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A U T O I M M U N I T Y

Synovial fibroblast gene expression is associated with 
sensory nerve growth and pain in rheumatoid arthritis

Zilong Bai1, Nicholas Bartelo1, Maryam Aslam2, Elisabeth A. Murphy2, Caryn R. Hale2,3,  

Nathalie E. Blachere2,4, Salina Parveen2, Edoardo Spolaore5, Edward DiCarlo5, Ellen M. Gravallese6, 

Melanie H. Smith5, Accelerating Medicines Partnership RA/SLE Network†‡, Mayu O. Frank2, 

Caroline S. Jiang2, Haotan Zhang1, Christina Pyrgaki2, Myles J. Lewis7, Shafaq Sikandar7, 

Costantino Pitzalis7,8, Joseph B. Lesnak9, Khadijah Mazhar9, Theodore J. Price9,  

Anne- Marie Malfait10, Rachel E. Miller10, Fan Zhang11, Susan Goodman5, Robert B. Darnell2,4,  

Fei Wang1
*, Dana E. Orange2,5

*

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; 
however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We 
developed a machine- learning approach (graph- based gene expression module identification or GbGMI) to 
identify an 815- gene expression module associated with pain in synovial biopsy samples from patients with 
established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an 
independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflamma-
tion. Single- cell RNA sequencing analyses indicated that most of these 815 genes were most robustly ex-
pressed by lining layer synovial fibroblasts. Receptor- ligand interaction analysis predicted cross- talk between 
human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene–related 
peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin- 4, which is abundantly expressed 
by lining fibroblasts and was within the GbGMI- identified pain- associated gene module, increased the branch-
ing of pain- sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent- cleared synovial 
tissue with little inflammation from humans with RA revealed CGRP+ pain- sensing neurons encasing blood 
vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial 
lining fibroblasts express genes associated with pain that enhance the growth of pain- sensing neurons into 
regions of synovial hypertrophy in RA.

INTRODUCTION

Inflammatory pain can be driven by cytokines, bradykinins, and 
prostanoids, which bind specific receptors on primary nociceptor 
neurons to cause heightened sensation of pain (1). However, pain 
is not always proportional to inflammation, and clinical scenarios 
in which pain is dissociated from inflammation are useful to study 
the noninflammatory drivers of pain.

Rheumatoid arthritis (RA) is a chronic disease characterized 
by inflammation in the synovium, the tissue that lines the joint 
cavity. Remarkable progress has been made in developing an array 
of conventional synthetic, targeted synthetic, and biologic disease- 
modifying antirheumatic drugs (csDMARDs, tsDMARDs, and 
bDMARDs, respectively), which target relevant immune media-
tors (2). However, up to 20% of patients with RA are “difficult to 

treat”; that is, they do not improve despite treatment with at least 
two bDMARDs or tsDMARDs, with different mechanisms of action, 
after failing a csDMARD (3, 4). It has been assumed that synovial 
inflammation is the cause of RA joint pain. However, recent studies 
have revealed that pain can be dissociated from inflammation in 
RA (3–8). Patients with RA and limited synovial inflammation, 
also known as “fibroid,” “low inflammatory,” “pauci- immune,” or 
“fibroblast cell type abundance phenotype” synovium, have as much 
pain as those with extreme inflammation (3, 4, 9–13). Patients 
with low synovial inflammation tend to receive less benefit from 
treatment with anti- inflammatory drugs such as tumor necrosis 
factor inhibitors and DMARDs (12, 14).

Here, we hypothesized that a focused analysis of low inflamma-
tory synovium might identify factors beyond inflammation that 
relate to joint pain. One challenge is that patient- reported outcome 
data, such as report of pain severity, are notoriously noisy, and 
tissue transcriptomic data are still relatively expensive, with only 
tens to hundreds of samples available for most studies. Given these 
limitations, existing analytic approaches are generally not suffi-
ciently powered to identify gene modules that relate to patient 
reported outcomes. To address this, we developed a machine- 
learning approach, called graph- based gene expression module 
identification (GbGMI), to uncover the relationship between gene 
expression and pain. We then sought to determine which cells 
express pain- associated genes and how they might influence noci-
ceptors in vitro and to validate these findings by visualizing neu-
rons in low inflammatory RA synovium in vivo.
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RESULTS

Pain is not related to inflammation in patients with RA with 
low inflammatory synovium
We categorized patients as high or low inflammatory using our pre-
viously reported histology scoring algorithm (9). RA pain scores 
were not different between patients with high and low inflamma-
tory synovium (Fig. 1A). Pain scores were associated with the grade 
of synovial inflammation as measured by the density of cells per 
unit of tissue (in cells per square millimeter) in patients with high 
inflammatory synovium but not in patients with low inflammatory 
synovium (Fig. 1B).

We tested for genes that were highly associated with pain using 
the usual RNA sequencing (RNA- seq) analysis platform, limma 
(15). We failed to identify any individual genes that were correlated 
with pain, suggesting that the relationship of gene expression with 
pain could be multifactorial or nonlinear. We next hypothesized 
that there might be groups of genes whose expression varies in 
association with pain. We developed an iterative machine- learning 
GbGMI computational framework to uncover a group of genes 
whose expression is correlated with a given univariate clinical 
feature. GbGMI was given a multimodal input comprising a gene 
expression matrix M for m genes and n patients and an n- dimensional 
clinical feature vector a. GbGMI first calculates the patient- to- 
patient similarity structure according to the given clinical feature 
and compares that to the gene expressions using the Laplacian 
score. GbGMI then determines the optimal number of genes that 
together associate with the clinical feature through statistical 
tests between the t- distributed stochastic neighborhood embed-
ding (t- SNE)–based summary scores of the selected genes and this 
clinical feature (see Materials and Methods and fig. S1).

GbGMI correctly identifies genes associated with 
synovial inflammation
We sought to test the validity of the approach by testing whether it 
would correctly identify genes known to be associated with inflam-
mation as measured by cell density, which is highly associated with 
many individual genes as measured by limma (15). GbGMI identi-
fied a module of 2713 genes whose gene expression summary score 
correlates with synovial tissue cell density (Fig. 2, A to D). The posi-
tive control for this analysis was principal component one (PC1) of 
bulk synovial RNA- seq gene expression data, which was previously 

shown to associate with the extent of synovial inflammation and 
highly correlate with synovial cell density (16). The negative con-
trol was a gene expression summary score for a group of the top 
5000 most variably expressed genes. As expected, the gene expres-
sion summary score of the top 5000 most variably expressed genes 
was not significantly correlated with synovial histologic cell density 
(P = 0.21) (Fig. 2E), whereas PC1 scores of gene expression were 
significantly correlated with synovial histologic cell density (Spear-
man ⍴  =  0.4, P  =  0.01) (Fig.  2F). The gene expression summary 
score of the GbGMI module of 2713 genes had a further improved 
correlation to synovial histologic cell density (Spearman ⍴ = 0.59, 
P  =  0.0001) (Fig.  2G). This analysis indicated that GbGMI was a 
useful method that outperformed principal components analysis 
(PCA) in identifying a module of genes that associate with the grade 
of synovial inflammation measured by cell density.

GbGMI identifies pain- associated synovial gene expression 
in patients with established RA
We next applied GbGMI to define a module of genes associated 
with pain in patients with low inflammatory synovium. Most of the 
6582 genes that distinguish high and low inflammatory synovium 
are increased in high inflammatory synovium and are enriched for 
pathways representing infiltrating immune cells. To uncover genes 
associated with pain but not inflammation, we focused our analysis 
on 2227 genes that exhibited increased expression in low inflamma-
tory synovium relative to high inflammatory synovium (9) and 
on pain scores that document the extent of pain in the joint that was 
sampled [Hip Osteoarthritis Outcome Score/Knee Osteoarthritis 
Outcome Score (HOOS/KOOS)] (Fig.  3A). The patient- reported 
pain scores a were transformed into a matrix of pairwise similarity 
scores between patients S (Fig. 3B). We next calculated the Lapla-
cian score (17) for each of the 2227 low inflammatory genes on 
the basis of its expression values (that is, a row vector in M) and S 
(Fig. 3C). We then tested which number of top- ranked genes col-
lectively best correlated with pain among patients with RA with low 
synovial inflammation and identified an 815- gene module, which 
we refer to as the GbGMI- identified pain- associated genes (Fig. 3D). 
Although the summary score of all 2227 low inflammatory 
genes did not correlate with pain, summary scores of the GbGMI- 
identified pain- associated genes were significantly correlated 
with the patient- reported HOOS/KOOS pain in patients with 
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Fig. 1. Pain is related to synovial inflammation in patients with RA with high, but not low, synovial inflammation. (A) rA pain scores are shown compared to syno-

vial tissue inflammatory classification in n = 139 patients. (B) rA pain scores are shown according to cell density (in cells per square millimeter) of h&e (hematoxylin and 

eosin)–stained synovial tissue, in samples classified as high (n = 35, r = 0.40, P = 0.048) or low inflammatory (n = 104, r = 0.08, P = 0.53). ns, not significant in Mann- Whitney 

test. r = Spearman’s rank correlation coefficient. P = two- tailed P value.
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low inflammatory synovium (P = 0.001) (Fig. 3E). This correlation 
was not as pronounced when including all patients with RA irre-
spective of inflammatory subset (Fig. 3F). Similar correlations were 
identified when the GbGMI- identified pain- associated genes were 
compared to Visual Analog Score (VAS) report of pain (fig. S2). We 
conducted sensitivity analysis on GbGMI using 22 patient subsets 
subsampled with a leave- one- out strategy. Despite the relatively 
small sample size, GbGMI demonstrated robustness; on these sub-
sampled data, GbGMI yielded pain- association gene rankings con-
sistent with the original ranking based on the overall 22 patients 
with low inflammation (smallest ⍴ = 0.75, largest P = 0, Spearman’s 
test; fig. S3A) and identified pain- associated gene modules signifi-
cantly associated with the original 815- gene module (largest P = 
1.22 × 10−7, Fisher’s exact test; fig. S3B, last row and column).

GbGMI- identified pain- associated synovial genes are also 
associated with pain in patients with early RA
Overfitting is a concern in using a graph- based machine learning 
approach to identifying groups of genes that associate with pain. 
It is possible that the GbGMI- identified pain- associated genes 
correlated with pain in the dataset in which they were found  
but not in other external datasets. We sought to test whether the 

pain- associated gene module identified in patients with estab-
lished disease was also associated with pain in a second, indepen-
dent Pathobiology of Early Arthritis Cohort (PEAC) dataset (11) of 
synovial biopsy samples from patients with early (mean of 6 months 
of symptoms) untreated RA. A total of 2018 of the 2227 low inflam-
matory genes and 738 of the 815 pain- associated genes found in the 
established RA dataset were also detected in this dataset. The 738 
pain- associated genes were also correlated with VAS pain in patients 
with early RA with low inflammatory (fibroid or undefined) synovi-
um (Fig.  3G). However, the 2018 low inflammatory genes were 
not. In this early RA cohort, the 738 genes were also associated 
with pain when samples from all patients were included as well, 
irrespective of synovial inflammatory subset (fibroid, undefined, 
myeloid, and lymphoid), although the association was again not as 
robust as was seen in those with low inflammatory synovium 
(Fig. 3H). The range of GbGMI summary scores decreased when all 
samples were included (Fig.  3, G and H). The association of the 
GbGMI- identified genes with pain was robust in the low inflamma-
tory samples but persisted even when all patients were included, 
suggesting that these genes may play a role, albeit less pronounced, 
in pain in high inflammatory synovium, where inflammatory 
mediators are likely to also contribute.
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GbGMI- identified pain- associated genes are enriched with 
neurogenesis pathways and predominantly expressed by 
synovial fibroblasts
We next sought to understand the biological meaning and the direc-
tion of the association of the 815 GbGMI genes with pain in patients 
with RA with low synovial inflammation. Limma was performed to 
detect genes whose expression correlated with pain. Genes were 
ranked by limma according to this correlation. Although limma did 
not identify any significant [false discovery rate (FDR) < 0.05] indi-
vidual genes correlated with pain (fig. S4A), as a group, expression 
of the 815 GbGMI- identified pain genes was significantly decreased 
as the HOOS/KOOS pain score increased (adjusted P = 7.38 × 
10−12, Kolmogorov- Smirnov test) (fig. S4, B and C). This indicated a 
positive correlation with pain severity. The 815 pain- associated 
genes were enriched for pathways such as nervous system devel-
opment, neurogenesis, and neuron differentiation (Fig. 4A) and 
included ephrin (EPHA3, EPHA6, and EPHA7) and semaphorin 
(SEMA3B, SEMA3E, SEMA4C, SEMA5A, and SEMA6D) family 
members. The 1412 nonpain- associated genes included CD55, PRG4, 
CSPG4, and MERTK, genes known to be involved in the normal 
functions of lining macrophages and fibroblasts (18). These genes 
were enriched in molecular function and ribosomal RNA (rRNA) 
processing but not neuron axonal growth pathways (Fig.  4A and 

data file S1). We next examined which cells expressed the GbGMI 
pain- associated genes. We compared expression in both bulk RNA- 
seq data from sorted cell types, which offers high- depth coverage of 
RNA but less cell type resolution, and single- cell RNA- seq (scRNA- 
seq) data, which offers higher cell type resolution to cell subtypes 
but less depth of coverage, from the Accelerating Medicines 
Partnership dataset (19). Comparison of the pain- associated genes 
across sorted bulk synovial B cells, fibroblasts, monocytes, and 
T cells indicated that the fibroblasts exhibited the highest expression 
of pain- associated genes (Fig. 4, B and C). We reasoned that pain- 
associated genes might be more robustly expressed in fibroblasts 
because of a relative enrichment in fibroblasts, compared with im-
mune cells, in low inflammatory samples. However, when looking 
only at fibroblasts, the pain- associated genes were increased com-
pared with the nonpain- associated genes (Fig. 4B). The differences 
in pathways enriched in pain- associated and nonpain- associated 
genes as well as the difference in relative expression within fibro-
blasts indicated that the GbGMI method did not select a random 
group of fibroblast genes. Further analysis of the scRNA- seq dataset 
also confirmed that the fibroblast subsets exhibited the highest 
expression of pain- associated genes (Fig.  4D). Gene expression 
analysis among fibroblast subsets indicated that, compared with 
the other fibroblast subsets, lining CD55+ fibroblasts (SC- F4) 
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exhibited the highest expression of GbGMI- identified pain- 
associated genes (Fig. 4E).

Ligand- receptor analysis predicts interactions between 
lining fibroblasts and human dorsal root 
ganglion nociceptors
Given that the pain- associated genes were enriched in neuron axo-
nal growth pathways, we next explored predicted interactions of 
pain- associated synovial fibroblast genes with dorsal root ganglion 
(DRG) neurons likely to innervate the joint. We performed receptor- 
ligand interaction analysis to identify predicted receptor- ligand 
pairs using the pain- associated genes expressed by four synovial 
fibroblast subtypes in human RA synovial tissue and genes ex-
pressed in a human DRG (hDRG) single- nucleus RNA- seq (snRNA- 
seq) dataset (Fig. 5A) (20). Lining fibroblasts (SC- F4) were predicted 
to have the highest number of ligand- receptor interactions (39 SC- 
F4 ligands to hDRG receptors) (fig. S5A). Lining fibroblasts (SC- F4) 
were predicted to interact with several CGRP+ peptidergic and non-
peptidergic neuron subtypes (fig.  S5, B and C, and data file S2). 

Comparison of the expression of 14 ligand or receptor encoding 
pain- associated genes of SC- F4 revealed a gradient of pain- associated 
genes that were relatively lowly expressed in SC- F1 cells and most 
highly expressed in SC- F4 cells, with HBEGF, CTGF, and NTN4 
among the most robustly expressed (Fig. 5B).

We repeated this receptor- ligand interaction analysis using a 
bulk hDRG spatial RNA- seq dataset with neuronal expression 
confirmed in independently generated human snRNA- seq dataset, 
offering increased depth of coverage and a larger number of human 
samples from organ donors of both sexes (21–23) and a mouse DRG 
scRNA- seq dataset (24). From the 815 GbGMI fibroblast pain- 
associated genes, 158 unique ligand- receptor interactions were 
identified with receptors present on hDRG neurons (data file S3). 
The top 25 unique ligand- receptor interactions from synovial fibro-
blasts to hDRGs were ranked on the basis of the gene's Laplacian 
score (Fig.  5C). This demonstrated possible activation of several 
receptors on hDRGs involved in axon growth, including integrins 
(ITGA5, ITGAM, ITGB2, and ITGB5) and neogenin (NEO1) that is 
targeted by netrins. Biological process and molecular function Gene 
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Fig. 4. The GbGMI- identified pain- associated gene signature is expressed by synovial lining layer fibroblasts. (A) g:Profiler pathway enrichment analysis is shown 

of 815 pain- associated genes and 1412 nonpain- associated low inflammatory genes. ncrnA, long noncoding rnA; mirnA, micrornA. (B) Mean gene expression z scores 
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794 pain genes in scrnA- seq profiles (immPort accession #SdY998) (19) with nonzero variance in expression values across the subset (n = 1532) of rA synovial fibroblasts 

in three sublining subsets, cd34+ (Sc- F1), hlA- drAhi (Sc- F2), and dKK3+ (Sc- F3), and one lining subset (Sc- F4) are shown. each volcano plot shows the differential expres-

sion analysis (using Seurat function FindMarkers) of the genes in each rA synovial fibroblast subtype compared with the other three, where x axis shows log2(fold change) 
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Ontology (GO) terms were identified for the hDRG receptors in the 
interactome using Enrichr (25, 26). This demonstrated activation of 
hDRG receptors responsible for axon guidance, nervous system 
development, and dendrite function (data file S4). Pathway analysis 
(iPathwayGuide software; https://advaitabio.com/ipathwayguide) 
on hDRG receptor genes was used to determine biological pathways 
that could be activated in hDRG neurons by fibroblast pain- associated 

genes. This again revealed activation of several biological pathways 
within hDRGs, with axon guidance being the most enriched driven 
heavily by ephrin A and B signaling (Fig. 5D). This analysis also 
revealed enrichment of extracellular matrix receptor interactions, 
regulation of actin cytoskeleton, focal adhesion, and Ras- associated 
protein 1 (RAP1) signaling, all of which point to axon growth. 
To further explore possible cross- talk between DRGs and synovial 
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Fig. 5. Filtering on synovial fibroblast genes 

predicted to influence DRG sensory neu-

rons. (A) Shown are predicted ligand- receptor 

interactions between synovial fibroblasts and 

neurons in the human drG (hdrG). The circos 

plot shows the two unidirectional interac-

tomes between the four synovial fibroblast 

subtypes and 10 hdrG neuron subtypes. The 

outermost layer indicates the rA synovial 

fibroblast subtypes of the cells (in colored 

squares) or hdrG neuron subtypes (in colored 

round dots) expressing corresponding ligand 

or receptor genes. The middle layer shows 

whether a gene is ligand coding or receptor 

coding in its associated interactions. The inner 

layer contains gene names. The two tissue- 

wise directions are distinguished by the colors 

of connections between gene names. The num-

ber of connections associated with the ligand/

receptor genes in each fibroblast subtype or 

neuron subtype and those in each unidirec-

tional tissue- wise relation are summarized in 

the corresponding legends. (B) An expression 

heatmap is shown of 14 pain- associated 

ligand/receptor encoding marker genes of 

synovial lining fibroblast (Sc- F4) cells with 

nonzero variance in expression values across a 

subset (n  =  4354) of rA synovial cells in 18 

unique cell populations (of B cells, Sc- B1 to Sc- 

B4; fibroblasts, Sc- F1 to Sc- F4; monocytes, 

Sc- M1 to Sc- M4; and T cells, Sc- T1 to Sc- T6), 

which were identified from the 5265 scrnA- 

seq profiles by an integrated analysis based 

on ccA from the Accelerating Medicine 

Partnership (19). z score was calculated using 

log2(cPM  +  1) transformed UMi counts over 

the rA synovial cells. The genes are ranked 

top- down by their log fold change in differen-

tial expression analysis (deA) of lining fibro-

blast (Sc- F4) versus other fibroblasts. (C) A 

Sankey plot is shown of top 25 unique fibro-

blast to hdrG ligand- receptor interactions 

from the 815 GbGMi pain- associated genes 

ranked by laplacian score value. (D) A chord 

plot is shown depicting pathway analysis of 

hdrG receptors identified by the ligand re-

ceptor interactome by GbGMi pain- associated 

genes. The top enriched pathways suggest 

promotion of axon growth, including axon 

guidance, extracellular matrix (ecM)–receptor 

interaction, regulation of actin cytoskeleton, 

and rap1 signaling.
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fibroblasts, we also performed a ligand- receptor interactome be-
tween ligands from hDRG neurons and GbGMI synovial fibroblast 
pain- associated genes that encode for a receptor. This revealed 
132 unique interactions between ligands from hDRGs and receptors 
from synovial fibroblasts (data file S5). Plotting the top 25 interac-
tions ranked by Laplacian score (fig.  S5D) revealed activation of 
protein tyrosine phosphatase receptors (PTPRS) and transforming 
growth factor–β (TGFBR1), both of which play roles in mediating 
cell growth and differentiation. GO term analysis of the fibro-
blast receptors revealed activation chemokine/cytokine signal-
ing, immune cell migration, and fibroblast growth factor binding 
(data file S4).

Products of synovial fibroblasts influence adult DRG 
sprouting and branching in response to injury
We next sought to test whether any of the pain- associated synovial 
fibroblast genes found in this analysis might directly influence the 
growth of nociceptors in the synovium. CGRP+ nerve fibers have 
been previously identified in synovium (27). NTN4 was of interest 
because it was within the GbGMI- identified pain- associated gene 
module in this dataset, was highly expressed by synovial fibroblasts, 
and was identified in the hDRG interactome (data file S2). Although 
netrin- 4 (NTN4) has only 30% sequence homology to NTN1, which 
plays a role in axon guidance during embryogenesis (28), NTN4 
has been shown to augment embryonic olfactory bulb sprouting 
and thalamocortical branching (29–31). We cultured adult mouse–
dissociated DRG neurons with no supplements (medium alone); 
human nerve growth factor (huNGF), as a positive control, because 
it is known to produce robust effects on axon sprouting (32, 33); or 
human NTN4 (huNTN4) and measured survival, sprouting, and 
branching of CGRP+ DRG neurons. CGRP status of the DRG neu-
rons was assigned using immunofluorescent stains (fig.  S6). The 
percentage of neurons with sprouting and the numbers of branches 
were quantified using Sholl analysis (Fig. 6A). The medium control 
in this experiment was Neurobasal Plus medium containing B27, 
which contained the protein transferrin. RA synovial fibroblasts 
express transferrin, but it was not included in the GbGMI- identified 
pain gene list, and its expression does not correlate with patient 
report of pain (fig. S7A) and therefore served as an internal control. 
Whereas there was no effect of either huNGF or huNTN4 on CGRP+ 
neuron survival compared to CGRP+ neurons cultured in medium 
control, huNTN4 augmented sprouting and branching in  vitro 
(Fig.  6B). This result was reproduced when mouse neurons were 
cultured with mouse Ntn4 (fig. S7B), which has over 90% homology 
to huNTN4. However, synovial fibroblasts secrete an array of many 
different factors predicted to interact with nociceptors, and, consid-
ering the complexity of neuron axon guidance and the multitude of 
factors known to attract or repel neuron growth, we reasoned that it 
would be useful to determine whether the sum of all factors secreted 
by synovial fibroblasts resulted in nociceptive neuron attraction, 
repulsion, or neither. We cultured CGRP+ neurons in RA synovial 
fibroblast–conditioned medium. Compared with medium alone, 
RA synovial fibroblast–conditioned medium augmented CGRP+ 
neuron sprouting and branching (Fig. 6C).

CGRP+ axons accompany blood vessels in RA synovial 
papillary hypertrophic processes
We next sought to delineate whether the structure of nociceptive 
neurons in the synovium of humans with RA are altered in vivo. We 

performed immunolabeling- enabled three- dimensional imaging of 
solvent- cleared organs (iDISCO) (34). Synovial papillary hypertro-
phy is a common feature of RA synovium, and blood vessels can be 
seen growing into these processes by gross inspection of unstained 
tissue (Fig. 7A) and hematoxylin and eosin (H&E)–stained synovial 
sections (Fig. 7B). SC- F4 fibroblasts, the cell type with the most ro-
bust expression of genes associated with patient report of pain end 
enriched for neural guidance pathway genes, line these papillary 
processes (35). Anti- CD31 antibody staining of cleared RA synovi-
um revealed a profuse tangle of blood vessels growing into each pap-
illary outgrowth (Fig. 7C and movies S1 and S2). High- magnification 
three- dimensional views inside the papillary processes revealed that 
CGRP+ axons accompanied many of the blood vessels that had 
grown into the papillary processes (Fig.  7D). CGRP staining was 
just outside the CD31 stain, consistent with a meshwork of CGRP+ 
axons wrapping around blood vessels (Fig.  7E), a neurovascular 
pattern previously observed with scanning electron microscopy 
(36). The presence of CGRP+ axons in papillary processes of a syno-
vial pannus indicated abnormal axonal sprouting in  vivo because 
papillary processes represent abnormal synovial growth. We con-
clude that neoangiogenesis into abnormal papillary processes to-
ward lining fibroblasts in the low inflammatory RA synovium was 
accompanied by neoneurogenesis of CGRP+ nociceptive axons.

DISCUSSION

Recent studies have shown that RA synovial tissue spans a spectrum 
of synovial pathotypes, from highly inflamed synovium to fibroblast- 
enriched synovium (13). Here, we show that patients with RA can 
have relatively limited synovial inflammation but highly abnormal 
synovium with extensive papillary hypertrophy, angiogenesis, and 
high severity of pain. We demonstrated that synovial lining fibro-
blast products can augment the growth of CGRP+ nociceptive 
axons/neurites and CGRP+ axons extend into synovial papillary 
processes, placing nociceptors spatially adjacent to lining fibro-
blasts. These observations support a model whereby altered synovial 
lining fibroblasts secrete factors, including NTN4, that facilitate 
growth of CGRP+ axons/neurites (fig. S8). These data are consistent 
with recent studies in osteoarthritis (OA), which identified aberrant 
CGRP+ axonal sprouting into normally aneural cartilage (37–40).

Whereas RA tends to affect all three knee compartments simi-
larly, OA tends to affect the medial side more severely. Compared 
with synovial fibroblasts from the nonpainful side, synovial fibro-
blast–conditioned medium from the painful side of knee OA in-
creased neuron survival and longest branch length in vitro (41). Our 
studies also led to the discovery that NTN4 augments branching of 
injured pain- sensitive CGRP+ nerves in  vitro. NTN4 binds the 
extracellular matrix molecule, laminin, specifically laminin γ1, and, 
in doing so, markedly weakens matrix stiffness (30). Laminins are 
large glycoproteins that are abundant in synovium, and it is possible 
that a compliant extracellular matrix facilitates CGRP+ axon sprout-
ing or branching. NTN4 also binds cell surface receptors, such as 
neogenin (42), which are expressed by human nociceptors (21, 22). 
Avenues for future research include in vivo animal studies to test 
the function of NTN4, as well as other pain- associated genes, and 
exploration of their potential as therapeutic targets.

The GbGMI approach is a combination of feature selection and 
data dimensionality reduction that enabled us to uncover a group 
of genes that together change their expression in association with 
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patient report of pain. Reducing the dimensionality of the data 
allowed us to detect associations with variable clinical data that were 
likely underpowered when all genes were included in the analysis as 
individual tests. Other data dimensionality reduction approaches, 

such as clustering and PCA, have been used in a similar way to 
detect clinical associations that would not be measurable in a gene- 
by- gene analysis (9). One key difference between the GbGMI 
approach and hierarchical clustering or PCA is that the latter groups 

Fig. 6. Synovial fibroblast prod-

ucts affect DRG neurons in  vitro. 

(A) Shown are representative imag-

es of the method used for neurite 

quantification of sprouting and 

Sholl analysis of branching of disso-

ciated drG neurons. (B) Quantifica-

tion of cGrP+ drG neurons cultured 

with medium alone, hunGF, or 

hunTn4 is shown. left: Survival 

was measured by the number of 

Map2b+B3tub+  cells of >10 μm. 

each dot represents the sum of five 

×10 magnification views from one 

experiment. data from four experi-

ments are presented. ns indicates 

not significant in Kruskal- Wallis test. 

Middle: The sum of sprouting neu-

rons divided by the total number 

of neurons cultured with medium 

alone, hunGF, or hunTn4 is shown. 

neurons with at least three axon 

branches greater than two times 

the size of the soma were classified 

as sprouting. each dot represents 

the sum of five ×10 magnification 

views from one experiment. data 

from four experiments are presented. 

*P < 0.05, ns indicates not significant 

in Kruskal- Wallis test. right: Branch-

ing is shown as measured by the 

number of shell intersections of neu-

rites, in drG neurons cultured with 

medium alone (no treatment), hunGF, 

or hunTn4. each dot represents the 

median with confidence interval of 

40 neurons imaged from four experi-

ments (10 neurons per experiment). 

****P < 0.0001 in two- way AnoVA 

group*radius interaction with post 

hoc dunnett’s multiple comparisons 

of each treatment group with the no 

treatment group. (C) Quantification 

of cGrP+ drG neurons cultured with 

medium alone, medium supple-

mented with hunGF, or rA synovial 

fibroblast–conditioned medium is 

shown. left: Survival was measured 

by the number of Map2b+B3tub+ 

cGrP+ cells of >10 μm. each dot rep-

resents the sum of five ×10 magnifi-

cation views from one experiment. 

data from three experiments are presented. ns indicates not significant in Kruskal- Wallis test. Middle: The sum of sprouting neurons divided by the total number of neurons 

cultured with medium alone, medium supplemented with hunGF, or rA synovial fibroblast–conditioned medium is shown. neurons with at least three axon branches greater 

than two times the size of the soma were classified as sprouting. each dot represents the sum of five ×10 magnification views from one experiment. data from three experi-

ments are presented. **P < 0.01 and ***P < 0.001 in Kruskal- Wallis tests. right: Branching is shown as measured by the number of shell intersections of neurites in drG neurons 

cultured with medium alone, medium supplemented with hunGF, or rA synovial fibroblast–conditioned medium. each dot represents the median with confidence interval 

of 45 neurons imaged from three experiments (15 neurons per experiment). *P < 0.05 and **P < 0.01 in two- way AnoVA group*radius interaction with post hoc dunnett’s 

multiple comparisons of each treatment group with the no treatment group.

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at C
o
rn

ell U
n
iv

ersity
 o

n
 Ju

ly
 0

2
, 2

0
2
4



Bai et al., Sci. Transl. Med. 16, eadk3506 (2024)     10 April 2024

S c i e n c e  T r A n S l AT i o n A l  M e d i c i n e  |  r e S e A r c h  A r T i c l e

9 of 16

genes in an unsupervised manner, on the basis of which genes tend 
to be expressed together in the dataset. In contrast, our GbGMI 
approach groups genes on the basis of their association with the 
variable of interest and was developed specifically to mitigate the 
challenge of relating patient- reported outcome data, which is noto-
riously variable, to tissue transcriptomic data, which is often inade-
quately powered for statistical analysis. Our approach might be 
useful in other scenarios where investigators are searching for clini-
cal associations in a complex dataset with a limited sample size.

As shown in our statistical analysis, each individual gene expres-
sion did not correlate with pain. On the other hand, the coordinated 
expression within the GbGMI- identified pain- associated gene module 
suggests functional relatedness. Future studies are needed to further 
unravel how genes identified here relate to neuron growth and 
patient experience of pain either independently or in conjunction 
with other genes. However, our ligand- receptor interaction analysis 
strongly suggests that changes in gene expression within the joint 
drive interactions with nociceptors to promote pain. We identi-
fied numerous ligands that bind to receptors on hDRG neurons to 
mediate neurite/axon growth including netrins, ephrins, integrins, 
and semaphorins. These receptors signal through pathways known 
to produce pain, including phosphatidylinositol 3- kinase (PI3K)/
AKT signaling (43). We also identified possible cross- talk between 

ligands expressed by hDRGs that bind to receptors encoded in 
the 815 GbGMI- identified pain- associated genes expressed by 
fibroblasts, suggesting that neurons may play a key role in influenc-
ing fibroblast differentiation through neuronal- released factors in-
cluding transforming growth factor–β, fibroblast growth factors, 
and chemokines.

Our study has several limitations. Pain is a multidimensional 
experience and was measured here only by patient report, using two 
different questionnaires (HOOS/KOOS and VAS), and the tissue 
studied was limited to the synovium. Given the small sample size, 
other factors known to contribute to experience of RA pain, such as 
sex, age, disease activity, as well as central sensitization and lower 
overall pain tolerance, were not explored here. In addition, the 
experiments on neuron growth in vitro tested the effects of human 
protein on mouse neurons. Future studies are needed to explore 
the effects of fibroblast products on human neurons. There are also 
many other genes associated with patient report of pain in this data-
set that warrant additional study. These factors include heparin 
binding epidermal growth factor (HBEGF), betacellulin (BTC), and 
connective tissue growth factor (CTGF), all of which have been 
shown to augment neuronal sprouting in response to injury and/
or have been associated with pain in other clinical conditions or 
animal models (44–46). In addition, CGRP+ afferents perform other 
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Fig. 7. RA synovial papillary hypertrophy processes contain CGRP+ nociceptive neurites encasing CD31+ vessels. (A) Gross macroscopic image of rA synovial 

papillary hypertrophy with visible blood vessels is shown. (B) h&e- stained section of rA synovial papillary hypertrophy is shown with minimal lymphocytic infiltration. 

Scale bar, 50 μm. (C) Whole- mount imaging (idiSco) is shown from low inflammatory rA synovium stained with anti- cd31 antibodies (magenta) and anti- cGrP antibodies 

(cyan) (see also movie S1). Scale bar, 300 μm. (D) Whole- mount imaging is shown from inside a papillary process stained with anti- cd31 antibodies (magenta) and anti- 

cGrP antibodies (cyan) (see also movie S2). Scale bars, 200 μm. (E) Three consecutive optical cross sections of synovial tissue stained with anti- cd31 antibodies (magenta) 

and anti- cGrP antibodies (cyan) are shown. Scale bars, 50 μm.
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functions in the periphery besides sensing and relaying pain cen-
trally, such as altering blood flow (47). Similarly, neural guidance 
molecules also have important functions outside the nervous sys-
tem, such as affecting angiogenesis, lung branching morphogene-
sis, immunomodulation, and tumorigenesis, and these nonneuronal 
effects of this family of molecules warrant further study in the 
context of arthritis. Last, fluorescence of the synovial lining layer 
cannot be discerned from technical edge artifacts in the tissue- 
cleared images.

Together, this work identifies a group of genes associated with 
patient report of pain in low inflammatory synovium in both early 
untreated and established RA. These findings have the potential 
to be leveraged to develop next- generation therapeutic approaches 
to alleviating pain in RA, particularly in the low inflammatory 
pathotype that may be less responsive to current therapeutics that 
target adaptive immune inflammation.

MATERIALS AND METHODS

Study design
This study involved 139 patients with RA undergoing arthroplasty at 
the Hospital for Special Surgery (HSS) in New York, meeting either 
the American College of Rheumatology (ACR)/European League 
Against Rheumatism 2010 Classification criteria (48) and/or the 
ACR 1987 criteria for RA (49). Patient data, including KOOS and 
HOOS questionnaires, were collected with approval from relevant 
institutional review boards (detailed in the “Study approval” sec-
tion) with signed informed consent from all participants. RNA was 
extracted from 39 bulk synovial tissue samples previously sequenced 
(9) (ImmPort accession #SDY1299), which included three gene 
expression clusters correlating with varying degrees of synovial 
inflammation: low (n = 14), intermediate (n = 11), and high (n = 14) 
(9). Among these 39 patients, 38 had mean nucleus density data 
(16); of these, 26 had low inflammatory synovium, among which 
22 had HOOS/KOOS pain scores. External validation of pain- 
associated genes used bulk RNA- seq data from 87 patients with 
early RA obtained from the PEAC. The study aimed to uncover the 
source of joint pain in RA because it does not always correlate 
with synovial inflammation. We developed a graph- based machine- 
learning approach to identify a set of pain- associated genes in 
patients with RA and limited synovial inflammation. Further analy-
ses were conducted to reveal which cell subtype in synovium 
primarily expressed the identified pain- associated genes. Studies 
through in  vitro and in  vivo approaches were conducted to test 
whether and how the identified pain- associated genes can suggest a 
potential mechanism for enhancing nociceptor growth into synovial 
pannus, thereby contributing to RA- associated pain. No sample size 
calculation, randomization, or blinding was performed.

Study approval
This study includes data from 139 patients with RA undergoing 
arthroplasty at the HSS in New York. All patients met either the 
ACR/European League Against Rheumatism 2010 Classification 
criteria (48) and/or the ACR 1987 criteria for RA (49). Patient 
demographic data and RA disease activity scores and treatments are 
listed in data file S9. Patient data including KOOS (50) and HOOS 
(51) questionnaires were collected. RA pain scores indicate response 
to the question, “how much pain have you felt due to your rheuma-
toid arthritis during the last week?” with responses ranging from 

1 to 10. Condition pain scores indicate response to the question, 
“how much pain have you had because of your condition over the 
past week? Please indicate how severe your pain has been,” with 
responses ranging from 1 to 10. This study was approved by the HSS 
Institutional Review Board (approval no. 2014- 233), the Rockefeller 
University Institutional Review Board (approval no. DOR0822), 
and the Biomedical Research Alliance of New York (approval no. 
15- 08- 114- 385). All participating patients provided their signed 
informed consent.

H&E histologic scoring
Synovial samples were obtained from the most grossly inflamed 
(dull and opaque) area of synovium. If there were no obviously in-
flamed areas, then samples were obtained from standard locations: 
the femoral aspects of the medial and lateral gutters and the central 
supratrochlear region of the suprapatellar pouch. Each tissue bi-
opsy was sectioned at 5- μm thickness and stained with Harris mod-
ified hematoxylin solution and eosin Y (H&E) manufactured by 
Epredia. An expert musculoskeletal pathologist scored 14 synovial 
histologic features in a single section for each patient: lymphocytic 
inflammation, mucoid change, fibrosis, fibrin, germinal centers, lin-
ing hyperplasia, neutrophils, detritus, plasma cells, binucleated plas-
ma cells, Russell bodies, sublining giant cells, synovial lining giant 
cells, and mast cells. Detailed methods for scoring these features 
are described in prior studies (9) and available at www.hss.edu/
pathology- synovitis, and the classification algorithm is available at 
ImmPort https://immport.org/shared/study/SDY1299. Spearman 
correlation was used to compare the relationship of patient reports 
of pain, which was not normally distributed, to cell density.

Gene expression established arthritis cohort
RNA was extracted from 39 bulk synovial tissue samples collected 
from an established RA cohort and previously sequenced as de-
scribed in (9) (ImmPort accession #SDY1299). Briefly, these libraries 
were prepared using TruSeq mRNA Stranded Library kits, 50- bp 
paired- end reads were sequenced on a HiSeq 2500 platform, and 
reads were aligned to hg19 using STAR (52). Samples with >0.1% 
globin mRNA were excluded from further analysis. After quality 
control, ComBaT in the Bioconductor SVA package (53) was used 
for batch effect correction, and DESeq2 (54) was used to normalize 
the data. Consensus clustering identified three gene expression clus-
ters characterized by different amounts of synovial inflammation: 
low (n = 14), intermediate (n = 11), and high (n = 14) (9). Of these 
39 patients with RA, 38 had mean nucleus density data for the bench-
marking analysis (16), and 26 had low inflammatory synovium, for 
which all 26 had scores for lymphocytic inflammation and lining 
hyperplasia and 22 had scores of fibrosis and HOOS/KOOS pain 
scores. We used limma (15) to test for gene expression correlates of 
fibrosis, lymphocytic inflammation, lining hyperplasia, and pain.

Gene expression early arthritis cohort
For external validation of the pain- associated genes identified by 
our method, we downloaded the bulk RNA- seq of patients with early 
RA from the PEAC on ArrayExpress (www.ebi.ac.uk/arrayexpress/
experiments/E- MTAB- 6141/samples/). Using only samples with suf-
ficient data quality, reads were pseudoaligned to hg38 with Kallisto 
to generate a counts matrix. Counts were normalized for read depth 
[counts into log2(CPM + 1) (counts per million)] and batch- corrected 
using removeBatchEffect from limma (15).
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Gene expression in bulk sorted cells and single cells
In the analyses related to RA synovial cell types, we used the sorted- 
population bulk RNA- seq gene expression data of the synovial T 
cells (CD45+, CD3+, and CD14−), monocytes (CD45+, CD3−, and 
CD14+), B cells (CD45+, CD3−, CD14−, and CD19+), and fibro-
blasts (CD45–, CD31–, and PDPN+) collected by fluorescence- 
activated cell sorting (BD FACSAria Fusion) directly in buffer RLT 
(QIAGEN)(19). Normalized read counts per gene as transcripts per 
million (TPMs) were used (ImmPort accession #SDY998) (10).

We used the scRNA- seq data preprocessed in (19), where the 
gene expression amounts were quantified by counting UMIs (unique 
molecular identifiers) and transformed into log2(CPM + 1). From 
the scRNA- seq profiles for 32,391 genes and 5265 cells left after rig-
orous quality control, 18 unique cell populations were identified by 
an integrated strategy based on canonical correlation analysis. 
Specifically, in fibroblasts: CD34+ sublining fibroblasts (SC- F1), 
human leukocyte antigen (HLA)–DRAhi sublining fibroblasts (SC- 
F2), Dickkopf- related protein (DKK3)+ sublining fibroblasts (SC- 
F3), and CD55+ lining fibroblasts (SC- F4); in monocytes: interleukin- 1B 
(IL- 1B)+ proinflammatory monocytes (SC- M1), nuclear protein 1 
(NUPR1)+ monocytes (SC- M2), C1QA+ monocytes (SC- M3), and 
interferon- activated monocytes (SC- M4); in T cells: three CD4+ 
clusters: CCR7+ T cells (SC- T1), FOXP3+ regulatory T cells (SC- T2), 
and programmed cell death protein 1 (PDCD1)+ T peripheral helper 
(TPH) and T follicular helper (TFH) (SC- T3) cells, and three CD8+ 
clusters, GZMK+ T cells (SC- T4), GNLY+GZMB+ cytotoxic lym-
phocytes (SC- T5), and GZMK+GZMB+ T cells (SC- T6); in B cells: 
naïve IGHD+CD27− (SC- B1), IGHG3+  CD27+ memory B cells 
(SC- B2), autoimmune- associated B cell cluster (SC- B3) with high 
expression of integrin alpha- X (ITGAX) (also known as CD11c), and 
a plasmablast cluster (SC- B4) with high expression of immunoglob-
ulin genes and X- box- binding protein 1 (XBP1) (19). The top 200 
marker genes for each subpopulation identified by differential ex-
pression analysis in the original publication were used as signature 
genes for individual cell types within RA synovium.

Description of our GbGMI framework
We developed GbGMI, a graph- based machine- learning frame-
work of algorithms, to identify a gene expression module that 
strongly correlates with pain in low inflammatory RA synovial tis-
sues (fig. S1). We use M ∈ Rm × n to represent the input gene expres-
sion matrix of genes and patients. We use a numeric vector a ∈ Rn 
to represent the pain scores reported by these patients. We quanti-
fied the quality Q of a selected gene subset through the correlation 
between their collective expression and the pain score and then 
searched for a gene subset with optimal quality Q as a feature selec-
tion task (55–58). Because an exhaustive search through all possible 
subsets of an input gene set to optimize Q is computationally intrac-
table (59), we adapted and integrated the feature scoring strategy 
used in the filter feature- selection/ranking approaches (60–62) and 
the feature subset scoring strategy used in the wrapper feature- 
selection approaches (58, 63). Specifically, we generated a gene 
prioritization list Ls according to how well each individual gene 
expression respects the geometric structure over patients built ac-
cording to their pain scores. Then, the quality Qk of the kth candi-
date gene subset comprising the top k genes in Ls was evaluated for 
k ranging from 1 to m. The first k* where Qk peaked was used as the 
cutoff point on Ls. This subset of k* genes is the output pain- 
associated gene module.

We next adapted Laplacian score algorithm to prioritize genes. 
Given the input gene expression matrix and pain- score vector, we 
ranked the genes by the way each gene expression vector (that is, a 
row vector in the gene expression matrix M) respected a given geo-
metric structure over the patients encoded in an n × n similarity 
matrix S based on the pain score vector a, by adapting the Laplacian 
score algorithm (17), instead of assuming independent observations 
in the correlation tests (fig. S1, step A). To compute S, a Gaussian 
kernel, which empirically outperformed other types of kernels (64, 
65), was adopted to map the Euclidean distance between the pain 
scores of each pair of patients and into a similarity measure S(i, 
j) ∈ [0,1]

where h corresponds to the bandwidth or smoothing factor in a ker-
nel metric definition. This formulation forces the similarity measure 
between any two patients with significantly different pain scores to 
be close to 0 while pushing the similarity measure between the 
patients of pain scores within a certain range (depending on the 
smoothing factor) to be closer to 1. This promotes the locality we 
want to focus on. We set h to control the local neighborhood of pa-
tients on graph S according to the theoretical range of the pain 
scores (for example, h = 100 for HSS HOOS/KOOS pain score or 
PEAC VAS characteristic because either ranges between 0 and 100).

The Laplacian score of each gene was then computed to evaluate 
how well this gene’s expression on these patients preserves S (fig. S1, 
step B). This is different from the original publication (17, 66) that 
aimed to preserve the input feature space (for example, the input 
low inflammatory genes), wherein we aimed to select features (for 
example, the k* pain- associated genes). The Laplacian matrix of S is 
defined by L = D − S, where D is a diagonal matrix with Dii indicat-
ing the degree of node (that is, patient) i in the weighted graph S 
[that is, D = diag (S 1)]. For the rth gene, let Mr, * be its n- dimensional 
gene expression vector across the patients (that is, the rth row vec-
tor in the gene expression matrix M), its Laplacian score ls(r) is 
computed as

where the symbol 1 denotes a column vector whose all elements are 
1’s with dimensionality determined by context. The gene prioritiza-
tion list Ls is generated by sorting the input m genes according to 
their Laplacian scores in ascending order. The smaller the Laplacian 
score of a gene, the better its expression data respect the geometric 
structure defined by S over the patients [according to objective func-
tion analysis (17)]. Each top k subset on Ls forms a candidate gene 
subset for selection. The rows of M were reordered according to Ls 
(fig. S1, step C).
Quantification of candidate k- gene subset quality Qk

The Qk of the kth candidate gene subset was measured on the basis 
of the association between their collective expression pattern and 
the pain- score vector a. Given the gene expression submatrix M1 : k, * 
of this candidate k- gene subset, Qk was computed through two 
steps: First, project the k- gene expression vector of each patient into 
a univariate summary score that preserves the patient- to- patient 
similarity structure in the original k- dimensional feature (gene) 

S(i, j) = e −
∣a(i) − a(j) ∣2

h
(1)

ls(r)=
m̂r

T
L m̂r

m̂r

T
D m̂r

, m̂r =Mr,∗
T
−

Mr,∗D1

1
T
D1

1 (2)
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space. This addresses the dimensionality mismatch between the 
multigene expression and the univariate patient- level pain score (9, 
17). The resulting summary score vector of the n patients is denoted 
sk (fig. S1, step D). Second, quantify Qk using the statistical significance 
of correlation test [for example, the − log (P value) of Kendall’s 
correlation test] between sk and a over the same patients. We chose 
the first k*, where Qk

* peaked, as the cutoff point on the sorted gene 
prioritization list Ls. This subset of k* genes is the pain- associated 
gene module identified by our GbGMI framework (fig. S1, step E).

For fig. S1 (step D), we used the t- SNE (66). The resulting sum-
mary score vector sk for the n patients respects how the gene expres-
sion data were arranged in the k- gene feature space of this candidate 
gene subset. We hereon briefly sketch the instantiation of t- SNE 
with the variables involved in our study. Following the SNE frame-
work (67), the directional similarity of patient j to patient i based on 
their multigene expression vectors M1 : k, i and M1 : k, j is

where the variance of the Gaussian kernel σ
i
2 is chosen such that the 

perplexity of the conditional probability distribution over all points 
j ≠ i defined by

matches a prespecified value. The perplexity in this context can be 
interpreted as an estimation about the number of close neighbors of 
each patient on graph S. Therefore, we specified the perplexity on 
the basis of the rounded mean degree of the similarity graph S built 
from a. The symmetric SNE was used for mathematical and compu-
tational convenience in the t- SNE formulation by defining the 
following undirected similarities

where n is the number of patients. Because Σi, jp(i, j) = 1, this is a 
valid probability distribution on the set of all pairs (i,j). The t- 
SNE step in this algorithm uses the t- distribution with one degree 
of freedom (also known as Cauchy distribution) as the one- 
dimensional similarity kernel applied to pairs of summary scores 
defined by

The main idea of this t- SNE- based step is to arrange the patients 
in a one- dimensional space such that the similarities q(i, j) between 
s(i) and s(j) match p(i, j) as close as possible in terms of the Kullback- 
Leibler divergence. Thus, the loss function is

a summary score vector sk is computed for each candidate k- gene 
subset, rendering a set of m such vectors {sk ∣ k = 1,2, ⋯, m}.

Our framework GbGMI can be applied to identify a subset of 
genes that collectively associate with some other patient- level nu-
meric attribute beyond the main focus of this paper (the HOOS/
KOOS pain score). Our framework is also flexible and adaptive in 
different contexts by replacing specific computational components 

with other design choices (for example, other embeddings instead of 
t- SNE for computing summary scores of selected gene expression).

DRG dissection and digestion
Before extraction of the DRG neurons, chambered coverslips (ibidi, 
80286) were coated overnight at 37°C with poly-  l- lysine (Sigma- 
Aldrich, P4832) and then for 2 hours at 37°C with mouse sarcoma 
basement membrane laminin (Sigma- Aldrich, L2020) diluted 1:50 
with 1× phosphate- buffered saline (PBS) and with one also coated 
with huNTN4 (0.2 μg/ml; R&D Systems, 1254- N4). For each as-
say, sensory DRG neurons were harvested from two female 6-  to 
8- week- old C57BL/6 mice (the Jackson Laboratory), under a dissec-
tion microscope using forceps, and placed into a waiting 15- ml conical 
tube on ice containing 1× L- 15 medium (Thermo Fisher Scientific, 
21083027). DRGs were spun down at 950 rpm for 2 min. Medium 
was aspirated and replaced with 1 ml of L- 15 containing dispase II 
(10 mg/ml; Sigma- Aldrich, 04942078001) and collagenase IV (10 mg/
ml; Thermo Fisher Scientific, 17104019). DRGs were then placed at 
37°C for 20 min. Enzyme solution was then carefully aspirated and 
replaced with 2 ml of L- 15. Pellet was resuspended thoroughly with 
a 1000- μl pipette. Twenty- five microliters of deoxyribonuclease I 
(10 mg/ml) was then added, and once again, the cells were placed 
at 37°C for 20 min. The cells were then spun down for 5 min at 950 rpm 
and resuspended in 5 ml of L- 15. After another 5 min of cen-
trifugation, the cells were resuspended in 1 ml of L- 15 and layered 
on top of 15% ice- cold bovine serum albumin (Sigma- Aldrich, 
A7906) and spun down at room temperature for 8 min at 1179 rpm 
to remove myelin. The cell pellet was resuspended in 1× Neuro-
basal Plus medium (Thermo Fisher Scientific, A3582901) 
containing B27 (Thermo Fisher Scientific, 17504001) diluted 1:50, 
GlutaMAX (Thermo Fisher Scientific, 35050061) diluted 1:100, and 
gentamicin sulfate (Abbott Laboratories) and then plated onto the 
precoated slides. Human β- NGF (0.1 μg/ml; R&D Systems, 256- GF) 
was added to the medium of the positive control slide chamber.

Harvesting fibroblast supernatant
A total of 500,000 synovial fibroblasts from low inflammatory RA, 
between five and eight passages, were plated in each well of six- well 
cell culture plates and covered with 2  ml of Neurobasal medium 
(Thermo Fisher Scientific, 21103049) with added 2% B- 27 supple-
ment (Thermo Fisher Scientific, 17504044), 1% GlutaMAX supple-
ment (Thermo Fisher Scientific, 35050061), and 0.04% gentamicin 
sulfate. Medium was changed, and cells were washed in PBS after 
24 hours at 37°C to allow for recovery from freeze- thaw. Fresh 
medium was added, and cells were left at 37°C overnight. After 
24 hours, medium was removed and centrifuged at 1300 rpm for 
5  min to remove cells and cell debris. Supernatant was then col-
lected and stored at −80°C.

DRG neuron culture
A total of 50,000 neurons harvested from mice were plated on poly-
  l- lysine and 2% laminin (Sigma- Aldrich, L2020) coated two- well 
chamber slides with either medium alone, fibroblast supernatant + 
medium (1:1), huNGF, huNTN4, or mouse Ntn4. To remove pre-
cipitates formed during freeze- thaw, medium and supernatant sam-
ples were first filtered using 50- ml MilliporeSigma Steriflip sterile 
disposable vacuum filters with 0.22- μm pore membranes. Neurons 
were cultured for 24 hours at 37°C before fixation in 4% para-
formaldehyde.

p(j ∣ i) =
exp( − ‖M1:k,i−M1:k,j ‖

2 ∕2σi
2)

Σl≠iexp( − ‖M1:k,i−M1:k,l ‖
2 ∕2σi

2)
(3)

Perp(Pi) = 2H(Pi),H(Pi) = − Σj p(j ∣ i) log2p(j ∣ i) (4)

p(i, j) =
p(j ∣ i) + p(i ∣ j)

2n
(5)

q(i, j) =
(1+‖s(i)− s(j)‖2)−1

Σk≠l(1+‖s(k)− s(l)‖2)−1
(6)

L = Σi,jp(i, j)log
p(i, j)

q(i, j)
(7)
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Neurite imaging, quantification, and comparison
Each chambered slide was examined under a Keyence fluorescence 
microscope, and the accompanying software was used to capture a 
stitched image of a large 5 × 5 area randomly selected on the plate at 
×10 magnification. Five of these images were captured per plate. To 
quantify sprouting versus nonsprouting DRG neurons, each image 
was examined in ImageJ and used the Cell Counter plugin to keep 
track of the total number of sprouting neurons, identified as having 
at least three neurites extended from the cell body where the exten-
sions were more than twice the diameter of the cell body and exhib-
ited some degree of branching. From across these images, n = 10 
neurons that exhibited branching were selected, and their branching 
was quantified using the Sholl Analysis plugin. Each analysis used 
a start radius of 30 pixels, an end radius of 225 pixels, and a step size 
of 7. Mixed- model repeated- measures analysis was used to analyze 
Sholl data. The model included group, radius (categorical), and 
group*radius interaction as fixed effects. A significant group*radius 
interaction indicated group differences and branching.

iDISCO/imaging
Synovial tissue obtained was fixed overnight in 4% paraformalde-
hyde and washed three times with PBS for 5  min. Samples were 
stored long- term in PBS with 0.03% sodium azide and were stained 
following iDISCO protocol. Briefly, samples were treated as indi-
cated using alternative nonmethanol pretreatment protocol before 
immunolabeling. All steps assumed an n = 1. Antibodies used for 
staining were used at 1:150 and include anti- CD31 antibody poly-
clonal guinea pig (Synaptic Systems, 351004), anti- CGRP antibody 
polyclonal goat (ab36001, Abcam), Alexa Fluor 488 donkey anti- 
mouse immunoglobulin G (IgG) (H + L) ReadyProbes (Invitrogen), 
and Alexa Fluor 568 donkey F(ab′)2 anti- rabbit IgG (H + L; Ab-
cam). After immunolabeling, samples were embedded in agar be-
fore clearing with dibenzyl ether (DBE). Samples were imaged by 
light sheet microscopy, submerged in DBE on an Ultramicroscope II 
(LaVision/Miltenyi BioTec). Images were captured using a 4× objec-
tive with 2.5- μm Z- slices. Acquired images were visualized using 
Imaris ×64 software (version 9.1 Bitplane), and three- dimensional 
reconstructions were recorded as mp4 video files. Optical slices 
were generated using the orthoslicer or oblique slicer tool.

Statistical analysis
Statistical analysis was performed with functions or libraries from 
the R software package unless stated otherwise. A P value, raw or 
adjusted depending on the context, below 0.05 was considered sig-
nificant. For comparison between pain scores in two patient groups, 
data were analyzed by unpaired, two- sided Mann- Whitney. A mod-
erated t test from limma (15) was used for testing individual gene 
expression correlates of fibrosis, lymphocytic inflammation, lining 
hyperplasia, and pain. To identify differentially expressed genes, a 
one- way analysis of variance (ANOVA) test was performed to com-
pare individual gene expression among different pain level–based 
groupings. The FDR was used in multiple hypothesis testing to cor-
rect for multiple comparisons where applicable. For assessing the 
correlation between two patient- level scores (of the three: gene ex-
pression summary score, pain score, or cell density), Spearman’s or 
Kendall’s rank correlation tests were used. For comparison between 
group level pain–associated gene expression and synovial tissue 
gene expression, Kolmogorov- Smirnov test was used. To compare 
the quantification among different groups of DRG neurons, data 

were analyzed by unpaired, two- sided Kruskal- Wallis test or two- 
way ANOVA test, followed by Dunn’s posttest (*P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001). A hypergeometric test was per-
formed to estimate statistical significance in pathway or gene set 
enrichment analysis, adjusted for multiple testing using g:SCS cor-
rection (68).
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