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SUMMARY

In healthcare, machine learning (ML) shows significant potential to augment patient care, improve population

health, and streamline healthcare workflows. Realizing its full potential is, however, often hampered by con-

cerns about data privacy, diversity in data sources, and suboptimal utilization of different data modalities.

This review studies the utility of cross-cohort cross-category (C4) integration in such contexts: the process

of combining information from diverse datasets distributed across distinct, secure sites. We argue that C4

approaches could pave the way for ML models that are both holistic and widely applicable. This paper pro-

vides a comprehensive overview of C4 in health care, including its present stage, potential opportunities, and

associated challenges.

INTRODUCTION

Machine learning (ML) in health care is a rapidly evolving field,

presenting numerous opportunities for progress. Active and pas-

sive patient data collection, both during and outside medical

care, can be utilized to address health challenges. As a result,

ML has become an essential tool for processing and analyzing

these data in various domains, including natural language pro-

cessing, computer vision, and more. ML systems have demon-

strated their potential to enhance patient experiences, improve

population health, reduce per capita healthcare costs, and opti-

mize healthcare providers’ workflows.1–4 However, the real-

world clinical and cost benefits of ML in health care remain

limited, indicating a significant gap in its application.

Data privacy is a major challenge for the application of ML in

health care because it restricts the potential for pooling together

sensitive data such as the electronic health record (EHR) from

multiple sites. Federated learning (FL) offers a promising

approach to addressing this issue by enabling the aggregation

of fragmented, sensitive data from various sites without sharing

the raw data.5–7 In brief, a typical FL architecture consists of a

central aggregator designed to obtain global ML model parame-

ters by iteratively exchanging their local updates, and FL typi-

cally assumes that the data at different sites share the same in-

formation modalities.8,9,10

Almost all healthcare problems involve multiple different

data modalities, such as EHR, medical imaging, and genetic

sequencing. Methods and systems that integrate multiple mo-

dalities are becomingmore andmore important.11–15Multimodal

learning (MML) refers to such a paradigm aiming at integrating

disparate data modalities to capitalize on complementary infor-

mation, thereby improving performance. Existing MML ap-

proaches typically assume that the different data modalities

are available for the same sample cohort—e.g., for each patient,

THE BIGGER PICTURE Machine learning and artificial intelligence offer immense potential to improve health

care in the future, but a variety of real-world issues present hurdles to adoption. Data must be handled care-

fully to protect patient privacy. Data collected from different sources can vary in quality and completeness.

Data from different assay methods (i.e., multimodal data) can be hard to combine and integrate. Here, we re-

view and discussmethods, models, and workflows that are well suited to handling these kinds of challenges,

which we argue will ensure that the promise of machine learning for health care is fully realized.
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we have his or her EHR andmedical image,16,17 and the research

focus is how to align the different data modalities and combine

them together.

Despite the existing research and reviews on FL and MML

(whose schemas are summarized in Figure 1), in reality we are

usually facedwith the scenario that different biomedical datasets

include sample cohorts with different information modalities.

Learning in such a scenario, which is referred to as cross-cohort

cross-category learning (C4), can integrate more comprehensive

information compared to FL andMML, and thus make the model

more comprehensive and robust. In this scoping review, we

cover several current implementations of C4, discuss the oppor-

tunities that C4 can bring to health care, point out potential chal-

lenges, and summarize future research directions.

C4 learning

C4 aims at integrating information from disparate datasets

(residing at different sites) composed of different data modal-

ities. Different datasets may have different information modal-

ities, resulting in a patched setting (Figure 2). Although there

are many existing statistics and ML approaches for missing

value imputation,18–20 they have mostly focused on the single

modality setting and the missingness could be at or not at

random across different feature variables. In the C4 setting,

certain datasets can miss certain information modalities entirely,

and there could be distribution shift across different datasets

due to sample heterogeneity. In addition, there could be privacy

concerns, so different sites may not be able to share their own

data with other sites, which makes the learning process more

challenging.

Building learning algorithms within the C4 setting has the po-

tential to advance health care in several ways. As previously

mentioned, models developed at one site are not readily appli-

cable to another site due to data heterogeneity. Incorporating

various data modalities across different sites can mitigate

some biases that currently affect ML models. Furthermore, in

real-world scenarios, certain organizations may not have access

to multiple modalities. Secure information sharing across sites

can facilitate the development of robust models capable of inte-

grating multiple modalities of healthcare data, even at organiza-

tions lacking those modalities. A method built with the C4 setting

in mind can prove helpful in situations where different sites have

related but distinct tasks, as it may be possible to train a shared

model backbone for downstream tasks. The backbone model

can be pretrained using all of the available modalities and pa-

tients across different sites. The pretraining process can be im-

plemented using a general-purpose approach, such as employ-

ing a self-supervised strategy, which facilitates the learning of

informative representations applicable to a wide range of down-

stream tasks. After training the backbone model, it can be fine-

tuned to cater to specific tasks at each site.

Current implementations of C4

In this subsection, we summarize a few existing C4 implementa-

tions in the literature.

Federated transfer learning (FTL) is a unique variation of FL

that utilizes distinct datasets, which differ in both sample and

feature space. FTL offers users an effective way to manage dis-

parities in data distribution across clients.21,22A core component

of FTL is transfer learning, a ML technique that aims to enhance

the performance of target models developed on target domains

by reusing the knowledge contained in diverse but related

models developed on source domains. FTL can be performed

in multiple ways, but generally, knowledge across sites is

securely transferred and/or aggregated, despite differing feature

spaces between sites. Overall, there are two strategies in FTL: (1)

using pretrained models in related tasks or (2) using domain

adaptation to transfer knowledge from a source domain to a

Figure 1. Federated and Multimodal Learning
Federated (left) and multimodal (right) learning diagrams.
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related target domain. Chen et al. developed an FTL algorithm,

FedHealth, which uses domain adaptation to analyzemultimodal

healthcare data from wearables. To address the data isolation

and heterogeneity issues associated with wearable data,

FedHealth first trains amodel on public data at the central server,

which it then transfers to clients iteratively for further personali-

zation.23 To apply FTL within C4 settings, the relationships be-

tween modalities can be regarded as the knowledge to be trans-

ferred across sites. Following FedHealth’s methodology, models

capable of inferring missing modalities can be trained on public

data and adapted to each site. A crucial aspect of this approach

is ensuring that the public data encompass a comprehensive

range of potential modalities across all sites.

As previously discussed, clients in a C4 setting are likely to lack

all data modalities at their site, which constrains their ability to

develop integrated models. Confederated learning provides a

solution to this issue.24 In confederated learning, ML models

are trained on data distributed across diverse populations and

data types, employing a three-step approach. The concept

was introduced in a study where a patient population’s data

were split both horizontally and vertically—i.e., different sites

had varying combinations of data (diagnostic data, medications,

lab tests) and patients. Notably, confederated learning requires

an auxiliary dataset to be available at the central server, which

may not be realistic in real-world scenarios. To perform confed-

erated learning, conditional generative adversarial networks with

matching loss (cGAN) were trained using data from the central

server to infer one data type from another. These cGANs are

transferred to each local site, where the missing data types are

imputed with generated samples. Thereafter, task-specific

models, such as diagnosis prediction, were trained in a feder-

ated manner (e.g., federated averaging) across all of the sites

simultaneously. Compared to other methods, confederated

learning is simple to implement and does not require any patient

ID matching. A core weakness, however, is that the success of

the approach depends on the quantity and heterogeneity of

data available at the central server. The performance of the sub-

sequent confederated model can be affected by any discrep-

ancies between the auxiliary data and the data at each local

site.24

In a C4 setting, even when all of the modalities are available, it

is essential to effectively integrate these modalities for modeling

downstream tasks. Several studies have explicitly combined FL

and MML to develop federated multimodal learning (FML) sys-

tems.25–27 These systems are designed to integrate multiple

data modalities across sites. Some personalized recommenda-

tion systems use FML with multimodal matrix factorization

methods to provide privacy-preserving predictions based on

both text and demographic data.28,29 Salehi et al. propose

FLASH, which fuses data from light detection and ranging

Figure 2. Overview of an C4 setting in health care
Black squares are client modalities that are available for use in model generation.
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(LIDAR), global positioning system (GPS), and camera images

to train a federated model across vehicles, optimizing vehicular

communication transmissions.30 Another FML method,

FedMMTS, uses multimodal analytics to create privacy-preser-

ving systems that enable autonomous decision making for vehi-

cles in a simulated environment.31 Although FML systems have

been applied in multiple domains, their implementation in health

care has been limited. Challenges associated with missing data,

patient privacy, and the need for clinical interpretability constrain

the adoption of FML in health care. Che et al. designed H-FedMV

and S-FedMV, which perform FML across sites using federated

averaging, the latter of which is able to account for sequential in-

formation within medical data. Modalities that were integrated

include textual and time-series data, both of which were used

to diagnose patients with bipolar disorder.32 Another study uti-

lized an FML system to predict oxygen requirements for corona-

virus disease 2019 (COVID-19) symptomatic patients by

combining data from EHRs and chest X-rays. To integrate the

different modalities and increase the interaction between data

types, a Deep & Cross network architecture was used across

all of the sites, followed by fully connected layers for performing

prediction. To add privacy-preserving measures to their model,

differential privacy was implemented in the federated weight-

sharing mechanisms. Although the model performed relatively

Figure 3. Challenges associated with C4

Diagram showing the several challenges sur-
rounding developing models within the C4 setting.

well on validation data, the architecture

required the presence of all of the modal-

ities at all of the sites, which is unrealistic

in a real-world scenario without losing a

considerable amount of available data.33

The aforementioned methods can be

suitable for the C4 setting, where the

goal is to learn from multiple data modal-

ities distributed across secure silos. Each

method possesses distinct weaknesses

and strengths, which we will examine

in the following sections. However, these

approaches collectively demonstrate the

potential for advancing the development

of robust and generalizable ML models

in the healthcare domain.

OPPORTUNITIES FOR SOLUTIONS

IN C4 SETTINGS

Predictive diagnosis and risk

prediction

Predictive analytics has emerged as a

valuable tool in medical decision making

because patients’ responses to treat-

ments, particularly for chronic diseases,

can vary significantly. ML algorithms, us-

ing data and outcomes from past pa-

tients, can offer insights into the most

effective treatment methods for current patients. Most cutting-

edge clinical risk predictive models are based on deep learning

and trained end-to-end. However, the robustness of diagnostic

or risk prediction tools relies heavily on the breadth of data

used to build them. Diagnostic ML models developed using

site-specific unimodal data often face challenges when adapting

to other clinics.34,35,36 This issue persists even when incorpo-

rating federated methods due to heterogeneity and lack of local

personalization.37,38

The integration of multiple modalities has improved the perfor-

mance of these algorithms across different sites. For example,

stroke manifestations can be found in both EHR andmedical im-

aging data, indicating that combining both could result in more

accurate risk prediction models. Boehm et al. used a multimodal

dataset, including computed tomography (CT) scans, H&E-

stained pathology slides, omics, and clinical data, to stratify

risk for patients with high-grade ovarian cancer. This approach

revealed the complementary prognostic information provided

by each modality.39 Ali et al. combined data from sensors and

EHRs to detect cardiovascular disease while generating auto-

mated recommendations for patient care.40 However, medical

data are often siloed, making it difficult to access large multi-

modal datasets. Qayyum et al. introduced clustered federated

learning (CFL), an algorithm that uses a federated multitasking
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framework to group clients into modality-dependent clusters

with jointly trainable data distributions for COVID-19 diagnosis

prediction. CFL outperformed other unimodal federated

models.41 Another study developed a generalized federated

multimodal disease diagnosis prediction model using a fusion

and least-squares algorithm, which significantly outperformed

locally trained unimodal counterparts.42 Agbley et al. employed

a multi-modal federated learning (MMFL) framework to create

a melanoma detection model using matched EHR data and

skin lesion images.43 Alam et al. developed FedSepsis, a model

for early detection of sepsis that incorporated tabular and textual

data from EHRs using FML. The study used low-computational

edge devices, such as Raspberry Pi and Jetson Nano, to

address practical challenges.44

Models developed for C4 have demonstrated comparative ad-

vantages over both unimodal federated models and multimodal

single-institution models for risk prediction. Although heteroge-

neity across silos still needs to be addressed when developing

models in a C4 setting, these studies have shown clinical poten-

tial in terms of performance and interpretability.

Personalized omics for precision health

The advent of next-generation sequencing technologies has led

to increased interest in studying human health by interpreting

molecular intricacies and variations at multiple levels, such as

the genome, epigenome, proteome, and metabolome. These

omics data integrate large amounts of personalized patient

data, which is crucial for understanding individual disease

states, distinguishing subphenotypes, and developing digital

twins, among other applications.45–47 ML methods offer innova-

tive techniques for integrating various omics data to discover

new biomarkers, potentially aiding in accurate disease predic-

tion and precision medicine delivery. The study of integrative

ML methods for multiomics data enables a deeper understand-

ing of biological systems during normal physiological functioning

and in the presence of disease, supporting insights and recom-

mendations for interdisciplinary professionals. Shen et al.

recently introduced a method to capture and examine multiple

molecular data types from amere 10-mL blood sample, including

thousands of metabolites, lipids, cytokines, and proteins, further

enriched by physiological data from wearables.48 Nonetheless,

the study’s limitations stem from its small dataset, potentially

affecting its representativeness and statistical robustness. C4

could address these limitations by collecting data from various

sites and integrating it, allowing for a larger, more representative

sample size.

Automated pipelines such as GenoML, developed by Makari-

ous et al., enable users to analyze multiomics data in combina-

tion with clinical data while providing a federated module for

basic privacy-preserving omics analysis across data silos.49

Many current multimodal methods incorporating omics data

use matrix factorization methods or canonical correlation anal-

ysis (CCA) to combine information from multiple modalities.42

LungDWM uses multiomics data to diagnose lung cancer

subtypes by fusing omics-specific features extracted from an

attention-based encoder. Missing omics-specific features are

imputed through generative adversarial learning.50

Currently, no platform can efficiently integrate clinical, multio-

mics, and other data modalities while simultaneously enabling

effective management of data analytics accessible to physi-

cians.51,52 Successful integration of different omics data with

other data types, such as EHRs and medical images, has the

potential to enhance our understanding of a patient’s health, al-

lowing for the development of personalized preventive and

therapeutic interventions. Such integrations require big data

platforms or methodologies that facilitate the fusion of heteroge-

neous modalities from multiple silos while allowing real-time

care.53

Digital clinical trials

The ever-increasing sources of clinical data from EHRs, claims,

and billing data have generated massive amounts of real-world

data (RWD) with the potential for translational impacts on pa-

tients. In recent years, trial emulation, the process of mimicking

targeted randomized controlled trials (RCTs) with RWD such as

electronic health records, has gained attention in the medical

community. Although RWD is more representative of real patient

populations, numerous challenges are associated with con-

ducting trial emulation, such as identifying and controlling con-

founding variables, constructing proper RCT designs, and deter-

mining appropriate causal inference methods for outcome

estimation. Although there is a growing body of research ad-

dressing these challenges, data access remains a significant lim-

itation, especially for trial emulations focused on less common

conditions and treatments. Gaining access to RWD can be a

lengthy and costly process, and due to privacy concerns, aggre-

gating private health data, which is often richer in information on

specific conditions, can be difficult. Accessing RWD from

various clinical sites can help combat data heterogeneity in pa-

tient populations, allowing trial emulation hypotheses to be

generalized across demographic and geographic groups.54 Liu

et al. introduced the distributed algorithm for fitting penalized

(ADAP) regression models to integrate patient-level data from

multiple sites, studying risk factors for opioid use disorder. To

securely share information and mitigate heterogeneity across

multiple sites, collaborating sites only share first- and second-or-

der gradients when conducting trial emulation.55

Integrating data from wearable technologies can also improve

trial emulation outcomes. Readings from wearables, such as

sleep, physical activity, vital signs, and questionnaires, can pro-

vide valuable information for balancing confounders during trial

emulation pipelines, despite being noisy. ML techniques can

be employed to integrate data from wearables, omics, EHRs,

and medical images for digital clinical trials.56–58 Currently, the

performance of multimodal trial emulation pipelines is restrained

by the lack of compatibility among RWD databases. Moreover,

architectures that can concurrently utilize longitudinal RWD

from multiple modalities are still not in existence.59 Despite the

high cost of conducting clinical trials, causal inference using C4

can help identify pertinent medications or treatments through

trial emulation. By integrating heterogeneous sources of data,

both in terms of features and samples, confounding variables

can be controlled, enhancing the capabilities of digital clinical tri-

als. SurvMaximin is one such algorithm in this field that combines

multiple prediction models from different source outcomes in a

federated manner for predicting survival outcomes.60

As the costs of real-world clinical trials continue to rise,

computational tools will be essential for supplementing
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hypothesis generation. Confounding patient and environmental

variables, spread across multiple data modalities, must be ac-

counted for even in extensive collections of RWD. C4 formula-

tions can offer unique ways to mitigate confounding variables

and integrate private data sources, enabling hypothesis genera-

tion for rare medical conditions.

Remote monitoring

Medical Internet of Things (MIoT) devices, such as wearables

and mobiles, facilitate real-time monitoring of vital physiological

parameters and behaviors.61 Data such as heart rate, blood

pressure, body temperature, blood oxygen saturation, posture,

and physical activities are acquired through tools like electrocar-

diograms (ECGs) and ballistocardiograms (BCGs). These data

aid in preventing health issues and predicting COVID-19 symp-

toms remotely.62 Monitoring mental conditions via wearables,

which detect key physiological markers, is an evolving field.

For example, Xu et al. devised FedMood, a system using

mobile phone keystrokes and accelerometer data for depression

detection.63 Fed-ReMECS fuses various signals for real-time

emotional state classification.64 Liang et al. developed a pri-

vacy-focusedmultimodal model for mood assessment, surpass-

ing unimodal models in performance.65 By facilitating the early

identification of health irregularities, wearable technology can

also enhance the efficiency of patient management in hospitals.

Wireless communication in wearable techniques enables re-

searchers to design a new breed of point-of-care (POC) diag-

nostic devices.66–68

However, processing information fromwearables can be chal-

lenging. Data from wearables are intrinsically multimodal,

ranging from audio and images to time-series data. Although ef-

forts have been made to fuse data types from various sensors,

there are further advantages to combining wearable data with

formalized clinical data, such as those recorded in EHRs.

Wang et al. proposed an architecture design for COVID-19 diag-

nosis using a combination of demographic information, medical

record text data, patient mobile data, and image data stored

across different nodes. While not implementing this design,

they highlight the advantages of enabling such architectures

for real-time pandemic monitoring.69

Another issuewithwearable information is data privacy. Health-

care data from different people with diverse monitoring patterns

are difficult to aggregate together to generate robust results. Pa-

tient confidentiality and data security are major concerns when

usingwearable devices because ensuring compliancewithHealth

Insurance Portability and Accountability Act (HIPAA) regulations

can be challenging. The use of FL could mitigate several of these

privacy challenges. Chen et al. extended FedHealth to develop

FedHealth 2, which creates personalized models for each client

by obtaining client similarities using a pretrained model and then

averaging weighted client models while preserving local batch

normalization. FedHealth 2 showed increased performance in ac-

tivity recognition compared to other federated methods.70 The

Federated Multi-task Attention (FedMAT) framework, built on

multimodal wearable data, outperforms baseline methods in hu-

man activity recognition and is rapidly adaptable to new individ-

uals. The framework uses an attention module at each client to

learn both client-specific features and globally correlated features

while ensuring data security.71Reddy et al. propose a blockchain-

based FL system using multimodal wearable data to predict

COVID-19, enabling relatively secure transmission of pertinent

model development information.62

Given the multimodal and secure nature of wearable sensor

data, there is a direct need for the development of algorithms

for C4. Through the use of such algorithms, wearable data can

be employed for proper remote monitoring, thereby improving

patient care.

CHALLENGES

Implementing C4 systems comes with significant challenges

(Figure 3). In this section, we discuss some of the key challenges

Figure 4. Utilizing external data for connective blocks scenario
Lines represent modalities that are the same or are intraclient. Client 1 and client 2 aim for collaborative model generation. Lacking clinical notes, client 1 le-
verages LLMs, foundation models, biomedical knowledge graphs, and existing modalities to generate a ‘‘clinical notes’’ modality (green), aligning with client 2’s
data modality for collaborative model creation.
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associated with these systems and explore potential solutions

and future directions for addressing these challenges.

Data standardization: Normalizing the data elements

across different cohorts

One crucial step before formulating a solution for C4 is the

data standardization across different cohorts. For example,

the terminology coding system (e.g., for diagnosis, medica-

tions, procedures, etc.) used in one EHR cohort could be

different than the one used in another EHR cohort. In this

case, it is important to map them to a common set of

data elements, which is typically referred to as common

data models (CDMs). In clinical informatics, several CDMs

have been developed for normalizing the data elements in

EHRs from different consortiums, such as the Observational

Medical Outcomes Partnership (OMOP) developed from

the Observational Health Data Sciences and Informatics

(OHDSI), and the PCORNet CDM developed from the Patient

Centered Outcomes Research Institute (PCORI).72 Because

there are multiple distinct modalities involved within the C4

paradigm, it is critical to expand these CDMs across those

different modalities. This involves not only the normalization

of the terminology of the data elements but also the relation-

ships among them because most of the CDMs are ontol-

ogies themselves. For instance, OMOP could be enhanced

by introducing modular data structures that cater specifically

to diverse data modalities inherent in a C4 setting. Further-

more, the metadata descriptors within OMOP might need

to be enriched to provide a clearer context for multimodal

datasets, making cross-cohort connections more trans-

parent. Recent developments such as ATRACTion OMOP-

CDM have taken steps to integrating omics data into the

OMOP model.73

Representation of modalities: Effective representation

of modalities is necessary for data integration and

downstream tasks

With the diversity of healthcare data modalities, integrating the

information concisely to allow for optimal model development

is essential. Multimodal representation involves the efficient

and meaningful vector or tensor presentation of multivariate

data, which often features both redundant and supplementary

information. Representation can be broadly categorized as

either joint or coordinated. The former projects data from

various modalities into a shared space, frequently utilizing

fusion techniques. Meanwhile, the latter allocates each modal-

ity into unique yet coordinated spaces via similarity mea-

sures.74 Currently, many MML architectures utilize fusion as

a way of joining information from multiple modalities.33,75 In

the C4 context, three principal fusion strategies for handling

multimodal data arise. Early fusion merges features from

different modalities before main model processing, making it

effective when there is strong correlation between data modal-

ities across silos. However, it assumes consistent modality

availability, which might be a challenge in C4’s diverse data

landscape. Late fusion processes each modality separately

and combines them toward the end. This offers adaptability

within C4, especially with missing data, but might overlook

subtle intermodality relationships. Hybrid fusion, combining

both strategies, is a versatile solution for C4. It ensures depth

in data interpretation while remaining adaptable, but its

complexity may grow with more data and clients. Recent inno-

vations such as the OpenAI Contrastive Language–Image Pre-

training (CLIP) highlight the necessity of merging modalities for

optimal ML performance. CLIP is a powerful approach that

uses a joint representation learning framework to learn a

wide array of visual models. The CLIP model is pretrained

on a large-scale dataset of images and their associated natu-

ral language descriptions, which allows it to learn a rich and

robust multimodal representation that captures both visual

and textual information.76 Multimodal large language models

(LLMs) also present novel ways to represent various modal-

ities jointly. PALM-E, a multimodal model developed by Goo-

gle Research, encodes RWD into a language-embedding

space, allowing it to integrate various types of information

from sensors. PALM-E has been used to enable effective

robot training and build state-of-the-art generalized visual-lan-

guage models.77 However, while showing promise in nonspe-

cific domains, MML fusion models still face challenges in

health care, such as being prone to overfitting.78 To address

this issue, HuggingGPT was developed, which takes advan-

tage of the hundreds of specialized models publicly available

on the Hugging Face Hub. HuggingGPT uses an LLM as a

central manager that distributes subtasks to several down-

stream multimodal models to complete an overall objective.

Although rudimentary, these objectives can easily scale in

complexity as long as certain specialized models exist down-

stream that are able to perform the subtasks.79 In a similar

vein, foundation models have gained traction due to their

capability to learn a wealth of information from large-scale da-

tasets. These models, pretrained on massive corpora, effec-

tively serve as feature extractors for multiple modalities. Given

their expansive knowledge base, foundation models can pro-

vide high-level feature embeddings which, when fine-tuned,

are attuned to specific downstream tasks.80 Furthermore,

when dealing with diverse modalities, the embeddings from

these models can be used as a common foundation. Tech-

niques such as CCA or mutual information estimation can

further align the extracted features from different modalities

into a unified representation space. This alignment provides

a coherent foundation for subsequent tasks. Since 2022,

several medical foundation models have been developed,

including holistic artificial intelligence in medicine (HAIM),

RETFound, and CheXzero.81–83 However, constructing medi-

cal foundation models for the C4 context is challenging

due to the limited availability of extensive healthcare multi-

modal datasets.84 Additionally, training these models in a C4

framework presents privacy concerns because they must

generalize across diverse modalities while learning across si-

loed cohorts.

In a C4 setting, colearning methods might be preferable due

to their ability to function relatively well in scenarios where mo-

dalities may be missing during training or inference.85–87 Co-

learning uses knowledge transfer from one modality to learn

about a less-informed modality. Colearning methods include

the utilization of multimodal embeddings, transfer learning,

multitask learning, and generative networks, with each method

aiding in mitigating real-world issues with multimodal data,
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such as missing modalities, noisy labels, and domain adap-

tation.88

Missing modalities and modality incongruity: Solutions

need to account for both random and nonrandom

missing data modalities

The patchwork characteristic frequently associated with C4 sce-

narios is due to the disparate availability of data modalities

across various healthcare sites. Many multimodal learning

models typically assume that modalities are complete, meaning

they are fully paired during both training and inference. Yet, due

to constraints such as privacy or budget, this assumption may

not align consistently with real-world conditions. In fact, missing-

ness is often nonrandom in healthcare datasets, with certain

sites lacking specific data modalities due to infrastructure.

Furthermore, different clinical workflows for acquiring data can

also lead to nonrandom missingness across sites. Many investi-

gations have explored novel methods to tackle missingness dur-

ing inference time.75,86 Although less so, there have also been al-

gorithms proposed for combating missingness in modalities

during training. Recently, generative networks such as varia-

tional autoencoders, generative adversarial networks, and

Long Short-Term Memory networks (LSTMs) have been de-

ployed to generate absent modalities. By learning the joint distri-

bution of multimodal data, these networks can create one mo-

dality from another, thereby capturing semantic correlations

between modalities.89,90 Although some of these generative

methods operate in an unsupervised manner, research indicates

the benefits of integrating ground-truth labels through classifica-

tion loss, specific types of adversarial loss, or triplet loss to more

effectively generate modalities.90–92 Lee et al. compared the

performances of an LSTM and autoencoder architecture for

generating audio modality from red, green, and blue (RGB)

images. Their investigation found that the incorporation of clas-

sifier loss enhanced the results of the autoencoder-based

approach.93 Confederated learning uses centrally trained gener-

ative networks to combat missing modalities at local sites.24

With the recent interest in diffusion models, there may be

some opportunity for those architectures to synthesize missing

modalities. Diffusion models are a class of ML algorithms that

can be used to analyze how information spreads or diffuses

through a network.94 These models are commonly used to study

the spread of diseases, ideas, or behaviors through social net-

works, but they can also be applied to other domains where in-

formation spreads through a network. One potential opportunity

of using diffusion models for synthesizing missing modalities is

that they can incorporate the structure of the network into the

synthesis process, which can provide additional context and

potentially improve the quality of the synthetic data.95–97Howev-

er, one challenge is that diffusion models may require the avail-

ability of a network structure, which may not always be available

or may need to be constructed from other sources of data. Addi-

tionally, diffusion models can be computationally intensive,

especially for large networks, and may require specialized algo-

rithms and techniques to scale to these networks. Others have

explored the use of meta-learning to generate missing modal-

ities. Ma et al. introduced ‘‘multimodal learning with severely

missing modality’’ (SMIL), which leverages Bayesian meta-

learning to perturb the latent feature space so that the embed-

dings of a single modality can approximate ones of full modality.

Notably, SMIL utilizes significantly fewer data tomitigate missing

modality issues as compared to solutions that use generative

networks.98 In a related field, multimodal translation has gained

some attention in recent years as a potential method of both

learning important semantic information from data modalities

while simultaneously generating a potential missing modality.88

A larger parallel issue in C4 is modality incongruity, where sites

may have heterogeneous data modalities available, and their

local data consist of different combinations of modalities. For

example, hospital A has omics, EHR, and CT data, whereas hos-

pital B has omics, MRI, and wearable sensor data. In this sce-

nario, hospitals A and B lack two modalities that the other has,

but knowledge can still be derived from the complementary in-

formation of these missing modalities. This warrants the need

for proper ways of learning personalizable information across

multiple sites in the presence of modality incongruity. Zhao

et al. propose an MMFL system in which clients can have unla-

beled data of different modalities, and each client trains a deep

canonical correlated autoencoder to model hidden representa-

tions between modalities. The local models are aggregated in

the central server through multimodal federated averaging,

where a supervised model is trained using the aggregated

model’s encodings on an auxiliary dataset. While dealing with

modality incongruity and the wealth of unlabeled data available

at local clients, the framework of Zhao et al. does not take advan-

tage of labeled data available at clients. Moreover, it requires an

auxiliary dataset to be available at the central server, which is

usually unrealistic in health care.99 The FedMSplit architecture

leverages federated multitask learning (FMTL) to train on multi-

modal distributed data without necessitating uniform modalities

across all clients. It utilizes a flexible multiview graph structure to

dynamically identify correlations among multimodal client

models. These client models are broken down into smaller

blocks, each revealing a distinct perspective on client relation-

ships. The multiview graph detects and disseminates client

correlations as edge features, facilitating the learning of

personalized yet globally connected multimodal client models.

Despite being model-architecture neutral and efficient at pro-

cessing nonindependent and identically distributed (IID) data,

FedMSplit cannot utilize unlabeled data from sites, constraining

its usability in healthcare scenarios where labeled data are

limited.100

A critical concern when addressing modality incongruity in C4

is the preservation of data connectivity. To align the semantic

feature space between different data modalities, it is essential

that no block on the patchwork is isolated, meaning a particular

modality must not be present exclusively at one site (see

Figure 2). Isolated blocks may hinder the identification of com-

plementary information between modalities, thus impacting the

efficacy of the learning framework. Although most current inves-

tigations do not face significant data connectivity issues due to

the limited number of modalities involved, real-world systems

that incorporate 10 or more modalities are more susceptible to

such challenges. For instance, site A may possess accelerom-

eter data from a wearable sensor, which is unavailable at other

sites. This isolation restricts the ability to determine how the

accelerometer data could complement other modalities. Admin-

istratively, this could necessitate a decision on whether to
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include site A in the C4 setting. In scenarios where a C4 setting

has isolated blocks of data, external sources of connective infor-

mation will be needed to properly perform training. One solution

for connecting these isolated blocks is through multimodal gen-

eration via LLMs. LLMs excel at transfer learning and domain

adaptation, which enables them to transfer knowledge from

one domain or task to another with minimal labeled data. This

capability can be leveraged to establish connections between

isolated data blocks and adapt models to site-specific tasks.

The general-purpose representations learned by LLMs can be

fine-tuned on specific medical tasks or modalities, adapting

the models to the unique requirements and nuances of health-

care applications. This process of fine-tuning can help LLMs

learn to better connect isolated data blocks and facilitate the

extraction of complementary information across modalities.

Recent advancements in this field include the development of

Generative Pre-trained Transformer 4 (GPT-4, HuggingGPT,

and PalmMED, among others.79,101,102 These models demon-

strate the potential for LLMs to support solutions in C4 by ad-

dressing modality incongruity and data connectivity challenges.

Necessary connective data can also be extracted from large-

scale knowledge graphs such as the Integrative Biomedical

Knowledge Hub and the Clinical Knowledge Graph.103,104

Biomedical knowledge graphs can be a valuable resource for

connecting disparate datasets in C4 solutions as well. These

graphs are large-scale, structured networks of biomedical infor-

mation that can be used to represent and link various concepts,

entities, and relationships in the domain of health and medicine.

By using knowledge graphs, researchers can extract external in-

formation that can be used to connect different datasets in a C4

setting. For example, knowledge graphs can be used to identify

shared concepts or entities between different datasets, such as

specific diseases, drugs, or genes. This information can be used

tomap the data from different datasets onto a common ontology

or feature space, allowing the data to be more easily combined

and used for training ML models. Additionally, knowledge

graphs can be used to provide contextual information about

the data, such as the relationships between different entities or

the attributes of specific concepts. This can help improve the ac-

curacy and interpretability of the ML models and can also sup-

port the development of more complex and sophisticated

models that can better capture the complex relationships and

dynamics of health and disease. The use of external information

extracted from biomedical knowledge graphs can be a valuable

approach for connecting disparate datasets. To do so, knowl-

edge graphs need to be multimodal and need to be able to

adeptly link information across modalities.105,106 The idea of

generating connective blocks is depicted in Figure 4.

Interpretation of models: Solutions need to be

explainable for healthcare application

There is significant interest in understanding the complex cross-

modal associations in diagnostic decisions to further uncover

hidden disease mechanisms, facilitate understanding of the dis-

ease, and build trust in statistical models. In clinical decision

making, the interpretability of models is especially important,

as several checks and balances need to be established when

generating diagnoses or providing recommendations. Interpret-

ability should seek to address both modality-specific contribu-

tions and intermodality interaction contributions.107 Simple ap-

proaches that have seen some success involve treating each

modality separately when determining the post hoc interpret-

ability of the modality. Han et al. utilized a multimodal network

to estimate postoperative pain, employing Shapley additive ex-

planations (SHAP) for model explanations on the fused multi-

modal space. However, it falls short in providing clinically evalu-

able details about each modality’s contribution.108 Furthermore,

such methods are constrained in detailing the contribution of

complementary information crucial for the performance of multi-

modal models. Others have developed modality-agnostic

methods through post hoc model interpretation. DIME (fine-

grained interpretations of multimodal models via disentangled

local explanations) provides explanations for model predictions

by disentangling the contributions of a model into those that

are due to unimodal contributions and multimodal interactions.

By doing so, clinicians can identify what facets of the overall

model a prediction is based on. Although DIME is model

agnostic, it has only been shown to work on models that provide

discrete outputs. Moreover, as the number and diversity of mo-

dalities increase, the cost of disentanglement and interaction

explanation becomes exponentially higher.109

Other multimodal networks are intrinsically interpretable

through model design. These include graph-based fusion tech-

niques, multimodal explanation networks, neurosymbolic

reasoning, or attention-based methods.87,110,111 These ap-

proaches individually focus on building interpretable compo-

nents for either modality or modality interaction. Attention-based

approaches, where weights are assigned to different input fea-

tures, have attracted significant attention recently. However,

the explanatory power of these mechanisms is questionable

since there is often a lack of association between gradient map-

pings and attention weights.112–114 In general, these methods

suffer from only working due to careful model design and are

limited to providing explanations only on specific modalities.

Lack of access to cross-client data limits several interpretation

mechanisms in their ability to provide both global and local ex-

planations.

Causality is a crucial aspect in enhancing the interpretability of

models because causal relationships are inherently comprehen-

sible to humans. Causal ML facilitates the investigation of a sys-

tem’s response to an intervention (e.g., outcomes given a treat-

ment in the healthcare domain). Quantifying the effects of

interventions (causal effects) enables the formulation of action-

able decisions while maintaining robustness in the presence of

confounders.115 In the context of C4, multimodal data can serve

as proxies for unobserved confounders, thereby improving the

accuracy of causal effect estimation.116 Addressing the missing-

ness of modalities is a vital consideration for this objective.

Furthermore, estimating the heterogeneous causal effects

across different sites presents a challenge for causal ML within

the C4 setting.117

Distribution drift: Heterogeneity between sites needs to

be accounted for in C4

Considering the regional disparities among participating health-

care facilities, the distribution of data across clients can vary

significantly. This not only results in sample heterogeneity and

non-IID data dispersed across sites but also leads to potential
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variations in the relationships between input features from one

site to another. In C4, the existence of multiple modalities and

the potential absence of some modalities at specific locations

further exacerbate the challenge of addressing distribution drift.

For instance, positron emission tomography (PET) scans may be

captured using distinct scanners and protocols at various sites,

leading to differences in image resolution, size, and interslice

spacing. Consequently, the relationships between these PET

scans and their corresponding site-specific EHR datamay differ.

Distribution drift has been identified as a primary factor contrib-

uting to model performance degradation and unfairness in

multidomain settings, necessitating additional communication

rounds for MMFL systems to achieve convergence.118

Domain generalization is one ML area that addresses distribu-

tion drift. Specifically, domain generalization presumes the exis-

tence of data from multiple source sites. Several methods have

been proposed for training a model utilizing multisource data,

ensuring generalizability to any unseen site.119 Muandet et al.

suggested learning an invariant transformation of the input by

minimizing dissimilarity across domains while preserving the

functional relationship between input and output variables.120

Furthermore, the authors provided a learning-theoretic analysis

demonstrating that reducing dissimilarity enhances expected

generalization in new domains. This objective can also be

accomplished through adversarial training.121 Additionally,

some studies have focused on learning an invariant transforma-

tion of the conditional distribution of the input given the outcome

class, rather than the input itself.122 These approaches prove

effective in addressing conditional shifts across sites.

In addition to the aforementioned methodologies, a series of

techniques known as domain invariant learning have been pro-

posed to address domain generalization. Invariant risk minimiza-

tion (IRM), introduced by Arjovsky et al., aims to reduce the effect

of spurious, or noncausal, properties within different sets of

training data. In a setting in which training data are split into mul-

tiple separate environments with their own site-specific biases,

IRM promotes the learning of features that are stable across

sites.123 More specifically, IRM starts by defining a set of tasks

that the model needs to learn. Each task is associated with a

different distribution of input data, and the goal is to learn a

model that performs well on all of these tasks. The model is

trained by minimizing a loss function that combines an ML

model’s standard loss with a penalty term that encourages

invariance across the different tasks. This penalty term is de-

signed to measure the difference between the model’s predic-

tions on two different tasks, and it is minimized when the model

produces similar outputs for similar inputs, regardless of the

task. Zare et al. introduced ReConfirm, which extends the IRM

framework by accounting for class conditional variants and

shows significant improvements over traditional trained ML

models on medical data.124 In C4, IRM can be used to train a

model that integrates information from multiple datasets that

are distributed across separate sites and contain different mo-

dalities. Specifically, IRM can be used to learn a set of features

that are consistent across different datasets, even if they contain

different modalities or have different patient populations. By do-

ing so, IRM can promote the generalization of the model to new

data modalities and patient populations, thereby reducing distri-

bution drift across sites.

In recent years, there has been a push to generate personal-

ized, globally correlated models to mitigate drift across clients

and data modalities. Personalized federated models are group-

ed into two categories: global model personalization and local-

level personalization.14 Global model personalization trains a

single global model that is subsequently personalized for

each client through local adaptation. One implementation of

global model personalization is Per-FedAvg and its extension

pFedMe.16,125 Per-FedAvg uses model-agnostic meta-learning

(MAML) to formulate FedAvg into developing an initial global

model that performs well on heterogeneous clients, with only a

few steps of gradient descent. Chen and Li propose hierarchical

gradient blending (HGB), which adaptively calculates an optimal

blending of modalities to minimize overfitting and promote

generalization. HGB is task and architecture agnostic and shows

promise in mitigating the lack of generalization in MMFL. Howev-

er, initial implementations of HGB are not able to make the most

use of complementary information between modalities.126

Local-level personalization can be further divided into two cat-

egories: architecture-based and similarity-based approaches.

Architecture-based approaches enable personalization by

designing different models for each client, whereas similarity-

based approaches seek to identify client relationships and

provide related clients with similar models.15 FedMD, an archi-

tecture-based approach, allows for the creation of personalized,

architecture-agnostic models at clients through the use of trans-

fer learning and knowledge distillation. Although the architec-

ture-agnostic aspect of FedMD potentially allows the incorpora-

tion of differing modalities at different clients, FedMD requires a

public dataset, which is infeasible in many healthcare sce-

narios.127 Lu et al. use FedAP to mitigate heterogeneity across

clients by calculating the similarity between clients based on

batch normalization weights. FedAP creates personalized

models with less communication costs and has been evaluated

on several healthcare datasets.128 An extension of these classes

of architectures, FedNorm utilizes the minibatch normalization

(MN) technique, an extension of using batch normalization, to

create personalized models in the presence of data heterogene-

ity and to combat modality incongruity. The framework normal-

izes feature information by modality before distribution across

all clients. FedNorm allows clients to have a mix of modalities

while simultaneously combating data heterogeneity by building

personalized models. However, FedNorm has shown success

only when the modalities available are all of the same data

type (e.g., PET scan and MRI—both images).129 A widely used

strategy for local-level personalization involves federated multi-

task learning. Here, a model concurrently executes various

related tasks, utilizing domain-specific knowledge from different

clients. FMTL has shown promise in buildingmodels in federated

settings with the MOCHA and FedAMP algorithms with tech-

niques such as FedMSplit.126,130,131 In a recent study, Collins

et al. introduce FedRep, a novel FL framework and algorithm,

for the purpose of learning shared representations across

distributed clients and unique local heads for each client.

FedRep addresses the challenge of biases in current ML models

by incorporating data from different modalities and sources, re-

sulting in a shared feature representation that can be applied to a

variety of tasks. FedRep’s ability to learn shared low-dimen-

sional representations among data distributions makes it
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useful for meta-learning and multitask learning in C4 settings.132

Table 1 shows the advantages and disadvantages of many of the

methods described above.

Healthcare data’s rapid evolution can cause concept drift,

where models in C4 may become outdated over time.133 It is

imperative to adapt these models to such distribution changes

for sustained real-world application. Current solutions involve

drift detection, followed by timely clustering or other adaptive

strategies.118 Continual learning offers another approach, al-

lowing models to learn incrementally without forgetting past

tasks.38 Continual learning methods include frequent moni-

toring, fine-tuning, and even retraining a model over time.

Despite its promise, practical challenges such as catastrophic

forgetting—a decline in performance due to new information—

plague continual learning. Hence, online training methods that

utilize only new data may be more suited for health care. Im-

plementing these models clinically also demands addressing

the lack of standard assessment methods. Validation of these

models needs to encompass factors such as the collection

process for new data, the automated organization or labeling

of new data, knowledge transfer between new and original

data, and the overall performance of the model after incorpo-

rating data, while ensuring that no catastrophic interference

occurs.

Communication efficiency: Techniques to minimize lag

due to communication are instrumental for C4 solutions

Communication is a key bottleneck to consider when developing

methods for C4. This is because a C4 setting could include a

massive number of sites or individual patient silos, and commu-

nication in the system can be slower than local computation by

many orders of magnitude. With the integration of multiple

data modalities, computation time increases because many cur-

rent MML techniques require significant amounts of preprocess-

ing and/or communication to integrate. Therefore, real-world C4

solutions will have to rely on communication-efficient methods.

A category of methods emphasizes optimizing local updating

processes. These permit a variable number of parallel local up-

dates on each machine during each communication round.

The primary aim of these local updating methods is to minimize

the total communication rounds. Guha et al. introduce one-shot

FL, where the central server requires only a single round of

Table 1. Pros and cons of various methods that have been proposed to mitigate distribution drift in a C4 setting

Description Pros Cons Implementation

MMFL system99 Support for multimodal data

Can cope with modality incongruity

Uses unlabeled data at local clients

Does not take advantage of labeled

data available at clients

Requires an auxiliary dataset

with labels at the central server

Dependence on alignment information

–

FedMSplit100 Uses FMTL on distributed data

Uses a flexible multiview graph

to identify correlations among

client models

Model-architecture neutral

Efficient with non-IID data

Cannot use unlabeled data from sites

Can expose local models to neighboring

clients during aggregation

Untested on real large-scale scenarios

–

Per-FedAvg

and pFedMe16,125
Uses MAML for FedAvg to

create an initial global model

Effective for heterogeneous

clients after few gradient

descent steps

pFedMe can have high computational

complexity due to use of Moreau envelopes

Need sufficient data at each client

Could have slow convergence rates

https://github.com/KarhouTam/

Per-FedAvg

https://github.com/CharlieDinh/

pFedMe

HGB126 Task and architecture agnostic

Can minimize overfitting

and promote generalization

Cannot efficiently use complementary

information between modalities

–

FedMD127 Allows for architecture-agnostic

personalized models at clients

Requires a public dataset and

initial training on it

Complex communication module

https://github.com/Tzq2doc/

FedMD

FedAP128 Mitigates client heterogeneity

Lower communication costs

Adaptive partitioning, which

allows adaptation to non-IID data

May not be effective in all data

heterogeneity scenarios

Dependence on the accuracy

of partitioning

https://github.com/KarhouTam/

FL-bench

FedNorm129 Normalizing feature information

by modality before distribution

Allows mixed modalities per client

Effective only when modalities are of the

same data type, (e.g., X-ray, ultrasound)

–

FedRep132 Learns shared low-dimensional

representations among data

distributions

Generates a shared feature

representation suitable

for many tasks

Limitations with widescale applicability https://github.com/lgcollins/

FedRep
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communication to learn a global model through the use of en-

sembling and model distillation.134 Zhou et al. expand one-

shot FL through data distillation one-shot FL, in which each client

distills their data to be sent to the central server, where a global

model is trained.135COMMUTE utilizes transfer learning and dis-

tance-based adaptive regularization to create a one-shot multi-

site risk prediction framework. Although the method mitigates

the effects of data heterogeneity across sites, it limits all clients

to using the same set of features.Moreover, its performancewith

complex and deep model architectures remains unknown.136

Another class of methods that has seen success in decreasing

communication costs is model compression, which includes

sparsification, subsampling, and quantization. Zhang et al. intro-

duced dynamic fusion-based FL to choose participating clients

according to local performance, thereby improving communica-

tion efficiency. They applied this method to predict COVID-19

across secure nodes and showed performances comparable

to and/or higher than FedAvg on different facets.137 Recently,

decentralized training has garnered a great deal of attention for

its ability to increase communication efficiency. Although stan-

dard FL settings require a central server for connecting all

remote devices and performing aggregations, decentralized FL

systems provide an alternative when communication to the

server becomes a bottleneck, especially when operating in low

bandwidth or high-latency networks.4 Table 2 presents advan-

tages and disadvantages of the various communication

methods.

Privacy: C4 solutions should have infrastructure and

methods to ensure client privacy

Data privacy is of the utmost importance in health care, particu-

larly when it comes to trainingMLmodels. Patient data are highly

sensitive and must be protected to maintain trust and confiden-

tiality. However, ML models require large amounts of data to be

effective, creating a tension between privacy and innovation.

Therefore, developing privacy-preserving ML techniques for

health care can help mitigate these concerns and enable the

development of accurate models while preserving patient pri-

vacy.7,8 Carlini et al. have shown that unwitting memorization

of neural networks from the training dataset may reveal person-

ally identifiable information.138 Moreover, models themselves

may contain intellectual property (IP), and the learned parame-

ters of the models can reveal valuable information about the

model’s architecture, design, and functionality, which could be

used by others to replicate or reverse-engineer the model

without the owner’s permission. If the information within the da-

tasets is leaked through ML models, it could not only harm pri-

vacy but also undermine trust in such collaborative implemen-

tations.139

In health care, privacy-preserving methods are essential for

ensuring the privacy of customer information, as data used to

train ML models could be compromised and exploited through

an attack from adversaries. With the introduction of FL methods

to mitigate issues with data heterogeneity and data sharing chal-

lenges, these aforementioned attacks have becomemore viable.

Secure multiparty computation (SMPC), differential privacy, and

homomorphic encryption were introduced to prevent malicious

attacks.139 Each of thesemethods has its advantages and short-

comings. SMPC and homomorphic encryption are computation-

ally costly and require complex infrastructure to maintain.140

With differential privacy, the performance of ML models is usu-

ally compromised for increased security.141 Moreover, although

differential privacy and other obfuscation techniques have

shown some promise in unimodal data, there are adaptation is-

sues when working in an MML setting. These methods are often

fine-tuned for specific scenarios or model algorithms. The diver-

sity of data modalities generates different definitions of differen-

tial privacy algorithms, which leads to difficulties in unifying them

into one algorithm.142

Recently, the large-scale use of blockchain has provided re-

searchers with another method for increasing the security of

distributed systems. Chang et al. designed a blockchain-based

FL framework for medical IoT devices, which utilizes differential

privacy and gradient-verification protocols to catch poisoning

attacks. When tested on the task of diagnosing diabetes based

on EHR data, their architecture is able to limit the success of

poisoning attacks to less than 20%.143 Another framework, pro-

posed by Rehman et al., uses blockchain and an intrusion detec-

tion system to detect malicious activity during model training

within a federated healthcare network. The end-to-end system

allows for models to be developed on several modalities, ranging

from medical IoT data to medical images, and gives physicians

the ability to monitor patient risk for diseases in real time.

Although currently limited in its computational complexity, the

framework shows promise in providing a system for medical or-

ganizations to develop risk prediction models based on multi-

modal data.144

Swarm learning (SL) uses blockchain technology to combine

decentralized hardware infrastructures to securely onboard cli-

ents and dynamically generate a global model whose perfor-

mance is comparable to models trained when all of the data

are pooled. Through the use of blockchain technology, SL is

able tomitigate the harm of dishonest participants or adversaries

attempting to undermine the network. SL has demonstrated its

utility in preliminary applications, predicting conditions such as

COVID-19 and leukemia where clients possess non-IID data.

Despite decentralization strengthening network resilience to at-

tacks and data heterogeneity, SL’s absence of central aggrega-

tors reduces some capabilities inherent in other frameworks.

Moreover, the current implementations of SL may be affected

by latency between clients, slowing calculation transpor-

tations.145

Fairness: Solutions should promote fairness across

clients

Onemajor challenge of FL, which becomes evenmore difficult in

C4, is achieving collaborative fairness among participating cli-

ents. Each client’s contribution to the central model is usually

far from equal due to various reasons, with the primary reason

being distributional discrepancies across different clients. In

certain scenarios, some clients may be negatively affected

through distributed learning.15 As ML models are deployed in

increasingly important applications, ensuring that the trained

models do not discriminate against sensitive attributes has

become another critical factor for FL. In general, fairness

falls under two categories: (1) performance fairness, where

every client sees a performance increase from participating

and (2) collaboration fairness, where participants with higher
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Table 2. Pros and cons of various communication methods that have been proposed

Method Description Pros Cons Implementation

One-shot FL134 Introduced by Guha et al., it requires only

a single communication round to the central

server to learn a global model via ensembling

and model distillation

Minimizes total

communication

rounds

May not be ideal for all data types and scenarios –

DOSFL135 An expansion of one-shot FL by Zhou et al.;

each client distills their data before sending

it to the central server for global model training

Optimized for minimized

communication

Nuances of data handling and performance in

diverse settings need more exploration

–

COMMUTE136 Uses transfer learning and adaptive regularization

for a one-shot multisite risk prediction framework

Mitigates data

heterogeneity

effects

Forces all clients to use the same set of features

Performance with deep model architectures is uncertain

https://github.com/biostat-

duan-lab/multiTL

Dynamic fusion-

based FL137
Introduced by Zhang et al., it selects participating

clients based on local performance to improve

communication efficiency; applied to predict

COVID-19 across secure nodes

Increases communication

efficiency

Comparable or better

performance than

FedAvg in some scenarios

Requires dynamic monitoring and more computational

resources at the client end

https://github.com/

GalaxyLearning/GFL

Decentralized

training4,145
Does away with the central server, allowing for

direct communication between remote devices

Enhances communication

efficiency, especially in low

bandwidth or high-latency

situations

May be prone to security issues and requires robust

peer-to-peer networking

Data synchronization could be challenging

https://github.com/

pguijas/p2pfl

DOSFL, data distillation one-shot FL.
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contributions receive higher rewards or incentives. These incen-

tives can include reputation, monetary compensation, or addi-

tional computational infrastructure, among others.146,147

To ensure performance fairness, Li et al. propose a q-Fair FL

framework to achieve an improved uniform accuracy distribution

across participants at the cost of model performance.147 q-Fair

FL utilizes a novel optimization technique that reweights local

objectives, which was inspired by resource allocation strategies

in wireless networks.142 Agnostic federated learning optimizes a

model for any target distribution formed by a mixture of clients’

distributions, forcing the model not to overfit to any particular

client.148 Hao et al. propose Fed-ZDAC and Fed-ZDAS, which

utilize zero-shot data augmentation (generating synthetic data

based only on model information rather than sample data points)

on underrepresented data to decrease statistical heterogeneity

and encourage uniform performance across clients.149 Other

methods have utilized multitask FL and other personalization

techniques to achieve performance fairness by mitigating the

presence of data heterogeneity, which is often the root cause

of nonuniform performance.15,150

Collaborative fairness is essential when there are discrep-

ancies in contributions between clients. These contributions

can vary due to data volume, data quality, computation power,

and the potential risks that each client takes by participating in

an C4 solution. A fair collaborative environment is one in which

each participant receives a reward that fairly reflects its contribu-

tion to C4. When developing collaborative fair environments,

measurement of contribution, reward for contribution, and distri-

bution of reward all need to be determined. The federated

learning incentivizer (FLI) was proposed as a payoff-sharing

scheme to achieve contribution and expectation fairness. FLI is

formulated to work with any definition of contribution and cost

but is primarily used for monetary rewards, which is not the

norm in healthcare scenarios.151 The robust and fair FL (RFFL)

method assigns superior-performing models to clients who

contribute more significantly. RFFL determines a ‘‘reputation’’

score for each client to signify their level of contribution. Clients

falling below a specified contribution threshold are subsequently

excluded from the process.152 Cui et al. propose the concept of

collaboration equilibrium, where clients are grouped such that no

individual client could gain more in another configuration.146

They employ a Pareto optimization framework and benefit

graphs to create clusters of clients that reach this equilibrium.

Although this approach exhibits potential for achieving collabo-

rative fairness, it necessitates all local clients’ consent to

construct a benefit graph by a neutral third party before the initi-

ation of model training.146

FUTURE DIRECTIONS

Addressing C4 remains a complex but rewarding endeavor. The

development of solutions that enable data integration across

multiple sites and modalities could revolutionize health care.

Such solutions could allow researchers to amalgamate data

from various datasets, thereby providing a more comprehensive

and precise perspective on health and disease. This would sup-

port the enhancement of diagnostic, predictive, and therapeutic

tools. However, these potential solutions come with challenges,

including communication efficiency, privacy, and fairness. Over-

coming these hurdles requires continuous exploration and

development of new methods, technologies, and research into

fairness and bias. The goal is to ensure equitable and accurate

results. Ultimately, successfully addressing C4 could lead to

innovative tools for diagnosing, predicting, and treating health

conditions, thereby transforming the healthcare landscape.
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