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1  |  INTRODUC TION

Species distributions are influenced by both biotic and abiotic factors 
but most species distribution models focus exclusively on abiotic 
effects because of numerous challenges associated with drawing 
inferences on biotic interactions (Belmaker et al., 2015; Dormann 

et al., 2018). Biotic interactions can shape range boundaries (Case 
& Gilpin, 1974; Hardin, 1960) and contribute to climate- driven 
range shifts (Araújo & Luoto, 2007; Jankowski et al., 2010; Lumpkin 
et al., 2012; McDonald et al., 2012; Warren et al., 2016), but the rel-
ative contributions of biotic versus abiotic factors in most systems 
remains unclear. Abiotic factors such as temperature and precipita-
tion often appear to limit species' distributions but can produce sim-
ilar spatial patterns to those produced by strong biotic interactions 
(Camarota et al., 2016; Diamond, 1978; Terborgh & Weske, 1975).

A fundamental challenge is that most biotic interactions occur 
at the individual level and a mechanistic understanding of the in-
teractions of individuals is often lost when analysing aggregated 
information such as local abundance or species occurrence data 
(Clark et al., 2014; Cody, 1974; Harms & Dinsmore, 2016; Poggiato 
et al., 2021). An example of the loss of information arising from ag-
gregation can be seen in competing species that partition space at 
fine spatial scales, yet at broader scales, share similar geographic 
ranges (Belmaker et al., 2012; Jaeger, 1971; Suhonen et al., 1994). 
Models that ignore individual- level interactions and instead focus on 
local abundance or occurrence can yield incorrect inferences sug-
gesting that the two species exhibit mutualistic rather than compet-
itive associations (Blanchet et al., 2020; König et al., 2021; Sherry 
& Holmes, 1988). This is an example of the modifiable area unit 
problem (MAUP) in which different scales of aggregation lead to dif-
ferent conclusions about the system (Jelinski & Wu, 1996; Laymon 

& Reid, 1986). The implications of scale dependence for accurately 
assessing the strength of abiotic and biotic interactions have been 
well documented in the literature on joint species distribution mod-
els (Clark et al., 2014; König et al., 2021; Ovaskainen et al., 2016), but 
the development of a modelling framework allowing for individual- 
level interactions and population- level inferences remains a funda-
mental challenge (Dormann et al., 2018; König et al., 2021; Poggiato 
et al., 2021; Wisz et al., 2012).

Populations at trailing edges of shifting species distributions pro-
vide unique opportunities for simultaneously examining both biotic 
and abiotic causes of range limits. Trailing- edge populations may 
experience novel climates and competitive interactions not pres-
ent in the centre of species' ranges (Cahill et al., 2014; McDonald 
et al., 2012) or display differences in ecological and evolution-
ary traits from individuals at the range core (Brown et al., 1996; 

Gaston, 2009). Early theory predicted that the strength of biotic 
interactions should decrease with latitude because climate condi-
tions are typically harsher and species richness is often lower at high 
latitudes (Hargreaves et al., 2014; Schemske et al., 2009). Similarly, 
abiotic factors were proposed as the main source of poleward 
range limits (Darwin, 1859; Dobzhansky, 1950; Louthan et al., 2015; 

MacArthur, 1972; Paquette & Hargreaves, 2021). In contrast, Cahill 

et al. (2014) found that abiotic factors were often the primary driv-
ers of warm- edge range limits, but few of the reviewed studies si-
multaneously investigated abiotic and biotic factors. Even at range 
boundaries most strongly limited by biotic interactions, abiotic 
factors often influence distribution (Martin, 2001), reproductive 
success (Matías & Jump, 2012) and density dependence (Merker & 
Chandler, 2021).

Here we present an approach for learning about the influence 
of individual- level interspecific interactions and abiotic conditions 
on species distributions, characterised in terms of species- specific 
abundance and spatial variation in density. The core of the modelling 
framework is a spatial point process observed imperfectly through 
the lens of capture- recapture data on two potentially interacting 
species. The approach is demonstrated using 4 years of data on two 
warbler species—one near the trailing- edge of its range and one near 
its range centre—to determine the relative roles of abiotic conditions 
and competition for space in shaping local species distributions over a 
strong climate gradient in the southern Appalachian Mountains, USA.

2  |  MATERIAL S AND METHODS

2.1  |  Point process models

Spatial point process models can be thought of as individual- level 
species distribution models defined in terms of abundance (N) and 
distribution (s1, … , sN), where the point si ∈  represents the spa-
tial coordinates of individual i , typically in a two dimensional planar 
region  ⊂ ℝ

2 (Baddeley, 2007; Renner et al., 2015). In many ecologi-
cal applications,  is synonymous with the study area or geographic 
region of interest. It is a spatial region where the N individuals occur. 
Because they are formulated in terms of clearly defined ecological 
state variables (i.e. abundance and spatial variation in density), point 
process models provide more direct insights about populations than 
SDMs focusing on relative abundance (Gelfand & Schliep, 2018; 

Renner et al., 2015; Warton & Shepherd, 2010; Yackulic et al., 2013). 
For instance, popular SDM modelling approaches such as MAXENT 
(Renner & Warton, 2013) and some forms of logistic regression 
(Baddeley, 2007) can be equivalently described as Poisson point pro-
cesses, with additional flexibility not available using other methods 
(Matthiopoulos et al., 2023). One of the simplest and most impor-
tant classes of spatial point process models is the inhomogeneous 
Poisson point process defined by an intensity function �(s), which is 
the expected value of density at location s ∈ . The intensity func-
tion, or density surface, can be modelled as a function of spatially 
referenced environmental variables to learn about the influence of 
abiotic variables on species distributions (Nightingale et al., 2015; 

Warton & Shepherd, 2010). The area under the density surface, 
given by the two- dimensional integral over , defines the expected 
value of abundance within the spatial region . Realised abundance 
is typically modelled as an outcome of a Poisson distribution, and the 
points (s1, … , sN) are also stochastic, distributed according to the 
density surface (Figure 1 panel II).
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    |  3GAYA and CHANDLER

One reason why standard point process models have not been 
more widely adopted in studies of species distributions is that 
they require coordinates of all individuals in the region of interest. 
Ecological applications of conventional point process models have 
therefore been limited primarily to studies of sessile organisms in 
small geographic extents (Illian et al., 2008; Nightingale et al., 2015; 

Rathbun & Cressie, 1994). Recently, however, hierarchical point 
process models have been developed that allow for inference from 
data on a subset of the individuals in the spatial region. Spatial dis-
tance sampling and spatial capture- recapture (SCR) can be viewed 
as thinned point process models that describes the probability of 
detecting (or capturing) an individual as a function of the distance 
between sampling locations and individuals (Efford, 2004; Johnson 
et al., 2010; Royle et al., 2013).

Existing hierarchical point process models have focused on the 
abundance and distribution of a single species (Hefley & Hooten, 2016). 
We present an expanded framework describing the abundance and 
distribution of two interacting species using a Markov point process 
model. The observation process is the same as used in SCR models—a 
thinning process determined by encounter rates—although it could be 
generalised to other types of individual- level ecological data.

2.2  |  Interspecific individual- level interactions

We define si as an individual's activity centre—its average spatial lo-
cation—which could be a territory centre or a home range centre 
during a specified time interval. Focusing on activity centres instead 
of instantaneous locations simplifies the model by avoiding the 
need to describe how individuals move during short time periods 
(McClintock et al., 2022; Royle et al., 2013).

Assume that all individuals have constant activity centres 
during the time period of interest. Let A and B represent two 
sympatric and potentially interacting species. Activity centres for 
species A are governed by an inhomogeneous point process with 
intensity �A(s) that describes the expected density of individuals 
of species A at spatial location s with environmental variables de-
noted by the vector x(s). The intensity of the point process, for 
example the expected density of species A, can be modelled by 
using any function suitable for non- negative continuous variables, 
including a basis function approach or a log- linear function which 
we employ: log

(
�
A(s)

)
= x�(s)�A , where �A represents a vector of 

coefficients. Below, we describe this process in terms of continu-
ous space, though in practice the spatial region is discretised into 

F I G U R E  1  Conceptual depiction 
of the point process model for two 
interacting species. Top panels (I): Abiotic 

conditions. Environmental variation in 
this example is described by two spatial 
layers depicted as raster images. Middle 
panels (II): Realised distribution with no 

biotic interaction. The abundance and 

distribution of individuals, in the absence 
of biotic interactions, are drawn from 
an inhomogeneous Poisson process. 
The relationship to the environmental 
variables may be different for each 
species. Background colour indicates 
the expected density (intensity) at each 
pixel, given the abiotic conditions. Bottom 
panel (III): Distribution with both abiotic 

effects and biotic interactions. The realised 
distribution of both species is thinned by 
an interaction function, resulting in a final 
distribution that accounts for both abiotic 
variables and biotic interactions.
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4  |    GAYA and CHANDLER

pixels to match the resolution of available environmental data. The 
expected value of abundance is given by:

In other words, the expected abundance within the spatial re-
gion  is the area under the intensity surface. Realised abundance 
is treated as an outcome of a Poisson distribution: NA

∼ Pois
(

Λ
A
)

 . 
Conditional on NA, the probability density of an activity centre is 
given by the intensity at location sA

i
 divided by the expected number 

of individuals of species A in :

Biotic interactions between individuals of species A and B are 
modelled using a Gibbs point process—a type of Markov point 
process model characterised by a pairwise interaction func-
tion (Ripley, 1981). Several types of Gibbs point process models 
exist, including hard- core Strauss point processes (Matérn, 1960; 

Strauss, 1975) with a radius parameter r controlling the minimum 
distance between interacting points. Hard- core processes have 
been used to study a wide variety of biological phenomena including 
the spatial distribution of forest fires (Turner, 2009), landslides (Das 
& Stein, 2016), and territory locations of small mammals (Reich & 
Gardner, 2014).

A generalised approach to hard- core process models can be 
obtained by a distance- dependent pairwise interaction function 
that modulates the intensity surface such that the probability of 
occurring at location s depends on the distance to all other points 
(individuals) in the spatial region of interest (Nightingale et al., 2015; 

Teichmann et al., 2013). These approaches are often referred to as 
soft- core point process models (Huber & Wolpert, 2009; Teichmann 

et al., 2013). In the absence of species A, the abundance and dis-
tribution of species B is modelled as an independent Poisson point 
process. When species A is present, the abundance and distribution 
of species B may be influenced by both abiotic interactions and the 
abundance and distribution of species A.

As with species A, the expected value of abundance of species 
B is E

(
NB

)
= ΛB = ��

B(s)ds, but for species B the intensity includes 
the interaction function h

(
s| sA

1
, … , sA

NA

)
, describing the effect of 

species A on the density of species B at location s. Under strong 
competition with species A, we would expect fewer individuals of 
species B to choose activity centres where species A is present, even 
if the abiotic conditions at location s are suitable for species B. Thus, 
strong competition will lead to lower abundance of species B at loca-
tion s. The interaction function could be a hard- core inhibition pro-
cess or it could approximate a soft- core inhibition process, allowing 
for weaker interactions than total inhibition within a fixed radius. 

We express the interaction function in the form of the product of 
Gaussian kernels with scale parameter �2:

where ‖sA
i
− s‖ is the Euclidean distance between the ith activity 

centre of species A and location s. Thus, as the density of species A 
increases in the vicinity of location s, the probability of species B occur-
ring at that location decreases. The parameter �2 determines the scale 
of competition between the two species. Note that the distributions of 
the two species will become independent as � approaches zero. In this 
case, the interaction function is unity, and thus the intensity of species 
B does not depend on species A. By estimating �, we can learn about 
the degree to which individuals of species A influence the distribution 
of individuals of species B. An illustration of the model is presented in 
Figure 1.

One benefit of the conditional structure of the pairwise interac-
tion function is that it avoid the computational problems associated 
with most Gibbs point process models. Gibbs process models for a sin-
gle species during a single time period involve a normalising constant 
that cannot be computed easily, not even with MCMC (Nightingale 
et al., 2015; Reich & Gardner, 2014; Ripley, 1981). The probability den-
sity of the point pattern is intractable because every point depends 
on every other point such that the joint distribution cannot be fac-
tored into simpler conditional distributions. However, by conditioning 
one species' abundance and distribution on the other, the problem 
becomes tractable and standard MCMC software can be used.

2.3  |  Observation model

The problem with using standard point process models is that they 
assume that all points (i.e. individuals) can be observed, whereas in 
empirical studies, some individuals usually go undetected. Ignoring 
imperfect detection can result in underestimation of abundance and 
density, and incorrect inferences about the scale of individual- level 
interactions. Fortunately, this form of observation error can be ac-
counted for using a hierarchical model describing how the observed 
data arise conditional on the partially observed state process (Royle 
& Dorazio, 2009). The observation model proposed here is designed 
for data on uniquely identifiable individuals, such as mark–recapture 
data or data on sessile organisms. We proceed with the case of spa-
tial capture- recapture data, in which encounters of each individual 
are referenced by space and time (Royle et al., 2013). Typically, an 
array of traps is used to capture, mark and release individuals. For a 
model with two species, the data are denoted by yA

ijk
, which indicates 

if individual i  of species A was captured at trap j on sampling occa-
sion k. The same data structure is used for species B. Individuals may 
go undetected because they are elusive or because the traps only 
effectively sample a subset of the region of interest, and thus both 
NA and NB are unknown. In addition to complicating efforts to study 

(1)ΛA = E
(
N
A
)
= �


�
A(s)ds.

(2)p
(
s
A
i
|NA

)
=

�A
(
sA
i

)

ΛA
.

(3)
�
B(s) = exp

(
x
�(s)�B

)
h
(
s| sA

1
, … , sA

NA

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

h(s)

.

(4)h
(
s| sA

1
, … , sA

NA

)
=

NA�
i=1

⎧
⎪⎨⎪⎩
1 − exp

⎛
⎜⎜⎜⎝

−

���sAi −s
���
2

2�2

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,
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    |  5GAYA and CHANDLER

abundance and distribution, unknown values of N pose problems 
when performing Bayesian inference because the dimensions of the 
parameter space is not fixed.

To facilitate inference, we used a data augmentation approach 
for the capture- recapture data (Royle, 2009). Data augmentation 
fixes the dimensions of the parameter space by introducing an upper 
bound on abundance (M) that is much greater than the true number 
of individuals in the population. Let MA represent the upper bound 
on abundance for species A. Additionally, let the binary latent vari-
ables zA

1
, … , zA

M
 indicate if individual i  was part of the population 

of species A. As mentioned in Equation 1, the expected number of 
individuals in the population of species A is ΛA. Therefore, the ex-
pected proportion of MA individuals that are part of the population 
is just �A = ΛA ∕MA. The binary variables are modelled as Bernoulli 
outcomes zA

i
∼ Bern

(

�
A
)

. Since individuals can only be detected if 
they are part of the population (zA

i
= 1), the data can then be mod-

elled conditional on the latent binary indicators: yA
ijk
∼ Bern

(
pA
ijk
zA
i

)
.

For species B, the expected number of individuals in the spatial 
region  depends on the abundance and distribution of individuals 
of species A. As with species A, we introduce an upper bound on 
abundance, MB, that is much larger than the true number of individ-
uals in the population of species B. Data augmentation also requires 
that we modify the pairwise interaction model (Equation 4). Only 
individuals of species A that are alive and in the population of in-
terest are included in the process model's inhibition function. This 
is accomplished by multiplying the Gaussian kernel in Equation 4 by 

z
A

i
. Thus, individual with zA

i
= 0 have no effect on the intensity of 

species B. As with species A, yB
ijk
= 0 for the MB

− nB individuals not 
observed during sampling.

Capture probability can be modelled using a Gaussian detection 
function that depends on the distance between activity centres and 
traps. For example, the probability that individual i  of species A is 
captured at trap j on survey occasion k is given by

where xj denotes the coordinates of capture location j, and sA
i
 rep-

resents the activity centre of species A.
The detection parameters �A

0
 and �A determine the baseline cap-

ture probability and the decay in capture probability with distance, 
respectively. An equivalent model is used for capture probability 
of species B. Following standard SCR assumptions, home ranges 
of both species are assumed to follow a bivariate normal distribu-
tion, as implied by the Gaussian capture probability function (Royle 
et al., 2013; Royle & Young, 2008).

2.4  |  Simulation study

We explored the performance of the model under 5 conditions: 
(1) Spatial competition between species and no relationships to 

environmental variables; (2) Spatial competition between species 
and opposite effects of environmental variables; (3) Spatial com-
petition between species, with species A, but not species B, influ-
enced by the environment; (4) Spatial competition between species 
and both species positively associated with the environment; and 
(5) No spatial competition between species and opposite relation-
ships to the environmental gradient (Table S1). We simulated a 10 
by 10 square trapping array in a spatially autocorrelated environ-
ment with traps spaced 10 units apart. For all scenarios, we simu-
lated 5 sampling occasions, with � = .05 and �0 = 0.30 for both 
species. We tested the model under each of the 5 conditions when 
species density was moderate (median density 0.35 individuals per 
unit squared, Scenarios 1–5) or low (median density 0.17 individuals 
per unit squared, Scenarios 6–10). Simulated species density ranged 
from 0.04 individuals per unit squared to 0.76 individuals per unit 
squared.

We evaluated bias, coefficient of variation (CV), root- mean- 
square error, and 95% credible interval coverage for the posterior 
medians of all � coefficients and the competition parameter �. For 
each scenario, we simulated 96 datasets. The number of simulations 
was chosen to facilitate efficient computations across computing 
clusters with 16 cores. We used Markov chain Monte Carlo (MCMC) 
to draw posterior samples in JAGS 4.3.0 with the ‘rjags' package in 
r 3.6.3 (Plummer, 2003, 2022; R Core Team, 2019). We ran 2 chains 
for 15,000 iterations with 5000 burnin iterations.

2.5  |  Case Study

We collected mark–recapture data on hooded warblers (Setophaga 

citrina) and black- throated blue warblers (Setophaga caerulescens) in 
the Nantahala National Forest, North Carolina, USA (35.1°N, 83.4°W) 
from May to June 2018–2021. The two species are ecologically simi-
lar in foraging behaviour, diet, nest site selection and size and have 
overlapping breeding ranges in the southern Appalachian Mountains 
(Holmes, 2011; Ogden & Stutchbury, 1996; Weeks, 2001). The en-
croachment of warm- adapted species, such as the hooded warbler, 
into historically cooler and wetter areas has been proposed as an 
explanation for declines of cool- adapted species such as the black- 
throated blue warbler (Merker, 2017). For the black- throated blue 
warbler, the southern Appalachian mountains represent the warm 
edge of their breeding range which extends to the boreal shield in 
Canada. Abundance of black- throated blue warblers is declining at 
the southern edge of the breeding range, whereas hooded warbler 
populations are stable or increasing in many parts of their range, 
including at our study site (Lewis et al., 2023; Merker, 2017; Sauer 
et al., 2017).

Birds were captured and banded at 19 sites, each with an array 
of 20 nylon mist nets (32 mm mesh, 12 m long) arranged in four 
rows of five nets (Figure 2). Nets were spaced on a 50 m grid with 
the inner row skipped to create two rows of 10 nets, a gap of 100 m 
and two more rows of 10 nets. Ten of the 20 nets (2 rows per day) 
were operated for 5 hours on each day beginning approximately 

(5)pA
ijk
= �

A
0
exp

⎛
⎜
⎜
⎜
⎝

−
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A
i
−xj
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6  |    GAYA and CHANDLER

30 min before sunrise from May 7 to June 28. Each net was open 
for two consecutive days with each site sampled for four consec-
utive days, except when weather interfered. Each captured indi-
vidual was marked with a US Geological Survey aluminium band 
and a unique combination of three colour bands. Species, age, sex 
and morphological measurements were recorded for all captured 
individuals. The use of animals in this study was approved by the 
University of Georgia's Animal Care and Use Committee (Permit 
A2022 11- 007- Y1- A0).

For each year, we modelled abundance and distribution of both 
species as a function of yearly climate ct, represented as the first 
principal component (Jolliffe, 2005) of the average May tempera-
ture and cumulative precipitation in the study area at each site. High 
values of the climate variable represented cold and wet sites with 
low values representing hot and dry locations. Temperature data 
was collected hourly from 34 temperature loggers (Onset Computer 
Corp., Bourne, MA, model number UA- 002- 64) across the study 
area, as well as at five forest service climate stations (Miniat 
et al., 2017). Precipitation was calculated as the total precipitation 
between May–June of each year (2018–2021) based on Daymet's 
1- km × 1- km daily precipitation data (Thornton et al., 2022). Note 

that we did not model temporal dynamics explicitly. The scope 
of our work was to develop a spatially explicit individual- based 
species- distribution model, and thus we did not include birth, 
growth, movement or mortality processes. Instead, each year of 
data was modelled independently.

Elevation of the sampling locations ranged from approximately 
600 m to 1600 m (Figure 2), with higher elevations being colder and 
wetter than low elevation sites. Data from the 4 years were mod-
elled jointly. We assumed the strength of the interspecific spatial 
competition was constant across years, but allowed abundance 
and individual activity centre locations to vary between years. For 
computational efficiency, we modelled climate as constant at each 
site within a given year. We defined the spatial region  by placing a 
100- m buffer around each set of 20 nets, based on our knowledge of 
both species territory sizes. We did not consider vertical partition-
ing in space (MacArthur, 1972), as behavioural observations suggest 
similar foraging and nesting heights between species. We assumed 
each population was geographically and demographically closed 
within a year. We did not model survival, recruitment or movement 
among years because these processes were beyond the scope of the 
study.

F I G U R E  2  Capture- recapture sites in the Nantahala National Forest, North Carolina, USA. Each site had 20 net locations in 4 rows of 5 
nets, with nets spaced 50 m apart. Sites were sampled from May to June 2018–2021.
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For some species, the process of being captured and banded 
can result in temporary avoidance of the capture location, a pro-
cess known as ‘trap- shyness' (Williams et al., 2002). To account for 
this behaviour, we allowed baseline capture probability, �A

0
 and �B

0
 

to change between the first capture and subsequent captures of an 
individual at each net location.

We used Markov chain Monte Carlo (MCMC) to draw poste-
rior samples in NIMBLE 0.9.0 with the ‘rnimble’ package in r 3.6.3 
(de Valpine et al., 2017; NIMBLE Development Team, 2019; R Core 

Team, 2019). Though we analysed our simulation data in JAGS, we 
chose to use NIMBLE for the case study to improve computation 
speed. We ran 3 chains for 50,000 iterations each with 30,000 
burnin iterations and a thinning rate of 10. We assessed conver-
gence using the Gelman- Rubin statistic (Gelman & Rubin, 1992) and 
visual inspection of the chains. We used the Watanabe–Akaike in-
formation criterion (WAIC) to determine the influence of the inhibi-
tion parameter on model fit.

3  |  RESULTS

Parameters were recovered with low bias for all simulated sce-
narios, even when sample sizes were below 10 individuals per spe-
cies (Figure 3). For the moderate density scenarios with simulated 
competition (Scenarios 1–4), bias in the posterior median of � (the 
competition parameter) ranged from −0.006 to −0.003, with 95% 
credible intervals capturing the true value 93%–100% of the time 
(Table S2). Point estimates of � were slightly positively biased (range 
−0.002–0.020) for the low density scenarios with simulated compe-
tition (Scenarios 6–9), with 95% credible intervals capturing the true 
value 94%–98% of the time. Credible interval coverage was lowest 
for �A

0
 (the intercept for abundance of species A), capturing the true 

value in 79%–92% of simulations. When points were simulated with-
out competition (Scenarios 5 and 10), the model correctly identified 
that competition was low, with lower estimates of the competition 
parameter approaching 0.

F I G U R E  3  Simulation study results for 10 scenarios, each with 96 simulated datasets. The posterior mode was used as a point estimator. 
Blue dots represent the true data generating values. Median abundance was 35 individuals per species for scenarios 1–5 and 15 individuals 
per species for scenarios 6–10.
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We captured 274 black- throated blue warblers and 151 hooded 
warblers across four breeding seasons. Individuals captured per year 
ranged from 58 to 87 black- throated blue warblers and from 33 to 
52 hooded warblers (Figure S1). Most individuals (79%) were only 
captured once in a given year, with a maximum of 3 captures within 
the same year. The average elevation was 1064 m (SD = 155 m) for 
hooded warblers and 1250 m (SD = 134 m) for black- throated blue 
warblers. One site at 1216 m had no captures of either species 
across the 4 breeding seasons. No hooded warblers were captured 
at one of the highest sites (1224 m), and no black- throated blue war-
blers were captured at four sites, most of which were at low eleva-
tions (744, 942, 994, and 1216 m). The remaining 13 sites recorded 
captures of both species at least once. We captured black- throated 
blue warblers and hooded warblers in the same net at only 2% of the 
net locations.

There was a strong effect of climate on spatial variation in den-
sity of both black- throated blue warblers and hooded warblers, 
with only moderate annual variation in abundance (Figures 4 and 5). 
Abundance of hooded warblers was highest at drier and hotter sites, 
though hooded warblers were predicted to occur at all sites. Black- 
throated blue warblers were an average of 11 times more abundant 
at the coldest and wettest sites than hooded warblers and were 
rarely detected at sites below 950 m. Abundance of both species was 
lowest in 2019, with very few black- throated blue warblers captured 
at the driest and hottest sites (Figure 4).

The competition parameter � was estimated to be 2.31 (95% CI: 
0.084–6.58) (Table S3), suggesting weak competition between the 
two species at fine scales (Figure 6). Spatial competition between 

activity centres was strongest when activity centres were at the 
same location, with no competition at distances greater than 10 me-
ters. There were no changes in abundance estimates of both species 
when the model was run with and without the interaction function 
(Figure S2). The WAIC was 4578 when the interaction function was 
included and 4481 when removed, suggesting the interaction func-
tion did not improve model fit.

4  |  DISCUSSION

Understanding both the abiotic and biotic drivers of species distri-
butions is critical for predicting responses to environmental change. 
Species distributions are often dependent upon the distribution of 
other species, but uncertainty in the distribution of one or both spe-
cies greatly complicates efforts to model spatial variation in den-
sity. Further complications arise because the spatial scale of biotic 
interactions is unknown. We presented a model that overcomes 
these challenges and allows for joint modelling of spatial variation in 
density of two potentially interacting species. The simulation study 
revealed that the model successfully distinguished true competi-
tion from random variation in individual locations or inverse species 
relationships to habitat characteristics. By formulating the spatially 
explicit model at the individual level, it is possible to learn about 
population- level processes that emerge from the combination of 
individual- level interactions and abiotic influences.

In spite of seemingly strong competition between black- throated 
blue warblers and hooded warblers, our results indicate that spa-
tial segregation of these two species in the southern Appalachian 
Mountains is primarily due to abiotic effects of climate rather than 
biotic interactions. While the distributions of these two populations 
appear to be inversely correlated at the scale of the study area, this 
pattern is most likely the result of niche partitioning. While historic 
competition could have produced the current pattern of spatial seg-
regation (Price & Kirkpatrick, 2009), our results suggest competitive 
interactions are not currently driving the distribution of these two 
species. In other words, if hooded warblers were removed from 
this ecosystem, our results indicate there would be no immediate 
effect on the distribution of black- throated blue warblers. This 
finding stands in contrast with the traditional view that biotic inter-
actions are the main drivers of species distributions at warm- edge 
range limits (Paquette & Hargreaves, 2021), yet, our results are con-
sistent with previous research on trailing- edge species of birds in 
the southern Appalachian Mountains (Merker & Chandler, 2020). 
Nonetheless, there are other biotic interactions that could be at 
play, and black- throated blue warblers may be competing with other 
species not included in our study, or they may be shifting their range 
in response to pathogens, predation or changes in habitat structure 
(Paquette & Hargreaves, 2021).

The model of interspecific interactions is conditional, with the 
distribution of species B depending on the distribution of species A. 
However, the interaction function is symmetric, meaning that the 
labelling of the two species as species A or species B in the model 

F I G U R E  4  Abundance and 95% CIs for black- throated blue 
warbler (Setophaga caerulescens) and hooded warbler (Setophaga 

citrina) from 2018 to 2021 in the Nantahala National Forest, North 
Carolina, USA. Trend lines show the expected values of abundance 
for each species when only abiotic relationships are considered.
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has no effect on the resulting abundance estimates or estimated 
strength of the inhibition parameter. Thus, interactions between 
two species can be studied even when there is no clear reason to 
view one species as dominant over the other.

Although not explored here, this model could be expanded to 
include temporal demographic processes (McClintock et al., 2022; 

Theng et al., 2022). By accounting for demographic processes, 
it should be possible to model temporal variation in biotic 

F I G U R E  5  Annual density surfaces of black- throated blue warbler (Setophaga caerulescens) and hooded warbler (Setophaga citrina) from 
2018 to 2021 in the Nantahala National Forest, North Carolina, USA.

F I G U R E  6  Inhibition between species 
at fine spatial scales. The probability 
of hooded warbler (HOWA, Setophaga 

citrina) activity centres inhibiting black- 
throated blue warbler (BTBW, Setophaga 

caerulescens) activity centres changes 
relative to distance. Inset shows the 
total inhibition probability when multiple 
hooded warbler activity centres are 
present.
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interactions to more accurately reflect seasonal changes in biotic 
relationships. With instantaneous locations, it may also be pos-
sible to consider a non- symmetric interaction between the two 
species. Currently available open- population joint species dis-
tribution models often quantify associations between species 
at relatively course spatial scales (Doser et al., 2022; Tikhonov 
et al., 2020). Combining these pre- existing frameworks with the 
individual- level model presented here should allow for inference 
on the demographic consequences of competition. Combined with 
behavioural observations, this approach could be used to deter-
mine dominance relationships between two species, and their 
population- level consequences.

Although we present our model in the context of spatial com-
petition, the framework could be applied to other types of biotic 
interactions that result in patterns such as attraction and clustering. 
While numerous methods exist for estimating clustering of individ-
uals within a single species, relatively little attention has been given 
to interspecific attraction at the individual level (Keil et al., 2021). By 
using an alternative interaction function, the model can formally test 
the strength of competition or attraction interactions between co- 
occurring species. For instance, this model could be applied to co- 
occurring plant species with facilitative interactions (He et al., 2013) 
or to the locations of species sharing the same food resources 
(Gostischa et al., 2021).The flexibility of the framework to accom-
modate a wide range of interaction functions further underscores 
its potential use in joint species distribution models (Wilkinson 
et al., 2021).

Although we applied our model to data from a relatively small 
subset of the species' geographic ranges, and we used intensive 
capture- recapture data for inference, range- wide applications could 
be achieved by combining individual- level data with count data in 
an integrated model (Chandler & Royle, 2013; Schaub & Kéry, 2022; 

Zipkin et al., 2021). Other sources of information such as GPS location 
data could be incorporated to provide even more information about 
movement and distribution (Berberich et al., 2016; Christiansen 
et al., 2015; Sollmann et al., 2013). It may also be possible to apply 
our framework to intraspecies interactions, expanding on work done 
by Reich and Gardner (2014) to account for territoriality or cluster-
ing. The flexibility of the model will allow for analysis of a wide range 
of systems where understanding individual- level interactions is criti-
cal to accurate inference on population- level processes, which is not 
possible with conventional species distribution models.
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