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SUMMARY

With advancements in large language models, artificial intelligence (AI) is undergoing a paradigm shift
where AI models can be repurposed with minimal effort across various downstream tasks. This provides
great promise in learning generally useful representations from biomedical corpora, at scale, which would
empower AI solutions in healthcare and biomedical research. Nonetheless, our understanding of how they
work, when they fail, and what they are capable of remains underexplored due to their emergent prop-
erties. Consequently, there is a need to comprehensively examine the use of language models in biomed-
icine. This review aims to summarize existing studies of language models in biomedicine and identify
topics ripe for future research, along with the technical and analytical challenges w.r.t. interpretability.
We expect this review to help researchers and practitioners better understand the landscape of language
models in biomedicine and what methods are available to enhance the interpretability of their models.

INTRODUCTION

Recent progress made in large language models, i.e., GPT,1 BERT,2 and ChatGPT, presents a chance to rethink artificial intelligence (AI) sys-

tems, with language as a means to facilitate interaction between humans and AI. Generally, a language model is a probability distribution

p ðw1;w2;.;wMÞ over a sequence of word tokens, with wm ˛U and U being a vocabulary, as shown in Figure 2A. But why would you want

to compute such a probability of a word sequence? In the application scenario, the goal is to produce word sequences as output. For

example, the goal of text summarization is to convert long texts into concise summaries. By computing the probability distribution over ut-

terances, the word sequence can be generated by sampling tokens from this learned probability distribution.

A simple approach to computing the probability distribution of word sequence is to use statistical techniques, such as relative frequency

counts. However, it is very data-intensive and suffers from high variance: even grammatical sentences will have a zero probability if they have

not occurred in the training data. An alternative way is to compute the probability in the product format. N-grammodelsmake a crucial simpli-

fying approximation by conditioning on only the last n � 1 words. However, those traditional probabilistic languagemodels require smooth-

ing techniques to avoid the situation p ðw1;w2;.;wMÞ = 0 when there is a rare or unseen word. Besides, these models are computationally

intensive for large histories of text and cannot capture the long-range dependencies in language. Neural language models use neural net-

works or deep neural networks to model languages, such as feedforward neural networks, recurrent neural networks, and transformer neural

networks. Neural languagemodels have significant advantages over traditional probabilistic languagemodels. Compared to n-grammodels,

neural language models are not constrained by the restricted context and can incorporate contexts from arbitrarily distant words, while re-

maining computationally and statistically tractable. Besides, neural languagemodels can generalize better over contexts of similar words and

are more accurate at word prediction. In this survey, we will focus on the neural language models and use the term ‘‘languagemodel’’ (LM) to

refer to the neural language models.

LMs usually use (low-dimensional) latent feature representation to implicitly capture the syntactic or semantic features of the language. The

representation needs to be learned afresh for each new natural language processing (NLP) task, and in many cases, the size of the training

data limits the quality of the latent feature representation. Given that the nuances of language are common to all NLP tasks, one could posit

that we could learn generic latent feature representations from some generic tasks once and then share it across all NLP tasks. Language

modeling, where the model needs to learn how to predict the next word given previous words, is such a generic task with abundant naturally

occurring text to pre-train such a model (hence the name pre-trained language models). There are some benefits in pre-training, including

(i) learning a universal representation through the massive corpus for downstream tasks, (ii) achieving an improved generalization ability and

faster convergencewithmodel initialization, and (iii) mitigating the overfitting issues in scenarios with limited data. There are several classes of

pre-trained languagemodels: autoregressive languagemodels (GPT,1GPT-2,3 ELMo4), masked languagemodels (BERT,2XLM,5 T5,6MASS7),

permuted languagemodels (XLNet8), and denoising autoencoders (BART,9mBART10), which are categorized by their ways ofmasking tokens,

overcoming the mismatch issue, and recovering back the inputs. Besides, the pre-trained language models can also be categorized from
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other perspectives. For example, they can be divided into non-contextual and contextual models according to the representation used for

downstream tasks. According to various scenarios, they can be categorized as knowledge-enriched LMs, multilingual or language-specific

LMs, multi-model LMs, domain-specific LMs, and compressed LMs.

Healthcare andbiomedicine represent vast domains of application, encompassing diverse areas of focus. Healthcare entails the delivery of

care to patients via diagnosis, treatment, and health administration, while biomedical research concentrates on the scientific understanding of

disease and the discovery of new therapeutic approaches. Both areas necessitate significant resources, time, and comprehensive medical

knowledge. Language models can be trained on diverse sources or modalities of data in the biomedical domain, which have the potential

to serve as a central storage of medical knowledge. In this way, they can be accessed and queried by medical professionals (e.g., healthcare

providers and biomedical researchers) and by the public. By leveraging their strong adaptability through fine-tuning or prompting, language

models can be effectively tailored to suit various specific tasks within healthcare andbiomedicine. Despite the imminentwidespread adoption

of thesemodels, our current understanding of how they work, when they fail, andwhat they are even capable of remains underexplored due to

their emergent properties and complexity. Consequently, there is a need to examine the utilization of language models in healthcare and

biomedicine.

Interpretability, often used interchangeably with explainability, refers to the ability to explain or provide meaning to model predictions. In

particular, interpretability aims to describe the inner structure of a model in a manner that is easily understandable by humans.11 In the med-

ical domain, for example, there are great challenges in clinical decision support, such as diagnostic/prognostic/treatment uncertainties, and

imbalanced, heterogeneous, noisy, sparse, high-dimensional datasets. Due to their powerful capacity, language models can be used for

various use cases, including predicting the future diagnosis of depression in a temporal manner for mental health research,12 recommending

medications,13 extracting cancer phenotypes,14 and predicting a patient’s likelihood of readmission to the hospital.15 In these high-stakes

decisions, however, one of the concerns in the deployment of such models is that there can still be high model misclassification. Besides,

it has been widely shown that such models are not robust and may encounter failures in the presence of both artificial and natural noise.16

Due to the black-box nature of suchmodels, there is no easily discernible logic connecting the data to the decisions of themodels. Therefore,

providing explanations is critical to holding people/institutes accountable when models malfunction and gaining scientific understanding

about models. To reach a level of explainable and usable machine intelligence, we need to not only learn from data, extract knowledge,

generalize, and mitigate the curse of dimensionality but also disentangle the underlying explanatory factors of the data.

Therefore, the purpose of this scoping review is to map different types of corpora and language models used in existing healthcare and

biomedical literature to their application tasks. Further, it seeks to identify topics ripe for future research, along with the technical and analyt-

ical challenges w.r.t. the interpretability. The processing and reporting of the results of this review were guided by the Preferred Reporting

Items for Systematic Reviews andMeta-Analyses guidelines, as shown in Figure 1. We performed the literature search from various resources

to find relevant articles published between Jan. 2015 and Dec. 2022: (i) the primary databases including Google Scholar, IEEE Xplore, ACM

Digital Library, and PubMed; and (ii) the additional resources such as ACLAnthology. The search strategy for ‘‘languagemodels for healthcare

and biomedical research’’ is: (‘‘languagemodels’’ OR ‘‘Transformer’’ OR ‘‘deep neural networks’’ OR ‘‘pre-trainedmodels’’) AND (‘‘health’’ OR

Figure 1. PRISMA flow diagram of study selection: language models in healthcare and biomedical research
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‘‘biomedical’’ OR ‘‘biomedicine’’). The search strategy for ‘‘interpretability of languagemodels’’ is: (‘‘languagemodels’’ OR ‘‘Transformer’’ OR

‘‘deep neural networks’’ OR ‘‘pre-trained models’’) AND (‘‘health’’ OR ‘‘biomedical’’ OR ‘‘biomedicine’’) AND (‘‘explainability’’ OR ‘‘interpret-

ability’’). Exclusions for the study selection were: (a) articles were not published in English; (b) commentaries or editorials; (c) the full text of the

article is not accessible; (d) the languagemodels are not based on deep neural networks; and (e) the outcome is not related to healthcare and

biomedical research. But there might be a few limitations in this study: (i) we focused on the language models and limited several corpora as

listed in the Results section, without including other types of corpora, such as speech data, audio recordings, video recordings, physiological

data, medical robotic data, etc.; and (ii) the searched studies are all in English, which might result in the underrepresentation of language

model applications in non-English-speaking countries. Despite of these, our review provides a landscape of the current literature on the lan-

guage model and its interpretability in biomedicine.

RESULTS

Language models for healthcare and biomedical research

In this subsection, we classify the biomedical corpora used to train the language models into six types, followed by a presentation of each

category in detail (as shown in Figure 2C). Besides, we make an overview table listing the various examined categories as shown in Table 1.

Electronic health records

Electronic health records (EHRs) have been utilized to store patient’s health records from admission to discharge. These records contain a

wealth of clinical data that can be leveraged to enhance patient care through knowledge discovery and the development of advanced algo-

rithms. EHR data encompass both structured data (e.g., lab results andmedical codes) and unstructured data (e.g., clinical notes, medication

instructions, progress notes, or discharge summaries). Medical Information Mart for Intensive Care III (MIMIC-III) is the largest publicly avail-

able dataset of medical records, which consists of 58,976 unique hospital admissions from 38,597 patients in the intensive care unit of the Beth

Israel Deaconess Medical Center between 2001 and 2012. Among EHR data, clinical notes contain valuable patient information but are chal-

lenging and costly to manually extract. Consequently, there is a need to effectively leverage the information embedded in clinical notes for

research and practical applications. Zhu et al.20 aimed to automatically extract clinical concepts by training ELMo on a corpus of clinical notes

fromMIMIC-III. Si et al.19 proposed to pre-train BERT on clinical notes fromMIMIC-III for clinical concept extraction. Shang et al.13 proposed

to combine Graph Neural Networks and BERT for medication recommendation where their model was pre-trained on the MIMIC-III dataset.

Huang et al.29 proposed the Clinical XLNet on the MIMIC-III dataset, in order to predict prolonged mechanical ventilation. Huang et al.15

developed the ClinicalBERT and pre-trained the model on the clinical notes from MIMIC-III for the task of predicting hospital readmission.

A

B

C

Figure 2. Overview of language model and its applications in biomedicine

(A) An example of languagemodeling that aims to predict the token of ‘‘diabetes’’ in the context of ‘‘Hyperglycemia affects people who have’’; (B) An example of

languagemodel based on deep neural networks, which transforms each word token as word embedding, takes them as inputs, and computes the probability for

the word being predicted through the language model; (C) Different types of corpus for language models in healthcare and biomedical research, and their

associated application tasks.
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Table 1. A summary of the selected studies in this review

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Zhang et al., 201917 EHR VetTag https://github.com/

yuhui-zh15/VetTag

CSU test data: F1 (66.2%),

Precision (72.1%), Recall (63.1%),

ExactMatch (26.2%)

text classification saliency method

Liu et al., 202218 EHR MedM-PLM https://git.openi.org.cn/

liusc/3-6-liusicen-

multi-modal-pretrain

2010-i2b2: F1 (86.29%);

medication recommendation: AUC

(95.57%); 30-day readmission

prediction: AUC (74.7%); ICD

coding: AUC (87.46%)

information extraction;

classification

–

Huang et al., 201915 EHR ClinicalBERT https://github.com/

kexinhuang12345/

clinicalBERT

clinical word similarity: Pearson

correlation (67.0%); 30-day

readmission prediction: AUC

(71.4%)

semantic textual

similarity; classification

attention weight

Si et al., 201919 EHR BERTbase,

BERTlarge

https://huggingface.co/

models?sort=trending&

search=bert

i2b2 2010: F1 (90.25%); i2b2 2012:

F1 (80.91%); Semeval 2014 Task 7:

F1 (80.74%); Semeval 2015 Task

14: F1 (81.65%)

information extraction –

Zhu et al., 201820 EHR, Online

Medical

Knowledge

Sources

Clinical ELMo https://github.com/

noc-lab/clinical_

concept_extraction

2010 i2b2/VA: Precision (89.34%),

Recall (87.87%), F1 (88.60%)

information extraction –

Alsentzer

et al., 201921
EHR Clinical BERT,

Discharge

Summary

BERT

https://github.com/

EmilyAlsentzer/

clinicalBERT

i2b2 2010: Exact F1 (87.8%); i2b2

2012: Exact F1 (78.9%); MedNLI:

Accuracy (82.7%)

information extraction;

natural language

inference

–

Shang et al., 201913 EHR G-BERT https://github.com/

jshang123/G-Bert

Jaccard (45.65%), PR-AUC

(69.60%), F1 (61.52%)

classification –

Rasmy et al., 202122 EHR Med-BERT https://github.com/

ZhiGroup/Med-BERT

DHF-Cerner: AUC (85.39%);

PaCa-Cerner: AUC (82.23%);

PaCa-Truven: AUC (80.57%)

classification attention weights

Li et al., 202023 EHR BEHRT – AUC (90.4%), average

precision score (21.6%)

classification attention weights

Lewis et al., 202024 EHR, Scientific

literature

Bio-LM https://github.com/

facebookresearch/bio-lm

I2B2-2010: F1 (89.7%); HOC:

Macro-F1 (86.6%); MedNLI:

Accuracy (88.5%)

Information extraction;

classification; natural

language inference

–

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Peng et al., 201925 EHR, Scientific

literature

BlueBERT https://github.com/

ncbi-nlp/bluebert

MedSTS: Pearson (84.8%);

BC5CDR: F1 (93.5%); i2b2 2010: F1

(76.4%); HOC: F1 (87.3%); MedNLI:

Accuracy (84.0%)

Semantic textual similarity;

Information extraction;

text classification; natural

language inference

–

Agrawal

et al., 202226
EHR GPT-3+R – Biomedical Evidence Extraction:

Accuracy (85%), F1 (61%);

Medication status classification:

Conditional Accuracy (89%),

Conditional Macro F1 (71%)

Information extraction;

classification

–

Chang

et al., 202027
EHR Clinical BERT https://github.com/

dchang56/chief_

complaints

Top-5 accuracies of 0.92 and 0.94

on datasets comprised of 434 and

188 labels, respectively

classification –

Yang et al., 202228 EHR, Scientific

literature

GatorTron https://github.com/uf-hobi-

informatics-lab/GatorTron

2010 i2b2: F1 (89.96%); 2018 n2c2:

F1 (96.27%); 2019 n2c2: Pearson

correlation (89.03%); MedNLI71:

Accuracy (90.20%); emrQA

medication: F1 (74.08%), Exact

Match (31.55%)

Information extraction;

semantic textual similarity;

natural language inference;

question answering

–

Huang et al., 201929 EHR Clinical XLNet https://github.com/

lindvalllab/clinicalXLNet

prolonged mechanical ventilation:

AUC (66.3%); 90-day mortality:

AUC (77.9%)

classification –

Zhou et al., 202214 EHR CancerBERT https://github.com/zhang-

informatics/CancerBERT

macro F1 scores equal to 0.876

(95% CI, 0.873–0.879) and 0.904

(95% CI, 0.902–0.906) for exact

match and lenient match,

respectively.

information extraction –

Michalopoulos

et al., 202030
EHR, Online

Medical

Knowledge

Sources

UmlsBERT https://github.com/gmichalo/

UmlsBERT

MedNLI: Accuracy (83.0%); i2b2

2010: F1 (88.6%)

natural language inference;

information extraction

–

Kades et al., 202131 EHR Enhanced BERT – 2019 n2c2: Pearson correlation

(88.3%)

semantic textual similarity –

Yang et al., 202032 EHR RoBERTa-MIMIC https://github.com/uf-hobi-

informatics-lab/

ClinicalTransformerNER

2010 i2b2: F1 (89.94%); 2012 i2b2:

F1 (80.53%); 2018 n2c2: F1

(89.07%)

information extraction –

Meng

et al., 202112
EHR BRLTM https://github.com/

lanyexiaosa/brltm

depression prediction: PRAUC

(76%)

classification attention weights

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Chen et al., 202033 EHR AlphaBERT https://github.com/

wicebing/AlphaBERT

AUC (94.7%); ROUGE-L (69.3%) text summarization –

Wang et al., 202134 EHR CHMBERT – disease prediction: Top-1 F1

(61.95%), Top-5 F1 (91.58%),

Top-1 F1 (96.83%),

classification –

Zhang et al., 202035 EHR MC-BERT https://github.com/alibaba-

research/ChineseBLUE

cEHRNER: F1 (90%); cMedQA: F1

(82.3%); cMedTC: F1 (82.1%)

information extraction;

question answering;

text classification

–

Kraljevic

et al., 202136
EHR MedGPT – NER+L: F1 (93%) information extraction saliency method

Khin et al., 201837 EHR ELMo – i2b2-PHI: F1 (89.87%–98.74%) information extraction –

Yang et al., 202038 EHR RoBERTa https://github.com/

uf-hobi-informatics-lab/

2019_N2C2_Track1_

ClinicalSTS

Pearson correlation (90.65%) semantic textual

similarity

attention weights

Xiong et al., 202039 EHR BERT-based

model

– 2019 n2c2: Pearson correlation

(86.8%)

semantic textual

similarity

–

Mahajan

et al., 202040
EHR ClinicalBERT – 2019 n2c2: Pearson correlation

(90.1%)

semantic textual

similarity

–

Yan et al., 202241 EHR RadBERT – abnormal sentence classification:

Accuracy (96.1%), F1 (95.6%);

report coding: Accuracy (96.1%),

F1 (96.0%); report summarization:

ROUGE-1 (16.18%);

text summarization;

classification

–

Lau et al., 202242 EHR BERTrad https://github.com/

wilsonlau-uw/BERT-EE

90.9%–93.4% F1 for finding

triggers; 72.0%–85.6% F1 for

arguments role extraction

Information extraction –

Meng et al., 202043 EHR BERT-based

model

– Precision (97.0%), Recall (93.3%),

F-measure (95.1%)

classification –

Bressem

et al., 202144
EHR FS-BERT &

RAD-BERT

https://github.com/

rAIdiance/bert-for-

radiology

chest radiograph reports: AUC

(97%–99%); CT reports: pooled

AUC/AUPRC of 88%/80%

classification –

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Naseem

et al., 202245
Biomedical

image-text

pairs

TraP-VQA – Overall: Accuracy (64.82%), Open-

ended: Accuracy (37.72%), Close-

ended: Accuracy (93.57%)

visual question

answering

Gradient-weighted

Class Activation

Mapping

(Grad-CAM),

Shapley additive

explanations (SHAP),

attention weights

Li et al., 202046 Biomedical

image-text

pairs

V + L models https://github.com/

YIKUAN8/Transformers-

VQA

OpenI: averaged AUC (98.5%) visual question

answering

visualization of

attention maps

Khare et al., 202147 Biomedical

image-text

pairs

MMBERT https://github.com/

VirajBagal/MMBERT

VQA-Med 2019: overall Accuracy

(67.2%), BLEU (69%); VQA-RAD:

overall Accuracy (72%)

visual question

answering

visualization of

attention maps

Moon et al., 202248 Biomedical

image-text

pairs

MedViLL https://github.com/

SuperSupermoon/

MedViLL

diagnosis classification (Open-I):

AUC (89.2%), F1 (40.7%); VQA-

RAD: accuracy of 59.5%/77.7% for

open-ended and close-ended

questions, respectively

visual question answering;

classification

visualization of

attention maps

Chen et al., 202249 Biomedical

image-text

pairs

Med-VLP https://github.com/

zhjohnchan/ARL

VQA-2019: overall Accuracy

(80.32%); VQA-RAD: overall

Accuracy (79.16%); MELINDA:

Accuracy (80.51%)

visual question answering;

classification

–

Chen et al., 202250 Biomedical

image-text

pairs

M3AE https://github.com/

zhjohnchan/M3AE

VQA-RAD: overall Accuracy

(77.01%); VQA-2019: overall

Accuracy (79.87%); MELINDA:

Accuracy (78.50%)

visual question answering;

classification

–

Monajatipoor

et al., 202251
Biomedical

image-text

pairs

BERTHop https://github.com/

masoud-monajati/

BERTHop

OpenI: AUC (98.12%) classification –

Boecking

et al., 202252
Biomedical

image-text

pairs

BioViL https://huggingface.co/

microsoft/BiomedVLP-

BioViL-T

RadNLI: Accuracy (65.21%) natural language

inference

–

Lee et al., 202053 Scientific

literature

BioBERT https://github.com/

dmis-lab/biobert

2010 i2b2: F1 (86.73%), NCBI

disease: F1 (89.71%), BC5CDR: F1

(93.47%), BC2GM: F1 (84.72%),

ChemProt: F1 (76.46%), BioASQ

5b: Strict Accuracy (46%)

information extraction;

question answering

–

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Shin et al., 202054 Scientific

literature

BioMegatron https://github.com/

NVIDIA/NeMo

BC5CDR-chem: F1 (92.9%),

BC5CDR-disease: F1 (88.5%),

NCBI-disease: F1 (87.8%),

ChemProt: F1 (77.0%), BioASQ-7b-

factoid: Strict Accuracy (47.4%)

information extraction;

question answering

–

Gu et al., 202155 Scientific

literature

PubMedBERT – BC5-chem: F1 (93.33%), BC5-

disease: F1 (85.62%), NCBI-

disease: F1 (87.82%), BC2GM: F1

(84.52%), ChemProt: Micro F1

(77.24%), DDI: Micro F1 (82.36%),

BIOSSES: Pearson (92.30%), HoC:

Micro F1 (82.32%), PubMedQA:

Accuracy (55.84%), BioASQ:

Accuracy (87.56%),

information extraction;

text classification; question

answering; semantic

textual similarity

–

Luo et al., 202256 Scientific

literature

BioGPT https://github.com/

microsoft/BioGPT

KD-DTI: F1 (38.42%), BC5CDR: F1

(46.17%), DDI: F1 (40.76%),

PubMedQA: Accuracy (78.2%),

HoC: F1 (85.12%)

information extraction; text

classification; question

answering

–

Kanakarajan

et al., 202157
Scientific

literature

BioELECTRA https://github.com/

kamalkraj/BioELECTRA

BC5-chem: F1 (93.60%), BC5-

disease: F1 (85.84%), NCBI-

disease: F1 (89.38%), BC2GM: F1

(84.69%), ChemProt: Micro F1

(78.20%), DDI: Micro F1 (82.76%),

BIOSSES: Pearson (92.49%),

HoC: Micro F1 (83.50%),

PubMedQA: Accuracy (64.02%),

BioASQ: Accuracy (88.57%),

MedNLI: Accuracy (86.34%)

information extraction;

text classification;

natural language

inference; question

answering; semantic

textual similarity

–

Yasunaga

et al., 202258
Scientific

literature

BioLinkBERT https://github.com/

michiyasunaga/LinkBERT

BC5-chem: F1 (94.04%), BC5-

disease: F1 (86.39%), NCBI-

disease: F1 (88.76%), BC2GM: F1

(85.18%), ChemProt: Micro F1

(79.98%), DDI: Micro F1 (83.35%),

BIOSSES: Pearson (93.63%), HoC:

Micro F1 (84.87%), PubMedQA:

Accuracy (72.18%), BioASQ:

Accuracy (94.82%)

information extraction;

text classification;

question answering;

semantic textual

similarity

–

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Miolo et al., 202159 Scientific

literature

ELECTRAMed https://github.com/

gmpoli/electramed

NCBI-disease: F1 (87.54%),

BC5CDR: F1 (90.03%), ChemProt:

Micro F1 (72.94%), DDI: Micro F1

(79.13%), BioASQ: MRR (47.95%)

information extraction;

question answering

–

Taylor et al., 202260 Scientific

literature

Galactica https://github.com/

paperswithcode/galai

BioASQ: Accuracy (94.3%),

PubMedQA: Accuracy (77.6%),

MedMCQA dev: Accuracy (52.9%)

question answering attention

visualization

Jin et al., 201961 Scientific

literature

BioELMo https://github.com/

Andy-jqa/bioelmo

BC2GM-Probe: F1 (88.4%),

MedNLI-Probe: Accuracy (75.5%)

information extraction;

natural language

inference

–

Naseem

et al., 202262
Scientific

literature, EHR

BioALBERT https://github.com/

usmaann/BioALBERT

BC5CDR-chem: F1 (98.08%),

BC5CDR-disease: F1 (97.78%),

NCBI-disease: F1 (97.18%),

BC2GM: F1 (96.97%), ChemProt:

F1 (78.32%), DDI: F1 (84.05%),

i2b2: F1 (76.86%), BIOSSES:

Pearson (92.80%), MedSTS:

Pearson (85.70%), HoC: F1

(87.92%), BioASQ 4b-factoid:

Accuracy (48.90%), BioASQ 5b-

factoid: Accuracy (62.31%),

BioASQ 6b-factoid: Accuracy

(62.88%), MedNLI: Accuracy

(79.52%)

information extraction; text

classification; natural

language inference;

question answering;

semantic textual

similarity

–

Yuan et

al., 202163
Scientific

literature,

Online medical

knowledge

sources

KeBioLM https://github.com/

GanjinZero/KeBioLM

BC5-chem: F1 (93.3%), BC5-

disease: F1 (86.1%), NCBI-disease:

F1 (89.1%), BC2GM: F1 (85.1%),

ChemProt: F1 (77.5%), DDI: F1

(81.9%), GAD: F1 (84.3%)

Information extraction –

Tinn et al., 202164 Scientific

literature

PubMedELECTRA https://huggingface.co/

microsoft

BC5-chem: F1 (93.32%), BC5-

disease: F1 (85.16%), NCBI-

disease: F1 (87.73%), BC2GM: F1

(83.79%), ChemProt: F1 (76.74%),

DDI: F1 (81.09%), BIOSSES:

Pearson (92.01%), HoC: F1

(82.57%), BioASQ: Accuracy

(92.07%), PubMedQA: Accuracy

(67.64%)

information extraction; text

classification; question

answering; semantic

textual similarity

–

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Ozyurt, 202065 Scientific literature Bio-ELECTRA https://github.com/

SciCrunch/bio_electra

BioASQ 8b-factoid: Exact Match

(57.93%), BC4CHEMD: F1

(83.80%), BC2GM: F1 (72.55%),

NCBI Disease: F1 (81.13%),

LINNAEUS: F1 (85.02%), BioASQ

5b based: MRR (33.5%), GAD: F1

(80.96%), ChemProt: F1 (64.22%)

information extraction;

question answering

–

Moradi et al., 202066 Scientific literature BERT-based-

Summ

https://github.com/

BioTextSumm/BERT-

based-Summ

ROUGE-1 (75.04%), ROUGE-2

(33.12%)

text summarization –

Xie et al., 202267 Scientific literature KeBioSum – CORD-19: ROUGE-1 (32.04%),

PubMed-Long: ROUGE-1

(36.39%), s2orc: ROUGE-1

(37.44%), PubMed-Short: ROUGE-

1 (43.98%)

text summarization –

Du et al., 202068 Scientific literature BioBERTSum – PubMed: ROUGE-1 (37.45%),

CNN/DailyMail: ROUGE-1

(43.13%)

text summarization attention

visualization

Wallace et al., 202169 Scientific literature BART-based

model

– XSUM: ROUGE-L (26.5%), Pretrain:

ROUGE-L (26.9%), Decorate:

ROUGE-L (26.6%), Sort by N$RoB:

ROUGE-L (26.7%), Decorate and

sort: ROUGE-L (26.5%)

text summarization –

Guo et al., 202170 Scientific literature BART-based

model

https://github.com/

qiuweipku/Plain_language_

summarization

ROUGE-1 (53.02%), ROUGE-2

(22.06%), ROUGE-L (50.24%)

text summarization –

Kieuvongngam

et al., 202071
Scientific literature BERT&GPT-2

based model

https://github.com/

VincentK1991/

BERT_summarization_1

extractive summary: ROUGE-1

(20%–70%), abstractive summary:

ROUGE-1 (20%–45%)

text summarization attention

visualization

Chakraborty

et al., 202072
Scientific literature BioMedBERT https://github.com/

BioMedBERT/

biomedbert

GAD: F (79.92%), SQuAD v1.1: F1

(92.46%), EM (86.12%), NCBI

Disease: F (87.51%), BC5CDR-

Disease: F (87.51%), BC5CDR-

chem: F (92.21%), BC4CHEMD: F

(86.41%), BC2GM: F (82.32%),

information extraction;

question answering

–

Oniani & Wang,

202073
Scientific literature GPT-2-based

model

https://github.com/

oniani/covid-19-chatbot

overall average rating score: 4.023 question answering –

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Liévin et al., 202274 Online Medical

Knowledge

Sources

CODEX 5-SHOT

COT

https://github.com/vlievin/

medical-reasoning

USMLE: accuracy (60%),

PubMedQA: accuracy (78%)

question answering –

He et al., 202075 Online Medical

Knowledge

Sources

diseaseBERT https://github.com/

heyunh2015/diseaseBERT

MEDIQA-2019: MRR (90.00%),

Accuracy (79.49%); TRCEQA-2017:

MRR (57.21%), Accuracy (80.10%);

MEDNLI: Accuracy (86.15%);

BC5CDR: F1 (86.52%); NCBI: F1

(88.30%)

information extraction;

question answering;

natural language

inference

–

Hao et al., 202076 Online Medical

Knowledge

Sources

Clinical Kb-BERT/

ALBERT

https://github.com/

noc-lab/clinical-kb-bert

MedNLI: Accuracy (84.4%); i2b2

2010: Exact F1 (89.7%); i2b2 2012:

Exact F1 (81.9%)

information extraction;

natural language

inference

–

Liu et al., 202077 Online Medical

Knowledge

Sources

SapBERT https://github.com/

cambridgeltl/sapbert

NCBI: Accuracy (92.5%), BC5CDR-

d: Accuracy (93.6%), BC5CDR-c:

Accuracy (96.8%), AskAPatient:

Accuracy (87.6%),

COMETA: Accuracy (77.0%),

Information extraction –

Singhal et al., 202278 Online Medical

Knowledge

Sources

Flan-PaLM and

Med-PaLM

https://huggingface.co/

google/flan-t5-xl

67.6% accuracy on MedQA question answering –

Naseem et al., 202279 Social Media PHS-BERT https://huggingface.co/

publichealthsurveillance/

PHS-BERT

Suicide Ideation: F1 (30.28%),

Stress Detection: F1 (88.82%),

Health Mention: F1 (87.38%),

Depression Detection: F1

(76.49%), Vaccine Sentiment:

F1 (81.10%), COVID Related:

F1 (94.34%)

classification –

Müller et al., 202080 Social Media CT-BERT https://github.com/

digitalepidemiologylab/

covid-twitter-bert

CC: F1 (94.9%), VC: F1 (86.9%),

MVS: F1 (74.8%), SST-2: F1

(94.4%), SE: F1 (65.4%)

classification –

Tutubalina

et al., 202181
Social Media RuDR-BERT&

EnRuDR-BERT

https://github.com/

cimm-kzn/RuDReC

sentence classification: Macro F1

(68.82%), Drug and disease

recognition: Macro F1 (74.85%)

information extraction;

classification

–

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Ji et al., 202182 Social Media MentalBERT &

MentalRoBERTa

https://huggingface.co/

mental

eRisk T1: F1 (93.38%), CLPsych T1:

F1 (69.71%), Depression Reddit: F1

(94.23%), UMD: F1 (58.58%),

T-SID: F1 (89.01%), SWMH: F1

(72.16%), SAD: F1 (68.44%),

Dreaddit: F1 (81.76%),

classification –

Papanikolaou

et al., 202083
Scientific

literature

DARE (GPT-2) https://openai.com/

research/gpt-2-1-5b-

release

CDR: F1 (73%), DDI2013: F1 (78%),

ChemProt: F1 (73%)

Information extraction –

Papanikolaou

et al., 201984
Scientific

literature

BERT model – CDR: F1 (62.2%), GAD: F1 (69.8%),

EUADR: F1 (81.2%), Healx CD: F1

(81.4%)

Information extraction –

Wang et al., 202085 Scientific

literature

GLRE https://github.com/

nju-websoft/GLRE

CDR: F1 (68.5%), DocRED: F1

(57.4%)

Information extraction –

Cabot et al., 202186 Scientific

literature

REBEL (BART) https://github.com/

babelscape/rebel

CONLL04: F1 (71.97%), NYT: F1

(91.76%), DocRED: F1 (41.84%),

ADE: F1 (81.69%), Re-TACRED: F1

(90.39%),

Information extraction –

Weber et al., 202287 Scientific

literature

transformer-

based LM

https://github.com/

leonweber/drugprot

F1 score of 79.73% on the hidden

DrugProt test set

Information extraction –

Heinzinger

et al., 201988
Biological

sequence

SeqVec https://github.com/

Rostlab/SeqVec

Per-residue predictions: CASP12:

Accuracy (76.5%), TS115: Accuracy

(82.4%), CB513: Accuracy (80.7%)

Proteins/DNA prediction –

Rives et al., 202189 Biological

sequence

ESM-1b

Transformer

https://github.com/

facebookresearch/esm

CB513: accuracy (71.6%), CASP13:

accuracy (72.5%)

Proteins/DNA prediction –

Xiao et al., 202190 Biological

sequence

ProteinLM https://github.com/

THUDM/ProteinLM

contact prediction: P@L/5 (75%),

remote homology: Top 1 Accuracy

(30%), Secondary Structure:

Accuracy (79%), fluorescence:

Spearman’s rho (68%)

Proteins/DNA prediction –

Brandes

et al., 202291
Biological

sequence

ProteinBERT https://github.com/

nadavbra/protein_bert

Secondary structure - 3 state:

accuracy (74%), Remote homology:

accuracy (22%), Fluorescence:

Spearman’s r (66%),

Proteins/DNA prediction attention

visualization

Weissenow

et al., 202292
Biological

sequence

EMBER2 https://doi.org/10.5281/

zenodo.6412497

SetTst29: TM score (50%) Proteins/DNA prediction –

(Continued on next page)
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Table 1. Continued

Authors, year

Biomedical

Corpora Model name Open source (model) Model performance Application tasks

Interpretability

technique

Ji et al., 202193 Biological

sequence

DNABERT https://github.com/

jerryji1993/DNABERT

predicts promoter regions: TATA

(accuracy [92.2%], F1 [91.4%]), non-

TATA (accuracy [97%], F1 [97%]);

identifies transcription factor

binding sites: both mean and

median accuracy and F1 > 0.9

Proteins/DNA prediction attention

visualization

Yamada &

Hamada, 202294
Biological

sequence

BERT-RBP https://github.com/

kkyamada/bert-rbp

154 RBPs: AUC (0.786%) Proteins/DNA prediction attention

visualization

Mock et al., 202295 Biological

sequence

BERTax https://github.com/

f-kretschmer/bertax

loosely related dataset: accuracy

(94.78% for superkingdom and

85.55% for phylum); distantly

related dataset: accuracy (88.95%

for superkingdom and 60.10% for

phylum)

Proteins/DNA prediction attention weights

Heinzinger

et al., 202396
Biological

sequence

ProstT5 https://github.com/

mheinzinger/ProstT5

secondary structure: accuracy@Q3

(89.4%); binding residues: F1

(37%); subcellular localization:

accuracy@Q10 (57.3%);

conservation: accuracy@Q9

(30.9%);

Proteins/DNA

prediction

–

ll
O
P
E
N

A
C
C
E
S
S

iS
cie

n
ce

2
7
,
1
0
9
3
3
4
,
A
p
ril1

9
,
2
0
2
4

1
3

iS
c
ie
n
c
e

R
e
v
ie
w



Chang et al.27 aimed to derive a compact and computationally useful representation for free-text chief complaints by using the clinical

BERT pre-trained on the MIMIC corpus. Kraljevic et al.36 developed MedGPT with MIMIC-III and other EHR data for predicting the next dis-

order in a patient’s timeline. Liu et al.18 proposed to pre-train themodel ofMedM-PLMon theMIMIC-III dataset and evaluate its effectiveness

on clinical tasks ofmedication recommendation, readmission prediction, and ICD coding. There are other languagemodels21,24–26,30,32devel-

oped on MIMIC-III datasets.

In addition toMIMIC-III, there aremanyworks using private sources of EHRdata for pre-training languagemodels.12,14,17,22,23,31,33–35,37–40,97,98

For example, Li et al.23 introduced themodel ofBEHRT topredict the likelihoodof 301conditions inone’s future visits.Wanget al.98proposed the

MEBmodelbasedonBERT formedication recommendation.Mengetal.12proposed theBRLTMmodel topredict futurediagnosesofdepression

in mental health. Wang et al.34 developed a Chinese BERTmodel for disease prediction and department recommendation tasks. Rasmy et al.22

proposed theMed-BERTmodel to predict the diseases, such as diabetes, heart failure, and pancreatic cancer, by leveraging the structured EHR

data. Danilov et al.97 used neurosurgical data to predict the inpatient length of stay. Zhou et al.14 proposed the CancerBERT model in order to

extract breast cancer phenotypes fromEHRdata. Besides, there is somework using radiology reports as the corpus for pre-training the language

models.20,41–44

Online medical knowledge sources

Onlinemedical knowledge sources containmedicine and health-related information that is created andmaintained bymedical professionals.

For example, theUnifiedMedical Language System (UMLS) is a repository of biomedical vocabularies developedby theUSNational Library of

Medicine, which includes the NCBI taxonomy, the Medical Subject Headings, Gene Ontology, OMIM, and the Digital Anatomist Symbolic

Knowledge Base. There are over 2 million names for 900,000 concepts from more than 60 families of biomedical vocabulary, as well as

12million relations among these concepts in UMLS. Liu et al.77 aimed to capture fine-grained semantic relationships in the biomedical domain

and proposed the SAPBERTmodel to self-align the representation space of biomedical entities by leveraging amassive collection of biomed-

ical ontologies fromUMLS. He et al.75 integrated BERT-like pre-trained languagemodels with disease knowledge for solving a variety of med-

ical domain tasks, such as answering health questions, medical language inference, and disease name recognition. Hao et al.76 introduced

adding knowledge base information from UMLS into languagemodel pre-training and obtained Clinical KB-BERT and Clinical KBALBERT for

downstream tasks. Yuan et al.63 proposed a biomedical pre-trained language model, KeBioLM, that can explicitly leverage knowledge from

the UMLS knowledge bases. Michalopoulos et al.30 incorporated domain knowledge into the pre-training process for clinical concept extrac-

tion by using a knowledge augmentation strategy with UMLS Metathesaurus. Besides, Zhu et al.20 proposed to pre-train the ELMomodel on

Wiki pages using a domain-specific ontology such as SNOMED CT, to extract clinical concepts. Singhal et al.78 proposed the Med-PaLM

model to encode clinical knowledge from the medical question-answering datasets. Liévin et al.74 investigated answering medical questions

by performing reasoning and leveraging the expert-domain knowledge from medical exam question datasets.

Biomedical image-text pairs

This type of corpus contains two different data modalities, such as the image and text, in the biomedical domain. There are some popular

sources for the corpus. For instance, the MIMIC Chest X-ray is a large publicly available dataset of chest radiographs with free-text radiology

reports99 from the Beth Israel Deaconess Medical Center. ROCO is a large-scale medical andmultimodal imaging dataset where images and

their corresponding captions are frompublications available on PubMedCentral. MedICaT is another dataset of medical image-caption pairs

extracted from PubMed Central. Different from ROCO, 74% of its images are compound figures, including several sub-figures. In particular,

there are 217,060 figures from 131,410 open-access biomedical papers, 7507 subcaptions, and subfigure annotations for 2,069 compound

figures and inline references for around 25,000 figures in the ROCO dataset. IU X-ray has a collection of chest X-ray images from the Indiana

University hospital network which includes the radiology images and XML reports. OpenI is another publicly available chest X-ray dataset

collected by Indiana University, which has 3,996 radiology reports associated with 8,121 images. Li et al.46 investigated different vision-

and-language models for the visual question-answering task, with joint pre-training on chest X-ray radiographs and associated reports.

Kaur et al.100 proposed the RadioBERT model to generate radiological reports from chest X-ray images. Moon et al.48 proposed the

MedViLL model based on BERT for the tasks of diagnosis classification, medical image-report retrieval, medical visual question answering,

and radiology report generation. Chen et al.49 proposed to pre-train the medical vision-and-language model with medical domain knowl-

edge for various downstream tasks. Monajatipoor et al.51 proposed a vision-and-language model of BERTHop for chest X-ray disease diag-

nosis. Chen et al.50 proposed a multimodal masked auto-encoder method for the medical vision-and-language understanding tasks. Boeck-

ing et al.52 proposed the BioViL model for self-supervised multi-modal learning on paired image-text radiology data. Naseem et al.45 aimed

the pathology visual question-answering task by utilizing high- and low-level interactions on the pathology image (vision) and question (lan-

guage) to generate an answer.

Social media

Users often post information on socialmedia platforms and recent studies have shown that health-related socialmedia data are useful inmany

applications to provide better health-related services. For example, Twitter is a social media platform where users post and interact with

messages known as ‘‘tweets.’’ Müller et al.80 proposed the COVID-Twitter-BERTmodel by pre-training on a large corpus of COVID-19-related

tweets. Zhang et al.101 pre-trained language models on HPV vaccine-related tweets for the sentiment analysis of the HPV vaccination

task. Naseem et al.79 proposed the PHS-BERT model for tasks related to public health surveillance on social media by pre-training on
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health-related tweets. For Reddit, it is a social news aggregation, web content rating, and discussionwebsite. Ji et al.82proposedMentalBERT

and MentalRoBERTa for depression detection and other mental disorders classification with the mental health posts on Reddit. Besides,

Tutubalina et al.81 proposed the RuDR-BERT model for drug reactions and effectiveness detection by pre-training the model on the

health-related user-generated texts collected from social media in Russian.

Scientific literature

As valuable knowledge is discovered from biomedical literature, biomedical researchers begin to develop pre-trained language models to

handle biomedical text. PubMed and PubMed Central (PMC) are the two popular sources of biomedical text. PubMed contains only biomed-

ical literature citations and abstracts only while PMC contains full-text biomedical articles. There is a large portion of work pre-training the

proposed model on the corpus from PubMed and PMC25,63,53–62,64,65 for biomedical information extraction. Moradi et al.66 proposed a

BERT-based model for biomedical text summarization with pre-training on PubMed, PMC, and Wiki. Du et al.68 proposed the

BioBERTSum model to better capture token-level and sentence-level contextual representation for extractive summarization tasks in the

biomedical domain.Wallace et al.69 andGuo et al.70 both proposed BART-basedmodels for biomedical text summarization with pre-training

on the corpus of Cochrane systematic reviews indexed in PubMed.

BREATHE is another large and diverse dataset collection of biomedical research articles that contains titles, abstracts, and full-body texts.

The primary advantage of the BREATHE dataset is its source diversity, including BMJ, arXiv, medRxiv, bioRxiv, CORD-19, Springer Nature,

NCBI, JAMA, andBioASQ. Kieuvongngamet al.71 proposed to use BERT andGPT-2 for the text summarization of COVID-19medical research

articles from CORD-19. Chakraborty et al.72 proposed the BioMedBERT model for the task of question-answering by pre-training the model

on the BREATHEdataset.Oniani et al.73 proposed aGPT-2-basedmodel for the task of question-answering for COVID-19with pre-training on

the corpus of CORD-19. Xie et al.67 proposed the KeBioSum model for biomedical text summarization with the corpus of CORD-19 and

PubMed. Taylor et al.60 developed the Galactica model pre-trained on a large scientific corpus of papers that can perform the task of medical

question answering. Besides, there are some works pre-training the models on the corpus of chemical disease relation or drug and adverse

effects for the task of biomedical relation extraction.83–87

Biological sequences

In addition to the text or image data, the biological sequence data can be another corpus for pre-training languagemodels. For example, the

structure of each protein is fully determined by a sequence of amino acids; however, these amino acids are from a limited-size amino acid

vocabulary, of which 20 are commonly observed. This is similar to text that is composed of words in a lexicon vocabulary. The Pfam dataset

is a large collection of protein families, in which each protein is represented by multiple sequence alignments using hidden Markov models.

Xiao et al.90 proposed the model of ProteinLM for the protein prediction task with the preprocessed Pfam. Heinzinger et al.88 proposed the

SeqVec model to predict the protein function and structure from sequences and they further presented the ProstT5 model by combining 1D

sequence with 3D structure.96 Rives et al.89 proposed to use the language model for the tasks of remote homology detection, prediction of

secondary structure, long-range residue-residue contacts, and mutational effect for protein sequences. Brandes et al.91 proposed the

ProteinBERT model for protein sequences designed to capture local and global representations of proteins in a natural way. Weissenow

et al.92 proposed the EMBER2 model for protein structure prediction without requiring any multiple sequence alignments. Besides, Ji

et al.93 proposed the DNABERT model to predict the promoters, splice sites, and transcription factor-binding sites with the DNA sequence.

Yamada et al.94 proposed the BERT-RBPmodel to predict RNA and RNA-binding protein interactions by adapting the BERT architecture pre-

trained on a human reference genome. Mock et al.95 proposed the BERTaxmodel to taxonomically classify the superkingdom and phylum of

DNA sequences.

In the following, we categorize various biomedical downstream tasks, as shown in Figure 2C.

Information extraction

Information extraction plays an important role in automatically extracting structured biomedical information from unstructured biomedical

text data ranging from biomedical scientific literature, and EHR data, to biomedical-related social media corpus, etc. It generally refers to

several important sub-tasks in this review, including named entity recognition and relation extraction. For instance, named entity recognition

is the first step in unlocking valuable information in unstructured text data that aims to identify the concept or entity names in biomedical texts.

Extracting clinical concepts, such as types of diagnosis, test, treatment, clinical department,medication, adverse drug events, etc., is useful for

EHR corpus,14,20,19,21,24–26,30,32,35,42,28 while extracting biomedical entities, such as disease entity, drug-chemical entity, drug-protein entity,

species entity, etc., is meaningful to discover knowledge in scientific literature,25,63,53–55,57–59,61,62,64,65,102 online medical knowledge

corpus,30,63,75–77 or social media posts.81 Relation extraction aims to identify the relationship or semantic correlation between biomedical en-

tities mentioned in texts and generally be considered as a classification problem to predict the possible relation type of two identified entities

in a given sentence.25,42,77,76,63,53–59,62,64,65,83–87

Text classification

Text classification aims to assign one of the predefined labels to variable-length texts like phrases, sentences, paragraphs, or documents in

the corpus like EHR data,24–26,35,41,44 biomedical scientific literature,55–58 and social media data.80,79,81,82,64
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Semantic textual similarity

Semantic textual similarity aims to measure the degree of semantic similarity between two phrases or sentences.25,55,57,58,62,64 Typically, it can

be formulated into a regression problem to predict the similarity score for each pair. In the clinical domain,28,31,38,39,40 semantic textual

similarity has the potential to facilitate clinical decision processes, such as highlighting crucial text snippets in a report, query databases

for similar reports, assessing the quality of reports, or being used in question-answering applications.

Question answering

Question answering (QA) aims to extract answers for the given queries. QA can facilitate seeking information in clinical notes,28,35 biomedical

scientific literature,53–60,62,64,72,73 biomedical image-text corpus,28,45–51 and online medical knowledge corpus,74,78 and thus save time for the

clinicians and biomedical researchers.

Text Summarization

Typically, the clinical notes, scientific literature, and radiology reports could be lengthy in nature. However, clinicians or biomedical re-

searchers need to go through a large number of biomedical documents, which is time-consuming. In this context, there is a need for auto-

matic text summarization, in order to reduce the effort and time required by clinicians or biomedical researchers. Text summarization falls into

two broad categories, namely extractive summarization,33,66,67,68,71 which identifies the most relevant sentences in the document, while

abstractive summarization41,56,69–71 generates new text, which represents the summary of the document.

Natural language inference

Natural language inference (NLI) aims to identify the semantic correlation between a pair of sentences, i.e., whether the second sentence

entails or contradicts or is neutral with the first one.21,24,25,28,30,52,57,61,62,76 Since NLI requires sentence-level semantics, it is particularly useful

in tasks like paraphrasemining and information retrieval in the general domain andmedical concept normalization, semantic relatedness, and

question answering in the biomedical domain.

Proteins/DNAs prediction

Protein can be associated with almost every life process. Consequently, analyzing the biological structure and property of protein sequences

and understanding their functions88–92,96 becomes crucial to the study of life science as well as disease detection and drug discovery. Since

only a fraction of all species are available in today’s databases, it is important to accurately assign DNA sequences to their origin particularly

when there are no closely related species in databases.95Deciphering the language of non-coding DNA is also one of the fundamental prob-

lems in genome research.93 Besides, identifying RNA and RNA-binding protein interactions94 can help to understand the biological roles in

regulating cellular functions.

Interpretability of language models

Languagemodels, particularly large languagemodels like BERT, have become highly widespread. The increase in model complexity is driven

by a general correlation between model size andmodel performance. A growing concern is therefore whether these models are reliable and

trustworthy in downstream applications. Explainability can offer evidence and justification for decision-making, which is also critical in the

healthcare and biomedical domains. We summarize the explanation techniques used in the language models as shown in the following

section.

Attention-based methods use attention weights as the importance scores.103,104 They appeal to human intuition and can help indicate

where the model is ‘‘focusing.’’12,15,22,23,38,94,95,105 For example, Huang et al.15 aimed to predict 30-day hospital readmission by developing

the model of ClinicalBERT with clinical notes. Further, the predictions generated from ClinicalBERT can be interpreted by its model’s atten-

tion weights, revealing which terms in clinical notes are predictive of patient readmission. Meng et al.12 aimed to predict a future diagnosis

of depression by proposing a bidirectional representation learning model with a Transformer architecture on EHR data. Besides, the

model’s interpretability was boosted by the quantitative analysis of self-attention weights of EHR sequences, demonstrating the inner rela-

tionship between various topic features and diagnosis codes. Córdova Sáenz and Becker106 proposed a framework to classify stances ex-

pressed in tweets regarding COVID-19 vaccination using BERT-based models and an interpretation mechanism that obtains the most rele-

vant words in terms of attention weights for model decision-making. Shi et al.107 proposed a corpus-level explanation approach, which

aimed at capturing causal relationships between keywords and model predictions via learning the importance of keywords for predicted

labels across a training corpus based on a hierarchical attention network. Chrysostomou and Aletras108 aimed to improve the faithfulness

of attention-based explanations for text classification by proposing a new family of task-scaling mechanisms, which can learn task-specific

non-contextualized information to scale the original attention weights. Bacco et al.109 proposed two different transformer-based method-

ologies by exploiting the inner hierarchy of the documents to perform a sentiment analysis task while extracting the most important sen-

tences (with regard to the model decision) to build a summary as the explanation of the output. Niu et al.110 proposed the method of

jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their rele-

vance to the names of risk prediction labels. Tutek and �Snajder111 proposed to improve the faithfulness of attention based on regulariza-

tion methods that promote the retention of word-level information. Liu et al.112 proposed a novel practical framework by utilizing a two-tier
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attention architecture to decouple the complexity of explanation and the decision-making process. Rigotti et al.113 proposed the gener-

alization of attention from low-level input features to high-level concepts as a mechanism to ensure the interpretability of attention scores.

In particular, they designed the ConceptTransformer that exposes explanations of the output of a model in which it is embedded in terms

of attention over user-defined high-level concepts.

Shapley additive explanation (SHAP) is to compute shapely values for each combination of the features (a power set of the features) by

training a linear model. But, it will be computationally expensive to train 2M models for M set of features. For example, Attanasio et al.114

investigated the SHAP-based explainability approach on Transformer-based models.

Visualization plays an essential role in understanding how a neural model works.115 It can be applied with any of the feature importance-

based methods. With visualization, we can project the feature importance weights using heatmap, partial dependency plot, etc. Saliency has

been primarily used to visualize the importance scores of different types of elements in XAI learning systems,36,17 such as showing input-

output word alignment,116 highlighting words in input text,117 or displaying extracted relations.118 Ding and Koehn119 investigated the

gradient-based saliencymethods on different languagemodels based on the perspective of plausibility and faithfulness. Malkiel et al.120 pro-

posed the BTI approach to explain paragraph similarities inferred by pre-trained BERTmodels. Specifically, the proposed approach can iden-

tify important words that dictate each paragraph’s semantics, match between the words, and retrieve the most important pairs by utilizing

activation and saliency maps. Natural language explanation is verbalized in human-readable natural language. The natural language can

be generated using sophisticated deep learning models, e.g., by training a language model with human natural language explanations

and couplingwith a deep generativemodel.121 It can also be generated by using simple template-based approaches.122 Brand et al.123 devel-

oped the E-BART model by jointly making a veracity prediction and providing an explanation within the same model. Sammani et al.124 pro-

posed the NLX-GPT that can simultaneously predict an answer and explain it by formulating the answer prediction as a text generation task

along with the explanation. Besides, there are other visualization techniques for the purpose of interpretability. For example, Dunn et al.125

proposed a context-sensitive visualization method with Leave-N-Out that leads to heatmaps that include more of the relevant information

pertaining to the classification, as well as more accurately highlighting the most important words from the input text. Li et al.126 developed

a visual analysis method to enable a unified understanding of models for text classification. Specifically, the mutual information-based mea-

sure was used to provide quantitative explanations on how each layer of a model maintains the information of input words in a sample.

There are also some works that aim to improve the interpretability of the Transformer-based vision and language (multimodal) model. For

example, Naseem et al.45 aimed to develop a model that can answer a medical question posed by pathology images. They proposed

TraP-VQA that embeds the image and question features, coupled with domain-specific contextual information, via a transformer for

PathVQA. Grad-Cam and SHAP were used to interpret the retrieved answers visually to indicate which area of the image contributed to

the predicted answer. Visualization of the transformers’ attention showed proposed model assigns more weight to the relevant words and

explains the reason for the retrieved answer. Aflalo et al.127 proposed the VL-InterpreT method that can provide interactive visualizations

for interpreting the attention and hidden representations in multimodal transformers.

DISCUSSION

Language models, particularly pre-trained language models, provide great promise in their ability to learn a generally useful representation

from the knowledge encoded in the corpora by being repurposed with minimal effort for diverse downstream tasks in the biomedical do-

mains. Interpreting the decision mechanism of a pre-trained language model can help understand the rationale behind its success and its

limitations. In this section, we further discuss the challenges in the aforementioned explanation methods, and uncover the gaps and future

research directions toward the interpretability in language models.

Other interpretability techniques

In addition to the attention-based method, SHAP, and visualization method, there are some other interpretability techniques that could be

used in language models. For example, knowledge graphs can enhance language representation since knowledge graphs have high entity/

concept coverage and strong semantic expression ability. Further, knowledge graphs can also be used to improve interpretability. Yan

et al.128 proposed a sentiment analysis knowledge graph-BERT model by combining both the knowledge graph and the language represen-

tation model of BERT together. Further, the interpretability can be improved by injecting triples from the knowledge graph into sentences as

domain knowledge. Islam et al.129 developed themethod of AR-BERT, which is a two-level global-local entity embedding scheme that allows

efficient joint training of knowledge graphs (KG)-based aspect embeddings and aspect-level sentiment classification models. Interpretability

was enhanced by the semantic relations between aspects extracted from KGs.

Interpretability can be achieved through counterfactual explanation and adversarial examples (AE). A counterfactual explanation involves

generating an instance that is similar to the original instance but leads to a different model prediction. This counterfactual instance helps un-

derstand what changes in the input features would result in a different model output. For AE, one can know the scenario in which its model is

going to generate an incorrect output. It will provide an explanation that which type of edit has led to the change in the output. In order to

secure the model from AE attacks, models can be trained on adversarial data. Feder et al.130 proposed the framework of CausaLM that can

produce causal model explanations using counterfactual language representation models. Taylor et al.131 proposed to apply the model of

InfoCal to the task of predicting hospital readmission using hospital discharge notes, where themodel can produce extractive rationales for its

predictions by using the adversarial-based technique. Li et al.132 proposed a joint classification and rationale extraction model for both ex-

plainability and robustness. Specifically, themixedAdversarial Trainingwas designed to use various perturbations in discrete and embedding
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space to improve the model’s robustness, and the Boundary Match Constraint was to locate rationales more precisely with the guidance of

boundary information.

Neurosymbolic methods can produce an answer to a complex query by chaining these operations together, passing inputs from one

module to another. This has the benefit of producing an interpretable trace of intermediate computations, in contrast to the ‘‘black box’’ com-

putations common to end-to-end deep learning approaches. Creswell et al.133 proposed a selection inference framework that exploits

pre-trained large LMs as general processing modules, and alternates between selection and inference to generate a series of interpretable,

symbolic reasoning steps leading to the final answer.

Layer-wise relevance propagation is another way to attribute relevance to features computed in any intermediate layer of a neural

network (NN). Definitions are available for most common NN layers including fully connected layers, convolution layers, and recurrent

layers. Layer-wise relevance propagation has been used to, for example, enable feature importance explainability134 and example-based

explainability.135 Aken et al.136 presented a layer-wise analysis of BERT’s hidden states to understand their internal functioning. They

focused on models fine-tuned on the task of QA as an example of a downstream task and inspected how QA models transform token

vectors in order to find the correct answer. Aken et al.137 proposed the VisBERT that can visualize the contextual token representations

within BERT for the task of (multi-hop) QA. Interpretability can be provided by observing how the semantic representations are trans-

formed throughout the layers of the model. Sevastjanova et al.138 aimed to explain models by exploring the continuum between function

and content words with respect to contextualization in BERT. Specifically, they utilized the similarity-based score to measure contextual-

ization and integrate it into a visual analytics technique, presenting the model’s layers simultaneously and highlighting intra-layer proper-

ties and inter-layer differences.

Advantages and disadvantages of interpretability techniques

Gradient-based interpretability vs. layer-wise relevance propagation-based interpretability: Gradient-based methods treat the gradient (or

some variant of it) of the model output w.r.t. each input feature as its relative importance.139 The feature can typically be a pixel in an image or

a token in the text. Intuitively, the gradient represents howmuch difference a tiny change in the input will apply to the output. Regarding layer-

wise relevance propagation-basedmethods, they are amore generalized solution by using a high-level relevance conservation constraint, i.e.,

the total incoming relevance into a neuron should equal the total outgoing relevance from it. They have been applied to sentence classifi-

cation tasks to explain which tokens aremost important to the prediction. Compared to gradient-basedmethods, there are some advantages

in layer-wise relevance propagation-based methods. First, they do not require the differentiability or smoothness properties of neuron acti-

vations. Second, it provides a way to quantitatively assess its faithfulness via a perturbation-based evaluation.140However, there are also some

drawbacks in the layer-wise relevance propagation-basedmethods, such as suffering from the saturation problem141 and no principledway to

decide which rule to choose for which type of layer. Overall, the strengths of these two types of methods are: (i) they generate a spectrum of

feature relevance scores, which is easily understandable for all kinds of target users and (ii) they are easy to compute—gradient-based

methods require only a few calls to the model’s backward function while layer-wise relevance propagation involves a custom implementation

of the backward pass. Their weaknesses are obvious as well: (i) most existing work targets low-level features, and it is non-intuitive how to

compute any gradient w.r.t. higher-level features like semantic role, syntax dependency, and discourse relations; (ii) it is questionable how

to apply such methods to non-classification tasks, especially when there is no single output of the model, e.g., text generation or structured

prediction; and (iii) the explanation might be unstable, i.e., minimally different inputs can lead to drastically different relevance maps.142,143

Attention-based interpretability: As Transformers has become the backbone architecture for many language models, the attentionmech-

anism in Transformers, a.k.a. self-attention, is widely used as well. Simply, self-attention is a function of the affine transformation between an

input sequence of vectors and an output sequence of vectors. Its weights are called attention weights, intuitively representing how much the

model ‘‘attends to’’ each input vector when computing the weighted average. Therefore, it is appealing to interpret attention weights as the

importance of input tokens to the output. Such types of understanding have been used (implicitly or explicitly) as evidence for model inter-

pretability in different tasks and domains, such as text classification,144 knowledge base induction,118 andmedical code prediction.117Despite

these intuitive findings, there is a debate on whether the attentionmechanism can be a faithful model explanation. For example, prior work103

contends that attention weights do not correlate well with other feature importance-based explanation methods. Also, it is possible to

construct an adversarial attention distribution, i.e., one that is maximally different from the original distribution but has little influence on

the model output. There are also some counter-arguments:104 (i) attention weights can provide an explanation, but that does not have to

be the only explanation. In practice, most tasks considered in the study by Jain and Wallace103 are binary classification, which means that

it is possible to construct adversarial attention distributions that differ significantly from the original distribution but have little effect on

the model’s output. This may suggest that attention weights are not always a reliable indicator of feature importance. (ii) Adversarial distri-

butions are not adversarial weights. The adversarial attention distributions are artificially constructed by humans, but not learned by models

through training. Overall, its strengths are: (i) the visualization of model-internal structures is intuitive and readable to humans, especially end

users; (ii) the attentionmechanism can capture the interaction between features, whereasmany other methods can only capture the influence

of individual features themselves; and (iii) attention weights are easily accessible and computationally efficient, compared to other methods.

For its weaknesses: (i) it is questionable to what extent attention weights represent causal contribution, as mentioned in the debate; (ii) simply

focusing on attention weights in a single layer and/or from a single token position may reflect how much the model attends to each input

position locally, but not taking the whole computation path into account. So the attention mechanism in hierarchical architecture might miti-

gate the issue and improve the interpretability.
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Counterfactual intervention methods explain the causal effect between a feature/concept/example and the prediction by erasing or per-

turbing it and observing the change in the prediction. Counterfactual examples, therefore, refer to the outcome of perturbations. Although

counterfactual examples and adversarial examples look similar in the robustness literature, they differ in this context: (i) the goal of the former

is to explain the model’s reasoningmechanism, while that of the latter is to examinemodel robustness; (ii) the former should bemeaningfully

different in the perturbed feature to the original example while the latter should be similar to or even indistinguishable from it; and (iii) the

former can lead to changes in the ground truth label, whereas the latter should not.145 However, generating high-quality counterfactual ex-

amples is non-trivial, as they need to simultaneously accordwith the counterfactual target label, be semantically coherent, and only differ from

the original example in the intended feature. In existing work, the most reliable (yet expensive) approach to collecting counterfactual exam-

ples is still manual creation.145,146 Besides, counterfactual intervention can directly happen on the level of examples, such as the methods of

influence functions. Influence functions are based on counterfactual reasoning – if a training example were absent or slightly changed, then

howwould the prediction change? Since it is impractical to retrain themodel after erasing/perturbing every single training example, influence

functions provide an approximation by directly recomputing the loss function. However, it is found in the existing work147 that influence func-

tions can become fragile and the approximation accuracy can vary significantly depending on a variety of factors, such as network architec-

ture, depth, width, the extent of model parameterization and regularization techniques, and the examined checkpoints, as models become

more complex. Counterfactual intervention can also happen in the feature representations in the model, such as the work of Amnesic Prob-

ing148 and CausalLM.130 They both aim to answer the more insightful question – is some high-level feature, e.g., syntax tree, used in predic-

tion? They exploit different algorithms to erase the target feature from the model representation and then measure the change in the

prediction. The larger the change, themore strongly it indicates that the feature has been used by the original model. In terms of faithfulness,

only CausalLM is validated with a white-box evaluation, whereas no explicit evaluation is provided for Amnesic Probing. Causal inference can

also be used for interpretability. However it requires a more rigorous formalization of the causal framework, e.g., a causal model, which is

usually task- or even dataset specific and needs to be designed by domain experts. Therefore, there are still important challenges such as

how to automatically derive causal models from data and how to make them more generalizable across tasks. Overall, counterfactual inter-

ventions can capture causal relationships instead of mere correlational effects between inputs and outputs and are more often explicitly eval-

uated in terms of faithfulness. However, counterfactual intervention is relatively more expensive in computational cost, normally requiring

multiple forward passes or modifications to the model representation. Searching for the right targets to intervene in can also be costly. In-

terventions are often overly specific to the particular example and this calls for more insights into the scale of such explanations.149 Counter-

factual intervention may suffer from hindsight bias, which questions the foundation of counterfactual reasoning.150

Surrogatemodels for post hoc interpretability: SHAP is one of the widely adopted surrogate-model-basedmethods that can be thought of

as using additive surrogate models as an explanation. Shapley values are theoretically shown to be locally faithful, but there is no empirical

evidence on whether this property is maintained after the SHAP approximation. Subsequent work also finds other limitations: linear surrogate

models have limited expressivity. For example, if the decision boundary is a circle and the target example is inside the circle, it is impossible to

derive a locally faithful linear approximation. Besides, they can result in nonsensical inputs or representations, which sometimes allow adver-

saries to manipulate the explanation.151 What’s more important, one major concern of using SHAP in the medical domain is that the Shapley

value was originally derived from economics tasks, where the cost is additive. However, clinical features are usually heterogeneous, and the

Shapley values derived from the model may not be meaningful.152

Faithfulness and plausibility of interpretability

In addition to explanation methods, interpretability can be evaluated from the trustworthy aspects: how faithful the explanation is and how

understandable the explanation is to humans, a.k.a., faithfulness and plausibility. Specifically, faithfulness measures the degree to which

the rationales in fact influence the corresponding predictions,153,154 while plausibility measures howmuch the rationales provided by models

align with human-annotated rationales.153,155 These two aspects are often at odds with each other. This is because a complex model decision

might require a rather complex explanation to cover all of the possible aspects of the model’s behaviors on different inputs, which might not

look easy to understand to humans. Regarding faithfulness, a perfectly faithful interpretation accurately represents the decision-making of the

model beingexplained. If the explanation is constrained to agreewith themodel’s behavior on all possible inputs, thenno simpler explanation

than the original model is possible. When applying an explanationmethod to black-boxmodels trained on biomedical data, it is necessary to

consider: (i) the concordancebetween the explanationmethodand the originalmodel. If the concordance is low, then themodel is not faithful;

(ii) if changing the feature importance based on the explanation would alter the original predictions; (iii) if the same model might produce

different explanations for the samepair of input-outputs overmultiple runs. Regardingplausibility, wediscuss it from thedifferentperspectives

of human expert users. Like any other data-driven machine learning approach, language models for biomedical problems aim to further

improve performance by learning much more complex representations from raw features while sacrificing model transparency. Explanation

methods may provide human-understandable explanations, yet it is crucial that the explanations should be aligned with our knowledge to

be trustable, especially for real-worlddeployment in thebiomedical domain. Fromaclinical perspective, for example, it is necessary andcritical

to have clinically relevant features that align with medical knowledge and clinical practice. However, current deployments with explanation

methods mainly focus on helping to debug the model for engineers rather than the real-world use for end users.156 For model developers,

they evaluate their use of interpretation methods with different levels of model transparency from both quantitative and qualitative (visualiza-

tion) perspectives. But they usually overtrust themethods and this may lead to their misuse since good visualizationmay sway human thought

butmaynot fully explain thebehavior of the systemandmaybe incorrectly interpretedbydevelopers. So the appropriate explanationmethods
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should be selected and evaluated both to help model developers (data scientists and machine learning practitioners) understand how their

models behave and to assist clinicians and biomedical researchers to understand the rationale for predictions produced by the model.

Case studies in healthcare and biomedicine

In healthcare, languagemodels can be used to improve the efficiency and accuracy of care provided by health professionals. For example, EHR,

including clinical notes, lab tests, radiology reports, and discharge summaries, contains significant clinical values since it can provide a richer

picture of the patient by describing symptoms, reasons for diagnosis, radiology results, daily activities, and patient history. Making accurate

clinical predictions might require health professionals to spend unnecessary time reading and analyzing EHR. In these settings, language

models can be adapted to help predict the diagnosis, suggest treatments anddischarges, generate summaries of patient visitation, andpredict

hospital readmissions. Further, interpretability could be used to disentangle the underlying explanatory factors of the data, such as uncovering

which terms in clinical notes are predictive of patient readmission15 or demonstrating the relationship between the topic features and diagnosis

codes.12 Besides, language models can be adapted to answer medical questions,45 along with the relevant medical explanatory information.

With interpretability, it would significantly enhance the trust of both the health professionals and patients in outputs produced by suchmodels.

In biomedicine, it is critical to first identify a target (e.g., proteins, DNA, RNA) and search for molecules that bind to the target before

discovering a drug or a therapeutic that treats the disease.157 Languagemodels in these settings can be adapted to improve the search space

and efficiency, which reduces the amount of experiments and discovers new drugs. Although these biological sequence data have exhibited

similarity to human language, ranging from alphabets and lexicons to grammar and phonetics, it remains largely unknown how the semantics

(i.e., functions) vary across different contexts (locations of sequences). Interpretability is therefore critical to help find important patterns in

sequences and understand their relationship within contexts.93

Legal and ethical regulations

Despite successful applications of language models in healthcare and biomedicine, there are some concerns about legal and ethical issues

due to the potential risks posed by the models. Practical or actionable principles/guidelines of AI ethics have also been raised to address the

issues.158–161 For example, regarding safety, predictions produced by themodels must be factually accurate with established knowledge and

defer to an expert when uncertain.162 For the privacy of health data, the use of patient health data must observe regulations, such as HIPAA in

the US. For fairness, languagemodels can create unfair discrimination and representation due to existing social inequalities. On the one hand,

it must ensure that the training and evaluation data for language models are sufficiently representative of different sexes, races, and socio-

economic backgrounds. On the other hand, debiasing methods are needed to ensure fairness when data are extremely imbalanced and

scarce. Nevertheless, the interpretability of the model is still essential in healthcare and biomedicine since it provides evidence and logical

steps for decision-making. It enables to detect the risks of harm in the model and avoid users overestimating the capabilities of the model.

Tracing a given output or harm to its origins in themodel can be key to resolving such harms. Although it remains an open challenge to define

what constitutes a good explanation, various researchers have suggested the interpretability of language models is critical to ensure these

systems are fair, ethical, and safe.163
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