
1.  Introduction
Extremes of California's winter weather variability can include heavy multiday precipitation from Pacific 
storms associated with atmospheric rivers (ARs) or dry offshore downslope winds blowing from the elevated 
continental interior. ARs cause most of the region's floods (Corringham et  al., 2019; Dettinger, 2013; Ralph 
et  al.,  2006,  2011) while downslope winds are often associated with coastal heat waves as well as wild-
fire and smoke impacts (Abatzoglou, 2013; Aguilera et al., 2021; Cayan et al., 2022; Gershunov et al., 2021; 
Guzman-Morales et  al.,  2016; Hughes & Hall,  2010). Winter heat waves and dry spells accelerate mountain 
snowmelt (Hatchett et al., 2023), exacerbate drought and endanger human health, particularly along the densely 
populated coast (Gershunov et al., 2021; Schwarz et al., 2020). Improved prediction of these impactful weather 
events is critical for emergency preparedness and planning to mitigate impacts to society (DeFlorio et al., 2021). 
Climate change is increasing the likelihood and intensity of extreme weather in California (e.g., Corringham 
et al., 2022; Gershunov et al., 2019, 2021; Huang & Swain, 2022; Michaelis et al., 2022), highlighting the need 
for improved forecasts across a range of lead times to aid planning and mitigate negative outcomes (e.g., DeFlorio 
et al., 2021; Oakley et al., 2023).

ARs are low-tropospheric jets of water vapor that produce up to 50% of California's annual precipitation 
(Dettinger et al., 2011; Gershunov et al., 2017). They can be beneficial and hazardous (Ralph et al., 2019); accu-
mulating snowpack (Shulgina et al., 2023) and replenishing water supplies, while also causing the most damag-
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Plain Language Summary  California winter weather can alternate between very wet conditions 
from atmospheric rivers making landfall along the Pacific coast to hot, dry, and windy conditions brought 
by Santa Ana winds blowing in from the Southwest interior. Atmospheric rivers are important for water 
resources while also causing flooding, whereas Santa Ana winds are often associated with wildfire, especially 
following prolonged dry periods. Preparing for these types of weather events is important for managing 
resources and protecting life and property, yet reliable forecasts beyond about 7–10 days remain a challenge. 
We have developed a new prediction system that combines information about approaching atmospheric weather 
patterns from weather forecast models along with historical information relating those patterns to impacts over 
California to predict the likelihood of impactful weather at 1–4 weeks lead time. By extending the window of 
opportunity to take management action, this new approach should aid in resource and emergency planning in 
water, land, and fire sectors as well as protecting residents through improved warning systems.

GUIRGUIS ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

Subseasonal Prediction of Impactful California Winter 
Weather in a Hybrid Dynamical-Statistical Framework
Kristen Guirguis1  , Alexander Gershunov1  , Benjamin J. Hatchett2  , Michael J. DeFlorio1  , 
Aneesh C. Subramanian3  , Rachel Clemesha1  , Luca Delle Monache1  , and F. Martin Ralph1 

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA, 2Desert Research Institute, 
Reno, NV, USA, 3University of Colorado Boulder, Boulder, CO, USA

Key Points:
•	 �A hybrid dynamical-statistical model 

is described for 1–4-week forecasts of 
impactful California winter weather 
using circulation regimes

•	 �This hybrid framework reduces the 
number of forecasts produced, but the 
ones issued can be interpreted with 
higher confidence

•	 �This new methodology provides 
skillful subseasonal forecasts with 
potential to improve early warnings 
for impactful weather events

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
K. Guirguis,
kguirguis@ucsd.edu

Citation:
Guirguis, K., Gershunov, A., Hatchett, B. 
J., DeFlorio, M. J., Subramanian, A. C., 
Clemesha, R., et al. (2023). Subseasonal 
prediction of impactful California winter 
weather in a hybrid dynamical-statistical 
framework. Geophysical Research 
Letters, 50, e2023GL105360. https://doi.
org/10.1029/2023GL105360

Received 7 JUL 2023
Accepted 6 NOV 2023

Author Contributions:
Conceptualization: Alexander 
Gershunov, Benjamin J. Hatchett, Michael 
J. DeFlorio, Aneesh C. Subramanian, 
Rachel Clemesha, Luca Delle Monache, 
F. Martin Ralph
Data curation: Aneesh C. Subramanian
Funding acquisition: Alexander 
Gershunov, F. Martin Ralph

10.1029/2023GL105360
RESEARCH LETTER

1 of 11

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-5274-0225
https://orcid.org/0000-0002-6598-6638
https://orcid.org/0000-0003-1066-3601
https://orcid.org/0000-0002-3375-4146
https://orcid.org/0000-0001-7805-0102
https://orcid.org/0000-0002-3881-2384
https://orcid.org/0000-0003-4953-0881
https://orcid.org/0000-0002-0870-6396
https://doi.org/10.1029/2023GL105360
https://doi.org/10.1029/2023GL105360
https://doi.org/10.1029/2023GL105360
https://doi.org/10.1029/2023GL105360
https://doi.org/10.1029/2023GL105360
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023GL105360&domain=pdf&date_stamp=2023-11-30


Geophysical Research Letters

GUIRGUIS ET AL.

10.1029/2023GL105360

2 of 11

ing California floods (Corringham et al., 2019; Guirguis et  al. 2020a, 2022). Santa Ana winds (SAWs)—the 
downslope winds of Southern California—are characterized by strong, dry, gusty northeasterly-easterly winds 
that warm by adiabatic compression as they flow over and through the Transverse and Peninsular Ranges down to 
sea level. SAWs can bring anomalously hot or cold temperatures, but the hot variety are associated with Southern 
California's wildfires (Gershunov et al., 2021). The hot SAWs are increasing in frequency (Guirguis et al., 2022) 
raising concerns about future wildfire hazard and health impacts.

Numerical weather prediction has notably advanced in recent years. Ensemble probabilistic forecasts provide 
improvements over deterministic forecasts because they account for uncertainty arising from observational error, 
model limitations, and the chaotic nature of the earth-atmosphere system (Bauer et al., 2015; Palmer, 2017). 
This improvement, along with computational and satellite advances, has extended forecast skill and lead time. 
However, the time limit of predictability for high-impact weather events remains limited to about 1–2 weeks 
(Bauer et al., 2015) and warnings of heat waves or fire weather are typically issued on the order of a week or 
less.

Skillful prediction of large-scale weather patterns and regime transitions has been demonstrated at leads of a 
month or longer (Bauer et al., 2015; Gibson et al., 2020b; Robertson et al., 2020). This has motivated work to 
extend forecast lead time by focusing on atmospheric circulation patterns and then inferring associated impacts 
for a region leading to new operational forecast products (e.g., DeFlorio et al., 2021; Ferranti et al., 2015). These 
studies show dynamical models demonstrate some skill at longer lead times in forecasting certain large-scale 
circulation features, but this skill is not consistent from forecast to forecast. Progress could be made by devel-
oping ways of recognizing when a subseasonal forecast is likely to be skillful or less reliable. In the absence of 
dynamical model skill, a forecast could be supplemented or replaced by a statistical forecast. Here, we describe 
and evaluate a dynamical-statistical hybrid prediction system that uses dynamical model forecasts to predict four 
key modes of atmospheric variability on subseasonal timescales (1–4 weeks lead), filters for uncertainty and 
error, and draws on known relationships between these modes and high-impact West Coast weather to predict the 
likelihood of impactful weather events.

Winter weather variability in California is largely modulated by four modes of atmospheric variability over the 
North Pacific Ocean (called the “NP4 modes,” Guirguis et al., 2018, 2020a, 2022) named as the Baja-Pacific 
(BP), Alaskan-Pacific (AP), Canadian-Pacific (CP) and Offshore-California (OC) modes (Figure  1a). These 
modes (identified by rotated empirical orthogonal function analysis, Guirguis et al., 2018, hereinafter GGR’18) 
influence California weather on daily to seasonal timescales (Guirguis et al. 2020a; Guirguis et al., 2022, here-
inafter GGR’20 and GGR’22, respectively). While the NP4 modes are not the most dominant modes of varia-
bility in the domain (GGR’18), they collectively explain most of the variance (up to 89% in some locations) in 
mid-tropospheric circulation over a vast region over the North Pacific Ocean and West Coast (e.g., Figure S1 
in Supporting Information S1, using multiple linear regression, GGR’20). Daily interactions between these four 
modes have been linked to reoccurring weather patterns responsible for much of California's daily weather varia-
bility and extremes, including wildfires, heat waves, and damaging floods (GGR’20, GGR’22). These modes are 
also influential for California precipitation on seasonal timescales due to their tendency to persist in one phase or 
another during a season (GGR’20).

Our forecast system uses the circulation regime methodology of GGR’18, GGR’20 and GGR’22 applied to 
20  years of ensemble hindcasts from the European Center for Medium-Range Weather Forecasts (ECMWF) 
model as well as real-time forecasts from water year 2022 (WY2022). We then apply a statistical model that relates 
these circulation regime-based forecasts to impactful weather over California. Using this dynamical-statistical 
hybrid approach, we demonstrate skillful probabilistic forecasts of ARs, SAWs, and heat extremes in California 
at subseasonal (1–4 weeks) lead times. By filtering out uncertain forecast periods, we improve the accuracy and 
reliability of the forecasts relative to dynamical model skill without filtering. In this novel approach, we use 
dynamical model information when it is likely to be reliable, attempt to filter error and uncertainty, and then 
combine the filtered dynamical model information with a statistical model to forecast an impactful weather event. 
At shorter lead times (∼1 week) the forecast is largely determined by the dynamical model information, whereas 
at longer lead times (when the dynamical model skill degrades) the statistical information becomes more impor-
tant. The aim of this work is to provide tools and reliable information for decision support to improve outcomes 
from extreme weather events.
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2.  Data
2.1.  Atmospheric Circulation

Atmospheric circulation is represented by daily 500 mb geopotential height (Z500) anomalies from NCEP/NCAR 
2.5° Global Reanalysis (R1, Kalnay et al., 1996) available from 1948, where daily anomalies were calculated 
by fitting and removing annual and semiannual cycles using least-squares regression (GGR’18). To reduce the 
complexity of the data while retaining the most important features, we use the NP4 mode circulation regimes 
(Figure 1a) identified in GGR’18 and GGR’20. This data set is available for 1948–2017 (Guirguis et al., 2020b) 
and was extended through 2022 for this study.

Figure 1.  (a) Positive phase of the NP4 modes shown in units of correlation (r) between each mode and observed 500 mb 
geopotential height anomalies. (b) Example showing the forecast mode amplitude for 50 ensemble members out to 30 days 
lead, where green (yellow) shading indicates when the 70% consensus is reached for the positive (negative) phase, white 
indicates uncertainty, and the red line gives the observed mode amplitude. (c) Validated WY2022 forecasts of the NP4 mode 
phase after filtering, where each individual forecast is displayed on a diagonal line, the x-axis gives the target date from 1 
November to 28 February, the y-axis gives the lead time from 1 to 30 days, red (blue) shading indicates that a mode was 
correctly forecast to be in the positive (negative) phase, yellow indicates error, and gray represents forecasts classified as 
uncertain. (d) Observed and forecast AR behavior during WY2022 for different coastal regions, where the top four panels 
(blue stem plots) show observed daily AR IVT, and the bottom panels show AR forecasts for each region at different lead 
times. Each forecast is shown on a diagonal line, blue indicates above normal AR probability forecasts (wet), yellow/orange 
shows low probability forecasts (dry), gray indicates uncertainty (no forecast, NF).
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2.2.  ECMWF Ensemble Hindcasts and Realtime Forecasts

We use global hindcasts of Z500 from the S2S Project database (Vitart et al., 2017) for 2001–2020. We selected 
one model, the ECMWF model, a state-of-the-art dynamical weather forecast model shown to outperform other 
models (e.g., DeFlorio et al., 2019; Gibson et al., 2020b). Ocean coupling is included in these hindcasts, but sea 
ice coupling is not. Data were produced with the Integrated Forecast System (IFS). Hindcasts are made twice 
weekly yielding 34 forecasts per year over the 20-year period (680 total), including one control and 10 perturbed 
ensemble members. We additionally use real-time forecasts of Z500 from the ECMWF during WY2022, produced 
twice weekly using 50 perturbed ensemble members. The forecasts are available out to 46 days, but we focus on 
days 1–30 for this study. The focus of this study is extended winter (November-February) spanning the hindcast 
period 2001–2020 and including WY2022.

2.3.  Heat Extremes

Daily maximum temperatures (tmax) are from GridMET (Abatzoglou, 2013), available 1979-present at ∼4 km 
spatial resolution. Extreme heat is defined as temperatures above the historical 90th percentile after removing the 
seasonal cycle, where the historical period is defined as 1979–2018 (the period of overlap between temperature, 
SAW, and AR data sets). We focus on three regions (Figure S2 in Supporting Information S1): the Central Sierra 
Nevada (a) for their importance for snow accumulation and water resources, as well as coastal Southern Califor-
nia (b) and the San Francisco Bay area (c) where millions of people are exposed to hazards. It is worth noting that 
climatological probability of heat extremes is slightly higher for the 2001–2020 hindcast period (>10%) than for 
the historical period (=10% by definition).

2.4.  Santa Ana Winds

Santa Ana winds are identified using the daily Santa Ana Winds Regional Index (SAWRI, Guzman-Morales 
et al., 2016, GM’2016). This record was developed from hourly surface winds spanning 65 years (1948–2012) 
from dynamically downscaled R1 using the California Regional Spectral Model (CaRD10, Kanamaru & 
Kanamitsu, 2007). SAWs impacting coastal Southern California were identified when northeasterly wind speeds 
exceeded the upper quartile (GM’16). Later updates converted the hourly index to a daily record and extended the 
data set through 2018 using statistical-dynamical downscaling of winds from R1, trained from high-resolution 
(10 × 10 km 2) CaRD10 and with results validated against observations (Guzman-Morales & Gershunov, 2019, 
GM’19). Here, the hindcast assessment of SAWs was limited to the overlapping period of the ECMWF hindcasts 
and the GM’19 SAW record (2000–2018).

2.5.  Atmospheric Rivers

ARs landfalling the West Coast are identified using the SIO-R1 catalog of Gershunov et al. (2017), available 
1948-present. The methodology uses data from R1 for vertically integrated horizontal water vapor transport 
(IVT) and integrated water vapor (IWV) to identify elongated plumes (>1,500  m) of concentrated moisture 
(IVT > 250 kg m −1 s −1 and IWV > 15 mm). The SIO-R1 catalog is provided at a 6-hourly temporal resolution, 
but for this study we define AR landfalls on a daily timescale such that an AR landfall is identified when a coastal 
location is within the AR footprint for at least one 6-hourly timestep in a day. The SIO-R1 AR detection meth-
odology has been included in intercomparison studies and performs well against other methods while having the 
advantage of a 70+ year record (Ralph et al., 2019; Rutz et al., 2019).

3.  Description of the Dynamical-Statistical Hybrid Model
The hybrid methodology uses information about evolving atmospheric circulation from the ECMWF model, 
filters for error and uncertainty, and applies a statistical model to predict the likelihood of an impactful weather 
event.

3.1.  Dynamical Model Input and Postprocessing

The dynamical model input consists of ECMWF forecasts of Z500 fields over a domain spanning 20°S–80°N 
and 120–250°E for each ensemble member, where anomalies are calculated as in Section 2.1. Anomaly maps are 
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projected onto each of the four NP4 mode EOFs (Figure 1a) to calculate the forecast amplitude of the BP, AP, CP, 
and OC modes for each ensemble member and lead time. These amplitudes provide information about the magni-
tude and position of ridges and troughs over the North Pacific and along the West Coast. While the amplitude 
of these anomalies is extremely important for impacts along the coast, the models struggle to reach agreement 
about these details beyond short lead times (see Section 3.2). Even reaching a consensus about the phase of these 
anomalies (a lower bar) is challenging. In our current approach, we use the dynamical model to identify the mode 
phases, which we can relate to historical weather patterns and impacts based on earlier work (GGR’20, GGR’22).

3.2.  Consensus Filtering

We use model confidence to filter for uncertainty using a consensus threshold of 70%. If ≥70% of ensemble 
members agree about the phase of a given mode, then we assume this information is reliable, whereas if this 
criterion is not met, then we consider the mode phase to be uncertain. Figure 1b shows an example forecast 
demonstrating that there is generally strong agreement about the mode phases at short lead times (on the order of 
7–10 days), but uncertainty can become prominent at longer lead times. The green and yellow shading indicates 
where the 70% consensus criterion is met for each mode, with the remaining forecasts classified as uncertain. In 
physical terms, this means at least 70% of ensemble members agree that a ridge or trough will persist or develop 
over a certain location at a certain lead time. In this example, the Alaska-Pacific mode is forecast to become 
negative around day 7 and then persist in that phase for over 2 weeks. The negative phase of this mode is asso-
ciated with a ridge over the Gulf of Alaska (c.f. Figure 1a). Knowledge about a developing persistent ridge over 
the Alaskan Gulf is useful information for West Coast weather prediction (Gibson et al., 2020a, GGR’20). This 
forecast also indicates long-lead confidence about the Baja-Pacific mode transitioning into the negative phase, 
and the Offshore-California mode remaining negative into week 3. The model is less confident about the phase 
of the Canadian-Pacific mode beyond day 12. The choice of 70% is based on exploratory analysis demonstrating 
that a lower threshold (50%–60%) leads to lower skill (Figure S3a in Supporting Information S1) and a higher 
threshold (80%) is too rarely met in weeks 3–4 (Figure S3b in Supporting Information S1).

3.3.  Input to the Statistical Model

For a given forecast and lead time, each of the BP, AP, CP, and OC modes are filtered for uncertainty and clas-
sified as “positive,” “negative,” or “unknown.” This filtered dynamical model information is then used as input 
into the statistical model, which is a conditional probability model based on historical outcomes. The model is 
represented as

P(X|BP,AP,CP,OC) =
P(X,BP,AP,CP,OC)

P(BP,AP,CP,OC)
� (1)

Here, P(X) is the historical conditional probability of X, and BP, AP, CP, and OC represent the phase of the 
four NP4 modes as forecast by the dynamical model, which can be positive, negative, or unknown. The weather 
impact X is any weather outcome driven by atmospheric circulation in this region. To determine P(X), we iden-
tify days in the historical record when the same mode phase combination occurred, and then compile observed 
outcomes on those days to quantify the historical probability of different weather impacts for different locations. 
The statistical model will vary in complexity for each forecast and lead time. Some forecasts will have four modes 
available as predictors while other forecasts will only use one, two, or three modes due to uncertainty in the 
remaining modes. Sometimes there can be uncertainty about all modes; in those cases, we are not able to issue a 
forecast. We focus on predicting AR landfalls at different West Coast latitudes (32.5–55°N), SAWs in Southern 
California, and heat extremes over the Sierra Nevada, Coastal Southern California, and the San Francisco Bay 
area. A graphical summary of the hybrid methodology is provided in Figure S4 in Supporting Information S1.

4.  Example Realtime Application From WY2022
Figure 1c shows an example of the filtering process for WY2022, highlighting correct, incorrect, and uncertain 
mode phase forecasts. The filtered forecasts are overwhelmingly correct (red/blue shading) with very little error 
(yellow shading). However, in weeks 3–4 there is an increasing number of forecasts classified as uncertain (gray 
shading). Despite information removal by filtering, useful information remains at the longer lead times. For 
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example, the dynamical model skillfully predicted the negative phase of the Alaskan-Pacific mode 3–4 weeks 
in advance during December-February, which in physical terms is characterized by a ridge over the Gulf of 
Alaska (c.f. Figure 1a). In December, the positive phase of the Canadian-Pacific mode was skillfully predicted at 
3–4 weeks lead time, which is associated with a trough over British Columbia. There was also skill in forecasting 
the negative phase of the Offshore-California mode in week 3 during January and weeks 3–4 during February, 
which is associated with a ridge offshore from California. This persistent ridge during January-February was 
responsible for the extremely dry conditions that occurred in California and contributed to the continuation of the 
drought during WY2022 (Figure S5 in Supporting Information S1; Hatchett et al., 2023).

For comparison, Figure S6 in Supporting Information S1 shows the verified mode phase forecasts using the 
ensemble mean with no filtering. Most of the forecasts for weeks 1–2 are correct (red/blue shading) but at 
longer lead times, an increasing number of forecasts are incorrect (yellow). The filtering process (Figure 1c) 
was effective at removing many of these incorrect forecasts and re-classifying them as uncertain. The result is 
that most forecasts are correct after filtering (Figure 1c). To summarize, applying uncertainty filtering in this 
hybrid dynamical-statistical framework decreases the number of incorrect forecasts obtained by the raw dynam-
ical model. Although the number of forecasts issued in this hybrid framework are lower, those issued can be 
interpreted with much higher confidence and reliability.

Figure 1d shows an example of real-time AR landfall probability forecasts from WY2022 for four coastal regions: 
British Columbia (50–55°N), Pacific Northwest (42.5–47.5°N), Northern California (37.5–40°N), and Southern 
California (32.5–35°N), where the input from Figure 1c was used to predict AR landfalls shown in Figure 1d. 
The top panels show the observed coastal AR IVT from 1 November to 28 February, and the bottom panels 
show the AR probability forecasts using the hybrid model. The forecasts represent the observed AR landfall 
behavior that occurred in WY2022 very well with 3 weeks lead, and with some skill at 4 weeks. In general, above 
(below) normal AR forecasts were issued for days when AR landfalls occurred (did not occur). For example, the 
mid-winter dry spell during December in British Columbia was correctly forecast, along with the wet periods 
that preceded and followed. Also notable are wet December conditions followed by a dry January-February along 
the US West coast, which was well represented in the forecasts for the Pacific Northwest and Northern/Southern 
California.

5.  Hindcast Skill Assessment Methodology
5.1.  Mode Phase Forecasts

As a first skill measure, we evaluate if the phases of the NP4 modes were accurately predicted by the ECMWF 
model over the 2001–2020 hindcast record, and if the consensus filtering methodology is effective at remov-
ing error. We use the forecast accuracy (A), defined as the fraction of forecasts in the correct category as 

𝐴𝐴 A =
1

N

K∑

𝑖𝑖=1

𝑛𝑛(𝐹𝐹𝑖𝑖𝑂𝑂𝑖𝑖) , where N is the number of forecasts, n is the number of forecasts in the ith category, and K is 

the number of categories (here K = 2 for the positive and negative phase). We first calculate the accuracy of the 
filtered forecasts (using the 70% consensus criteria). Next, for comparison, we calculate the accuracy of the mode 
phase forecasts using the ensemble mean without filtering. We also calculate the accuracy of the removed fore-
casts, which are the forecasts that were issued using the ensemble mean and were removed by our filtering process 
for not meeting 70% ensemble agreement criteria. Significant skill is determined by comparing the forecast accu-
racy with the accuracy obtained using random resampling (bootstrapping). Forecasts with accuracy exceeding 
the 95th percentile of the accuracy calculated by random resampling are considered significantly skillful. We also 
measured skill using the Heidke Skill Score and received a similar result (not shown).

5.2.  Probabilistic Forecasts of Weather Impacts

To evaluate skill of the probabilistic forecasts for heat extremes, SAWs, and ARs, we compare the forecast 
conditional probability P(X) with the observed frequency for each type of weather outcome. We aggregate these 
probabilistic forecasts into three categories defined relative to the historical climatology as “low probability,” 
“above normal probability,” and “much above normal probability” as: <50% of climatology, 120%–160% of 
climatology, and >160% of climatology, respectively. We then measure the frequency of a weather event follow-
ing each forecast category and use random resampling (bootstrapping) to compare the reliability of the forecasts 
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against the climatological reference. The climatological reference is represented by 1,000 random samples of n 
observations, where n is the number of forecasts in a category. A “low probability” forecast is considered skillful 
if the observed frequency of a weather event following these forecasts is low relative to climatology (falls below 
the 10th percentile of the resampled distribution). The “above normal” and “much above normal” forecasts are 
considered skillful if the observed frequency exceeds the 90th percentile.

We additionally provide the Brier Skill Score (BSS) as a secondary measure of skill, where the BSS quantifies 
the improvement of a forecast relative to a reference forecast by comparing the Brier scores of each (Weigel 
et al., 2007). The Brier score is defined as

BS =
1

N

K∑

𝑖𝑖=1

(𝑝𝑝𝑖𝑖 − 𝑜𝑜𝑖𝑖)
2
,�

where N is the sample size, K is the number of probability bins, pi is the forecast probability for the ith bin, and 
oi is the corresponding observed frequency. The BSS is defined as

BSS = 1 −
BS

BSreference

,�

where we use the resampled climatology over the reforecast period as the reference. A result of BSS = 1 indicates 
a perfect forecast and BSS ≤ 0 indicates no skill relative to climatology.

6.  Hindcast Skill Assessment Results
6.1.  NP4 Modes

The hindcast skill assessment for the NP4 modes is shown in Figure 2a for the filtered forecasts (orange) and the 
ensemble mean (purple). Additionally, we show the accuracy of the forecasts removed by the filtering process 
(green). The forecasts using the ensemble mean or the consensus filtering approach are significantly skillful out 
to 30 days relative to climatology (95% level using random resampling). However, the filtered forecasts improve 
both accuracy (difference along the y-axis) and lead time (difference along the x-axis). For example, in week 3 for 
the Alaskan-Pacific mode, accuracy improves by nearly 10% at 16-days lead (see vertical arrow). Also in week 
3, the filtered model achieves the same accuracy at a 21-day lead that the ensemble mean achieves at a 16-days 
lead (see horizontal arrow). The information removed by filtering (green) is skillful overall (usually above or near 
the 95% significance line) but contains a large amount of error (40%–60% accuracy). This highlights the effec-
tiveness of the filtering method. At shorter lead times the percentage of forecasts removed by filtering is small 
(e.g., 2%–3% at day 2, values shown as text in plot), while at longer leads the amount of uncertainty and therefore 
the percentage of forecasts removed by filtering grows substantially (e.g., 54%–67% at day 21). At shorter leads 
(∼week 1) uncertainty often results from a mode phase transition, where ensemble members fall on different 
sides of the zero line as the mode shifts from one phase to the other (e.g., see Figure 1b, Baja-Pacific mode, day 
6), whereas at longer leads (∼weeks 3–4) there is more general dispersion that is difficult to diagnose. Overall, 
the filtering methodology is effective at removing error, and the remaining information is more accurate across 
lead times after filtering.

6.2.  Extreme Heat

Figure 2b shows hindcast skill for heat extremes. In general, “low probability” forecasts are followed by a low 
frequency of extreme heat occurrence, whereas “above normal” and “much above normal” forecasts are followed 
by a much higher frequency of occurrence. In weeks 1–3, the forecasts are significantly skillful relative to 
climatology using the resampling method (i.e., blue markers fall below the 10th percentile of the resampled 
distribution and orange/red markers fall above the 90th percentile of the resampled distribution). The sign of the 
BSS (shown along the bottom of Figure 1b as ±) remains positive into or throughout week 3. There is evidence 
of skill in predicting extreme out-of-season heat into week 4 for the Central Sierra Nevada where the forecasts 
are generally on the right side of the climatology, but the skill is not reliable (i.e., more data points fall within the 
10th–90th percentiles of the resampled distribution and the BSS is mostly negative). The magnitude of the BSS 
for heat extremes is provided in Figure S7 in Supporting Information S1.
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6.3.  Santa Ana Winds

Figure 2c shows hindcast skill for SAWs over Southern California. The results are similar as for heat extremes, 
where the outcomes for the three forecast categories are separated and significantly skillful relative to climatol-
ogy at lead times of 1–3 weeks (using random resampling). The forecast is unreliable at 4 weeks lead, and the 
BSS becomes negative around day 17.

6.4.  Atmospheric Rivers

Figure 2d shows hindcast skill for AR landfalls at four different coastal latitudes, where each location represents 
the probability that an AR impacted the 2.5° × 2.5° R1 grid cell area centered over the specified location. The 
hybrid forecasts are skillful at 1–2 weeks lead for all locations. Resolution is poor for British Columbia and the 
Pacific Northwest as seen by the many orange data points representing the “above normal” forecast category 
falling within the range of climatology, suggesting that AR landfalls are over-estimated. Interestingly, the more 
confident “much above normal” forecast category shows higher skill. The resolution is better for Northern and 

Figure 2.  (a) Accuracy of the mode phase forecasts out to 30 days, where purple shows accuracy using the ensemble mean, 
orange shows accuracy of the filtered forecasts, green shows accuracy of forecasts removed by filtering, the black dashed line 
gives the 95th percentile of the climatological distribution using random resampling, and gray shading shows the area below 
the 95th percentile indicating no significant skill. Lines have been smoothed using a 3-day running mean. Black arrows are 
discussed in the text. (b–d) Hindcast skill assessment of heat waves in three regions, SAWs in Southern California, and ARs 
at four coastal latitudes, respectively. The y-axis shows observed event frequency following three forecast categories: low 
(blue), above normal (orange), and much above normal (red) probability. The sign of the BSS (±) is shown along the bottom, 
highlighted in yellow. The gray shaded area in (b–d) gives the 10th–90th percentiles of the resampled distribution over the 
hindcast period (2001–2020). Red, orange, and blue markers are weighted by the log of the sample size (n = 10 to 451), and 
filled markers indicate statistically significant skill (90% level using resampling).
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Southern California where there is evidence of skill relative to climatology into week 3 for all categories (fore-
casts perform better than climatological resampling, significant at the 90% level). The BSS becomes negative at 
day 13–17, depending on region.

7.  Discussion
We have described and evaluated a new statistical-dynamical hybrid model that produces skillful probabilistic 
forecasts of heat extremes, Santa Ana winds, and landfalling ARs over California at subseasonal timescales. The 
methodology is skillful into week 3 for most impacts and regions studied. Week 4 shows evidence of skill rela-
tive to climatology for some impacts and regions, though the forecasts lack reliability (BSS < 0) at these longer 
timescales.

Because we use a hybrid approach, the potential skill is not strictly limited by the dynamical model skill. 
Near-future improvements are possible through continued development of the statistical model. For example, 
signals from lower frequency climate teleconnections could be incorporated at longer lead times when the 
dynamical model is uncertain. Impacts of climate-scale teleconnections on offshore atmospheric ridges (Gibson 
et al., 2020a) as well as the NP4 modes (GGR’20) have been identified, and these relationships could be incor-
porated to extend skill and lead time using this hybrid approach. The skill could be sensitive to thresholds or 
definitions used for SAWs or ARs. Possible improvements could be made by focusing on the more extreme or 
persistent events. For heat waves, non-stationarity due to climate change will become an important consideration 
since we rely on historical probabilities in our methodology.

We focused on three impact types (heat extremes, SAWs, and ARs). However, other applications are possi-
ble including cold extremes and hot/cold temperature anomalies more generally, as well as conditions driving 
mid-winter snowmelt (Hatchett et al., 2023), high snow level storms (Shulgina et al., 2023) with rain-on-snow 
(Heggli et al., 2022), and other decision-specific variables not represented in dynamical forecasts. The offshore 
wind forecasts—essential ingredients for Southern California's wildfires—focused on Santa Ana winds, which 
were amenable to this analysis given the SAW record of Guzman-Morales and Gershunov (2019). Related appli-
cations could include Diablo and Sundowner winds of Northern and Central California; however, the season-
ality of these winds requires an extension of the methodology into earlier fall and later spring (Abatzoglou 
et al., 2021). Identifying relationships between the GGR’22 weather regimes and observed live/dead fuel mois-
ture could inform long-lead significant fire potential models and improving situational awareness using this 
hybrid approach.

Predictability of extreme precipitation in a probabilistic sense could also be explored. This is especially important 
as both extreme winter precipitation and early winter wildfires may become more common (Cayan et al., 2022; 
Gershunov et al., 2019), raising the possibility of compound extreme events such as short-duration high-intensity 
rainfall, which can cause devastating post-fire debris flows (Oakley et al., 2017, 2018a) and landslides (Oakley 
et al., 2018b; Rengers et al., 2020), rain-on-snow flooding (Haleakala et al., 2023), as well as other precipitation 
patterns driving mass movements such as avalanches (Hatchett et  al.,  2017). Improving lead time to prepare 
for these types of events and likelihood of occurrence is crucial to prevent loss of life and mitigate damage 
to property (Oakley et al., 2023). This approach could be applied in climate change studies, where changes to 
atmospheric circulation identified in global climate models along with thermodynamic responses could be linked 
to future impacts (Michaelis et al., 2022; Rhoades et al., 2023). We envision these results and future updates 
will form the basis for real-time forecast tools with possible applications for early warning systems and decision 
support across many sectors including water resources, public health, land, and fire management in a varying and 
changing climate.

Data Availability Statement
The NP4 data set is from Guirguis et al. (2020b). The Santa Ana winds regional index is from Guzman-Morales 
and Gershunov (2019). The SIO-R1 AR catalog is from Gershunov et al. (2017). The gridMET temperature data 
set is from Abatzoglou (2013). The NCEP/NCAR reanalysis is from Kalnay et al. (1996). The ECMWF hindcast 
data set is from Vitart et al. (2017).
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