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It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium;
however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We
developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to
identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with
established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an
independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflamma-
tion. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly ex-
pressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between
human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related
peptide (CGRP*). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed
by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branch-
ing of pain-sensitive murine CGRP* dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial
tissue with little inflammation from humans with RA revealed CGRP* pain-sensing neurons encasing blood
vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial
lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into

regions of synovial hypertrophy in RA.

INTRODUCTION

Inflammatory pain can be driven by cytokines, bradykinins, and
prostanoids, which bind specific receptors on primary nociceptor
neurons to cause heightened sensation of pain (I). However, pain
is not always proportional to inflammation, and clinical scenarios
in which pain is dissociated from inflammation are useful to study
the noninflammatory drivers of pain.

Rheumatoid arthritis (RA) is a chronic disease characterized
by inflammation in the synovium, the tissue that lines the joint
cavity. Remarkable progress has been made in developing an array
of conventional synthetic, targeted synthetic, and biologic disease-
modifying antirheumatic drugs (csDMARDs, tsDMARDs, and
bDMARD:s, respectively), which target relevant immune media-
tors (2). However, up to 20% of patients with RA are “difficult to
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treat”; that is, they do not improve despite treatment with at least
two bDMARDs or tsDMARDs, with different mechanisms of action,
after failing a csDMARD (3, 4). It has been assumed that synovial
inflammation is the cause of RA joint pain. However, recent studies
have revealed that pain can be dissociated from inflammation in
RA (3-8). Patients with RA and limited synovial inflammation,
also known as “fibroid,” “low inflammatory,” “pauci-immune,” or
“fibroblast cell type abundance phenotype” synovium, have as much
pain as those with extreme inflammation (3, 4, 9-13). Patients
with low synovial inflammation tend to receive less benefit from
treatment with anti-inflammatory drugs such as tumor necrosis
factor inhibitors and DMARDs (12, 14).

Here, we hypothesized that a focused analysis of low inflamma-
tory synovium might identify factors beyond inflammation that
relate to joint pain. One challenge is that patient-reported outcome
data, such as report of pain severity, are notoriously noisy, and
tissue transcriptomic data are still relatively expensive, with only
tens to hundreds of samples available for most studies. Given these
limitations, existing analytic approaches are generally not suffi-
ciently powered to identify gene modules that relate to patient
reported outcomes. To address this, we developed a machine-
learning approach, called graph-based gene expression module
identification (GbGMI), to uncover the relationship between gene
expression and pain. We then sought to determine which cells
express pain-associated genes and how they might influence noci-
ceptors in vitro and to validate these findings by visualizing neu-
rons in low inflammatory RA synovium in vivo.
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RESULTS

Pain is not related to inflammation in patients with RA with
low inflammatory synovium

We categorized patients as high or low inflammatory using our pre-
viously reported histology scoring algorithm (9). RA pain scores
were not different between patients with high and low inflamma-
tory synovium (Fig. 1A). Pain scores were associated with the grade
of synovial inflammation as measured by the density of cells per
unit of tissue (in cells per square millimeter) in patients with high
inflammatory synovium but not in patients with low inflammatory
synovium (Fig. 1B).

We tested for genes that were highly associated with pain using
the usual RNA sequencing (RNA-seq) analysis platform, limma
(15). We failed to identify any individual genes that were correlated
with pain, suggesting that the relationship of gene expression with
pain could be multifactorial or nonlinear. We next hypothesized
that there might be groups of genes whose expression varies in
association with pain. We developed an iterative machine-learning
GbGMI computational framework to uncover a group of genes
whose expression is correlated with a given univariate clinical
feature. GbGMI was given a multimodal input comprising a gene
expression matrix M for m genes and n patients and an n-dimensional
clinical feature vector a. GbGMI first calculates the patient-to-
patient similarity structure according to the given clinical feature
and compares that to the gene expressions using the Laplacian
score. GbGMI then determines the optimal number of genes that
together associate with the clinical feature through statistical
tests between the t-distributed stochastic neighborhood embed-
ding (t-SNE)-based summary scores of the selected genes and this
clinical feature (see Materials and Methods and fig. S1).

GbGMI correctly identifies genes associated with

synovial inflammation

We sought to test the validity of the approach by testing whether it
would correctly identify genes known to be associated with inflam-
mation as measured by cell density, which is highly associated with
many individual genes as measured by limma (15). GbGMI identi-
fied a module of 2713 genes whose gene expression summary score
correlates with synovial tissue cell density (Fig. 2, A to D). The posi-
tive control for this analysis was principal component one (PC1) of
bulk synovial RNA-seq gene expression data, which was previously

A ns B

High inflammatory synovium

shown to associate with the extent of synovial inflammation and
highly correlate with synovial cell density (16). The negative con-
trol was a gene expression summary score for a group of the top
5000 most variably expressed genes. As expected, the gene expres-
sion summary score of the top 5000 most variably expressed genes
was not significantly correlated with synovial histologic cell density
(P = 0.21) (Fig. 2E), whereas PC1 scores of gene expression were
significantly correlated with synovial histologic cell density (Spear-
man p = 0.4, P = 0.01) (Fig. 2F). The gene expression summary
score of the GbGMI module of 2713 genes had a further improved
correlation to synovial histologic cell density (Spearman p = 0.59,
P = 0.0001) (Fig. 2G). This analysis indicated that GbGMI was a
useful method that outperformed principal components analysis
(PCA) in identifying a module of genes that associate with the grade
of synovial inflammation measured by cell density.

GbGMI identifies pain-associated synovial gene expression
in patients with established RA

We next applied GbGMI to define a module of genes associated
with pain in patients with low inflammatory synovium. Most of the
6582 genes that distinguish high and low inflammatory synovium
are increased in high inflammatory synovium and are enriched for
pathways representing infiltrating immune cells. To uncover genes
associated with pain but not inflammation, we focused our analysis
on 2227 genes that exhibited increased expression in low inflamma-
tory synovium relative to high inflammatory synovium (9) and
on pain scores that document the extent of pain in the joint that was
sampled [Hip Osteoarthritis Outcome Score/Knee Osteoarthritis
Outcome Score (HOOS/KOOS)] (Fig. 3A). The patient-reported
pain scores a were transformed into a matrix of pairwise similarity
scores between patients S (Fig. 3B). We next calculated the Lapla-
cian score (17) for each of the 2227 low inflammatory genes on
the basis of its expression values (that is, a row vector in M) and S
(Fig. 3C). We then tested which number of top-ranked genes col-
lectively best correlated with pain among patients with RA with low
synovial inflammation and identified an 815-gene module, which
we refer to as the GbGMI-identified pain-associated genes (Fig. 3D).
Although the summary score of all 2227 low inflammatory
genes did not correlate with pain, summary scores of the GbGMI-
identified pain-associated genes were significantly correlated
with the patient-reported HOOS/KOOS pain in patients with

Low inflammatory synovium
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Fig. 1. Pain is related to synovial inflammation in patients with RA with high, but not low, synovial inflammation. (A) RA pain scores are shown compared to syno-
vial tissue inflammatory classification in n = 139 patients. (B) RA pain scores are shown according to cell density (in cells per square millimeter) of H&E (hematoxylin and
eosin)-stained synovial tissue, in samples classified as high (n = 35, r = 0.40, P = 0.048) or low inflammatory (n = 104, r = 0.08, P = 0.53). ns, not significant in Mann-Whitney
test. r = Spearman’s rank correlation coefficient. P = two-tailed P value.
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Fig. 2. A synovial gene expression signature that correlates with synovial histologic cell density was identified using GbGMI or PCA. (A) An expression heatmap
is shown of the top 5000 most variably expressed genes in 38 patients. Gene expression amounts (rows) are represented as z scores for all patients. Patients (columns) are
sorted by their mean nuclei densities. (B) Shown is a similarity matrix of synovial histologic cell densities. (C) Laplacian scores are shown for the top 5000 most variably
expressed genes measuring how their expression varied compared with synovial histologic cell density similarity structure. Each dot represents a gene, sorted by Lapla-
cian score in ascending order. (D) Shown is the —log(P value) of the correlation of the top k-ranked groups of genes with nucleus density similarity structure. Each dot
represents a group of genes. (E) Synovial histologic cell density is shown according to PC1 score of the top 5000 most variably expressed genes in 38 patients (Spearman
p=0.21, P=0.21). (F) Synovial histologic cell density is shown according to the summary score of the 5000 genes over the 38 patients (Spearman p = 0.4, P=0.01).
(G) Synovial histologic cell density is shown according to the summary score of the 2713 GbGMI-identified genes over the 38 patients (Spearman p = 0.59, P = 0.0001).
Statistics presented in (E) to (G) indicate Spearman correlation coefficient and P value.

low inflammatory synovium (P = 0.001) (Fig. 3E). This correlation
was not as pronounced when including all patients with RA irre-
spective of inflammatory subset (Fig. 3F). Similar correlations were
identified when the GbGMI-identified pain-associated genes were
compared to Visual Analog Score (VAS) report of pain (fig. S2). We
conducted sensitivity analysis on GbGMI using 22 patient subsets
subsampled with a leave-one-out strategy. Despite the relatively
small sample size, GbGMI demonstrated robustness; on these sub-
sampled data, GbGMI yielded pain-association gene rankings con-
sistent with the original ranking based on the overall 22 patients
with low inflammation (smallest p = 0.75, largest P = 0, Spearman’s
test; fig. S3A) and identified pain-associated gene modules signifi-
cantly associated with the original 815-gene module (largest P =
1.22 x 1077, Fisher’s exact test; fig. S3B, last row and column).

GbGMI-identified pain-associated synovial genes are also
associated with pain in patients with early RA

Overfitting is a concern in using a graph-based machine learning
approach to identifying groups of genes that associate with pain.
It is possible that the GbGMI-identified pain-associated genes
correlated with pain in the dataset in which they were found
but not in other external datasets. We sought to test whether the

Bai et al., Sci. Transl. Med. 16, eadk3506 (2024) 10 April 2024

pain-associated gene module identified in patients with estab-
lished disease was also associated with pain in a second, indepen-
dent Pathobiology of Early Arthritis Cohort (PEAC) dataset (11) of
synovial biopsy samples from patients with early (mean of 6 months
of symptoms) untreated RA. A total of 2018 of the 2227 low inflam-
matory genes and 738 of the 815 pain-associated genes found in the
established RA dataset were also detected in this dataset. The 738
pain-associated genes were also correlated with VAS pain in patients
with early RA with low inflammatory (fibroid or undefined) synovi-
um (Fig. 3G). However, the 2018 low inflammatory genes were
not. In this early RA cohort, the 738 genes were also associated
with pain when samples from all patients were included as well,
irrespective of synovial inflammatory subset (fibroid, undefined,
myeloid, and lymphoid), although the association was again not as
robust as was seen in those with low inflammatory synovium
(Fig. 3H). The range of GbGMI summary scores decreased when all
samples were included (Fig. 3, G and H). The association of the
GbGMI-identified genes with pain was robust in the low inflamma-
tory samples but persisted even when all patients were included,
suggesting that these genes may play a role, albeit less pronounced,
in pain in high inflammatory synovium, where inflammatory
mediators are likely to also contribute.
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Fig. 3. GbGMIl identified a pain-associated synovial gene expression in patients with established and early RA. (A) An expression heatmap is shown of 2227 genes
with increased expression in low inflammatory synovium. Patients (columns) were grouped by inflammatory amounts: high (n = 12) versus low (n = 22, low and mixed
inflammatory subtypes identified in (9). (B) Similarity structure is shown of HOOS/KOQS pain scores over patients. (C) Laplacian scores of the input 2227 genes measure
how their expression amounts over patients relate to the pain score-based similarity structure. Each dot represents a gene sorted by Laplacian score in ascending order.
(D) Significance of the correlation between the top k-ranked genes and HOOS/KOOS pain scores is shown. Each dot represents a group of genes. (E) Established RA HOOS/
KOOS pain score according to the summary score of the 815 GbGMI-identified genes in low inflammatory samples (Kendall Tt = —0.5, P = 0.001). (F) Comparison between
the same pair of scores as (E) but for all samples, irrespective of inflammatory status (Kendall T = —0.23, P = 0.06). (G) Early RA VAS pain scores are shown according to gene
expression summary score of 738 GbGMI-identified pain-associated genes in patients with low inflammatory (fibroid or unassigned) synovial pathotype (Kendall T = 0.35,
P =10.02). (H) Comparison between the same pair of scores as (G) but for all patients, irrespective of synovial pathotype (Kendall T = 0.15, P = 0.04). z score was calculated
from gene expression values over patients. Statistics presented in (E) to (H) indicate Kendall correlation coefficient and P value.

GbGMI-identified pain-associated genes are enriched with
neurogenesis pathways and predominantly expressed by
synovial fibroblasts

We next sought to understand the biological meaning and the direc-
tion of the association of the 815 GbGMI genes with pain in patients
with RA with low synovial inflammation. Limma was performed to
detect genes whose expression correlated with pain. Genes were
ranked by limma according to this correlation. Although limma did
not identify any significant [false discovery rate (FDR) < 0.05] indi-
vidual genes correlated with pain (fig. S4A), as a group, expression
of the 815 GbGMI-identified pain genes was significantly decreased
as the HOOS/KOOS pain score increased (adjusted P = 7.38 X
10712 Kolmogorov-Smirnov test) (fig. S4, B and C). This indicated a
positive correlation with pain severity. The 815 pain-associated
genes were enriched for pathways such as nervous system devel-
opment, neurogenesis, and neuron differentiation (Fig. 4A) and
included ephrin (EPHA3, EPHA6, and EPHA7) and semaphorin
(SEMA3B, SEMA3E, SEMA4C, SEMA5A, and SEMAG6D) family
members. The 1412 nonpain-associated genes included CD55, PRG4,
CSPG4, and MERTK, genes known to be involved in the normal
functions of lining macrophages and fibroblasts (18). These genes
were enriched in molecular function and ribosomal RNA (rRNA)
processing but not neuron axonal growth pathways (Fig. 4A and

Bai et al., Sci. Transl. Med. 16, eadk3506 (2024) 10 April 2024

data file S1). We next examined which cells expressed the GbGMI
pain-associated genes. We compared expression in both bulk RNA-
seq data from sorted cell types, which offers high-depth coverage of
RNA but less cell type resolution, and single-cell RNA-seq (scRNA-
seq) data, which offers higher cell type resolution to cell subtypes
but less depth of coverage, from the Accelerating Medicines
Partnership dataset (19). Comparison of the pain-associated genes
across sorted bulk synovial B cells, fibroblasts, monocytes, and
T cells indicated that the fibroblasts exhibited the highest expression
of pain-associated genes (Fig. 4, B and C). We reasoned that pain-
associated genes might be more robustly expressed in fibroblasts
because of a relative enrichment in fibroblasts, compared with im-
mune cells, in low inflammatory samples. However, when looking
only at fibroblasts, the pain-associated genes were increased com-
pared with the nonpain-associated genes (Fig. 4B). The differences
in pathways enriched in pain-associated and nonpain-associated
genes as well as the difference in relative expression within fibro-
blasts indicated that the GbGMI method did not select a random
group of fibroblast genes. Further analysis of the scRNA-seq dataset
also confirmed that the fibroblast subsets exhibited the highest
expression of pain-associated genes (Fig. 4D). Gene expression
analysis among fibroblast subsets indicated that, compared with
the other fibroblast subsets, lining CD55% fibroblasts (SC-F4)

40f16

$202 ‘20 Anf U0 AJISIDATU[) [[OUI0D) J& SI0"90UIOS MMM //:SANY WOI popeo[umo(]



SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

A

Nervous system development -
Anatomical structure morphogenesis =
Anatomical structure development -
Neurogenesis =

Cell morphogenesis involved in neuron differentiation =
System development

Generation of neurons

Nervous system process -

Multicellular organism development -
Developmental process
Cellular_component =

Molecular_function =

Cellular anatomical entity -

Ribosome biogenesis =

Preribosome

rRNA processing =

ncRNA processing -

miRNA root

rRNA modification in the nucleus and cytosol
ncRNA metabolic process

Mean gene expression z score

N N S S —
0 2 4 6 8
-Log,, P,

1
o

adj

Pain-associated genes
Nonpain-associated genes

SC-F1 vs.

— N <
FEERR B
O VY U U
v LK B v

SC-F1
SC-F2
SC-F3
SC-F4
SC-M1

SC-B1
SC-B2
SC-B3
SC-B4
SCTé

m

= 1 | I —i{-I-1FK

other fibroblasts

C T cell

. 5 Gene

' expression
(z score)
FEs

0

-5

B cell Fibroblast Monocyte

Pain-associated genes

B cell Fibroblast Monocyte T cell
E Pain-associated genes
E Nonpain-associated genes

SC-F2 vs.
other fibroblasts

SC-F3vs.
other fibroblasts

SC-F4 vs.
other fibroblasts

Zscore
400

2
1
0

300

L
—Log(adjusted P value)

200

100
o

400 400 400 %

300 300 300

200 200 200 1

100 . 100 100

Pain-associated genes

Ll

o "‘ﬁF 5 ﬁ!« . L;.'

-10 -5 0

Log fold change

5 10 -10 -5 0 5 10 -10 -5 0 5 10 -0 -5 0 5 10

Log fold change Log fold change Log fold change

Fig. 4. The GbGMI-identified pain-associated gene signature is expressed by synovial lining layer fibroblasts. (A) g:Profiler pathway enrichment analysis is shown
of 815 pain-associated genes and 1412 nonpain-associated low inflammatory genes. ncRNA, long noncoding RNA; miRNA, microRNA. (B) Mean gene expression z scores
of pain-associated genes and nonpain-associated genes detected in sorted bulk B cells (CD45%, CD3~, and CD19%), fibroblasts (CD45~, CD31°, and PDPN*), monocytes
(CD45" and CD14"), and T cells (CD45" and CD3") are shown. z score is calculated on the basis of TPM normalized counts. ***P < 0.001. (C) Per-sample gene expression z
scores of 769 pain-associated genes detected in sorted cell types from (B) are shown. (D) An expression heatmap is shown of 797 pain genes with nonzero variance in
expression values across a subset (n = 4354) of RA synovial cells (SC) in 18 unique cell populations (of B cells, SC-B1 to SC-B4; fibroblasts, SC-F1 to SC-F4; monocytes, SC-M1
to SC-M4; and T cells, SC-T1 to SC-T6), which were identified from the 5265 scRNA-seq profiles by an integrated analysis based on canonical-correlation analysis (CCA) from
the Accelerating Medicine Partnership (79). z score is calculated on the basis of log,(CPM + 1)-transformed UMI counts over the RA synovial cells. (E) Volcano plots of
794 pain genes in scRNA-seq profiles (ImmPort accession #SDY998) (79) with nonzero variance in expression values across the subset (n = 1532) of RA synovial fibroblasts
in three sublining subsets, CD34" (SC-F1), HLA-DRAM (SC-F2), and DKK3* (SC-F3), and one lining subset (SC-F4) are shown. Each volcano plot shows the differential expres-
sion analysis (using Seurat function FindMarkers) of the genes in each RA synovial fibroblast subtype compared with the other three, where x axis shows log,(fold change)
and y-axis —log(adjusted P value). The significantly increased genes are red, significantly decreased genes are blue, and nonsignificantly differentially expressed genes are
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decreased gene expression log;(fold change) = 0.

exhibited the highest expression of GbGMI-identified pain-
associated genes (Fig. 4E).

Ligand-receptor analysis predicts interactions between
lining fibroblasts and human dorsal root

ganglion nociceptors

Given that the pain-associated genes were enriched in neuron axo-
nal growth pathways, we next explored predicted interactions of
pain-associated synovial fibroblast genes with dorsal root ganglion
(DRG) neurons likely to innervate the joint. We performed receptor-
ligand interaction analysis to identify predicted receptor-ligand
pairs using the pain-associated genes expressed by four synovial
fibroblast subtypes in human RA synovial tissue and genes ex-
pressed in a human DRG (hDRG) single-nucleus RNA-seq (snRNA-
seq) dataset (Fig. 5A) (20). Lining fibroblasts (SC-F4) were predicted
to have the highest number of ligand-receptor interactions (39 SC-
F4 ligands to hDRG receptors) (fig. S5A). Lining fibroblasts (SC-F4)
were predicted to interact with several CGRP™ peptidergic and non-
peptidergic neuron subtypes (fig. S5, B and C, and data file S2).
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Comparison of the expression of 14 ligand or receptor encoding
pain-associated genes of SC-F4 revealed a gradient of pain-associated
genes that were relatively lowly expressed in SC-F1 cells and most
highly expressed in SC-F4 cells, with HBEGF, CTGF, and NTN4
among the most robustly expressed (Fig. 5B).

We repeated this receptor-ligand interaction analysis using a
bulk hDRG spatial RNA-seq dataset with neuronal expression
confirmed in independently generated human snRNA-seq dataset,
offering increased depth of coverage and a larger number of human
samples from organ donors of both sexes (21-23) and a mouse DRG
scRNA-seq dataset (24). From the 815 GbGMI fibroblast pain-
associated genes, 158 unique ligand-receptor interactions were
identified with receptors present on hDRG neurons (data file S3).
The top 25 unique ligand-receptor interactions from synovial fibro-
blasts to hDRGs were ranked on the basis of the gene's Laplacian
score (Fig. 5C). This demonstrated possible activation of several
receptors on hDRGs involved in axon growth, including integrins
(ITGAS5, ITGAM, ITGB2, and ITGB5) and neogenin (NEOI) that is
targeted by netrins. Biological process and molecular function Gene
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Ontology (GO) terms were identified for the hDRG receptors in the
interactome using Enrichr (25, 26). This demonstrated activation of
hDRG receptors responsible for axon guidance, nervous system
development, and dendrite function (data file S4). Pathway analysis
(iPathwayGuide software; https://advaitabio.com/ipathwayguide)
on hDRG receptor genes was used to determine biological pathways
that could be activated in hDRG neurons by fibroblast pain-associated

Fig. 5. Filtering on synovial fibroblast genes A
predicted to influence DRG sensory neu-
rons. (A) Shown are predicted ligand-receptor
interactions between synovial fibroblasts and
neurons in the human DRG (hDRG). The circos
plot shows the two unidirectional interac-
tomes between the four synovial fibroblast
subtypes and 10 hDRG neuron subtypes. The
outermost layer indicates the RA synovial
fibroblast subtypes of the cells (in colored
squares) or hDRG neuron subtypes (in colored
round dots) expressing corresponding ligand
or receptor genes. The middle layer shows
whether a gene is ligand coding or receptor
coding in its associated interactions. The inner
layer contains gene names. The two tissue-
wise directions are distinguished by the colors
of connections between gene names. The num-
ber of connections associated with the ligand/
receptor genes in each fibroblast subtype or
neuron subtype and those in each unidirec-
tional tissue-wise relation are summarized in
the corresponding legends. (B) An expression

— o m < - o~ m

H H H 2] m oo w w w
heatmap is shown of 14 pain-associated VRV 55
%] v nwn %) %) 1%

genes. This again revealed activation of several biological pathways
within hDRGs, with axon guidance being the most enriched driven
heavily by ephrin A and B signaling (Fig. 5D). This analysis also
revealed enrichment of extracellular matrix receptor interactions,
regulation of actin cytoskeleton, focal adhesion, and Ras-associated
protein 1 (RAP1) signaling, all of which point to axon growth.
To further explore possible cross-talk between DRGs and synovial

Synovial fibroblast to human DRG: Fibroblast subtype connections

" [l CD34* sublining fibroblasts (SC-F1) (11 connections)
HLA-DRA" sublining fibroblasts (SC-F2) (19 connections)
DKK3* sublining fibroblasts (SC-F3) (9 connections)
- [l CD55" lining fibroblasts (SC-F4) (39 connections)

Synovial fibroblast to human DRG: hDRG cell type connections
o AB RA-LTMR NTRK3 (2 connections)
e Adelta-LTMR NTRK2 (3 connections)
C-LTMR P2RY1 (0 connections)
NP1 GFRA1 GFRA2 (11 connections)
NP2 GFRA1 (6 connections)
NP3 SST (2 connections)
PEP1 ADCYAP1 (19 connections)
PEP2 FAM19A1 (24 connections)
Proprioceptor & AB SA-LTMR (5 connections)
PEP2 NTRK1 (6 connections)

Human DRG to synovial fibroblast: Fibroblast subtype connections

[l CD34" sublining fibroblasts (SC-F1) (13 Connections)
HLA-DRA" sublining fibroblasts (SC-F2) (18 Connections)
DKK3* sublining fibroblasts (SC-F3) (22 Connections)

[l CD55" lining fibroblasts (SC-F4) (23 Connections)

Human DRG to synovial fibroblast: hDRG cell type connections

. o AB RA-LTMR NTRK3 (5 connections)

o Adelta-LTMR NTRK2 (2 Connections)
C-LTMR P2RY1 (6 connections)
NP1 GFRA1 GFRA2 (11 connections)
NP2 GFRA1 (5 connections)
NP3 SST (3 connections)
PEP1 ADCYAP1 (14 connections)
PEP2 FAM19A1 (23 connections)
Proprioceptor and AB SA-LTMR (7 connections)

mmmmm  Human DRG to synovial fibroblast (76 connections) PEP2 NTRK1 (0 connections)

mmmm Synovial fibroblast to human DRG (78 connections)

C Synovial fibroblast to hDRG interactions
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nonzero variance in expression values across a A B NTRKT
subset (n = 4354) of RA synovial cells in 18 REC :Zggf
unique cell populations (of B cells, SC-B1 to SC- o I W e
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seq profiles by an integrated analysis based jggﬁ’;
on CCA from the Accelerating Medicine -ﬁﬁ/'cf”mf‘
Partnership (19). z score was calculated using D hDRG interactome receptor pathway analysis CLSTNT I =£’;§iz
log,(CPM + 1) transformed UMI counts over pp
the RA synovial cells. The genes are ranked semase [l PLXNDT

. . NRP1
top-down by their IOQ fold Change in differen- Cell adhesion Protein-binding activity modulator
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blast (SC-F4) versus other fibroblasts. (C) A =(E;xtracellularma(rix B Transfer/carrier .
rowth factor Transmembrane signal receptor

Sankey plot is shown of top 25 unique fibro- [ Membrane traffic M Tyrosine kinase receptor

blast to hDRG ligand-receptor interactions
from the 815 GbGMI pain-associated genes
ranked by Laplacian score value. (D) A chord
plot is shown depicting pathway analysis of
hDRG receptors identified by the ligand re-
ceptor interactome by GbGMI pain-associated
genes. The top enriched pathways suggest
promotion of axon growth, including axon
guidance, extracellular matrix (ECM)-receptor
interaction, regulation of actin cytoskeleton,
and Rap1 signaling.
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fibroblasts, we also performed a ligand-receptor interactome be-
tween ligands from hDRG neurons and GbGMI synovial fibroblast
pain-associated genes that encode for a receptor. This revealed
132 unique interactions between ligands from hDRGs and receptors
from synovial fibroblasts (data file S5). Plotting the top 25 interac-
tions ranked by Laplacian score (fig. S5D) revealed activation of
protein tyrosine phosphatase receptors (PTPRS) and transforming
growth factor-p (TGFBRI), both of which play roles in mediating
cell growth and differentiation. GO term analysis of the fibro-
blast receptors revealed activation chemokine/cytokine signal-
ing, immune cell migration, and fibroblast growth factor binding
(data file S4).

Products of synovial fibroblasts influence adult DRG
sprouting and branching in response to injury

We next sought to test whether any of the pain-associated synovial
fibroblast genes found in this analysis might directly influence the
growth of nociceptors in the synovium. CGRP* nerve fibers have
been previously identified in synovium (27). NTN4 was of interest
because it was within the GbGMI-identified pain-associated gene
module in this dataset, was highly expressed by synovial fibroblasts,
and was identified in the hDRG interactome (data file S2). Although
netrin-4 (NTN4) has only 30% sequence homology to NTN1, which
plays a role in axon guidance during embryogenesis (28), NTN4
has been shown to augment embryonic olfactory bulb sprouting
and thalamocortical branching (29-31). We cultured adult mouse-
dissociated DRG neurons with no supplements (medium alone);
human nerve growth factor (huNGF), as a positive control, because
it is known to produce robust effects on axon sprouting (32, 33); or
human NTN4 (huNTN4) and measured survival, sprouting, and
branching of CGRP* DRG neurons. CGRP status of the DRG neu-
rons was assigned using immunofluorescent stains (fig. S6). The
percentage of neurons with sprouting and the numbers of branches
were quantified using Sholl analysis (Fig. 6A). The medium control
in this experiment was Neurobasal Plus medium containing B27,
which contained the protein transferrin. RA synovial fibroblasts
express transferrin, but it was not included in the GbGMI-identified
pain gene list, and its expression does not correlate with patient
report of pain (fig. S7A) and therefore served as an internal control.
Whereas there was no effect of either huNGF or huNTN4 on CGRP™*
neuron survival compared to CGRP* neurons cultured in medium
control, huNTN4 augmented sprouting and branching in vitro
(Fig. 6B). This result was reproduced when mouse neurons were
cultured with mouse Ntn4 (fig. S7B), which has over 90% homology
to huNTN4. However, synovial fibroblasts secrete an array of many
different factors predicted to interact with nociceptors, and, consid-
ering the complexity of neuron axon guidance and the multitude of
factors known to attract or repel neuron growth, we reasoned that it
would be useful to determine whether the sum of all factors secreted
by synovial fibroblasts resulted in nociceptive neuron attraction,
repulsion, or neither. We cultured CGRP™ neurons in RA synovial
fibroblast-conditioned medium. Compared with medium alone,
RA synovial fibroblast-conditioned medium augmented CGRP™"
neuron sprouting and branching (Fig. 6C).

CGRP* axons accompany blood vessels in RA synovial
papillary hypertrophic processes

We next sought to delineate whether the structure of nociceptive
neurons in the synovium of humans with RA are altered in vivo. We
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performed immunolabeling-enabled three-dimensional imaging of
solvent-cleared organs (iDISCO) (34). Synovial papillary hypertro-
phy is a common feature of RA synovium, and blood vessels can be
seen growing into these processes by gross inspection of unstained
tissue (Fig. 7A) and hematoxylin and eosin (H&E)-stained synovial
sections (Fig. 7B). SC-F4 fibroblasts, the cell type with the most ro-
bust expression of genes associated with patient report of pain end
enriched for neural guidance pathway genes, line these papillary
processes (35). Anti-CD31 antibody staining of cleared RA synovi-
um revealed a profuse tangle of blood vessels growing into each pap-
illary outgrowth (Fig. 7C and movies S1 and S2). High-magnification
three-dimensional views inside the papillary processes revealed that
CGRP" axons accompanied many of the blood vessels that had
grown into the papillary processes (Fig. 7D). CGRP staining was
just outside the CD31 stain, consistent with a meshwork of CGRP*
axons wrapping around blood vessels (Fig. 7E), a neurovascular
pattern previously observed with scanning electron microscopy
(36). The presence of CGRP* axons in papillary processes of a syno-
vial pannus indicated abnormal axonal sprouting in vivo because
papillary processes represent abnormal synovial growth. We con-
clude that neoangiogenesis into abnormal papillary processes to-
ward lining fibroblasts in the low inflammatory RA synovium was
accompanied by neoneurogenesis of CGRP* nociceptive axons.

DISCUSSION
Recent studies have shown that RA synovial tissue spans a spectrum
of synovial pathotypes, from highly inflamed synovium to fibroblast-
enriched synovium (13). Here, we show that patients with RA can
have relatively limited synovial inflammation but highly abnormal
synovium with extensive papillary hypertrophy, angiogenesis, and
high severity of pain. We demonstrated that synovial lining fibro-
blast products can augment the growth of CGRP™ nociceptive
axons/neurites and CGRP™ axons extend into synovial papillary
processes, placing nociceptors spatially adjacent to lining fibro-
blasts. These observations support a model whereby altered synovial
lining fibroblasts secrete factors, including NTN4, that facilitate
growth of CGRP™ axons/neurites (fig. S8). These data are consistent
with recent studies in osteoarthritis (OA), which identified aberrant
CGRP™" axonal sprouting into normally aneural cartilage (37-40).

Whereas RA tends to affect all three knee compartments simi-
larly, OA tends to affect the medial side more severely. Compared
with synovial fibroblasts from the nonpainful side, synovial fibro-
blast-conditioned medium from the painful side of knee OA in-
creased neuron survival and longest branch length in vitro (41). Our
studies also led to the discovery that NTN4 augments branching of
injured pain-sensitive CGRP™ nerves in vitro. NTN4 binds the
extracellular matrix molecule, laminin, specifically laminin y1, and,
in doing so, markedly weakens matrix stiffness (30). Laminins are
large glycoproteins that are abundant in synovium, and it is possible
that a compliant extracellular matrix facilitates CGRP* axon sprout-
ing or branching. NTN4 also binds cell surface receptors, such as
neogenin (42), which are expressed by human nociceptors (21, 22).
Avenues for future research include in vivo animal studies to test
the function of NTN4, as well as other pain-associated genes, and
exploration of their potential as therapeutic targets.

The GbGMI approach is a combination of feature selection and
data dimensionality reduction that enabled us to uncover a group
of genes that together change their expression in association with
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patient report of pain. Reducing the dimensionality of the data such as clustering and PCA, have been used in a similar way to
allowed us to detect associations with variable clinical data that were  detect clinical associations that would not be measurable in a gene-
likely underpowered when all genes were included in the analysis as  by-gene analysis (9). One key difference between the GbGMI
individual tests. Other data dimensionality reduction approaches, approach and hierarchical clustering or PCA is that the latter groups

Fig. 6. Synovial fibroblast prod-
ucts affect DRG neurons in vitro.
(A) Shown are representative imag-
es of the method used for neurite
quantification of sprouting and Raw image
Sholl analysis of branching of disso-

ciated DRG neurons. (B) Quantifica-

tion of CGRP™ DRG neurons cultured I ook

with medium alone, huNGF, or

huNTN4 is shown. Left: Survival

was measured by the number of Segmented image

Map2b*B3tub™ cells of >10 pm. )

Each dot represents the sum of five

%x10 magnification views from one 100 um
experiment. Data from four experi-

ments are presented. ns indicates

not significant in Kruskal-Wallis test. Sholl analysis

Middle: The sum of sprouting neu- .

rons divided by the total number

of neurons cultured with medium 100

alone, huNGF, or huNTN4 is shown. B

Neurons with at least three axon *
branches greater than two times
the size of the soma were classified
as sprouting. Each dot represents
the sum of five X10 magnification
views from one experiment. Data
from four experiments are presented.
*P < 0.05, ns indicates not significant
in Kruskal-Wallis test. Right: Branch-
ing is shown as measured by the
number of shell intersections of neu-
rites, in DRG neurons cultured with
medium alone (no treatment), huNGF,
or huNTN4. Each dot represents the
median with confidence interval of C
40 neurons imaged from four experi-
ments (10 neurons per experiment).
###%P < 0.0001 in two-way ANOVA
group*radius interaction with post

hoc Dunnett’s multiple comparisons

of each treatment group with the no
treatment group. (C) Quantification

of CGRP* DRG neurons cultured with
medium alone, medium supple-
mented with huNGF, or RA synovial
fibroblast-conditioned medium is
shown. Left: Survival was measured

by the number of Map2b*B3tub™®
CGRP* cells of >10 pm. Each dot rep-
resents the sum of five X10 magnifi-
cation views from one experiment.
Data from three experiments are presented. ns indicates not significant in Kruskal-Wallis test. Middle: The sum of sprouting neurons divided by the total number of neurons
cultured with medium alone, medium supplemented with huNGF, or RA synovial fibroblast-conditioned medium is shown. Neurons with at least three axon branches greater
than two times the size of the soma were classified as sprouting. Each dot represents the sum of five x10 magnification views from one experiment. Data from three experi-
ments are presented. **P < 0.01 and **#P < 0.001 in Kruskal-Wallis tests. Right: Branching is shown as measured by the number of shell intersections of neurites in DRG neurons
cultured with medium alone, medium supplemented with huNGF, or RA synovial fibroblast-conditioned medium. Each dot represents the median with confidence interval
of 45 neurons imaged from three experiments (15 neurons per experiment). *P < 0.05 and **P < 0.01 in two-way ANOVA group*radius interaction with post hoc Dunnett’s
multiple comparisons of each treatment group with the no treatment group.
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Fig. 7. RA synovial papillary hypertrophy processes contain CGRP* nociceptive neurites encasing CD317 vessels. (A) Gross macroscopic image of RA synovial
papillary hypertrophy with visible blood vessels is shown. (B) H&E-stained section of RA synovial papillary hypertrophy is shown with minimal lymphocytic infiltration.
Scale bar, 50 pm. (C) Whole-mount imaging (iDISCO) is shown from low inflammatory RA synovium stained with anti-CD31 antibodies (magenta) and anti-CGRP antibodies
(cyan) (see also movie S1). Scale bar, 300 pm. (D) Whole-mount imaging is shown from inside a papillary process stained with anti-CD31 antibodies (magenta) and anti-
CGRP antibodies (cyan) (see also movie S2). Scale bars, 200 pm. (E) Three consecutive optical cross sections of synovial tissue stained with anti-CD31 antibodies (magenta)

and anti-CGRP antibodies (cyan) are shown. Scale bars, 50 pm.

genes in an unsupervised manner, on the basis of which genes tend
to be expressed together in the dataset. In contrast, our GbGMI
approach groups genes on the basis of their association with the
variable of interest and was developed specifically to mitigate the
challenge of relating patient-reported outcome data, which is noto-
riously variable, to tissue transcriptomic data, which is often inade-
quately powered for statistical analysis. Our approach might be
useful in other scenarios where investigators are searching for clini-
cal associations in a complex dataset with a limited sample size.

As shown in our statistical analysis, each individual gene expres-
sion did not correlate with pain. On the other hand, the coordinated
expression within the GbGMI-identified pain-associated gene module
suggests functional relatedness. Future studies are needed to further
unravel how genes identified here relate to neuron growth and
patient experience of pain either independently or in conjunction
with other genes. However, our ligand-receptor interaction analysis
strongly suggests that changes in gene expression within the joint
drive interactions with nociceptors to promote pain. We identi-
fied numerous ligands that bind to receptors on hDRG neurons to
mediate neurite/axon growth including netrins, ephrins, integrins,
and semaphorins. These receptors signal through pathways known
to produce pain, including phosphatidylinositol 3-kinase (PI3K)/
AKT signaling (43). We also identified possible cross-talk between
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ligands expressed by hDRGs that bind to receptors encoded in
the 815 GbGMI-identified pain-associated genes expressed by
fibroblasts, suggesting that neurons may play a key role in influenc-
ing fibroblast differentiation through neuronal-released factors in-
cluding transforming growth factor-f, fibroblast growth factors,
and chemokines.

Our study has several limitations. Pain is a multidimensional
experience and was measured here only by patient report, using two
different questionnaires (HOOS/KOOS and VAS), and the tissue
studied was limited to the synovium. Given the small sample size,
other factors known to contribute to experience of RA pain, such as
sex, age, disease activity, as well as central sensitization and lower
overall pain tolerance, were not explored here. In addition, the
experiments on neuron growth in vitro tested the effects of human
protein on mouse neurons. Future studies are needed to explore
the effects of fibroblast products on human neurons. There are also
many other genes associated with patient report of pain in this data-
set that warrant additional study. These factors include heparin
binding epidermal growth factor (HBEGF), betacellulin (BTC), and
connective tissue growth factor (CTGF), all of which have been
shown to augment neuronal sprouting in response to injury and/
or have been associated with pain in other clinical conditions or
animal models (44-46). In addition, CGRP* afferents perform other
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functions in the periphery besides sensing and relaying pain cen-
trally, such as altering blood flow (47). Similarly, neural guidance
molecules also have important functions outside the nervous sys-
tem, such as affecting angiogenesis, lung branching morphogene-
sis, immunomodulation, and tumorigenesis, and these nonneuronal
effects of this family of molecules warrant further study in the
context of arthritis. Last, fluorescence of the synovial lining layer
cannot be discerned from technical edge artifacts in the tissue-
cleared images.

Together, this work identifies a group of genes associated with
patient report of pain in low inflammatory synovium in both early
untreated and established RA. These findings have the potential
to be leveraged to develop next-generation therapeutic approaches
to alleviating pain in RA, particularly in the low inflammatory
pathotype that may be less responsive to current therapeutics that
target adaptive immune inflammation.

MATERIALS AND METHODS

Study design

This study involved 139 patients with RA undergoing arthroplasty at
the Hospital for Special Surgery (HSS) in New York, meeting either
the American College of Rheumatology (ACR)/European League
Against Rheumatism 2010 Classification criteria (48) and/or the
ACR 1987 criteria for RA (49). Patient data, including KOOS and
HOOS questionnaires, were collected with approval from relevant
institutional review boards (detailed in the “Study approval” sec-
tion) with signed informed consent from all participants. RNA was
extracted from 39 bulk synovial tissue samples previously sequenced
(9) (ImmPort accession #SDY1299), which included three gene
expression clusters correlating with varying degrees of synovial
inflammation: low (n = 14), intermediate (n = 11), and high (n = 14)
(9). Among these 39 patients, 38 had mean nucleus density data
(16); of these, 26 had low inflammatory synovium, among which
22 had HOOS/KOOS pain scores. External validation of pain-
associated genes used bulk RNA-seq data from 87 patients with
early RA obtained from the PEAC. The study aimed to uncover the
source of joint pain in RA because it does not always correlate
with synovial inflammation. We developed a graph-based machine-
learning approach to identify a set of pain-associated genes in
patients with RA and limited synovial inflammation. Further analy-
ses were conducted to reveal which cell subtype in synovium
primarily expressed the identified pain-associated genes. Studies
through in vitro and in vivo approaches were conducted to test
whether and how the identified pain-associated genes can suggest a
potential mechanism for enhancing nociceptor growth into synovial
pannus, thereby contributing to RA-associated pain. No sample size
calculation, randomization, or blinding was performed.

Study approval

This study includes data from 139 patients with RA undergoing
arthroplasty at the HSS in New York. All patients met either the
ACR/European League Against Rheumatism 2010 Classification
criteria (48) and/or the ACR 1987 criteria for RA (49). Patient
demographic data and RA disease activity scores and treatments are
listed in data file S9. Patient data including KOOS (50) and HOOS
(51) questionnaires were collected. RA pain scores indicate response
to the question, “how much pain have you felt due to your rheuma-
toid arthritis during the last week?” with responses ranging from
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1 to 10. Condition pain scores indicate response to the question,
“how much pain have you had because of your condition over the
past week? Please indicate how severe your pain has been,” with
responses ranging from 1 to 10. This study was approved by the HSS
Institutional Review Board (approval no. 2014-233), the Rockefeller
University Institutional Review Board (approval no. DOR0822),
and the Biomedical Research Alliance of New York (approval no.
15-08-114-385). All participating patients provided their signed
informed consent.

H&E histologic scoring

Synovial samples were obtained from the most grossly inflamed
(dull and opaque) area of synovium. If there were no obviously in-
flamed areas, then samples were obtained from standard locations:
the femoral aspects of the medial and lateral gutters and the central
supratrochlear region of the suprapatellar pouch. Each tissue bi-
opsy was sectioned at 5-pm thickness and stained with Harris mod-
ified hematoxylin solution and eosin Y (H&E) manufactured by
Epredia. An expert musculoskeletal pathologist scored 14 synovial
histologic features in a single section for each patient: lymphocytic
inflammation, mucoid change, fibrosis, fibrin, germinal centers, lin-
ing hyperplasia, neutrophils, detritus, plasma cells, binucleated plas-
ma cells, Russell bodies, sublining giant cells, synovial lining giant
cells, and mast cells. Detailed methods for scoring these features
are described in prior studies (9) and available at www.hss.edu/
pathology-synovitis, and the classification algorithm is available at
ImmPort https://immport.org/shared/study/SDY1299. Spearman
correlation was used to compare the relationship of patient reports
of pain, which was not normally distributed, to cell density.

Gene expression established arthritis cohort

RNA was extracted from 39 bulk synovial tissue samples collected
from an established RA cohort and previously sequenced as de-
scribed in (9) (ImmPort accession #SDY1299). Briefly, these libraries
were prepared using TruSeq mRNA Stranded Library kits, 50-bp
paired-end reads were sequenced on a HiSeq 2500 platform, and
reads were aligned to hgl9 using STAR (52). Samples with >0.1%
globin mRNA were excluded from further analysis. After quality
control, ComBaT in the Bioconductor SVA package (53) was used
for batch effect correction, and DESeq2 (54) was used to normalize
the data. Consensus clustering identified three gene expression clus-
ters characterized by different amounts of synovial inflammation:
low (n = 14), intermediate (n = 11), and high (n = 14) (9). Of these
39 patients with RA, 38 had mean nucleus density data for the bench-
marking analysis (16), and 26 had low inflammatory synovium, for
which all 26 had scores for lymphocytic inflammation and lining
hyperplasia and 22 had scores of fibrosis and HOOS/KOOS pain
scores. We used limma (15) to test for gene expression correlates of
fibrosis, lymphocytic inflammation, lining hyperplasia, and pain.

Gene expression early arthritis cohort

For external validation of the pain-associated genes identified by
our method, we downloaded the bulk RNA-seq of patients with early
RA from the PEAC on ArrayExpress (www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-6141/samples/). Using only samples with suf-
ficient data quality, reads were pseudoaligned to hg38 with Kallisto
to generate a counts matrix. Counts were normalized for read depth
[counts into log,(CPM + 1) (counts per million)] and batch-corrected
using removeBatchEffect from limma (15).
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Gene expression in bulk sorted cells and single cells

In the analyses related to RA synovial cell types, we used the sorted-
population bulk RNA-seq gene expression data of the synovial T
cells (CD45%, CD3*, and CD147), monocytes (CD45%, CD3~, and
CD14"), B cells (CD45%, CD37, CD147, and CD19"), and fibro-
blasts (CD45~, CD317, and PDPN™) collected by fluorescence-
activated cell sorting (BD FACSAria Fusion) directly in buffer RLT
(QIAGEN)(19). Normalized read counts per gene as transcripts per
million (TPMs) were used (ImmPort accession #SDY998) (10).

We used the scRNA-seq data preprocessed in (19), where the
gene expression amounts were quantified by counting UMIs (unique
molecular identifiers) and transformed into log,(CPM + 1). From
the scRNA-seq profiles for 32,391 genes and 5265 cells left after rig-
orous quality control, 18 unique cell populations were identified by
an integrated strategy based on canonical correlation analysis.
Specifically, in fibroblasts: CD34" sublining fibroblasts (SC-F1),
human leukocyte antigen (HLA)-DRA™ sublining fibroblasts (SC-
F2), Dickkopf-related protein (DKK3)* sublining fibroblasts (SC-
F3),and CD55" lining fibroblasts (SC-F4); in monocytes: interleukin-1B
(IL-1B)* proinflammatory monocytes (SC-M1), nuclear protein 1
(NUPRD)* monocytes (SC-M2), CIQA* monocytes (SC-M3), and
interferon-activated monocytes (SC-M4); in T cells: three CD4"
clusters: CCR7" T cells (SC-T1), FOXP3™ regulatory T cells (SC-T2),
and programmed cell death protein 1 (PDCD1)* T peripheral helper
(Tpn) and T follicular helper (Tgy) (SC-T3) cells, and three CD8*
clusters, GZMK" T cells (SC-T4), GNLY'GZMB™ cytotoxic lym-
phocytes (SC-T5), and GZMK*GZMB™ T cells (SC-T6); in B cells:
naive IGHD*CD27~ (SC-B1), IGHG3* CD27* memory B cells
(SC-B2), autoimmune-associated B cell cluster (SC-B3) with high
expression of integrin alpha-X (ITGAX) (also known as CD11c), and
a plasmablast cluster (SC-B4) with high expression of immunoglob-
ulin genes and X-box-binding protein 1 (XBP1) (19). The top 200
marker genes for each subpopulation identified by differential ex-
pression analysis in the original publication were used as signature
genes for individual cell types within RA synovium.

Description of our GbGMI framework

We developed GbGMI, a graph-based machine-learning frame-
work of algorithms, to identify a gene expression module that
strongly correlates with pain in low inflammatory RA synovial tis-
sues (fig. S1). We use M € R™*" to represent the input gene expres-
sion matrix of genes and patients. We use a numeric vector a € R"
to represent the pain scores reported by these patients. We quanti-
fied the quality Q of a selected gene subset through the correlation
between their collective expression and the pain score and then
searched for a gene subset with optimal quality Q as a feature selec-
tion task (55-58). Because an exhaustive search through all possible
subsets of an input gene set to optimize Q is computationally intrac-
table (59), we adapted and integrated the feature scoring strategy
used in the filter feature-selection/ranking approaches (60-62) and
the feature subset scoring strategy used in the wrapper feature-
selection approaches (58, 63). Specifically, we generated a gene
prioritization list Ly according to how well each individual gene
expression respects the geometric structure over patients built ac-
cording to their pain scores. Then, the quality Qi of the kth candi-
date gene subset comprising the top k genes in Ls was evaluated for
k ranging from 1 to m. The first k" where Qi peaked was used as the
cutoff point on L. This subset of kK genes is the output pain-
associated gene module.
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We next adapted Laplacian score algorithm to prioritize genes.
Given the input gene expression matrix and pain-score vector, we
ranked the genes by the way each gene expression vector (that is, a
row vector in the gene expression matrix M) respected a given geo-
metric structure over the patients encoded in an n X n similarity
matrix S based on the pain score vector a, by adapting the Laplacian
score algorithm (17), instead of assuming independent observations
in the correlation tests (fig. S1, step A). To compute S, a Gaussian
kernel, which empirically outperformed other types of kernels (64,
65), was adopted to map the Euclidean distance between the pain
scores of each pair of patients and into a similarity measure S(i,
el
|a() — a() P 0

h
where h corresponds to the bandwidth or smoothing factor in a ker-
nel metric definition. This formulation forces the similarity measure
between any two patients with significantly different pain scores to
be close to 0 while pushing the similarity measure between the
patients of pain scores within a certain range (depending on the
smoothing factor) to be closer to 1. This promotes the locality we
want to focus on. We set h to control the local neighborhood of pa-
tients on graph S according to the theoretical range of the pain
scores (for example, h = 100 for HSS HOOS/KOOS pain score or
PEAC VAS characteristic because either ranges between 0 and 100).

The Laplacian score of each gene was then computed to evaluate
how well this gene’s expression on these patients preserves S (fig. S1,
step B). This is different from the original publication (17, 66) that
aimed to preserve the input feature space (for example, the input
low inflammatory genes), wherein we aimed to select features (for
example, the k pain-associated genes). The Laplacian matrix of S is
defined by L = D — S, where D is a diagonal matrix with Dj; indicat-
ing the degree of node (that is, patient) i in the weighted graph S
[thatis, D = diag (S I)]. For the rth gene, let M, « be its n-dimensional
gene expression vector across the patients (that is, the rth row vec-
tor in the gene expression matrix M), its Laplacian score Is(r) is
computed as

S3G,j)=e—

m Lm, M, D1
Is(r)= ————=,im,=M,," - ——1 )
m" D m, 1”D1

where the symbol 1 denotes a column vector whose all elements are
I’s with dimensionality determined by context. The gene prioritiza-
tion list L is generated by sorting the input m genes according to
their Laplacian scores in ascending order. The smaller the Laplacian
score of a gene, the better its expression data respect the geometric
structure defined by S over the patients [according to objective func-
tion analysis (17)]. Each top k subset on L, forms a candidate gene
subset for selection. The rows of M were reordered according to L
(fig. S1, step C).

Quantification of candidate k-gene subset quality Qi

The Q of the kth candidate gene subset was measured on the basis
of the association between their collective expression pattern and
the pain-score vector a. Given the gene expression submatrix M; . =
of this candidate k-gene subset, Qx was computed through two
steps: First, project the k-gene expression vector of each patient into
a univariate summary score that preserves the patient-to-patient
similarity structure in the original k-dimensional feature (gene)
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space. This addresses the dimensionality mismatch between the
multigene expression and the univariate patient-level pain score (9,
17). The resulting summary score vector of the # patients is denoted
s (fig. S1, step D). Second, quantify Qj using the statistical significance
of correlation test [for example, the — log (P value) of Kendall’s
correlation test] between s; and a over the same patients. We chose
the first k', where Qi peaked, as the cutoff point on the sorted gene
prioritization list L. This subset of k" genes is the pain-associated
gene module identified by our GbGMI framework (fig. S1, step E).

For fig. S1 (step D), we used the t-SNE (66). The resulting sum-
mary score vector si for the n patients respects how the gene expres-
sion data were arranged in the k-gene feature space of this candidate
gene subset. We hereon briefly sketch the instantiation of t-SNE
with the variables involved in our study. Following the SNE frame-
work (67), the directional similarity of patient j to patient i based on
their multigene expression vectors M ., ;and M, . j is

exp(— || My ;=M I*/20;%)

pGili) =
Ziexp( = | Myg; — Moy 1>/ 20;%)

3)

where the variance of the Gaussian kernel 6,2 is chosen such that the
perplexity of the conditional probability distribution over all points
j # i defined by

Perp(P;) =2H(P;),H(P;) = — 2j pGli)log,p(jli) (4)

matches a prespecified value. The perplexity in this context can be
interpreted as an estimation about the number of close neighbors of
each patient on graph S. Therefore, we specified the perplexity on
the basis of the rounded mean degree of the similarity graph S built
from a. The symmetric SNE was used for mathematical and compu-
tational convenience in the t-SNE formulation by defining the
following undirected similarities

PG +p(ilj) 5)

2n

where 7 is the number of patients. Because Z; jp(i, j) = 1, this is a
valid probability distribution on the set of all pairs (i,j). The t-
SNE step in this algorithm uses the t-distribution with one degree
of freedom (also known as Cauchy distribution) as the one-
dimensional similarity kernel applied to pairs of summary scores

defined by

pij) =

L+ lIs(@) =sII)~!
Zpu (14 lIs(k) = s(D]1*)~!

q(i,j) = (6)

The main idea of this t-SNE-based step is to arrange the patients
in a one-dimensional space such that the similarities g(i, j) between
s(i) and s(j) match p(i, j) as close as possible in terms of the Kullback-
Leibler divergence. Thus, the loss function is

oy PG )
L=%,p(i,j)log—— 7
I,]p ] gq(l)]) ( )
a summary score vector si is computed for each candidate k-gene
subset, rendering a set of m such vectors {s | k = 1,2, ---, m}.

Our framework GbGMI can be applied to identify a subset of
genes that collectively associate with some other patient-level nu-
meric attribute beyond the main focus of this paper (the HOOS/
KOOS pain score). Our framework is also flexible and adaptive in
different contexts by replacing specific computational components
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with other design choices (for example, other embeddings instead of
t-SNE for computing summary scores of selected gene expression).

DRG dissection and digestion

Before extraction of the DRG neurons, chambered coverslips (ibidi,
80286) were coated overnight at 37°C with poly-L-lysine (Sigma-
Aldrich, P4832) and then for 2 hours at 37°C with mouse sarcoma
basement membrane laminin (Sigma-Aldrich, L2020) diluted 1:50
with 1x phosphate-buffered saline (PBS) and with one also coated
with huNTN4 (0.2 pg/ml; R&D Systems, 1254-N4). For each as-
say, sensory DRG neurons were harvested from two female 6- to
8-week-old C57BL/6 mice (the Jackson Laboratory), under a dissec-
tion microscope using forceps, and placed into a waiting 15-ml conical
tube on ice containing 1X L-15 medium (Thermo Fisher Scientific,
21083027). DRGs were spun down at 950 rpm for 2 min. Medium
was aspirated and replaced with 1 ml of L-15 containing dispase II
(10 mg/ml; Sigma-Aldrich, 04942078001) and collagenase IV (10 mg/
ml; Thermo Fisher Scientific, 17104019). DRGs were then placed at
37°C for 20 min. Enzyme solution was then carefully aspirated and
replaced with 2 ml of L-15. Pellet was resuspended thoroughly with
a 1000-pl pipette. Twenty-five microliters of deoxyribonuclease I
(10 mg/ml) was then added, and once again, the cells were placed
at 37°C for 20 min. The cells were then spun down for 5 min at 950 rpm
and resuspended in 5 ml of L-15. After another 5 min of cen-
trifugation, the cells were resuspended in 1 ml of L-15 and layered
on top of 15% ice-cold bovine serum albumin (Sigma-Aldrich,
A7906) and spun down at room temperature for 8 min at 1179 rpm
to remove myelin. The cell pellet was resuspended in 1X Neuro-
basal Plus medium (Thermo Fisher Scientific, A3582901)
containing B27 (Thermo Fisher Scientific, 17504001) diluted 1:50,
GlutaMAX (Thermo Fisher Scientific, 35050061) diluted 1:100, and
gentamicin sulfate (Abbott Laboratories) and then plated onto the
precoated slides. Human -NGF (0.1 pg/ml; R&D Systems, 256-GF)
was added to the medium of the positive control slide chamber.

Harvesting fibroblast supernatant

A total of 500,000 synovial fibroblasts from low inflammatory RA,
between five and eight passages, were plated in each well of six-well
cell culture plates and covered with 2 ml of Neurobasal medium
(Thermo Fisher Scientific, 21103049) with added 2% B-27 supple-
ment (Thermo Fisher Scientific, 17504044), 1% GlutaMAX supple-
ment (Thermo Fisher Scientific, 35050061), and 0.04% gentamicin
sulfate. Medium was changed, and cells were washed in PBS after
24 hours at 37°C to allow for recovery from freeze-thaw. Fresh
medium was added, and cells were left at 37°C overnight. After
24 hours, medium was removed and centrifuged at 1300 rpm for
5 min to remove cells and cell debris. Supernatant was then col-
lected and stored at —80°C.

DRG neuron culture

A total of 50,000 neurons harvested from mice were plated on poly-
L-lysine and 2% laminin (Sigma-Aldrich, L2020) coated two-well
chamber slides with either medium alone, fibroblast supernatant +
medium (1:1), huNGF, huNTN4, or mouse Ntn4. To remove pre-
cipitates formed during freeze-thaw, medium and supernatant sam-
ples were first filtered using 50-ml MilliporeSigma Steriflip sterile
disposable vacuum filters with 0.22-pm pore membranes. Neurons
were cultured for 24 hours at 37°C before fixation in 4% para-
formaldehyde.
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Neurite imaging, quantification, and comparison

Each chambered slide was examined under a Keyence fluorescence
microscope, and the accompanying software was used to capture a
stitched image of a large 5 X 5 area randomly selected on the plate at
%10 magnification. Five of these images were captured per plate. To
quantify sprouting versus nonsprouting DRG neurons, each image
was examined in Image] and used the Cell Counter plugin to keep
track of the total number of sprouting neurons, identified as having
at least three neurites extended from the cell body where the exten-
sions were more than twice the diameter of the cell body and exhib-
ited some degree of branching. From across these images, n = 10
neurons that exhibited branching were selected, and their branching
was quantified using the Sholl Analysis plugin. Each analysis used
a start radius of 30 pixels, an end radius of 225 pixels, and a step size
of 7. Mixed-model repeated-measures analysis was used to analyze
Sholl data. The model included group, radius (categorical), and
group*radius interaction as fixed effects. A significant group*radius
interaction indicated group differences and branching.

iDISCO/imaging

Synovial tissue obtained was fixed overnight in 4% paraformalde-
hyde and washed three times with PBS for 5 min. Samples were
stored long-term in PBS with 0.03% sodium azide and were stained
following iDISCO protocol. Briefly, samples were treated as indi-
cated using alternative nonmethanol pretreatment protocol before
immunolabeling. All steps assumed an n = 1. Antibodies used for
staining were used at 1:150 and include anti-CD31 antibody poly-
clonal guinea pig (Synaptic Systems, 351004), anti-CGRP antibody
polyclonal goat (ab36001, Abcam), Alexa Fluor 488 donkey anti-
mouse immunoglobulin G (IgG) (H + L) ReadyProbes (Invitrogen),
and Alexa Fluor 568 donkey F(ab’)2 anti-rabbit IgG (H + L; Ab-
cam). After immunolabeling, samples were embedded in agar be-
fore clearing with dibenzyl ether (DBE). Samples were imaged by
light sheet microscopy, submerged in DBE on an Ultramicroscope II
(LaVision/Miltenyi BioTec). Images were captured using a 4X objec-
tive with 2.5-pm Z-slices. Acquired images were visualized using
Imaris X64 software (version 9.1 Bitplane), and three-dimensional
reconstructions were recorded as mp4 video files. Optical slices
were generated using the orthoslicer or oblique slicer tool.

Statistical analysis

Statistical analysis was performed with functions or libraries from
the R software package unless stated otherwise. A P value, raw or
adjusted depending on the context, below 0.05 was considered sig-
nificant. For comparison between pain scores in two patient groups,
data were analyzed by unpaired, two-sided Mann-Whitney. A mod-
erated ¢ test from limma (15) was used for testing individual gene
expression correlates of fibrosis, lymphocytic inflammation, lining
hyperplasia, and pain. To identify differentially expressed genes, a
one-way analysis of variance (ANOVA) test was performed to com-
pare individual gene expression among different pain level-based
groupings. The FDR was used in multiple hypothesis testing to cor-
rect for multiple comparisons where applicable. For assessing the
correlation between two patient-level scores (of the three: gene ex-
pression summary score, pain score, or cell density), Spearman’s or
Kendall’s rank correlation tests were used. For comparison between
group level pain-associated gene expression and synovial tissue
gene expression, Kolmogorov-Smirnov test was used. To compare
the quantification among different groups of DRG neurons, data
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were analyzed by unpaired, two-sided Kruskal-Wallis test or two-
way ANOVA test, followed by Dunn’s posttest (*P < 0.05, **P < 0.01,
*#*%P < 0.001, and *¥**P < 0.0001). A hypergeometric test was per-
formed to estimate statistical significance in pathway or gene set
enrichment analysis, adjusted for multiple testing using g:SCS cor-
rection (68).
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