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in biomedicine: A scoping review
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SUMMARY

With advancements in large language models, artificial intelligence (Al) is undergoing a paradigm shift
where Al models can be repurposed with minimal effort across various downstream tasks. This provides
great promise in learning generally useful representations from biomedical corpora, at scale, which would
empower Al solutions in healthcare and biomedical research. Nonetheless, our understanding of how they
work, when they fail, and what they are capable of remains underexplored due to their emergent prop-
erties. Consequently, there is a need to comprehensively examine the use of language models in biomed-
icine. This review aims to summarize existing studies of language models in biomedicine and identify
topics ripe for future research, along with the technical and analytical challenges w.r.t. interpretability.
We expect this review to help researchers and practitioners better understand the landscape of language
models in biomedicine and what methods are available to enhance the interpretability of their models.

INTRODUCTION

Recent progress made in large language models, i.e., GPT," BERT,” and ChatGPT, presents a chance to rethink artificial intelligence (Al) sys-
tems, with language as a means to facilitate interaction between humans and Al. Generally, a language model is a probability distribution
p (w1, wy, ..., wy) over a sequence of word tokens, with wy, € Q and Q being a vocabulary, as shown in Figure 2A. But why would you want
to compute such a probability of a word sequence? In the application scenario, the goal is to produce word sequences as output. For
example, the goal of text summarization is to convert long texts into concise summaries. By computing the probability distribution over ut-
terances, the word sequence can be generated by sampling tokens from this learned probability distribution.

A simple approach to computing the probability distribution of word sequence is to use statistical techniques, such as relative frequency
counts. However, it is very data-intensive and suffers from high variance: even grammatical sentences will have a zero probability if they have
not occurred in the training data. An alternative way is to compute the probability in the product format. N-gram models make a crucial simpli-
fying approximation by conditioning on only the last n — 1 words. However, those traditional probabilistic language models require smooth-
ing techniques to avoid the situation p (wy, wa, ..., wym) = O when there is a rare or unseen word. Besides, these models are computationally
intensive for large histories of text and cannot capture the long-range dependencies in language. Neural language models use neural net-
works or deep neural networks to model languages, such as feedforward neural networks, recurrent neural networks, and transformer neural
networks. Neural language models have significant advantages over traditional probabilistic language models. Compared to n-gram models,
neural language models are not constrained by the restricted context and can incorporate contexts from arbitrarily distant words, while re-
maining computationally and statistically tractable. Besides, neural language models can generalize better over contexts of similar words and
are more accurate at word prediction. In this survey, we will focus on the neural language models and use the term “language model” (LM) to
refer to the neural language models.

LMs usually use (low-dimensional) latent feature representation to implicitly capture the syntactic or semantic features of the language. The
representation needs to be learned afresh for each new natural language processing (NLP) task, and in many cases, the size of the training
data limits the quality of the latent feature representation. Given that the nuances of language are common to all NLP tasks, one could posit
that we could learn generic latent feature representations from some generic tasks once and then share it across all NLP tasks. Language
modeling, where the model needs to learn how to predict the next word given previous words, is such a generic task with abundant naturally
occurring text to pre-train such a model (hence the name pre-trained language models). There are some benefits in pre-training, including
(i) learning a universal representation through the massive corpus for downstream tasks, (i) achieving an improved generalization ability and
faster convergence with model initialization, and (iii) mitigating the overfitting issues in scenarios with limited data. There are several classes of
pre-trained language models: autoregressive language models (GPT,' GPT-2,% ELMo*), masked language models (BERT,” XLM,” T5,° MASS),
permuted language models (XLNet®), and denoising autoencoders (BART,” mBART'%), which are categorized by their ways of masking tokens,
overcoming the mismatch issue, and recovering back the inputs. Besides, the pre-trained language models can also be categorized from
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Figure 1. PRISMA flow diagram of study selection: language models in healthcare and biomedical research

other perspectives. For example, they can be divided into non-contextual and contextual models according to the representation used for
downstream tasks. According to various scenarios, they can be categorized as knowledge-enriched LMs, multilingual or language-specific
LMs, multi-model LMs, domain-specific LMs, and compressed LMs.

Healthcare and biomedicine represent vast domains of application, encompassing diverse areas of focus. Healthcare entails the delivery of
care to patients via diagnosis, treatment, and health administration, while biomedical research concentrates on the scientific understanding of
disease and the discovery of new therapeutic approaches. Both areas necessitate significant resources, time, and comprehensive medical
knowledge. Language models can be trained on diverse sources or modalities of data in the biomedical domain, which have the potential
to serve as a central storage of medical knowledge. In this way, they can be accessed and queried by medical professionals (e.g., healthcare
providers and biomedical researchers) and by the public. By leveraging their strong adaptability through fine-tuning or prompting, language
models can be effectively tailored to suit various specific tasks within healthcare and biomedicine. Despite the imminent widespread adoption
of these models, our current understanding of how they work, when they fail, and what they are even capable of remains underexplored due to
their emergent properties and complexity. Consequently, there is a need to examine the utilization of language models in healthcare and
biomedicine.

Interpretability, often used interchangeably with explainability, refers to the ability to explain or provide meaning to model predictions. In
particular, interpretability aims to describe the inner structure of a model in a manner that is easily understandable by humans."" In the med-
ical domain, for example, there are great challenges in clinical decision support, such as diagnostic/prognostic/treatment uncertainties, and
imbalanced, heterogeneous, noisy, sparse, high-dimensional datasets. Due to their powerful capacity, language models can be used for
various use cases, including predicting the future diagnosis of depression in a temporal manner for mental health research,'? recommending

'3 extracting cancer phenotypes,'" and predicting a patient’s likelihood of readmission to the hospital.'® In these high-stakes

medications,
decisions, however, one of the concerns in the deployment of such models is that there can still be high model misclassification. Besides,
it has been widely shown that such models are not robust and may encounter failures in the presence of both artificial and natural noise.'®
Due to the black-box nature of such models, there is no easily discernible logic connecting the data to the decisions of the models. Therefore,
providing explanations is critical to holding people/institutes accountable when models malfunction and gaining scientific understanding
about models. To reach a level of explainable and usable machine intelligence, we need to not only learn from data, extract knowledge,
generalize, and mitigate the curse of dimensionality but also disentangle the underlying explanatory factors of the data.

Therefore, the purpose of this scoping review is to map different types of corpora and language models used in existing healthcare and
biomedical literature to their application tasks. Further, it seeks to identify topics ripe for future research, along with the technical and analyt-
ical challenges w.r.t. the interpretability. The processing and reporting of the results of this review were guided by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses guidelines, as shown in Figure 1. We performed the literature search from various resources
to find relevant articles published between Jan. 2015 and Dec. 2022: (i) the primary databases including Google Scholar, IEEE Xplore, ACM
Digital Library, and PubMed; and (i) the additional resources such as ACL Anthology. The search strategy for “language models for healthcare
and biomedical research” is: (“language models” OR “Transformer” OR “deep neural networks” OR “pre-trained models”) AND (“health” OR
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Figure 2. Overview of language model and its applications in biomedicine

(A) An example of language modeling that aims to predict the token of “diabetes” in the context of “Hyperglycemia affects people who have”; (B) An example of
language model based on deep neural networks, which transforms each word token as word embedding, takes them as inputs, and computes the probability for
the word being predicted through the language model; (C) Different types of corpus for language models in healthcare and biomedical research, and their
associated application tasks.

"biomedical” OR "biomedicine”). The search strategy for “interpretability of language models” is: (“language models” OR “Transformer” OR
“deep neural networks” OR “pre-trained models”) AND (“health” OR “biomedical” OR “biomedicine”) AND (“explainability” OR “interpret-
ability”). Exclusions for the study selection were: (a) articles were not published in English; (b) commentaries or editorials; (c) the full text of the
article is not accessible; (d) the language models are not based on deep neural networks; and (e) the outcome is not related to healthcare and
biomedical research. But there might be a few limitations in this study: (i) we focused on the language models and limited several corpora as
listed in the Results section, without including other types of corpora, such as speech data, audio recordings, video recordings, physiological
data, medical robotic data, etc.; and (ii) the searched studies are all in English, which might result in the underrepresentation of language
model applications in non-English-speaking countries. Despite of these, our review provides a landscape of the current literature on the lan-
guage model and its interpretability in biomedicine.

RESULTS
Language models for healthcare and biomedical research

In this subsection, we classify the biomedical corpora used to train the language models into six types, followed by a presentation of each
category in detail (as shown in Figure 2C). Besides, we make an overview table listing the various examined categories as shown in Table 1.

Electronic health records

Electronic health records (EHRs) have been utilized to store patient’s health records from admission to discharge. These records contain a
wealth of clinical data that can be leveraged to enhance patient care through knowledge discovery and the development of advanced algo-
rithms. EHR data encompass both structured data (e.g., lab results and medical codes) and unstructured data (e.g., clinical notes, medication
instructions, progress notes, or discharge summaries). Medical Information Mart for Intensive Care Il (MIMIC-Il) is the largest publicly avail-
able dataset of medical records, which consists of 58,976 unique hospital admissions from 38,597 patients in the intensive care unit of the Beth
Israel Deaconess Medical Center between 2001 and 2012. Among EHR data, clinical notes contain valuable patient information but are chal-
lenging and costly to manually extract. Consequently, there is a need to effectively leverage the information embedded in clinical notes for
research and practical applications. Zhu et al.” aimed to automatically extract clinical concepts by training ELMo on a corpus of clinical notes
from MIMIC-III. Si et al.'” proposed to pre-train BERT on clinical notes from MIMIC-III for clinical concept extraction. Shang et al.'* proposed
to combine Graph Neural Networks and BERT for medication recommendation where their model was pre-trained on the MIMIC-II dataset.
Huang et al.”” proposed the Clinical XLNet on the MIMIC-IIl dataset, in order to predict prolonged mechanical ventilation. Huang et al."
developed the ClinicalBERT and pre-trained the model on the clinical notes from MIMIC-III for the task of predicting hospital readmission.
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Table 1. A summary of the selected studies in this review

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Zhang et al., 2019"/ EHR VetTag https://github.com/ CSU test data: F1 (66.2%), text classification saliency method
yuhui-zh15/VetTag Precision (72.1%), Recall (63.1%),
ExactMatch (26.2%)
Liu et al., 2022"° EHR MedM-PLM https://git.openi.org.cn/ 2010-i2b2: F1 (86.29%); information extraction; -
liusc/3-6-liusicen- medication recommendation: AUC  classification
multi-modal-pretrain (95.57%); 30-day readmission
prediction: AUC (74.7%); ICD
coding: AUC (87.46%)
Huang et al., 2019'>  EHR ClinicalBERT https://github.com/ clinical word similarity: Pearson semantic textual attention weight
kexinhuang12345/ correlation (67.0%); 30-day similarity; classification
clinicalBERT readmission prediction: AUC
(71.4%)
Sietal., 2019" EHR BERTbase, https://huggingface.co/ i2b2 2010: F1 (90.25%); i2b2 2012:  information extraction -
BERTlarge models?sort=trending& F1(80.91%); Semeval 2014 Task 7:
search=bert F1(80.74%); Semeval 2015 Task
14: F1 (81.65%)
Zhu et al., 2018%° EHR, Online Clinical ELMo https://github.com/ 2010 i2b2/VA: Precision (89.34%), information extraction -
Medical noc-lab/clinical _ Recall (87.87%), F1 (88.60%)
Knowledge concept_extraction
Sources
Alsentzer EHR Clinical BERT, https://github.com/ i2b2 2010: Exact F1 (87.8%); i2b2  information extraction; -
etal., 2019 Discharge EmilyAlsentzer/ 2012: Exact F1 (78.9%); MedNLI:  natural language
Summary clinicalBERT Accuracy (82.7%) inference
BERT
Shang et al., 2019'° EHR G-BERT https://github.com/ Jaccard (45.65%), PR-AUC classification -
jshang123/G-Bert (69.60%), F1 (61.52%)
Rasmy et al., 20217 EHR Med-BERT https://github.com/ DHF-Cerner: AUC (85.39%); classification attention weights
ZhiGroup/Med-BERT PaCa-Cerner: AUC (82.23%),
PaCa-Truven: AUC (80.57%)
Li et al., 2020%° EHR BEHRT - AUC (90.4%), average classification attention weights
precision score (21.6%)
Lewis et al., 20207 EHR, Scientific Bio-LM https://github.com/ 12B2-2010: F1 (89.7%); HOC: Information extraction; -
literature facebookresearch/bio-Im Macro-F1 (86.6%); MedNLI: classification; natural

Accuracy (88.5%)

language inference

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Peng et al., 2019%° EHR, Scientific BlueBERT https://github.com/ MedSTS: Pearson (84.8%); Semantic textual similarity; -
literature ncbi-nlp/bluebert BC5CDR: F1(93.5%);i2b2 2010: F1  Information extraction;
(76.4%); HOC: F1(87.3%); MedNLI: text classification; natural
Accuracy (84.0%) language inference
Agrawal EHR GPT-3+R - Biomedical Evidence Extraction: Information extraction; -
et al., 2022%¢ Accuracy (85%), F1 (61%); classification
Medication status classification:
Conditional Accuracy (89%),
Conditional Macro F1 (71%)
Chang EHR Clinical BERT https://github.com/ Top-5 accuracies of 0.92 and 0.94  classification =
et al., 2020%’ dchang56/chief_ on datasets comprised of 434 and
complaints 188 labels, respectively
Yang et al., 2022%° EHR, Scientific GatorTron https://github.com/uf-hobi- 2010i2b2: F1(89.96%); 2018 n2c2:  Information extraction; -
literature informatics-lab/GatorTron F1(96.27%); 2019 n2c2: Pearson semantic textual similarity;
correlation (89.03%); MedNLI71: natural language inference;
Accuracy (90.20%); emrQA question answering
medication: F1 (74.08%), Exact
Match (31.55%)
Huang et al., 2019?"  EHR Clinical XLNet https://github.com/ prolonged mechanical ventilation:  classification -
lindvalllab/clinicalXLNet AUC (66.3%); 90-day mortality:
AUC (77.9%)
Zhou et al., 2022 EHR CancerBERT https://github.com/zhang- macro F1 scores equal to 0.876 information extraction -
informatics/CancerBERT (95% ClI, 0.873-0.879) and 0.904
(95% Cl, 0.902-0.906) for exact
match and lenient match,
respectively.
Michalopoulos EHR, Online UmIsBERT https://github.com/gmichalo/ MedNLI: Accuracy (83.0%); i2b2 natural language inference; -
et al., 2020°° Medical UmIsBERT 2010: F1 (88.6%) information extraction
Knowledge
Sources
Kades et al., 2021°’ EHR Enhanced BERT - 2019 n2c2: Pearson correlation semantic textual similarity -
(88.3%)
Yang et al., 2020 EHR RoBERTa-MIMIC  https://github.com/uf-hobi- 2010 i2b2: F1(89.94%); 2012 i2b2:  information extraction -
informatics-lab/ F1 (80.53%); 2018 n2c2: F1
ClinicalTransformerNER (89.07%)
Meng EHR BRLTM https://github.com/ depression prediction: PRAUC classification attention weights
etal., 2021'? lanyexiaosa/brltm (76%)

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Chen et al., 2020* EHR AlphaBERT https://github.com/ AUC (94.7%); ROUGE-L (69.3%) text summarization -
wicebing/AlphaBERT
Wang et al., 2021°* EHR CHMBERT - disease prediction: Top-1 F1 classification -
(61.95%), Top-5 F1 (91.58%),
Top-1 F1(96.83%),
Zhang et al., 2020°° EHR MC-BERT https://github.com/alibaba- cEHRNER: F1 (90%); cMedQA: F1  information extraction; -
research/ChineseBLUE (82.3%); cMedTC: F1 (82.1%) question answering;
text classification
Kraljevic EHR MedGPT - NER+L: F1 (93%) information extraction saliency method
etal., 2021%
Khin et al., 2018%/ EHR ELMo - i2b2-PHI: F1 (89.87%-98.74%) information extraction -
Yang et al., 2020°° EHR RoBERTa https://github.com/ Pearson correlation (90.65%) semantic textual attention weights
uf-hobi-informatics-lab/ similarity
2019_N2C2_Track1_
ClinicalSTS
Xiong et al., 2020*7 EHR BERT-based - 2019 n2c2: Pearson correlation semantic textual -
model (86.8%) similarity
Mahajan EHR ClinicalBERT - 2019 n2c2: Pearson correlation semantic textual -
et al., 2020%° (90.1%) similarity
Yan et al., 2022*' EHR RadBERT - abnormal sentence classification: text summarization; -
Accuracy (96.1%), F1 (95.6%); classification
report coding: Accuracy (96.1%),
F1 (96.0%); report summarization:
ROUGE-1 (16.18%);
Lau et al., 2022 EHR BERTrad https://github.com/ 90.9%-93.4% F1 for finding Information extraction -
wilsonlau-uw/BERT-EE triggers; 72.0%-85.6% F1 for
arguments role extraction
Meng et al., 2020** EHR BERT-based = Precision (97.0%), Recall (93.3%),  classification =
model F-measure (95.1%)
Bressem EHR FS-BERT & https://github.com/ chest radiograph reports: AUC classification -
etal.,, 2021%* RAD-BERT rAldiance/bert-for- (97%-99%); CT reports: pooled

radiology

AUC/AUPRC of 88%/80%

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability

Authors, year Corpora Model name Open source (model) Model performance Application tasks technique

Naseem Biomedical TraP-VQA - Overall: Accuracy (64.82%), Open-  visual question Gradient-weighted

et al., 2022 image-text ended: Accuracy (37.72%), Close-  answering Class Activation
pairs ended: Accuracy (93.57%) Mapping

(Grad-CAM),
Shapley additive
explanations (SHAP),
attention weights

Li et al., 2020* Biomedical V + L models https://github.com/ Openl: averaged AUC (98.5%) visual question visualization of
image-text YIKUANS8/Transformers- answering attention maps
pairs VOA

Khare et al., 2021%/ Biomedical MMBERT https://github.com/ VQA-Med 2019: overall Accuracy  visual question visualization of
image-text VirajBagal/MMBERT (67.2%), BLEU (69%); VQA-RAD: answering attention maps
pairs overall Accuracy (72%)

Moon et al., 2022¢ Biomedical MedVilL https://github.com/ diagnosis classification (Open-I): visual question answering; visualization of
image-text SuperSupermoon/ AUC (89.2%), F1 (40.7%); VQA- classification attention maps
pairs MedVilL RAD: accuracy of 59.5%/77.7% for

open-ended and close-ended
questions, respectively

Chen et al., 2022%7 Biomedical Med-VLP https://github.com/ VQA-2019: overall Accuracy visual question answering; -
image-text zhjohnchan/ARL (80.32%); VQA-RAD: overall classification
pairs Accuracy (79.16%); MELINDA:

Accuracy (80.51%)

Chen et al., 2022°° Biomedical M3AE https://github.com/ VQA-RAD: overall Accuracy visual question answering; -
image-text zhjohnchan/M3AE (77.01%); VQA-2019: overall classification
pairs Accuracy (79.87%); MELINDA:

Accuracy (78.50%)

Monajatipoor Biomedical BERTHop https://github.com/ Openl: AUC (98.12%) classification -

etal., 2022° image-text masoud-monajati/
pairs BERTHop

Boecking Biomedical BioViL https://huggingface.co/ RadNLI: Accuracy (65.21%) natural language -

et al., 2022° image-text microsoft/BiomedVLP- inference
pairs BioViL-T

Lee et al., 2020 Scientific BioBERT https://github.com/ 2010 i2b2: F1 (86.73%), NCBI information extraction; -
literature dmis-lab/biobert disease: F1(89.71%), BC5CDR: F1  question answering

(93.47%), BC2GM: F1 (84.72%),
ChemProt: F1 (76.46%), BioASQ
5b: Strict Accuracy (46%)

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Shin et al., 20204 Scientific BioMegatron https://github.com/ BC5CDR-chem: F1 (92.9%), information extraction; -
literature NVIDIA/NeMo BC5CDR-disease: F1 (88.5%), question answering
NCBI-disease: F1 (87.8%),
ChemProt: F1(77.0%), BioASQ-7b-
factoid: Strict Accuracy (47.4%)
Gu et al., 2021°° Scientific PubMedBERT - BC5-chem: F1 (93.33%), BC5- information extraction; -
literature disease: F1 (85.62%), NCBI- text classification; question
disease: F1 (87.82%), BC2GM: F1 answering; semantic
(84.52%), ChemProt: Micro F1 textual similarity
(77.24%), DDI: Micro F1 (82.36%),
BIOSSES: Pearson (92.30%), HoC:
Micro F1 (82.32%), PubMedQA:
Accuracy (55.84%), BioASQ:
Accuracy (87.56%),
Luo et al., 2022°¢ Scientific BioGPT https://github.com/ KD-DTI: F1(38.42%), BC5CDR: F1  information extraction; text -
literature microsoft/BioGPT (46.17%), DDI: F1 (40.76%), classification; question
PubMedQA: Accuracy (78.2%), answering
HoC: F1 (85.12%)
Kanakarajan Scientific BioELECTRA https://github.com/ BC5-chem: F1 (93.60%), BC5- information extraction; -
etal., 2021°7 literature kamalkraj/BioELECTRA disease: F1 (85.84%), NCBI- text classification;
disease: F1 (89.38%), BC2GM: F1 natural language
(84.69%), ChemProt: Micro F1 inference; question
(78.20%), DDI: Micro F1 (82.76%),  answering; semantic
BIOSSES: Pearson (92.49%), textual similarity
HoC: Micro F1 (83.50%),
PubMedQA: Accuracy (64.02%),
BioASQ: Accuracy (88.57%),
MedNLI: Accuracy (86.34%)
Yasunaga Scientific BioLinkBERT https://github.com/ BC5-chem: F1 (94.04%), BC5- information extraction; -
et al., 2022°¢ literature michiyasunaga/LinkBERT disease: F1 (86.39%), NCBI- text classification;

disease: F1 (88.76%), BC2GM: F1
(85.18%), ChemProt: Micro F1
(79.98%), DDI: Micro F1 (83.35%),
BIOSSES: Pearson (93.63%), HoC:
Micro F1 (84.87%), PubMedQA:
Accuracy (72.18%), BioASQ:
Accuracy (94.82%)

question answering;
semantic textual

similarity

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Miolo et al., 2021°7 Scientific ELECTRAMed https://github.com/ NCBI-disease: F1 (87.54%), information extraction; -
literature gmpoli/electramed BC5CDR: F1 (90.03%), ChemProt:  question answering
Micro F1 (72.94%), DDI: Micro F1
(79.13%), BioASQ: MRR (47.95%)
Taylor et al., 2022%° Scientific Galactica https://github.com/ BioASQ: Accuracy (94.3%), question answering attention
literature paperswithcode/galai PubMedQA: Accuracy (77.6%), visualization
MedMCQA dev: Accuracy (52.9%)
Jin etal., 2019°" Scientific BioELMo https://github.com/ BC2GM-Probe: F1 (88.4%), information extraction; -
literature Andy-jga/bioelmo MedNLI-Probe: Accuracy (75.5%)  natural language
inference
Naseem Scientific BioALBERT https://github.com/ BC5CDR-chem: F1 (98.08%), information extraction; text -
etal., 2022 literature, EHR usmaann/BioALBERT BC5CDR-disease: F1 (97.78%), classification; natural
NCBI-disease: F1 (97.18%), language inference;
BC2GM: F1 (96.97%), ChemProt: question answering;
F1(78.32%), DDI: F1 (84.05%), semantic textual
i2b2: F1 (76.86%), BIOSSES: similarity
Pearson (92.80%), MedSTS:
Pearson (85.70%), HoC: F1
(87.92%), BioASQ 4b-factoid:
Accuracy (48.90%), BioASQ 5b-
factoid: Accuracy (62.31%),
BioASQ 6b-factoid: Accuracy
(62.88%), MedNLI: Accuracy
(79.52%)
Yuan et Scientific KeBiolLM https://github.com/ BC5-chem: F1 (93.3%), BC5- Information extraction -
al., 2021¢* literature, GanjinZero/KeBioLM disease: F1 (86.1%), NCBI-disease:
Online medical F1(89.1%), BC2GM: F1 (85.1%),
knowledge ChemProt: F1 (77.5%), DDI: F1
sources (81.9%), GAD: F1 (84.3%)
Tinn et al., 2021°* Scientific PubMedELECTRA  https://huggingface.co/ BC5-chem: F1 (93.32%), BC5- information extraction; text -
literature microsoft disease: F1 (85.16%), NCBI- classification; question

disease: F1 (87.73%), BC2GM: F1
(83.79%), ChemProt: F1 (76.74%),
DDI: F1 (81.09%), BIOSSES:
Pearson (92.01%), HoC: F1
(82.57%), BioASQ: Accuracy
(92.07%), PubMedQA: Accuracy
(67.64%)

answering; semantic

textual similarity

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical
Corpora

Model name

Open source (model)

Model performance

Interpretability

Application tasks technique

Ozyurt, 2020°°

Moradi et al., 2020%°

Xie et al., 2022%7

Du et al., 2020%®

Wallace et al., 2021°7

Guo et al., 20217°

Kieuvongngam
etal., 2020

Chakraborty
et al., 20207?

Oniani & Wang,
2020"*

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Scientific literature

Bio-ELECTRA

BERT-based-

Summ

KeBioSum

BioBERTSum

BART-based
model

BART-based

model

BERT&GPT-2
based model

BioMedBERT

GPT-2-based

model

https://github.com/

SciCrunch/bio_electra

https://github.com/
BioTextSumm/BERT-

based-Summ

https://github.com/
giuweipku/Plain_language_
summarization
https://github.com/
VincentK1991/
BERT_summarization_1
https://github.com/
BioMedBERT/

biomedbert

https://github.com/

oniani/covid-19-chatbot

BioASQ 8b-factoid: Exact Match
(57.93%), BCACHEMD: F1
(83.80%), BC2GM: F1 (72.55%),
NCBI Disease: F1 (81.13%),
LINNAEUS: F1 (85.02%), BioASQ
5b based: MRR (33.5%), GAD: F1
(80.96%), ChemProt: F1 (64.22%)

ROUGE-1 (75.04%), ROUGE-2
(33.12%)

CORD-19: ROUGE-1 (32.04%),
PubMed-Long: ROUGE-1
(36.39%), s2orc: ROUGE-1
(37.44%), PubMed-Short: ROUGE-
1 (43.98%)

PubMed: ROUGE-1 (37.45%),
CNN/DailyMail: ROUGE-1
(43.13%)

XSUM: ROUGE-L (26.5%), Pretrain:
ROUGE-L (26.9%), Decorate:
ROUGE-L (26.6%), Sort by N-RoB:
ROUGE-L (26.7%), Decorate and
sort: ROUGE-L (26.5%)

ROUGE-1 (53.02%), ROUGE-2
(22.06%), ROUGE-L (50.24%)

extractive summary: ROUGE-1
(20%~70%), abstractive summary:
ROUGE-1 (20%-45%)

GAD: F (79.92%), SQUAD v1.1: F1
(92.46%), EM (86.12%), NCBI
Disease: F (87.51%), BC5CDR-
Disease: F (87.51%), BC5CDR-
chem: F (92.21%), BC4CHEMD: F
(86.41%), BC2GM: F (82.32%),

overall average rating score: 4.023

information extraction; -

question answering

SS300V N3dO

text summarization -

text summarization -

text summarization attention

visualization

text summarization -

text summarization -

text summarization attention

visualization

information extraction; -

question answering

question answering -

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Liévin et al., 202274 Online Medical CODEX 5-SHOT https://github.com/vlievin/ USMLE: accuracy (60%), question answering -
Knowledge coT medical-reasoning PubMedQA: accuracy (78%)
Sources
He et al., 20207° Online Medical diseaseBERT https://github.com/ MEDIQA-2019: MRR (90.00%), information extraction; -
Knowledge heyunh2015/diseaseBERT Accuracy (79.49%); TRCEQA-2017:  question answering;
Sources MRR (57.21%), Accuracy (80.10%);  natural language
MEDNLI: Accuracy (86.15%); inference
BC5CDR: F1 (86.52%); NCBI: F1
(88.30%)
Hao et al., 20207¢ Online Medical Clinical Kb-BERT/  https://github.com/ MedNLI: Accuracy (84.4%); i2b2 information extraction; -
Knowledge ALBERT noc-lab/clinical-kb-bert 2010: Exact F1 (89.7%); i2b2 2012:  natural language
Sources Exact F1 (81.9%) inference
Liu et al., 2020”7 Online Medical SapBERT https://github.com/ NCBI: Accuracy (92.5%), BC5CDR-  Information extraction -
Knowledge cambridgeltl/sapbert d: Accuracy (93.6%), BC5CDR-c:
Sources Accuracy (96.8%), AskAPatient:
Accuracy (87.6%),
COMETA: Accuracy (77.0%),
Singhal et al., 2022’®  Online Medical Flan-PaLM and https://huggingface.co/ 67.6% accuracy on MedQA question answering -
Knowledge Med-PaLM google/flan-t5-x|
Sources
Naseem et al., 2022’7  Social Media PHS-BERT https://huggingface.co/ Suicide Ideation: F1 (30.28%), classification -
publichealthsurveillance/ Stress Detection: F1 (88.82%),
PHS-BERT Health Mention: F1 (87.38%),
Depression Detection: F1
(76.49%), Vaccine Sentiment:
F1(81.10%), COVID Related:
F1(94.34%)
Miiller et al., 2020%° Social Media CT-BERT https://github.com/ CC: F1(94.9%), VC: F1 (86.9%), classification -
digitalepidemiologylab/ MVS: F1 (74.8%), SST-2: F1
covid-twitter-bert (94.4%), SE: F1 (65.4%)
Tutubalina Social Media RuDR-BERT& https://github.com/ sentence classification: Macro F1 information extraction; -
etal., 2021°" EnRuDR-BERT cimm-kzn/RuDReC (68.82%), Drug and disease classification

recognition: Macro F1 (74.85%)

(Continued on next page)
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Table 1. Continued

Biomedical Interpretability
Authors, year Corpora Model name Open source (model) Model performance Application tasks technique
Jietal., 2021%? Social Media MentalBERT & https://huggingface.co/ eRisk T1: F1(93.38%), CLPsych T1: classification -
MentalRoBERTa mental F1(69.71%), Depression Reddit: F1
(94.23%), UMD: F1 (58.58%),
T-SID: F1 (89.01%), SWMH: F1
(72.16%), SAD: F1 (68.44%),
Dreaddit: F1 (81.76%),
Papanikolaou Scientific DARE (GPT-2) https://openai.com/ CDR: F1 (73%), DDI2013: F1 (78%), Information extraction =
et al., 2020%° literature research/gpt-2-1-5b- ChemProt: F1 (73%)
release
Papanikolaou Scientific BERT model - CDR: F1(62.2%), GAD: F1 (69.8%), Information extraction -
etal., 2019% literature EUADR: F1 (81.2%), Healx CD: F1
(81.4%)
Wang et al., 2020%° Scientific GLRE https://github.com/ CDR: F1 (68.5%), DocRED: F1 Information extraction -
literature nju-websoft/GLRE (57.4%)
Cabot et al., 2021%¢ Scientific REBEL (BART) https://github.com/ CONLLO4: F1 (71.97%), NYT: F1 Information extraction -
literature babelscape/rebel (91.76%), DocRED: F1 (41.84%),
ADE: F1 (81.69%), Re-TACRED: F1
(90.39%),
Weber et al., 2022%/ Scientific transformer- https://github.com/ F1 score of 79.73% on the hidden  Information extraction -
literature based LM leonweber/drugprot DrugProt test set
Heinzinger Biological SeqVec https://github.com/ Per-residue predictions: CASP12:  Proteins/DNA prediction -
etal., 2019% sequence Rostlab/SeqVec Accuracy (76.5%), TS115: Accuracy
(82.4%), CB513: Accuracy (80.7%)
Rives et al., 2021%7 Biological ESM-1b https://github.com/ CB513: accuracy (71.6%), CASP13:  Proteins/DNA prediction -
sequence Transformer facebookresearch/esm accuracy (72.5%)
Xiao et al., 20217° Biological ProteinLM https://github.com/ contact prediction: P@L/5 (75%), Proteins/DNA prediction -
sequence THUDM/ProteinLM remote homology: Top 1 Accuracy
(30%), Secondary Structure:
Accuracy (79%), fluorescence:
Spearman'’s rho (68%)
Brandes Biological ProteinBERT https://github.com/ Secondary structure - 3 state: Proteins/DNA prediction attention
etal., 20227 sequence nadavbra/protein_bert accuracy (74%), Remote homology: visualization
accuracy (22%), Fluorescence:
Spearman’s p (66%),
Weissenow Biological EMBER2 https://doi.org/10.5281/ SetTst29: TM score (50%) Proteins/DNA prediction -
etal., 202277 sequence zenodo.6412497

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical
Corpora

Model name

Open source (model)

Model performance

Application tasks

Interpretability
technique

Jietal., 20217

Yamada &
Hamada, 20227

Mock et al., 20227°

Heinzinger
etal., 20237

Biological

sequence

Biological
sequence
Biological
sequence

Biological

sequence

DNABERT

BERT-RBP

BERTax

ProstT5

https://github.com/
jerryji1993/DNABERT

https://github.com/
kkyamada/bert-rbp

https://github.com/
f-kretschmer/bertax

https://github.com/
mheinzinger/ProstT5

predicts promoter regions: TATA
(accuracy [92.2%], F1[91.4%)]), non-
TATA (accuracy [97%], F1 [97%]);
identifies transcription factor
binding sites: both mean and
median accuracy and F1 > 0.9

154 RBPs: AUC (0.786%)

loosely related dataset: accuracy
(94.78% for superkingdom and
85.55% for phylum); distantly
related dataset: accuracy (88.95%
for superkingdom and 60.10% for
phylum)

secondary structure: accuracy@Q3
(89.4%); binding residues: F1
(37%); subcellular localization:
accuracy@Q10 (57.3%);
conservation: accuracy@Q9
(30.9%);

Proteins/DNA prediction

Proteins/DNA prediction

Proteins/DNA prediction

Proteins/DNA

prediction

attention

visualization

attention

visualization

attention weights

SSaicl9) ¢

©)
)
m
Z
>
(@)
0O
m
0
"




¢? CellPress iScience
OPEN ACCESS

Chang et al.”” aimed to derive a compact and computationally useful representation for free-text chief complaints by using the clinical

BERT pre-trained on the MIMIC corpus. Kraljevic et al.** developed MedGPT with MIMIC-IIl and other EHR data for predicting the next dis-
orderin a patient’s timeline. Liu et al.”® proposed to pre-train the model of MedM-PLM on the MIMIC-IIl dataset and evaluate its effectiveness
on clinical tasks of medication recommendation, readmission prediction, and ICD coding. There are other language models”'**~?%*%% devel-
oped on MIMIC-IIl datasets.

In addition to MIMIC-III, there are many works using private sources of EHR data for pre-training language models.
For example, Li et al.” introduced the model of BEHRT to predict the likelihood of 301 conditions in one’s future visits. Wang et al.”® proposed the
MEB model based on BERT for medication recommendation. Meng et al.'” proposed the BRLTM model to predict future diagnoses of depression
in mental health. Wang et al.** developed a Chinese BERT model for disease prediction and department recommendation tasks. Rasmy et al.??

12,14,17,22,23,31,33-35,37-40,97,98

proposed the Med-BERT model to predict the diseases, such as diabetes, heart failure, and pancreatic cancer, by leveraging the structured EHR
data. Danilov et al.”” used neurosurgical data to predict the inpatient length of stay. Zhou et al."* proposed the CancerBERT model in order to
extract breast cancer phenotypes from EHR data. Besides, there is some work using radiology reports as the corpus for pre-training the language

modeIS‘ZO,AH—AA

Online medical knowledge sources

Online medical knowledge sources contain medicine and health-related information that is created and maintained by medical professionals.
For example, the Unified Medical Language System (UMLS) is a repository of biomedical vocabularies developed by the US National Library of
Medicine, which includes the NCBI taxonomy, the Medical Subject Headings, Gene Ontology, OMIM, and the Digital Anatomist Symbolic
Knowledge Base. There are over 2 million names for 900,000 concepts from more than 60 families of biomedical vocabulary, as well as
12 million relations among these concepts in UMLS. Liu et al.”” aimed to capture fine-grained semantic relationships in the biomedical domain
and proposed the SAPBERT model to self-align the representation space of biomedical entities by leveraging a massive collection of biomed-
ical ontologies from UMLS. He et al.”” integrated BERT-like pre-trained language models with disease knowledge for solving a variety of med-
ical domain tasks, such as answering health questions, medical language inference, and disease name recognition. Hao et al.”® introduced
adding knowledge base information from UMLS into language model pre-training and obtained Clinical KB-BERT and Clinical KBALBERT for
.°? proposed a biomedical pre-trained language model, KeBioLM, that can explicitly leverage knowledge from
the UMLS knowledge bases. Michalopoulos et al.* incorporated domain knowledge into the pre-training process for clinical concept extrac-
tion by using a knowledge augmentation strategy with UMLS Metathesaurus. Besides, Zhu et al.” proposed to pre-train the ELMo model on
Wiki pages using a domain-specific ontology such as SNOMED CT, to extract clinical concepts. Singhal et al.” proposed the Med-PalLM

downstream tasks. Yuan et a

model to encode clinical knowledge from the medical question-answering datasets. Liévin et al.”" investigated answering medical questions
by performing reasoning and leveraging the expert-domain knowledge from medical exam question datasets.

Biomedical image-text pairs

This type of corpus contains two different data modalities, such as the image and text, in the biomedical domain. There are some popular
sources for the corpus. For instance, the MIMIC Chest X-ray is a large publicly available dataset of chest radiographs with free-text radiology
reports”” from the Beth Israel Deaconess Medical Center. ROCO is a large-scale medical and multimodal imaging dataset where images and
their corresponding captions are from publications available on PubMed Central. MedICaT is another dataset of medical image-caption pairs
extracted from PubMed Central. Different from ROCO, 74% of its images are compound figures, including several sub-figures. In particular,
there are 217,060 figures from 131,410 open-access biomedical papers, 7507 subcaptions, and subfigure annotations for 2,069 compound
figures and inline references for around 25,000 figures in the ROCO dataset. U X-ray has a collection of chest X-ray images from the Indiana
University hospital network which includes the radiology images and XML reports. Openl is another publicly available chest X-ray dataset
collected by Indiana University, which has 3,996 radiology reports associated with 8,121 images. Li et al.*® investigated different vision-
and-language models for the visual question-answering task, with joint pre-training on chest X-ray radiographs and associated reports.
Kaur et al."” proposed the RadioBERT model to generate radiological reports from chest X-ray images. Moon et al.*® proposed the
MedViLL model based on BERT for the tasks of diagnosis classification, medical image-report retrieval, medical visual question answering,
and radiology report generation. Chen et al."” proposed to pre-train the medical vision-and-language model with medical domain knowl-
edge for various downstream tasks. Monajatipoor et al.”' proposed a vision-and-language model of BERTHop for chest X-ray disease diag-

nosis. Chen et al.*°

|52

proposed a multimodal masked auto-encoder method for the medical vision-and-language understanding tasks. Boeck-
ing et al.”” proposed the BioVil model for self-supervised multi-modal learning on paired image-text radiology data. Naseem et al.’” aimed
the pathology visual question-answering task by utilizing high- and low-level interactions on the pathology image (vision) and question (lan-
guage) to generate an answer.

Social media

Users often post information on social media platforms and recent studies have shown that health-related social media data are useful in many
applications to provide better health-related services. For example, Twitter is a social media platform where users post and interact with
messages known as “tweets.” Miiller et al.?” proposed the COVID-Twitter-BERT model by pre-training on a large corpus of COVID-19-related
tweets. Zhang et al."’" pre-trained language models on HPV vaccine-related tweets for the sentiment analysis of the HPV vaccination
task. Naseem et al.”” proposed the PHS-BERT model for tasks related to public health surveillance on social media by pre-training on
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health-related tweets. For Reddit, it is a social news aggregation, web content rating, and discussion website. Ji et al.?” proposed MentalBERT
and MentalRoBERTa for depression detection and other mental disorders classification with the mental health posts on Reddit. Besides,
Tutubalina et al.®' proposed the RUDR-BERT model for drug reactions and effectiveness detection by pre-training the model on the
health-related user-generated texts collected from social media in Russian.

Scientific literature

As valuable knowledge is discovered from biomedical literature, biomedical researchers begin to develop pre-trained language models to
handle biomedical text. PubMed and PubMed Central (PMC) are the two popular sources of biomedical text. PubMed contains only biomed-
ical literature citations and abstracts only while PMC contains full-text biomedical articles. There is a large portion of work pre-training the
proposed model on the corpus from PubMed and PMC?>¢#2362644 for hiomedical information extraction. Moradi et al.** proposed a
BERT-based model for biomedical text summarization with pre-training on PubMed, PMC, and Wiki. Du et al.”® proposed the
BioBERTSum model to better capture token-level and sentence-level contextual representation for extractive summarization tasks in the
biomedical domain. Wallace et al.*” and Guo et al.”” both proposed BART-based models for biomedical text summarization with pre-training
on the corpus of Cochrane systematic reviews indexed in PubMed.

BREATHE is another large and diverse dataset collection of biomedical research articles that contains titles, abstracts, and full-body texts.
The primary advantage of the BREATHE dataset is its source diversity, including BMJ, arXiv, medRxiv, bioRxiv, CORD-19, Springer Nature,
NCBI, JAMA, and BioASQ. Kieuvongngam et al.”" proposed to use BERT and GPT-2 for the text summarization of COVID-19 medical research
articles from CORD-19. Chakraborty et al.”” proposed the BioMedBERT model for the task of question-answering by pre-training the model
on the BREATHE dataset. Oniani etal.”* proposed a GPT-2-based model for the task of question-answering for COVID-19 with pre-training on
the corpus of CORD-19. Xie et al.®” proposed the KeBioSum model for biomedical text summarization with the corpus of CORD-19 and
PubMed. Taylor et al.*° developed the Galactica model pre-trained on a large scientific corpus of papers that can perform the task of medical
question answering. Besides, there are some works pre-training the models on the corpus of chemical disease relation or drug and adverse

effects for the task of biomedical relation extraction.®*®’

Biological sequences

In addition to the text orimage data, the biological sequence data can be another corpus for pre-training language models. For example, the
structure of each protein is fully determined by a sequence of amino acids; however, these amino acids are from a limited-size amino acid
vocabulary, of which 20 are commonly observed. This is similar to text that is composed of words in a lexicon vocabulary. The Pfam dataset
is a large collection of protein families, in which each protein is represented by multiple sequence alignments using hidden Markov models.
Xiao et al.”’ proposed the model of ProteinLM for the protein prediction task with the preprocessed Pfam. Heinzinger et al.®® proposed the
SegVec model to predict the protein function and structure from sequences and they further presented the ProstT5 model by combining 1D
sequence with 3D structure.” Rives et al.®” proposed to use the language model for the tasks of remote homology detection, prediction of
secondary structure, long-range residue-residue contacts, and mutational effect for protein sequences. Brandes et al.”’ proposed the
ProteinBERT model for protein sequences designed to capture local and global representations of proteins in a natural way. Weissenow
et al.”” proposed the EMBER2 model for protein structure prediction without requiring any multiple sequence alignments. Besides, Ji
et al.” proposed the DNABERT model to predict the promoters, splice sites, and transcription factor-binding sites with the DNA sequence.
Yamada et al.” proposed the BERT-RBP model to predict RNA and RNA-binding protein interactions by adapting the BERT architecture pre-
trained on a human reference genome. Mock et al.”” proposed the BERTax model to taxonomically classify the superkingdom and phylum of
DNA sequences.
In the following, we categorize various biomedical downstream tasks, as shown in Figure 2C.

Information extraction

Information extraction plays an important role in automatically extracting structured biomedical information from unstructured biomedical
text data ranging from biomedical scientific literature, and EHR data, to biomedical-related social media corpus, etc. It generally refers to
several important sub-tasks in this review, including named entity recognition and relation extraction. For instance, named entity recognition
is the first step in unlocking valuable information in unstructured text data that aims to identify the concept or entity names in biomedical texts.
Extracting clinical concepts, such as types of diagnosis, test, treatment, clinical department, medication, adverse drug events, etc., is useful for
EHR corpus,'#20:19:21,:24-26,30,32,35,42.28 \yhyjle extracting biomedical entities, such as disease entity, drug-chemical entity, drug-protein entity,
species entity, etc., is meaningful to discover knowledge in scientific literature,>©335557-59.61,62.64.65102 gjine medical knowledge
corpus,”*4*>7"7 or social media posts.®’ Relation extraction aims to identify the relationship or semantic correlation between biomedical en-
tities mentioned in texts and generally be considered as a classification problem to predict the possible relation type of two identified entities

. . 2 59 -
in a given sentence.25'42'77'76"’3'53 59,62,64,65,83-87

Text classification

Text classification aims to assign one of the predefined labels to variable-length texts like phrases, sentences, paragraphs, or documents in
the corpus like EHR data,? 2035414 biomedical scientific literature,””>° and social media data.?%/%81:62.64
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Semantic textual similarity

25,55,57,5¢8

285264 Typically, it can
28,31,38,39,40

Semantic textual similarity aims to measure the degree of semantic similarity between two phrases or sentences.
be formulated into a regression problem to predict the similarity score for each pair. In the clinical domain, semantic textual
similarity has the potential to facilitate clinical decision processes, such as highlighting crucial text snippets in a report, query databases

for similar reports, assessing the quality of reports, or being used in question-answering applications.

Question answering

Question answering (QA) aims to extract answers for the given queries. QA can facilitate seeking information in clinical notes,”®*> biomedical
scientific literature, > “%¢4*/%73 hiomedical image-text corpus,”**" and online medical knowledge corpus,”*’® and thus save time for the
clinicians and biomedical researchers.

Text Summarization

Typically, the clinical notes, scientific literature, and radiology reports could be lengthy in nature. However, clinicians or biomedical re-
searchers need to go through a large number of biomedical documents, which is time-consuming. In this context, there is a need for auto-
matic text summarization, in order to reduce the effort and time required by clinicians or biomedical researchers. Text summarization falls into
two broad categories, namely extractive summarization,>>°%¢7%871 \which identifies the most relevant sentences in the document, while

41,56,69-71

abstractive summarization generates new text, which represents the summary of the document.

Natural language inference

Natural language inference (NLI) aims to identify the semantic correlation between a pair of sentences, i.e., whether the second sentence
entails or contradicts or is neutral with the first one ”'?4?>?8:30.5257.61.62.76 Gince NLI requires sentence-level semantics, it is particularly useful
in tasks like paraphrase mining and information retrieval in the general domain and medical concept normalization, semantic relatedness, and
question answering in the biomedical domain.

Proteins/DNAs prediction

Protein can be associated with almost every life process. Consequently, analyzing the biological structure and property of protein sequences
and understanding their functions®®"*7¢ becomes crucial to the study of life science as well as disease detection and drug discovery. Since
only a fraction of all species are available in today’s databases, it is important to accurately assign DNA sequences to their origin particularly
when there are no closely related species in databases.” Deciphering the language of non-coding DNA is also one of the fundamental prob-
lems in genome research.”® Besides, identifying RNA and RNA-binding protein interactions” can help to understand the biological roles in
regulating cellular functions.

Interpretability of language models

Language models, particularly large language models like BERT, have become highly widespread. The increase in model complexity is driven
by a general correlation between model size and model performance. A growing concern is therefore whether these models are reliable and
trustworthy in downstream applications. Explainability can offer evidence and justification for decision-making, which is also critical in the
healthcare and biomedical domains. We summarize the explanation techniques used in the language models as shown in the following
section.

Attention-based methods use attention weights as the importance scores.'”*'% They appeal to human intuition and can help indicate
where the model is “focusing.”'%1%?%23:38.74.95105 £ example, Huang et al.'® aimed to predict 30-day hospital readmission by developing
the model of ClinicalBERT with clinical notes. Further, the predictions generated from ClinicalBERT can be interpreted by its model’s atten-
tion weights, revealing which terms in clinical notes are predictive of patient readmission. Meng et al.'” aimed to predict a future diagnosis
of depression by proposing a bidirectional representation learning model with a Transformer architecture on EHR data. Besides, the
model’s interpretability was boosted by the quantitative analysis of self-attention weights of EHR sequences, demonstrating the inner rela-
tionship between various topic features and diagnosis codes. Cérdova Saenz and Becker'%® proposed a framework to classify stances ex-
pressed in tweets regarding COVID-19 vaccination using BERT-based models and an interpretation mechanism that obtains the most rele-
vant words in terms of attention weights for model decision-making. Shi et al.'”” proposed a corpus-level explanation approach, which
aimed at capturing causal relationships between keywords and model predictions via learning the importance of keywords for predicted
labels across a training corpus based on a hierarchical attention network. Chrysostomou and Aletras'® aimed to improve the faithfulness
of attention-based explanations for text classification by proposing a new family of task-scaling mechanisms, which can learn task-specific
non-contextualized information to scale the original attention weights. Bacco et al.'”” proposed two different transformer-based method-
ologies by exploiting the inner hierarchy of the documents to perform a sentiment analysis task while extracting the most important sen-
tences (with regard to the model decision) to build a summary as the explanation of the output. Niu et al."'® proposed the method of
jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their rele-
vance to the names of risk prediction labels. Tutek and Snajder'"’ proposed to improve the faithfulness of attention based on regulariza-

tion methods that promote the retention of word-level information. Liu et al."'? proposed a novel practical framework by utilizing a two-tier
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attention architecture to decouple the complexity of explanation and the decision-making process. Rigotti et al."'® proposed the gener-

alization of attention from low-level input features to high-level concepts as a mechanism to ensure the interpretability of attention scores.
In particular, they designed the ConceptTransformer that exposes explanations of the output of a model in which it is embedded in terms
of attention over user-defined high-level concepts.

Shapley additive explanation (SHAP) is to compute shapely values for each combination of the features (a power set of the features) by
training a linear model. But, it will be computationally expensive to train 2™ models for M set of features. For example, Attanasio et al.""
investigated the SHAP-based explainability approach on Transformer-based models.

Visualization plays an essential role in understanding how a neural model works.""® It can be applied with any of the feature importance-
based methods. With visualization, we can project the feature importance weights using heatmap, partial dependency plot, etc. Saliency has
been primarily used to visualize the importance scores of different types of elements in XAl learning systems,®*'” such as showing input-
output word alignment,""® highlighting words in input text,"'” or displaying extracted relations.”'® Ding and Koehn''? investigated the
gradient-based saliency methods on different language models based on the perspective of plausibility and faithfulness. Malkiel et al."*®
posed the BTl approach to explain paragraph similarities inferred by pre-trained BERT models. Specifically, the proposed approach can iden-
tify important words that dictate each paragraph’s semantics, match between the words, and retrieve the most important pairs by utilizing
activation and saliency maps. Natural language explanation is verbalized in human-readable natural language. The natural language can
be generated using sophisticated deep learning models, e.g., by training a language model with human natural language explanations
and coupling with a deep generative model."” It can also be generated by using simple template-based approaches.'?” Brand et al.'** devel-
oped the E-BART model by jointly making a veracity prediction and providing an explanation within the same model. Sammani et al.'** pro-

posed the NLX-GPT that can simultaneously predict an answer and explain it by formulating the answer prediction as a text generation task
125

pro-

along with the explanation. Besides, there are other visualization techniques for the purpose of interpretability. For example, Dunn et a
proposed a context-sensitive visualization method with Leave-N-Out that leads to heatmaps that include more of the relevant information
pertaining to the classification, as well as more accurately highlighting the most important words from the input text. Li et al.'?* developed
a visual analysis method to enable a unified understanding of models for text classification. Specifically, the mutual information-based mea-
sure was used to provide quantitative explanations on how each layer of a model maintains the information of input words in a sample.

There are also some works that aim to improve the interpretability of the Transformer-based vision and language (multimodal) model. For
example, Naseem et al.*” aimed to develop a model that can answer a medical question posed by pathology images. They proposed
TraP-VQA that embeds the image and question features, coupled with domain-specific contextual information, via a transformer for
PathVQA. Grad-Cam and SHAP were used to interpret the retrieved answers visually to indicate which area of the image contributed to
the predicted answer. Visualization of the transformers’ attention showed proposed model assigns more weight to the relevant words and
explains the reason for the retrieved answer. Aflalo et al."”’ proposed the VL-InterpreT method that can provide interactive visualizations
for interpreting the attention and hidden representations in multimodal transformers.

DISCUSSION

Language models, particularly pre-trained language models, provide great promise in their ability to learn a generally useful representation
from the knowledge encoded in the corpora by being repurposed with minimal effort for diverse downstream tasks in the biomedical do-
mains. Interpreting the decision mechanism of a pre-trained language model can help understand the rationale behind its success and its
limitations. In this section, we further discuss the challenges in the aforementioned explanation methods, and uncover the gaps and future
research directions toward the interpretability in language models.

Other interpretability techniques

In addition to the attention-based method, SHAP, and visualization method, there are some other interpretability techniques that could be
used in language models. For example, knowledge graphs can enhance language representation since knowledge graphs have high entity/
concept coverage and strong semantic expression ability. Further, knowledge graphs can also be used to improve interpretability. Yan
etal."”® proposed a sentiment analysis knowledge graph-BERT model by combining both the knowledge graph and the language represen-
tation model of BERT together. Further, the interpretability can be improved by injecting triples from the knowledge graph into sentences as
domain knowledge. Islam et al."*” developed the method of AR-BERT, which is a two-level global-local entity embedding scheme that allows
efficient joint training of knowledge graphs (KG)-based aspect embeddings and aspect-level sentiment classification models. Interpretability
was enhanced by the semantic relations between aspects extracted from KGs.

Interpretability can be achieved through counterfactual explanation and adversarial examples (AE). A counterfactual explanation involves
generating an instance that is similar to the original instance but leads to a different model prediction. This counterfactual instance helps un-
derstand what changes in the input features would result in a different model output. For AE, one can know the scenario in which its model is
going to generate an incorrect output. It will provide an explanation that which type of edit has led to the change in the output. In order to
secure the model from AE attacks, models can be trained on adversarial data. Feder et al.”*° proposed the framework of CausalLM that can
produce causal model explanations using counterfactual language representation models. Taylor et al.'*" proposed to apply the model of
InfoCal to the task of predicting hospital readmission using hospital discharge notes, where the model can produce extractive rationales for its
predictions by using the adversarial-based technique. Li et al."*” proposed a joint classification and rationale extraction model for both ex-
plainability and robustness. Specifically, the mixed Adversarial Training was designed to use various perturbations in discrete and embedding
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space to improve the model’s robustness, and the Boundary Match Constraint was to locate rationales more precisely with the guidance of
boundary information.

Neurosymbolic methods can produce an answer to a complex query by chaining these operations together, passing inputs from one
module to another. This has the benefit of producing an interpretable trace of intermediate computations, in contrast to the “black box” com-
putations common to end-to-end deep learning approaches. Creswell et al.”** proposed a selection inference framework that exploits
pre-trained large LMs as general processing modules, and alternates between selection and inference to generate a series of interpretable,
symbolic reasoning steps leading to the final answer.

Layer-wise relevance propagation is another way to attribute relevance to features computed in any intermediate layer of a neural
network (NN). Definitions are available for most common NN layers including fully connected layers, convolution layers, and recurrent
layers. Layer-wise relevance propagation has been used to, for example, enable feature importance explainability’*" and example-based
explainability.'* Aken et al."*® presented a layer-wise analysis of BERT's hidden states to understand their internal functioning. They
focused on models fine-tuned on the task of QA as an example of a downstream task and inspected how QA models transform token
1."*” proposed the VisBERT that can visualize the contextual token representations
within BERT for the task of (multi-hop) QA. Interpretability can be provided by observing how the semantic representations are trans-
formed throughout the layers of the model. Sevastjanova et al."*® aimed to explain models by exploring the continuum between function
and content words with respect to contextualization in BERT. Specifically, they utilized the similarity-based score to measure contextual-
ization and integrate it into a visual analytics technique, presenting the model’s layers simultaneously and highlighting intra-layer proper-
ties and inter-layer differences.

vectors in order to find the correct answer. Aken et a

Advantages and disadvantages of interpretability techniques

Gradient-based interpretability vs. layer-wise relevance propagation-based interpretability: Gradient-based methods treat the gradient (or
some variant of it) of the model output w.r.t. each input feature as its relative importance.'*? The feature can typically be a pixel in an image or
atoken in the text. Intuitively, the gradient represents how much difference a tiny change in the input will apply to the output. Regarding layer-
wise relevance propagation-based methods, they are a more generalized solution by using a high-level relevance conservation constraint, i.e.,
the total incoming relevance into a neuron should equal the total outgoing relevance from it. They have been applied to sentence classifi-
cation tasks to explain which tokens are mostimportant to the prediction. Compared to gradient-based methods, there are some advantages
in layer-wise relevance propagation-based methods. First, they do not require the differentiability or smoothness properties of neuron acti-
vations. Second, it provides a way to quantitatively assess its faithfulness via a perturbation-based evaluation.*® However, there are also some
drawbacks in the layer-wise relevance propagation-based methods, such as suffering from the saturation problem'*' and no principled way to
decide which rule to choose for which type of layer. Overall, the strengths of these two types of methods are: (i) they generate a spectrum of
feature relevance scores, which is easily understandable for all kinds of target users and (i) they are easy to compute—gradient-based
methods require only a few calls to the model’s backward function while layer-wise relevance propagation involves a custom implementation
of the backward pass. Their weaknesses are obvious as well: (i) most existing work targets low-level features, and it is non-intuitive how to
compute any gradient w.r.t. higher-level features like semantic role, syntax dependency, and discourse relations; (ii) it is questionable how
to apply such methods to non-classification tasks, especially when there is no single output of the model, e.g., text generation or structured
prediction; and (iii) the explanation might be unstable, i.e., minimally different inputs can lead to drastically different relevance maps.'*'**

Attention-based interpretability: As Transformers has become the backbone architecture for many language models, the attention mech-
anism in Transformers, a.k.a. self-attention, is widely used as well. Simply, self-attention is a function of the affine transformation between an
input sequence of vectors and an output sequence of vectors. Its weights are called attention weights, intuitively representing how much the
model “attends to"” each input vector when computing the weighted average. Therefore, it is appealing to interpret attention weights as the
importance of input tokens to the output. Such types of understanding have been used (implicitly or explicitly) as evidence for model inter-
pretability in different tasks and domains, such as text classification,'** knowledge base induction,'"® and medical code prediction."'” Despite
these intuitive findings, there is a debate on whether the attention mechanism can be a faithful model explanation. For example, prior work'®
contends that attention weights do not correlate well with other feature importance-based explanation methods. Also, it is possible to
construct an adversarial attention distribution, i.e., one that is maximally different from the original distribution but has little influence on
the model output. There are also some counter-arguments: ' (i) attention weights can provide an explanation, but that does not have to
be the only explanation. In practice, most tasks considered in the study by Jain and Wallace'® are binary classification, which means that
it is possible to construct adversarial attention distributions that differ significantly from the original distribution but have little effect on
the model’s output. This may suggest that attention weights are not always a reliable indicator of feature importance. (i) Adversarial distri-
butions are not adversarial weights. The adversarial attention distributions are artificially constructed by humans, but not learned by models
through training. Overall, its strengths are: (i) the visualization of model-internal structures is intuitive and readable to humans, especially end
users; (i) the attention mechanism can capture the interaction between features, whereas many other methods can only capture the influence
of individual features themselves; and (iii) attention weights are easily accessible and computationally efficient, compared to other methods.
For its weaknesses: (i) it is questionable to what extent attention weights represent causal contribution, as mentioned in the debate; (i) simply
focusing on attention weights in a single layer and/or from a single token position may reflect how much the model attends to each input
position locally, but not taking the whole computation path into account. So the attention mechanism in hierarchical architecture might miti-
gate the issue and improve the interpretability.
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Counterfactual intervention methods explain the causal effect between a feature/concept/example and the prediction by erasing or per-
turbing it and observing the change in the prediction. Counterfactual examples, therefore, refer to the outcome of perturbations. Although
counterfactual examples and adversarial examples look similar in the robustness literature, they differ in this context: (i) the goal of the former
is to explain the model’s reasoning mechanism, while that of the latter is to examine model robustness; (i) the former should be meaningfully
different in the perturbed feature to the original example while the latter should be similar to or even indistinguishable from it; and (i) the
former can lead to changes in the ground truth label, whereas the latter should not.'*> However, generating high-quality counterfactual ex-
amples is non-trivial, as they need to simultaneously accord with the counterfactual target label, be semantically coherent, and only differ from
the original example in the intended feature. In existing work, the most reliable (yet expensive) approach to collecting counterfactual exam-
ples is still manual creation.'*>"*® Besides, counterfactual intervention can directly happen on the level of examples, such as the methods of
influence functions. Influence functions are based on counterfactual reasoning — if a training example were absent or slightly changed, then
how would the prediction change? Since it is impractical to retrain the model after erasing/perturbing every single training example, influence

k' that influence func-

functions provide an approximation by directly recomputing the loss function. However, it is found in the existing wor
tions can become fragile and the approximation accuracy can vary significantly depending on a variety of factors, such as network architec-
ture, depth, width, the extent of model parameterization and regularization techniques, and the examined checkpoints, as models become
more complex. Counterfactual intervention can also happen in the feature representations in the model, such as the work of Amnesic Prob-
ing'*® and CausalLM."*° They both aim to answer the more insightful question — is some high-level feature, e.g., syntax tree, used in predic-
tion? They exploit different algorithms to erase the target feature from the model representation and then measure the change in the
prediction. The larger the change, the more strongly it indicates that the feature has been used by the original model. In terms of faithfulness,
only CausallLM is validated with a white-box evaluation, whereas no explicit evaluation is provided for Amnesic Probing. Causal inference can
also be used for interpretability. However it requires a more rigorous formalization of the causal framework, e.g., a causal model, which is
usually task- or even dataset specific and needs to be designed by domain experts. Therefore, there are still important challenges such as
how to automatically derive causal models from data and how to make them more generalizable across tasks. Overall, counterfactual inter-
ventions can capture causal relationships instead of mere correlational effects between inputs and outputs and are more often explicitly eval-
uated in terms of faithfulness. However, counterfactual intervention is relatively more expensive in computational cost, normally requiring
multiple forward passes or modifications to the model representation. Searching for the right targets to intervene in can also be costly. In-
terventions are often overly specific to the particular example and this calls for more insights into the scale of such explanations.'*” Counter-
factual intervention may suffer from hindsight bias, which questions the foundation of counterfactual reasoning.™

Surrogate models for post hoc interpretability: SHAP is one of the widely adopted surrogate-model-based methods that can be thought of
as using additive surrogate models as an explanation. Shapley values are theoretically shown to be locally faithful, but there is no empirical
evidence on whether this property is maintained after the SHAP approximation. Subsequent work also finds other limitations: linear surrogate
models have limited expressivity. For example, if the decision boundary is a circle and the target example is inside the circle, itis impossible to
derive a locally faithful linear approximation. Besides, they can result in nonsensical inputs or representations, which sometimes allow adver-
saries to manipulate the explanation.'”’ What's more important, one major concern of using SHAP in the medical domain is that the Shapley
value was originally derived from economics tasks, where the cost is additive. However, clinical features are usually heterogeneous, and the
Shapley values derived from the model may not be meaningful.'*?

Faithfulness and plausibility of interpretability

In addition to explanation methods, interpretability can be evaluated from the trustworthy aspects: how faithful the explanation is and how
understandable the explanation is to humans, a.k.a., faithfulness and plausibility. Specifically, faithfulness measures the degree to which
the rationales in fact influence the corresponding predictions,'**">* while plausibility measures how much the rationales provided by models
align with human-annotated rationales.'®*">° These two aspects are often at odds with each other. This is because a complex model decision
might require a rather complex explanation to cover all of the possible aspects of the model’s behaviors on different inputs, which might not
look easy to understand to humans. Regarding faithfulness, a perfectly faithful interpretation accurately represents the decision-making of the
model being explained. If the explanation is constrained to agree with the model’s behavior on all possible inputs, then no simpler explanation
than the original model is possible. When applying an explanation method to black-box models trained on biomedical data, it is necessary to
consider: (i) the concordance between the explanation method and the original model. If the concordance is low, then the model is not faithful;
(i) if changing the feature importance based on the explanation would alter the original predictions; (iii) if the same model might produce
different explanations for the same pair of input-outputs over multiple runs. Regarding plausibility, we discuss it from the different perspectives
of human expert users. Like any other data-driven machine learning approach, language models for biomedical problems aim to further
improve performance by learning much more complex representations from raw features while sacrificing model transparency. Explanation
methods may provide human-understandable explanations, yet it is crucial that the explanations should be aligned with our knowledge to
be trustable, especially for real-world deployment in the biomedical domain. From a clinical perspective, for example, itis necessary and critical
to have clinically relevant features that align with medical knowledge and clinical practice. However, current deployments with explanation
methods mainly focus on helping to debug the model for engineers rather than the real-world use for end users.'*® For model developers,
they evaluate their use of interpretation methods with different levels of model transparency from both quantitative and qualitative (visualiza-
tion) perspectives. But they usually overtrust the methods and this may lead to their misuse since good visualization may sway human thought
but may not fully explain the behavior of the system and may be incorrectly interpreted by developers. So the appropriate explanation methods
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should be selected and evaluated both to help model developers (data scientists and machine learning practitioners) understand how their
models behave and to assist clinicians and biomedical researchers to understand the rationale for predictions produced by the model.

Case studies in healthcare and biomedicine

In healthcare, language models can be used to improve the efficiency and accuracy of care provided by health professionals. For example, EHR,
including clinical notes, lab tests, radiology reports, and discharge summaries, contains significant clinical values since it can provide a richer
picture of the patient by describing symptoms, reasons for diagnosis, radiology results, daily activities, and patient history. Making accurate
clinical predictions might require health professionals to spend unnecessary time reading and analyzing EHR. In these settings, language
models can be adapted to help predict the diagnosis, suggest treatments and discharges, generate summaries of patient visitation, and predict
hospital readmissions. Further, interpretability could be used to disentangle the underlying explanatory factors of the data, such as uncovering
which terms in clinical notes are predictive of patient readmission'® or demonstrating the relationship between the topic features and diagnosis
codes.'” Besides, language models can be adapted to answer medical questions,”® along with the relevant medical explanatory information.
With interpretability, it would significantly enhance the trust of both the health professionals and patients in outputs produced by such models.

In biomedicine, it is critical to first identify a target (e.g., proteins, DNA, RNA) and search for molecules that bind to the target before
discovering a drug or a therapeutic that treats the disease.'”” Language models in these settings can be adapted to improve the search space
and efficiency, which reduces the amount of experiments and discovers new drugs. Although these biological sequence data have exhibited
similarity to human language, ranging from alphabets and lexicons to grammar and phonetics, it remains largely unknown how the semantics
(i.e., functions) vary across different contexts (locations of sequences). Interpretability is therefore critical to help find important patterns in
sequences and understand their relationship within contexts.”

Legal and ethical regulations

Despite successful applications of language models in healthcare and biomedicine, there are some concerns about legal and ethical issues
due to the potential risks posed by the models. Practical or actionable principles/guidelines of Al ethics have also been raised to address the
issues.'°*1°" For example, regarding safety, predictions produced by the models must be factually accurate with established knowledge and
defer to an expert when uncertain.'®” For the privacy of health data, the use of patient health data must observe regulations, such as HIPAA in
the US. For faimess, language models can create unfair discrimination and representation due to existing social inequalities. On the one hand,
it must ensure that the training and evaluation data for language models are sufficiently representative of different sexes, races, and socio-
economic backgrounds. On the other hand, debiasing methods are needed to ensure fairness when data are extremely imbalanced and
scarce. Nevertheless, the interpretability of the model is still essential in healthcare and biomedicine since it provides evidence and logical
steps for decision-making. It enables to detect the risks of harm in the model and avoid users overestimating the capabilities of the model.
Tracing a given output or harm to its origins in the model can be key to resolving such harms. Although it remains an open challenge to define
what constitutes a good explanation, various researchers have suggested the interpretability of language models is critical to ensure these

systems are fair, ethical, and safe.'®®
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