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point process in which the locations of individuals of one species are modelled as a
function of both abiotic variables and the locations of individuals of another species.
We applied the model to spatial capture-recapture (SCR) data on two ecologically
similar songbird species—hooded warbler (Setophaga citrina) and black-throated blue
warbler (Setophaga caerulescens)—that segregate over a climate gradient in the south-
ern Appalachian Mountains, USA.

Results: A simulation study indicated that the model can identify the effects of envi-
ronmental variation and biotic interactions on co-occurring species distributions. In
the case study, there were strong and opposing effects of climate on spatial varia-
tion in population densities, but spatial competition did not influence the two species'
distributions.

Main Conclusions: Unlike existing species distribution models, the framework pro-
posed here overcomes the MAUP and can be used to investigate how population-level
patterns emerge from individual-level processes, while also allowing for inference on
the spatial scale of biotic interactions. Our finding of minimal spatial competition be-
tween black-throated blue warbler and hooded warbler adds to the growing body of
literature suggesting that abiotic factors may be more important than competition at
low-latitude range margins. The model can be extended to accommodate count data
and binary data in addition to SCR data.
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1 | INTRODUCTION

Species distributions are influenced by both biotic and abiotic factors
but most species distribution models focus exclusively on abiotic
effects because of numerous challenges associated with drawing
inferences on biotic interactions (Belmaker et al., 2015; Dormann
et al., 2018). Biotic interactions can shape range boundaries (Case
& Gilpin, 1974; Hardin, 1960) and contribute to climate-driven
range shifts (Aradjo & Luoto, 2007; Jankowski et al., 2010; Lumpkin
etal.,, 2012; McDonald et al., 2012; Warren et al., 2016), but the rel-
ative contributions of biotic versus abiotic factors in most systems
remains unclear. Abiotic factors such as temperature and precipita-
tion often appear to limit species' distributions but can produce sim-
ilar spatial patterns to those produced by strong biotic interactions
(Camarota et al., 2016; Diamond, 1978; Terborgh & Weske, 1975).

A fundamental challenge is that most biotic interactions occur
at the individual level and a mechanistic understanding of the in-
teractions of individuals is often lost when analysing aggregated
information such as local abundance or species occurrence data
(Clark et al., 2014; Cody, 1974; Harms & Dinsmore, 2016; Poggiato
et al., 2021). An example of the loss of information arising from ag-
gregation can be seen in competing species that partition space at
fine spatial scales, yet at broader scales, share similar geographic
ranges (Belmaker et al., 2012; Jaeger, 1971; Suhonen et al., 1994).
Models that ignore individual-level interactions and instead focus on
local abundance or occurrence can yield incorrect inferences sug-
gesting that the two species exhibit mutualistic rather than compet-
itive associations (Blanchet et al., 2020; Konig et al., 2021; Sherry
& Holmes, 1988). This is an example of the modifiable area unit
problem (MAUP) in which different scales of aggregation lead to dif-
ferent conclusions about the system (Jelinski & Wu, 1996; Laymon
& Reid, 1986). The implications of scale dependence for accurately
assessing the strength of abiotic and biotic interactions have been
well documented in the literature on joint species distribution mod-
els (Clark et al., 2014; Konig et al., 2021; Ovaskainen et al., 2016), but
the development of a modelling framework allowing for individual-
level interactions and population-level inferences remains a funda-
mental challenge (Dormann et al., 2018; Kénig et al., 2021; Poggiato
etal., 2021; Wisz et al.,, 2012).

Populations at trailing edges of shifting species distributions pro-
vide unique opportunities for simultaneously examining both biotic
and abiotic causes of range limits. Trailing-edge populations may
experience novel climates and competitive interactions not pres-
ent in the centre of species' ranges (Cabhill et al., 2014; McDonald
et al, 2012) or display differences in ecological and evolution-
ary traits from individuals at the range core (Brown et al., 1996;
Gaston, 2009). Early theory predicted that the strength of biotic
interactions should decrease with latitude because climate condi-
tions are typically harsher and species richness is often lower at high
latitudes (Hargreaves et al., 2014; Schemske et al., 2009). Similarly,
abiotic factors were proposed as the main source of poleward
range limits (Darwin, 1859; Dobzhansky, 1950; Louthan et al., 2015;
MacArthur, 1972; Paquette & Hargreaves, 2021). In contrast, Cahill

et al. (2014) found that abiotic factors were often the primary driv-
ers of warm-edge range limits, but few of the reviewed studies si-
multaneously investigated abiotic and biotic factors. Even at range
boundaries most strongly limited by biotic interactions, abiotic
factors often influence distribution (Martin, 2001), reproductive
success (Matias & Jump, 2012) and density dependence (Merker &
Chandler, 2021).

Here we present an approach for learning about the influence
of individual-level interspecific interactions and abiotic conditions
on species distributions, characterised in terms of species-specific
abundance and spatial variation in density. The core of the modelling
framework is a spatial point process observed imperfectly through
the lens of capture-recapture data on two potentially interacting
species. The approach is demonstrated using 4years of data on two
warbler species—one near the trailing-edge of its range and one near
its range centre—to determine the relative roles of abiotic conditions
and competition for space in shaping local species distributions over a
strong climate gradient in the southern Appalachian Mountains, USA.

2 | MATERIALS AND METHODS
2.1 | Point process models

Spatial point process models can be thought of as individual-level
species distribution models defined in terms of abundance (N) and
distribution (s, ... ,sy), where the point s; € S represents the spa-
tial coordinates of individual i, typically in a two dimensional planar
region S c R? (Baddeley, 2007; Renner et al., 2015). In many ecologi-
cal applications, S is synonymous with the study area or geographic
region of interest. It is a spatial region where the N individuals occur.
Because they are formulated in terms of clearly defined ecological
state variables (i.e. abundance and spatial variation in density), point
process models provide more direct insights about populations than
SDMs focusing on relative abundance (Gelfand & Schliep, 2018;
Renner et al., 2015; Warton & Shepherd, 2010; Yackulic et al., 2013).
For instance, popular SDM modelling approaches such as MAXENT
(Renner & Warton, 2013) and some forms of logistic regression
(Baddeley, 2007) can be equivalently described as Poisson point pro-
cesses, with additional flexibility not available using other methods
(Matthiopoulos et al., 2023). One of the simplest and most impor-
tant classes of spatial point process models is the inhomogeneous
Poisson point process defined by an intensity function u(s), which is
the expected value of density at location s € S. The intensity func-
tion, or density surface, can be modelled as a function of spatially
referenced environmental variables to learn about the influence of
abiotic variables on species distributions (Nightingale et al., 2015;
Warton & Shepherd, 2010). The area under the density surface,
given by the two-dimensional integral over S, defines the expected
value of abundance within the spatial region S. Realised abundance
is typically modelled as an outcome of a Poisson distribution, and the
points (s4, ... ,sy) are also stochastic, distributed according to the
density surface (Figure 1 panel Il).
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FIGURE 1 Conceptual depiction

of the point process model for two
interacting species. Top panels (I): Abiotic
conditions. Environmental variation in

this example is described by two spatial
layers depicted as raster images. Middle
panels (l1): Realised distribution with no
biotic interaction. The abundance and
distribution of individuals, in the absence
of biotic interactions, are drawn from

an inhomogeneous Poisson process.

The relationship to the environmental
variables may be different for each
species. Background colour indicates

the expected density (intensity) at each
pixel, given the abiotic conditions. Bottom
panel (l11): Distribution with both abiotic
effects and biotic interactions. The realised
distribution of both species is thinned by
an interaction function, resulting in a final
distribution that accounts for both abiotic
variables and biotic interactions.

One reason why standard point process models have not been
more widely adopted in studies of species distributions is that
they require coordinates of all individuals in the region of interest.
Ecological applications of conventional point process models have
therefore been limited primarily to studies of sessile organisms in
small geographic extents (lllian et al., 2008; Nightingale et al., 2015;
Rathbun & Cressie, 1994). Recently, however, hierarchical point
process models have been developed that allow for inference from
data on a subset of the individuals in the spatial region. Spatial dis-
tance sampling and spatial capture-recapture (SCR) can be viewed
as thinned point process models that describes the probability of
detecting (or capturing) an individual as a function of the distance
between sampling locations and individuals (Efford, 2004; Johnson
et al., 2010; Royle et al., 2013).

Existing hierarchical point process models have focused on the
abundance and distribution of asingle species (Hefley & Hooten, 2016).
We present an expanded framework describing the abundance and
distribution of two interacting species using a Markov point process
model. The observation process is the same as used in SCR models—a
thinning process determined by encounter rates—although it could be
generalised to other types of individual-level ecological data.
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2.2 | Interspecific individual-level interactions

We define s; as an individual's activity centre—its average spatial lo-
cation—which could be a territory centre or a home range centre
during a specified time interval. Focusing on activity centres instead
of instantaneous locations simplifies the model by avoiding the
need to describe how individuals move during short time periods
(McClintock et al., 2022; Royle et al., 2013).

Assume that all individuals have constant activity centres
during the time period of interest. Let A and B represent two
sympatric and potentially interacting species. Activity centres for
species A are governed by an inhomogeneous point process with
intensity 4A(s) that describes the expected density of individuals
of species A at spatial location s with environmental variables de-
noted by the vector x(s). The intensity of the point process, for
example the expected density of species A, can be modelled by
using any function suitable for non-negative continuous variables,
including a basis function approach or a log-linear function which
we employ: log(u*(s)) = x/(s)p", where p* represents a vector of
coefficients. Below, we describe this process in terms of continu-
ous space, though in practice the spatial region is discretised into

ASUADI suowwo)) dAanear) dqedridde ayy Aq pauseAos are sa[oNIE V() 1asn JO sa[NI 10) KIeIqI] SUIUQ A[IA\ UO (SUONIPUOI-PUB-SULI) W0’ K[IM  KIeIqI[auI[uo//:sdN) SUONIPUOY) Pue SULIR, oY) 39S “[+707/L0/0] U0 K1eiqr] autuQ A3[IM ‘TL6E 1 1Q/1 111°01/10p/wod Kaim:Areiqrjaur[uoy/:sdny woly papeojumod ‘0 ‘66979



Journal of

GAYA and CHANDLER

Biogeography

pixels to match the resolution of available environmental data. The

expected value of abundance is given by:

AA = E(NA) = JﬂA(S)dS. (1)
S

In other words, the expected abundance within the spatial re-
gion S is the area under the intensity surface. Realised abundance
is treated as an outcome of a Poisson distribution: N ~ Pois(A*).
Conditional on N the probability density of an activity centre is
given by the intensity at location s,{A divided by the expected number
of individuals of species Ain S:

= @

p(s!INY) =

Biotic interactions between individuals of species A and B are
modelled using a Gibbs point process—a type of Markov point
process model characterised by a pairwise interaction func-
tion (Ripley, 1981). Several types of Gibbs point process models
exist, including hard-core Strauss point processes (Matérn, 1960;
Strauss, 1975) with a radius parameter r controlling the minimum
distance between interacting points. Hard-core processes have
been used to study a wide variety of biological phenomena including
the spatial distribution of forest fires (Turner, 2009), landslides (Das
& Stein, 2016), and territory locations of small mammals (Reich &
Gardner, 2014).

A generalised approach to hard-core process models can be
obtained by a distance-dependent pairwise interaction function
that modulates the intensity surface such that the probability of
occurring at location s depends on the distance to all other points
(individuals) in the spatial region of interest (Nightingale et al., 2015;
Teichmann et al., 2013). These approaches are often referred to as
soft-core point process models (Huber & Wolpert, 2009; Teichmann
et al., 2013). In the absence of species A, the abundance and dis-
tribution of species B is modelled as an independent Poisson point
process. When species A is present, the abundance and distribution
of species B may be influenced by both abiotic interactions and the

abundance and distribution of species A.

1B(s) = exp(X'()B®) h(s|sf, ... ,sp.).
(R — (3)
h(s)

As with species A, the expected value of abundance of species

B is E(NB) = AP = [ uB(s)ds, but for species B the intensity includes
the interaction function h(s|sA, ,sﬁA ) describing the effect of
species A on the density of species B at location s. Under strong
competition with species A, we would expect fewer individuals of
species B to choose activity centres where species A is present, even
if the abiotic conditions at location s are suitable for species B. Thus,
strong competition will lead to lower abundance of species B at loca-
tion s. The interaction function could be a hard-core inhibition pro-
cess or it could approximate a soft-core inhibition process, allowing
for weaker interactions than total inhibition within a fixed radius.

We express the interaction function in the form of the product of

Gaussian kernels with scale parameter w?

2
- ~ [t

h(s|sf, ... ’Sf\\m) = l_! 1—exp —a | )
i

where || s,A —s]| is the Euclidean distance between the ith activity
centre of species A and location s. Thus, as the density of species A
increases in the vicinity of location s, the probability of species B occur-
ring at that location decreases. The parameter w? determines the scale
of competition between the two species. Note that the distributions of
the two species will become independent as w approaches zero. In this
case, the interaction function is unity, and thus the intensity of species
B does not depend on species A. By estimating @, we can learn about
the degree to which individuals of species A influence the distribution
of individuals of species B. An illustration of the model is presented in
Figure 1.

One benefit of the conditional structure of the pairwise interac-
tion function is that it avoid the computational problems associated
with most Gibbs point process models. Gibbs process models for a sin-
gle species during a single time period involve a normalising constant
that cannot be computed easily, not even with MCMC (Nightingale
etal., 2015; Reich & Gardner, 2014; Ripley, 1981). The probability den-
sity of the point pattern is intractable because every point depends
on every other point such that the joint distribution cannot be fac-
tored into simpler conditional distributions. However, by conditioning
one species' abundance and distribution on the other, the problem
becomes tractable and standard MCMC software can be used.

2.3 | Observation model

The problem with using standard point process models is that they
assume that all points (i.e. individuals) can be observed, whereas in
empirical studies, some individuals usually go undetected. Ignoring
imperfect detection can result in underestimation of abundance and
density, and incorrect inferences about the scale of individual-level
interactions. Fortunately, this form of observation error can be ac-
counted for using a hierarchical model describing how the observed
data arise conditional on the partially observed state process (Royle
& Dorazio, 2009). The observation model proposed here is designed
for data on uniquely identifiable individuals, such as mark-recapture
data or data on sessile organisms. We proceed with the case of spa-
tial capture-recapture data, in which encounters of each individual
are referenced by space and time (Royle et al., 2013). Typically, an
array of traps is used to capture, mark and release individuals. For a
model with two species, the data are denoted by y?k, which indicates
if individual i of species A was captured at trap j on sampling occa-
sion k. The same data structure is used for species B. Individuals may
go undetected because they are elusive or because the traps only
effectively sample a subset of the region of interest, and thus both
NA and NB are unknown. In addition to complicating efforts to study
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abundance and distribution, unknown values of N pose problems
when performing Bayesian inference because the dimensions of the
parameter space is not fixed.

To facilitate inference, we used a data augmentation approach
for the capture-recapture data (Royle, 2009). Data augmentation
fixes the dimensions of the parameter space by introducing an upper
bound on abundance (M) that is much greater than the true number
of individuals in the population. Let M” represent the upper bound
on abundance for species A. Additionally, let the binary latent vari-
ables 23, ...
of species A. As mentioned in Equation 1, the expected number of

,Z% indicate if individual i was part of the population

individuals in the population of species A is A*. Therefore, the ex-
pected proportion of MA individuals that are part of the population
is just yA = AA /MA. The binary variables are modelled as Bernoulli
outcomes z* ~ Bern(y*). Since individuals can only be detected if
they are part of the population (z".“ = 1), the data can then be mod-
elled conditional on the latent binary indicators: yg‘k ~ Bern (;o;.‘kz',.4 )

For species B, the expected number of individuals in the spatial
region S depends on the abundance and distribution of individuals
of species A. As with species A, we introduce an upper bound on
abundance, MB, that is much larger than the true number of individ-
uals in the population of species B. Data augmentation also requires
that we modify the pairwise interaction model (Equation 4). Only
individuals of species A that are alive and in the population of in-
terest are included in the process model's inhibition function. This
is accomplished by multiplying the Gaussian kernel in Equation 4 by
zf. Thus, individual with z‘f =0 have no effect on the intensity of
species B. As with species A, yi’fk =0 for the MB — nB individuals not
observed during sampling.

Capture probability can be modelled using a Gaussian detection
function that depends on the distance between activity centres and
traps. For example, the probability that individual i of species A is

captured at trap j on survey occasion k is given by

2
—||sA = x:

A
P = alexp
ijk 0 26AcA

where x; denotes the coordinates of capture location j, and s',.4 rep-
resents the activity centre of species A.

The detection parameters aé and ¢* determine the baseline cap-
ture probability and the decay in capture probability with distance,
respectively. An equivalent model is used for capture probability
of species B. Following standard SCR assumptions, home ranges
of both species are assumed to follow a bivariate normal distribu-
tion, as implied by the Gaussian capture probability function (Royle
et al., 2013; Royle & Young, 2008).

2.4 | Simulation study

We explored the performance of the model under 5 conditions:
(1) Spatial competition between species and no relationships to

EEME ey

environmental variables; (2) Spatial competition between species
and opposite effects of environmental variables; (3) Spatial com-
petition between species, with species A, but not species B, influ-
enced by the environment; (4) Spatial competition between species
and both species positively associated with the environment; and
(5) No spatial competition between species and opposite relation-
ships to the environmental gradient (Table S1). We simulated a 10
by 10 square trapping array in a spatially autocorrelated environ-
ment with traps spaced 10units apart. For all scenarios, we simu-
lated 5 sampling occasions, with ¢ =.05 and ay =0.30 for both
species. We tested the model under each of the 5 conditions when
species density was moderate (median density 0.35 individuals per
unit squared, Scenarios 1-5) or low (median density 0.17 individuals
per unit squared, Scenarios 6-10). Simulated species density ranged
from 0.04 individuals per unit squared to 0.76 individuals per unit
squared.

We evaluated bias, coefficient of variation (CV), root-mean-
square error, and 95% credible interval coverage for the posterior
medians of all g coefficients and the competition parameter w. For
each scenario, we simulated 96 datasets. The number of simulations
was chosen to facilitate efficient computations across computing
clusters with 16 cores. We used Markov chain Monte Carlo (MCMC)
to draw posterior samples in JAGS 4.3.0 with the ‘rjags' package in
R 3.6.3 (Plummer, 2003, 2022; R Core Team, 2019). We ran 2 chains
for 15,000 iterations with 5000 burnin iterations.

2.5 | Case Study

We collected mark-recapture data on hooded warblers (Setophaga
citrina) and black-throated blue warblers (Setophaga caerulescens) in
the Nantahala National Forest, North Carolina, USA (35.1°N, 83.4°W)
from May to June 2018-2021. The two species are ecologically simi-
lar in foraging behaviour, diet, nest site selection and size and have
overlapping breeding ranges in the southern Appalachian Mountains
(Holmes, 2011; Ogden & Stutchbury, 1996; Weeks, 2001). The en-
croachment of warm-adapted species, such as the hooded warbler,
into historically cooler and wetter areas has been proposed as an
explanation for declines of cool-adapted species such as the black-
throated blue warbler (Merker, 2017). For the black-throated blue
warbler, the southern Appalachian mountains represent the warm
edge of their breeding range which extends to the boreal shield in
Canada. Abundance of black-throated blue warblers is declining at
the southern edge of the breeding range, whereas hooded warbler
populations are stable or increasing in many parts of their range,
including at our study site (Lewis et al., 2023; Merker, 2017; Sauer
etal., 2017).

Birds were captured and banded at 19 sites, each with an array
of 20 nylon mist nets (32mm mesh, 12m long) arranged in four
rows of five nets (Figure 2). Nets were spaced on a 50m grid with
the inner row skipped to create two rows of 10 nets, a gap of 100m
and two more rows of 10 nets. Ten of the 20 nets (2 rows per day)
were operated for 5hours on each day beginning approximately
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FIGURE 2 Capture-recapture sites in the Nantahala National Forest, North Carolina, USA. Each site had 20 net locations in 4 rows of 5
nets, with nets spaced 50 m apart. Sites were sampled from May to June 2018-2021.

30min before sunrise from May 7 to June 28. Each net was open
for two consecutive days with each site sampled for four consec-
utive days, except when weather interfered. Each captured indi-
vidual was marked with a US Geological Survey aluminium band
and a unique combination of three colour bands. Species, age, sex
and morphological measurements were recorded for all captured
individuals. The use of animals in this study was approved by the
University of Georgia's Animal Care and Use Committee (Permit
A2022 11-007-Y1-A0).

For each year, we modelled abundance and distribution of both
species as a function of yearly climate c,, represented as the first
principal component (Jolliffe, 2005) of the average May tempera-
ture and cumulative precipitation in the study area at each site. High
values of the climate variable represented cold and wet sites with
low values representing hot and dry locations. Temperature data
was collected hourly from 34 temperature loggers (Onset Computer
Corp., Bourne, MA, model number UA-002-64) across the study
area, as well as at five forest service climate stations (Miniat
et al., 2017). Precipitation was calculated as the total precipitation
between May-June of each year (2018-2021) based on Daymet's
1-kmx 1-km daily precipitation data (Thornton et al., 2022). Note

that we did not model temporal dynamics explicitly. The scope
of our work was to develop a spatially explicit individual-based
species-distribution model, and thus we did not include birth,
growth, movement or mortality processes. Instead, each year of
data was modelled independently.

Elevation of the sampling locations ranged from approximately
600m to 1600m (Figure 2), with higher elevations being colder and
wetter than low elevation sites. Data from the 4years were mod-
elled jointly. We assumed the strength of the interspecific spatial
competition was constant across years, but allowed abundance
and individual activity centre locations to vary between years. For
computational efficiency, we modelled climate as constant at each
site within a given year. We defined the spatial region S by placing a
100-m buffer around each set of 20 nets, based on our knowledge of
both species territory sizes. We did not consider vertical partition-
ing in space (MacArthur, 1972), as behavioural observations suggest
similar foraging and nesting heights between species. We assumed
each population was geographically and demographically closed
within a year. We did not model survival, recruitment or movement
among years because these processes were beyond the scope of the
study.
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For some species, the process of being captured and banded
can result in temporary avoidance of the capture location, a pro-

cess known as ‘trap-shyness' (Williams et al., 2002). To account for

B
0

to change between the first capture and subsequent captures of an

this behaviour, we allowed baseline capture probability, aé and «a

individual at each net location.

We used Markov chain Monte Carlo (MCMC) to draw poste-
rior samples in NIMBLE 0.9.0 with the ‘rnimble’ package in r 3.6.3
(de Valpine et al., 2017; NIMBLE Development Team, 2019; R Core
Team, 2019). Though we analysed our simulation data in JAGS, we
chose to use NIMBLE for the case study to improve computation
speed. We ran 3 chains for 50,000 iterations each with 30,000
burnin iterations and a thinning rate of 10. We assessed conver-
gence using the Gelman-Rubin statistic (Gelman & Rubin, 1992) and
visual inspection of the chains. We used the Watanabe-Akaike in-
formation criterion (WAIC) to determine the influence of the inhibi-
tion parameter on model fit.
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3 | RESULTS

Parameters were recovered with low bias for all simulated sce-
narios, even when sample sizes were below 10 individuals per spe-
cies (Figure 3). For the moderate density scenarios with simulated
competition (Scenarios 1-4), bias in the posterior median of » (the
competition parameter) ranged from -0.006 to -0.003, with 95%
credible intervals capturing the true value 93%-100% of the time
(Table S2). Point estimates of w were slightly positively biased (range
-0.002-0.020) for the low density scenarios with simulated compe-
tition (Scenarios 6-9), with 95% credible intervals capturing the true
value 94%-98% of the time. Credible interval coverage was lowest
for ﬂé (the intercept for abundance of species A), capturing the true
value in 79%-92% of simulations. When points were simulated with-
out competition (Scenarios 5 and 10), the model correctly identified
that competition was low, with lower estimates of the competition
parameter approaching O.
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FIGURE 4 Abundance and 95% Cls for black-throated blue
warbler (Setophaga caerulescens) and hooded warbler (Setophaga
citrina) from 2018 to 2021 in the Nantahala National Forest, North
Carolina, USA. Trend lines show the expected values of abundance
for each species when only abiotic relationships are considered.

We captured 274 black-throated blue warblers and 151 hooded
warblers across four breeding seasons. Individuals captured per year
ranged from 58 to 87 black-throated blue warblers and from 33 to
52 hooded warblers (Figure S1). Most individuals (79%) were only
captured once in a given year, with a maximum of 3 captures within
the same year. The average elevation was 1064m (SD=155m) for
hooded warblers and 1250m (SD=134m) for black-throated blue
warblers. One site at 1216 m had no captures of either species
across the 4 breeding seasons. No hooded warblers were captured
at one of the highest sites (1224 m), and no black-throated blue war-
blers were captured at four sites, most of which were at low eleva-
tions (744, 942, 994, and 1216 m). The remaining 13 sites recorded
captures of both species at least once. We captured black-throated
blue warblers and hooded warblers in the same net at only 2% of the
net locations.

There was a strong effect of climate on spatial variation in den-
sity of both black-throated blue warblers and hooded warblers,
with only moderate annual variation in abundance (Figures 4 and 5).
Abundance of hooded warblers was highest at drier and hotter sites,
though hooded warblers were predicted to occur at all sites. Black-
throated blue warblers were an average of 11 times more abundant
at the coldest and wettest sites than hooded warblers and were
rarely detected at sites below 950 m. Abundance of both species was
lowest in 2019, with very few black-throated blue warblers captured
at the driest and hottest sites (Figure 4).

The competition parameter w was estimated to be 2.31 (95% Cl:
0.084-6.58) (Table S3), suggesting weak competition between the
two species at fine scales (Figure 6). Spatial competition between

activity centres was strongest when activity centres were at the
same location, with no competition at distances greater than 10 me-
ters. There were no changes in abundance estimates of both species
when the model was run with and without the interaction function
(Figure S2). The WAIC was 4578 when the interaction function was
included and 4481 when removed, suggesting the interaction func-

tion did not improve model fit.

4 | DISCUSSION

Understanding both the abiotic and biotic drivers of species distri-
butions is critical for predicting responses to environmental change.
Species distributions are often dependent upon the distribution of
other species, but uncertainty in the distribution of one or both spe-
cies greatly complicates efforts to model spatial variation in den-
sity. Further complications arise because the spatial scale of biotic
interactions is unknown. We presented a model that overcomes
these challenges and allows for joint modelling of spatial variation in
density of two potentially interacting species. The simulation study
revealed that the model successfully distinguished true competi-
tion from random variation in individual locations or inverse species
relationships to habitat characteristics. By formulating the spatially
explicit model at the individual level, it is possible to learn about
population-level processes that emerge from the combination of
individual-level interactions and abiotic influences.

In spite of seemingly strong competition between black-throated
blue warblers and hooded warblers, our results indicate that spa-
tial segregation of these two species in the southern Appalachian
Mountains is primarily due to abiotic effects of climate rather than
biotic interactions. While the distributions of these two populations
appear to be inversely correlated at the scale of the study area, this
pattern is most likely the result of niche partitioning. While historic
competition could have produced the current pattern of spatial seg-
regation (Price & Kirkpatrick, 2009), our results suggest competitive
interactions are not currently driving the distribution of these two
species. In other words, if hooded warblers were removed from
this ecosystem, our results indicate there would be no immediate
effect on the distribution of black-throated blue warblers. This
finding stands in contrast with the traditional view that biotic inter-
actions are the main drivers of species distributions at warm-edge
range limits (Paquette & Hargreaves, 2021), yet, our results are con-
sistent with previous research on trailing-edge species of birds in
the southern Appalachian Mountains (Merker & Chandler, 2020).
Nonetheless, there are other biotic interactions that could be at
play, and black-throated blue warblers may be competing with other
species not included in our study, or they may be shifting their range
in response to pathogens, predation or changes in habitat structure
(Paquette & Hargreaves, 2021).

The model of interspecific interactions is conditional, with the
distribution of species B depending on the distribution of species A.
However, the interaction function is symmetric, meaning that the
labelling of the two species as species A or species B in the model
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FIGURE 6 Inhibition between species
at fine spatial scales. The probability 1.00
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has no effect on the resulting abundance estimates or estimated
strength of the inhibition parameter. Thus, interactions between
two species can be studied even when there is no clear reason to
view one species as dominant over the other.

5 10 15
Distance From HOWA Activity Center (m)

Although not explored here, this model could be expanded to
include temporal demographic processes (McClintock et al., 2022;
Theng et al., 2022). By accounting for demographic processes,
it should be possible to model temporal variation in biotic
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interactions to more accurately reflect seasonal changes in biotic
relationships. With instantaneous locations, it may also be pos-
sible to consider a non-symmetric interaction between the two
species. Currently available open-population joint species dis-
tribution models often quantify associations between species
at relatively course spatial scales (Doser et al., 2022; Tikhonov
et al., 2020). Combining these pre-existing frameworks with the
individual-level model presented here should allow for inference
on the demographic consequences of competition. Combined with
behavioural observations, this approach could be used to deter-
mine dominance relationships between two species, and their
population-level consequences.

Although we present our model in the context of spatial com-
petition, the framework could be applied to other types of biotic
interactions that result in patterns such as attraction and clustering.
While numerous methods exist for estimating clustering of individ-
uals within a single species, relatively little attention has been given
to interspecific attraction at the individual level (Keil et al., 2021). By
using an alternative interaction function, the model can formally test
the strength of competition or attraction interactions between co-
occurring species. For instance, this model could be applied to co-
occurring plant species with facilitative interactions (He et al., 2013)
or to the locations of species sharing the same food resources
(Gostischa et al., 2021).The flexibility of the framework to accom-
modate a wide range of interaction functions further underscores
its potential use in joint species distribution models (Wilkinson
et al.,, 2021).

Although we applied our model to data from a relatively small
subset of the species' geographic ranges, and we used intensive
capture-recapture data for inference, range-wide applications could
be achieved by combining individual-level data with count data in
an integrated model (Chandler & Royle, 2013; Schaub & Kéry, 2022;
Zipkinetal.,2021). Other sources of information such as GPS location
data could be incorporated to provide even more information about
movement and distribution (Berberich et al., 2016; Christiansen
et al., 2015; Sollmann et al., 2013). It may also be possible to apply
our framework to intraspecies interactions, expanding on work done
by Reich and Gardner (2014) to account for territoriality or cluster-
ing. The flexibility of the model will allow for analysis of a wide range
of systems where understanding individual-level interactions is criti-
cal to accurate inference on population-level processes, which is not
possible with conventional species distribution models.
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