script ./useful_file/mouse_brain_preprocess.py.

a. Download data from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140203.
2 STAR Protocols 5, 103066, June 21, 2024
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b. Read count files for gene expression and chromatin accessibility separately and then re-format

them to h5ad format
adata = ad.AnnData(X=X,obs=pd.DataFrame(index=GEX_barcode_new), var=pd.DataFrame

index=var_name))

adata = ad.AnnData(X=X, obs=pd.DataFrame(index=ATAC_barcode_new),var=pd.DataFrame

index=var_name))
7. Put the preprocessed data into the data folder.

8. (Optional) To make the downstream analysis more interpretable, the user can filter genes by se-

lecting protein-coding genes only. The example file for the BMMC dataset is under ./useful_files/

gene_coding_nips_rna_protein.csv and gene_coding_nips_rna_atac.csv.
KEY RESOURCES TABLE
AGENT or RESOURCE SOURCE IDENTIFIER

posited data

MC CITE-seq Luecken et al.5 GSE194122

MC multiome data Luecken et al.5 GSE194122

use skin cell SHARE-seq Ma et al.6 GSE140203

use brain cell SHARE-seq Ma et al.6 GSE140203

use kidney cell sci-CAR Cao et al.5 GSE117089

MC CITE-seq Hao et al.7 GSE164378

VID-19 PBMC CITE-seq Stephenson et al.8 https://www.covid19cellatlas.org/

tware and algorithms

ETM This paper https://github.com/manqizhou/moETM

npy 1.9.1 Wolf et al.9 https://github.com/scverse/scanpy

nData 0.8.0 Virshup et al.10 https://github.com/scverse/anndata

maRt 2.46.3 Durinck et al.10 https://rdrr.io/bioc/biomaRt/man/

rat 4.3.0 Hao et al.7 https://satijalab.org/seurat/

alVI Gayoso et al.7,11 https://github.com/YosefLab/scvi-tools

ILE Xu et al.12 https://github.com/rpmccordlab/SMILE

M Minoura et al.13 https://github.com/kodaim1115/scMM

bolt Gong et al.13,14 https://github.com/epurdom/cobolt

ltiVI Ashuach et al.15 https://zenodo.org/record/5762077

FA+ Argelaguet et al.16 https://github.com/bioFAM/MOFA2

hon 3.9.5 Python Software Foundation17 http://www.python.org/

.0.5 R Core Team18 https://www.r-project.org/

er

U N/A Tesla P100-PCIE-16GB
STEP-BY-STEP METHOD DETAILS

Here, we describe step-by-step methods for analyzing single cell multi-omics data, i.e., the gene+

peak data and the gene+protein data, including the: 1) data preprocessing, 2) integration task, 3) in-

clusion of prior pathway knowledge, and 4) imputation task. To illustrate these various steps, we use

theBMMC1data (gene+peak) and the BMMC2data (gene+protein) fromGSE194122 as an example.

All steps can be found in the repository https://github.com/manqizhou/moETM/tree/main.
Data preprocessing

Timing: <30 min
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Figure 1. Screenshot of the preprocessed BMMC1 data structure

‘adata_mod1’ and ‘adata_mod2’ represent the preprocessed gene and the peak modality data, respectively.

Following the preprocessing procedure in 9a, only the expression matrix and the ’obs’ attribute were retained.
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In this section, we describe steps for data preprocessing. moETM requires cell-by-feature matrices as

input, where features could be gene, protein, or peak. The input data is in the AnnData format and is

loadedandpreprocessedby the load_*_dataset() andprepare_*_dataset() functions in thedataloader.py

script. Before putting into the model, all matrices are column normalized by dividing the column sum.

1. For the BMMC1 (GSE194122_openproblems_neurips2021_multiome_BMMC_processed.h5ad)

and BMMC2 (GSE194122_openproblems_neurips2021_cite_BMMC_processed.h5ad) data which

are downloaded in the step 5 and used in the original study, they are preprocessed by functions

in the dataloader.py.

a. For the BMMC1 (gene+peak case) data, both modalities underwent a 3-step preprocessing

procedure: normalize counts per cell by scanpy.pp.normalize_total, logarithmize the data ma-

trix by scanpy.pp.log1p, and select highly variable features by scanpy.pp.highly_variable_

genes. The 3 steps were incorporated within the load_nips_rna_atac_dataset() function.
> adata_mod1, adata_mod2 = load_nips_rna_atac_dataset(mod_file_path, gene_encoding)

> adata_mod1, adata_mod2 = prepare_nips_dataset(adata_mod1, adata_mod2)

>

c

>

4

Note: Before input the preprocessed data into the model, we retained only the obs attribute,

which contains cell type information and batch information, and removed other attributes.

This was accomplished by generating a new h5ad object, assigning the preprocessed data

matrix as X, and incorporating cell type and batch information into the obs attribute. This

step was incorporated within the prepare_nips_dataset() function.

The preprocessed data structure was shown in the Figure 1.

b. For the BMMC2 (gene+peak case) data, the gene data underwent the same 3 preprocessing

steps as described in Step 1a.

Note: The protein data was subjected to the first two steps. All proteins data was utilized

without selecting highly variable proteins. This was motivated by the substantially smaller

number of proteins (�100) compared to the number of genes (�14000) and peaks

(�110000). Similar to the BMMC1 case, the preprocessed steps were all involved within the

load_nips_rna_protein_dataset() function.
adata_mod1, adata_mod2 = load_nips_dataset_rna_protein_dataset(mod_file_path, gene_en-

oding, protein_encoding)

adata_mod1, adata_mod2 = prepare_nips_dataset(adata_mod1, adata_mod2)

STAR Protocols 5, 103066, June 21, 2024



Figure 2. UMAP visualization

Each dot represents a cell. The left panel is colored by batch indexes and the right panel is colored by cell types.
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The output of the step 1 is 2 preprocessed h5ad format data containing cell type information
Figure

The tra

specifi

> X_

moET
andbatch information. This step is already included in thebeginningof scripts for steps 2 and 3.
Multi-omics integration

Timing: 7–10 h

In this section, we describe steps for the implementation of multi-omics integration.

2. Train moETM to integrate single cell gene expression and surface protein data. Here, we used the

BMMC2 data as the original study.

a. The input data will first be preprocessed following step 9.

b. Prepare training and evaluation data by the function data_process_moETM().
mod1_train_T, X_mod2_train_T, batch_index_train_T, train_adata_mod1 = data_process_

M(adata_mod1, adata_mod2)
c. Set hyper parameters num_topic, emd_dim, batch_size, Total_epoch.

Note: num_topic is the number of topics that the model will learn. It depends on the

complexity of the dataset. emd_dim refers to the embedding dimension, which is the size

of the vector representations for each topic. A higher dimension can capture more information

but may also lead to overfitting and increased computational cost. batch_size is the number of

training examples used in one iteration of the training process. Smaller batch sizes can lead to

faster convergence but may be noisier, while larger batch sizes provide more stable gradients

but require more memory. total_epoch is the number of times the entire dataset is passed
3. Folder structure of the saved trained model

ined model was saved in the Trained_model folder containing three files: moetm_encoder1/2.pth for the omic-

c encoders parameters and moetm_decoder.pth for the decoder parameters.

STAR Protocols 5, 103066, June 21, 2024 5
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Table 1. Example of the outcome moetm_all_data.csv file

Epoch ARI NMI ASW ASW_2 B_kBET B_ASW B_GC B_ebm

0 0.49 0.65 0.06 0.53 0.05 0.88 0.95 1.07

10 0.53 0.67 0.07 0.53 0.04 0.89 0.96 0.95

20 0.47 0.67 0.07 0.54 0.03 0.92 0.96 0.86

30 0.48 0.67 0.07 0.54 0.01 0.93 0.96 0.77

40 0.50 0.68 0.06 0.53 0.01 0.93 0.95 0.74

50 0.57 0.72 0.07 0.54 0.01 0.94 0.96 0.69

The first 4 columns represent metrics for assessing bio-conservation, while the last four columns, denoted by ’B_’, refer to

metrics evaluating the effects of batch-effect removal. The evaluation metrics are adopted from a previous study.19

>

m

>
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Protocol
through the model during training. More epochs can lead to better training, but also increase

the risk of overfitting. In our study, we set num_topic = 100, emd_dim = 400, batch_size =

2000, Total_epoch = 500. The optimal num_topic was selected based on the robust perfor-

mance, where the performance of the model (e.g., ARI value) did not increase much after

num_topic > 100. The batch_size and total_epoch was chosen based the computational ca-

pacity considerations. The model’s performance stabilizes after 500 epochs. For large data-

set, the user might increase the epoch number.

d. Train the model using Train_moETM().
Train_moETM(trainer, Total_epoch, train_num, batch_size, Train_set, Test_set, Eval_kwargs)
The implementation is included in main_integration_rna_protein.py.

3. Train moETM to integrate single cell gene expression and chromatin accessibility data. Here, we

used the BMMC1 data as the original study.

a. The input data will first be preprocessed following step 9.

b. Prepare training and evaluation data by the function data_process_moETM().
X_mod1_train_T, X_mod2_train_T, batch_index_train_T, train_adata_mod1 = data_process_

oETM(adata_mod1, adata_mod2)
c. Set hyper parameters num_batch, num_topic, emd_dim, batch_size, Total_epoch.

Note: The num_topic, emd_dim, batch_size, Total_epoch is the same as described in the step

2c. num_batch is the number of batches during the training process. It is directly related with

batch_size, and equals to ceil(#total samples/batch_size), where the ceil function returns the

smallest integer value which is greater than or equal to the specified number. The users may

adjust batch_size based on their model performance and hardware limitations.

d. Train the model using Train_moETM().
Train_moETM(trainer, Total_epoch, train_num, batch_size, Train_set, Test_set, Eval_kwargs)
The implementation is included in main_integration_rna_atac.py. The difference between

step 2 and step 3 is the way of preprocessing different data.

The step 2/3 will produce 3 outputs: 1) evaluation metrics values saved in ./Results/moet-

m_all_data.csv (Table 1), 2) UMAP visualization of the integrated low-dimensional representa-

tion stored in ./result_fig (Figure 2), 3) the trained model saved in ./Trained_model (Figure 3).

Here we present the results of the BMMC1 data from step 3.
STAR Protocols 5, 103066, June 21, 2024



> #!/

> #SB

> #SB

> #SB

> #SB

> #SB

> #SB

> #SB

> #SB

> #SB

> con

> mod
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The moetm_all_data.csv file has 9 columns and 50 rows. The first column is the epoch number,

while the remaining 8 columns contain evaluation matrices related to bio-conservation and

batch-effect removal. Given our total of 500 epochs and the storage of results every 10

epochs, the file contains 50 rows. Table 1 is the first 6 rows of the file.

Except for evaluation metrics, we also plotted a UMAP visualization of the model per 10

epochs. Therefore, in the results_fig folder, we have 50 figures. Figure 2 is an example in

epoch 490.

The trained model was stored under the folder Trained_model as shown in Figure 3.
4. Additionally, all scripts can be submitted as a batch job using a job scheduler such as "slurm" to a

GPU node. To achieve this, the user needs to create a shell script containing commands involved

in executing the job. For example, the user can create a script named submit.sh containing the

following lines (comments inside the parentheses should be deleted),
bin/bash -l

ATCH --mem=32000 (set the memory; here 32GB)

ATCH --time=00:09:00 (set the time; here 9hr)

ATCH --cluster cbsugpu03 (set the used cluster)

ATCH --gres=gpu:tP100:1 (set the used GPU)

ATCH --chdir=/workdir/mz335/moETM/github/ (set the work path)

ATCH --job-name=moETM (set name of job)

ATCH --output=moETM.out (write stdout+stderr)

ATCH --mail-user=mz335@cornell.edu

ATCH --mail-type=ALL (sent email at job start/end/crash)

da activate covid (activate conda encironment)

ule load python
Then execute the sbatch command to submit the job,

> python main_intergration_rna_protein.py (run the script)
> sbatch submit.sh
Inclusion of prior pathway knowledge

Timing: 8 h

In this section, we describe steps for how to include prior pathway knowledge in the model.

moETM can use prior pathway knowledge information by adding a pathway-by-gene matrix in the

encoder. We downloaded pathways from MSigDB and selected the C7: immunologic signature

gene sets as the BMMC data is related to immune cells.20 We kept pathways that contain more

than 5 and fewer than 1000 genes as pathways containing too few or too many genes might intro-

duce noise or impose a computation burden based on the previous study.21

5. DownloadMSigDBgene sets fromhttps://www.gsea-msigdb.org/gsea/msigdb/human/collections.

jsp.
STAR Protocols 5, 103066, June 21, 2024 7
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6. Filter pathways that have more than 5 and less than 1000 genes. Then prepare a binary pathway

by gene matrix while 1 indicating the gene is in the pathway.

Note: The generated binary matrix will serve as the feature embedding matrix in the topic

modeling. In the defaultmodel used previously, the feature embeddingmatrix consist of learn-

able parameters. The inclusion of prior pathway knowledge allows us to directly map each

topic to each gene set, which may further improve the model interpretability. As the BMMC

datawerederived from thebonemarrow,weused the Immunologic signature gene sets collec-

tion (C7) here. The usermight select the gene sets collection that aligns with their specific data.
Save and move the output csv file to the ./useful_file folder.

7. Train the moETM using prior pathway knowledge.

> python generate_gene_pathway_biMatrix.py
> python main_integration_rna_atac_use_pathway.py
Cross-omics imputation

Timing: 30 min - 1 h

In this section, we describe steps of cross-omics imputation.

8. Create recon folder to store results.
9. Impute gene expression from surface protein values.

Note: The train_num is the number of training sample. Here, the default hyperparameters

were set as the same as the step 2c. We set the Total_epoch = 500, batch_size = 2000 based

on our computation capability.

> mkdir recon
> direction = ’another_to_rna’

> Train_moETM_for_cross_prediction(trainer, Total_epoch, train_num, batch_size, Train_
To impute protein values from gene expression, change direction = ’rna_to_another’. The imple-

mentation is included in main_cross_prediction_rna_protein.py.

10. Impute gene expression value from peak values.

set, Test_set)
> direction = ’another_to_rna’

> Train_moETM_for_cross_prediction(trainer, Total_epoch, train_num, batch_size, Train_

set, Test_set)

8 STAR Protocols 5, 103066, June 21, 2024



Figure 4. Scatterplot of original and imputed surface protein expression

The x-axis and y-axis represent the imputed and original protein expression values, respectively.
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To impute chromatin accessibility values from gene expression, change direction = ’rna_to_an-

other’. The implementation is included in main_cross_prediction_rna_atac.py.

The output was the imputed values. We then can plot a scatter plot to visualize the results.
EXPECTED OUTCOMES

In this protocol, we implemented a unified interpretable deep learningmodel called moETM to inte-

grate single-cell multi-omics data including transcriptome and chromatin accessibility or surface

proteins, which are the most common types of single-cell multi-omics data to date.

For the multi-omics integration results, each step of steps 2, 3, 7 will generate 3 outputs: 1) evalua-

tion metrics values ./Results/moetm_all_data.csv (Table 1), 2) UMAP visualization of the integrated

low-dimensional representation under ./result_fig (Figure 2); 3) saved trained model under ./Train-

ed_model (Figure 3).

For the cross-omics imputation, each step of steps 9, 10 will generate a reconstructed value file un-

der the recon folder (Figure 4).
LIMITATIONS

There are several challenges that are not addressed in moETM. For instance, moETM has the capac-

ity to integrate across multiple batches andmodalities as shown in step 3 and Table 1, but it requires

the training data to have all omics measured in the same cells. Amore challenging task is to integrate

multimodal data without anchored features or cells, which is commonly known as the diagonal inte-

gration. Some recent approaches made use of graph representation learning to integrate multi-

omics single-cell data at the expense of computational complexity and interpretability.
TROUBLESHOOTING

Problem 1

The Python package libraries are not supported in the existing environment when installing required

dependents.
STAR Protocols 5, 103066, June 21, 2024 9
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Potential solution

Create a virtual environment and follow specific versions of packages closely as instructed.

Problem 2

The modality data are not stored in the same file. moETM fails to read input data.

Potential solution

Preprocess the input data into h5ad format. Please refer to the corresponding Data preprocessing

for details.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Yue Li (yueli@cs.mcgill.ca).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to and will be

answered by the technical contact, Yue Li (yueli@cs.mcgill.ca).

Materials availability

This study did not generate any reagents.

Data and code availability

� All data used in this study is publicly available. The peripheral blood mononuclear cells CITE-seq

measuring from both COVID patients and healthy patients is available at the website https://www.

covid19cellatlas.org/. The other datasets used are available under the NCBI GEO accession

numbers as listed in the key resources table.

� All original code has been deposited at https://doi.org/10.5281/zenodo.8104798 and https://

github.com/manqizhou/moETM and is publicly available as of the date of publication.

� Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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