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THE BIGGER PICTURE Machine learning and artificial intelligence offer immense potential to improve health
care in the future, but a variety of real-world issues present hurdles to adoption. Data must be handled care-
fully to protect patient privacy. Data collected from different sources can vary in quality and completeness.
Data from different assay methods (i.e., multimodal data) can be hard to combine and integrate. Here, we re-
view and discuss methods, models, and workflows that are well suited to handling these kinds of challenges,
which we argue will ensure that the promise of machine learning for health care is fully realized.

SUMMARY

In healthcare, machine learning (ML) shows significant potential to augment patient care, improve population
health, and streamline healthcare workflows. Realizing its full potential is, however, often hampered by con-
cerns about data privacy, diversity in data sources, and suboptimal utilization of different data modalities.
This review studies the utility of cross-cohort cross-category (C*) integration in such contexts: the process
of combining information from diverse datasets distributed across distinct, secure sites. We argue that C*
approaches could pave the way for ML models that are both holistic and widely applicable. This paper pro-
vides a comprehensive overview of C* in health care, including its present stage, potential opportunities, and

associated challenges.

INTRODUCTION

Machine learning (ML) in health care is a rapidly evolving field,
presenting numerous opportunities for progress. Active and pas-
sive patient data collection, both during and outside medical
care, can be utilized to address health challenges. As a result,
ML has become an essential tool for processing and analyzing
these data in various domains, including natural language pro-
cessing, computer vision, and more. ML systems have demon-
strated their potential to enhance patient experiences, improve
population health, reduce per capita healthcare costs, and opti-
mize healthcare providers’ workflows.'™ However, the real-
world clinical and cost benefits of ML in health care remain
limited, indicating a significant gap in its application.

Data privacy is a major challenge for the application of ML in
health care because it restricts the potential for pooling together
sensitive data such as the electronic health record (EHR) from
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multiple sites. Federated learning (FL) offers a promising
approach to addressing this issue by enabling the aggregation
of fragmented, sensitive data from various sites without sharing
the raw data.®" In brief, a typical FL architecture consists of a
central aggregator designed to obtain global ML model parame-
ters by iteratively exchanging their local updates, and FL typi-
cally assumes that the data at different sites share the same in-
formation modalities.®*°

Almost all healthcare problems involve multiple different
data modalities, such as EHR, medical imaging, and genetic
sequencing. Methods and systems that integrate multiple mo-
dalities are becoming more and more important.’''® Multimodal
learning (MML) refers to such a paradigm aiming at integrating
disparate data modalities to capitalize on complementary infor-
mation, thereby improving performance. Existing MML ap-
proaches typically assume that the different data modalities
are available for the same sample cohort—e.g., for each patient,
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Figure 1. Federated and Multimodal Learning
Federated (left) and multimodal (right) learning diagrams.

we have his or her EHR and medical image,'®'” and the research

focus is how to align the different data modalities and combine
them together.

Despite the existing research and reviews on FL and MML
(whose schemas are summarized in Figure 1), in reality we are
usually faced with the scenario that different biomedical datasets
include sample cohorts with different information modalities.
Learning in such a scenario, which is referred to as cross-cohort
cross-category learning (C*), can integrate more comprehensive
information compared to FL and MML, and thus make the model
more comprehensive and robust. In this scoping review, we
cover several current implementations of G*, discuss the oppor-
tunities that C* can bring to health care, point out potential chal-
lenges, and summarize future research directions.

C* learning

C* aims at integrating information from disparate datasets
(residing at different sites) composed of different data modal-
ities. Different datasets may have different information modal-
ities, resulting in a patched setting (Figure 2). Although there
are many existing statistics and ML approaches for missing
value imputation,'®2° they have mostly focused on the single
modality setting and the missingness could be at or not at
random across different feature variables. In the C* setting,
certain datasets can miss certain information modalities entirely,
and there could be distribution shift across different datasets
due to sample heterogeneity. In addition, there could be privacy
concerns, so different sites may not be able to share their own
data with other sites, which makes the learning process more
challenging.

Building learning algorithms within the C* setting has the po-
tential to advance health care in several ways. As previously
mentioned, models developed at one site are not readily appli-
cable to another site due to data heterogeneity. Incorporating

2 Patterns 5, February 9, 2024

Patterns

Multimodal Learning

various data modalities across different sites can mitigate
some biases that currently affect ML models. Furthermore, in
real-world scenarios, certain organizations may not have access
to multiple modalities. Secure information sharing across sites
can facilitate the development of robust models capable of inte-
grating multiple modalities of healthcare data, even at organiza-
tions lacking those modalities. A method built with the C* setting
in mind can prove helpful in situations where different sites have
related but distinct tasks, as it may be possible to train a shared
model backbone for downstream tasks. The backbone model
can be pretrained using all of the available modalities and pa-
tients across different sites. The pretraining process can be im-
plemented using a general-purpose approach, such as employ-
ing a self-supervised strategy, which facilitates the learning of
informative representations applicable to a wide range of down-
stream tasks. After training the backbone model, it can be fine-
tuned to cater to specific tasks at each site.

Current implementations of C*
In this subsection, we summarize a few existing C* implementa-
tions in the literature.

Federated transfer learning (FTL) is a unique variation of FL
that utilizes distinct datasets, which differ in both sample and
feature space. FTL offers users an effective way to manage dis-
parities in data distribution across clients.”"?> A core component
of FTL is transfer learning, a ML technique that aims to enhance
the performance of target models developed on target domains
by reusing the knowledge contained in diverse but related
models developed on source domains. FTL can be performed
in multiple ways, but generally, knowledge across sites is
securely transferred and/or aggregated, despite differing feature
spaces between sites. Overall, there are two strategies in FTL: (1)
using pretrained models in related tasks or (2) using domain
adaptation to transfer knowledge from a source domain to a
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Figure 2. Overview of an C* setting in health care
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Black squares are client modalities that are available for use in model generation.

related target domain. Chen et al. developed an FTL algorithm,
FedHealth, which uses domain adaptation to analyze multimodal
healthcare data from wearables. To address the data isolation
and heterogeneity issues associated with wearable data,
FedHealth first trains a model on public data at the central server,
which it then transfers to clients iteratively for further personali-
zation.?® To apply FTL within C* settings, the relationships be-
tween modalities can be regarded as the knowledge to be trans-
ferred across sites. Following FedHealth’s methodology, models
capable of inferring missing modalities can be trained on public
data and adapted to each site. A crucial aspect of this approach
is ensuring that the public data encompass a comprehensive
range of potential modalities across all sites.

As previously discussed, clients in a C* setting are likely to lack
all data modalities at their site, which constrains their ability to
develop integrated models. Confederated learning provides a
solution to this issue.’® In confederated learning, ML models
are trained on data distributed across diverse populations and
data types, employing a three-step approach. The concept
was introduced in a study where a patient population’s data
were split both horizontally and vertically—i.e., different sites
had varying combinations of data (diagnostic data, medications,
lab tests) and patients. Notably, confederated learning requires
an auxiliary dataset to be available at the central server, which
may not be realistic in real-world scenarios. To perform confed-

erated learning, conditional generative adversarial networks with
matching loss (cGAN) were trained using data from the central
server to infer one data type from another. These cGANs are
transferred to each local site, where the missing data types are
imputed with generated samples. Thereafter, task-specific
models, such as diagnosis prediction, were trained in a feder-
ated manner (e.g., federated averaging) across all of the sites
simultaneously. Compared to other methods, confederated
learning is simple to implement and does not require any patient
ID matching. A core weakness, however, is that the success of
the approach depends on the quantity and heterogeneity of
data available at the central server. The performance of the sub-
sequent confederated model can be affected by any discrep-
ancies between the auxiliary data and the data at each local
site.”*

In a C* setting, even when all of the modalities are available, it
is essential to effectively integrate these modalities for modeling
downstream tasks. Several studies have explicitly combined FL
and MML to develop federated multimodal learning (FML) sys-
tems.?*” These systems are designed to integrate multiple
data modalities across sites. Some personalized recommenda-
tion systems use FML with multimodal matrix factorization
methods to provide privacy-preserving predictions based on
both text and demographic data.”®? Salehi et al. propose
FLASH, which fuses data from light detection and ranging
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in the healthcare domain.
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Predictive diagnosis and risk
prediction

Predictive analytics has emerged as a
valuable tool in medical decision making
because patients’ responses to treat-
ments, particularly for chronic diseases,
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(LIDAR), global positioning system (GPS), and camera images
to train a federated model across vehicles, optimizing vehicular
communication transmissions.®® Another FML method,
FedMMTS, uses multimodal analytics to create privacy-preser-
ving systems that enable autonomous decision making for vehi-
cles in a simulated environment.®" Although FML systems have
been applied in multiple domains, their implementation in health
care has been limited. Challenges associated with missing data,
patient privacy, and the need for clinical interpretability constrain
the adoption of FML in health care. Che et al. designed H-FedMV
and S-FedMV, which perform FML across sites using federated
averaging, the latter of which is able to account for sequential in-
formation within medical data. Modalities that were integrated
include textual and time-series data, both of which were used
to diagnose patients with bipolar disorder.>> Another study uti-
lized an FML system to predict oxygen requirements for corona-
virus disease 2019 (COVID-19) symptomatic patients by
combining data from EHRs and chest X-rays. To integrate the
different modalities and increase the interaction between data
types, a Deep & Cross network architecture was used across
all of the sites, followed by fully connected layers for performing
prediction. To add privacy-preserving measures to their model,
differential privacy was implemented in the federated weight-
sharing mechanisms. Although the model performed relatively
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can vary significantly. ML algorithms, us-
ing data and outcomes from past pa-
tients, can offer insights into the most
effective treatment methods for current patients. Most cutting-
edge clinical risk predictive models are based on deep learning
and trained end-to-end. However, the robustness of diagnostic
or risk prediction tools relies heavily on the breadth of data
used to build them. Diagnostic ML models developed using
site-specific unimodal data often face challenges when adapting
to other clinics.®**>° This issue persists even when incorpo-
rating federated methods due to heterogeneity and lack of local
personalization.®”*®

The integration of multiple modalities has improved the perfor-
mance of these algorithms across different sites. For example,
stroke manifestations can be found in both EHR and medical im-
aging data, indicating that combining both could result in more
accurate risk prediction models. Boehm et al. used a multimodal
dataset, including computed tomography (CT) scans, H&E-
stained pathology slides, omics, and clinical data, to stratify
risk for patients with high-grade ovarian cancer. This approach
revealed the complementary prognostic information provided
by each modality.® Ali et al. combined data from sensors and
EHRs to detect cardiovascular disease while generating auto-
mated recommendations for patient care.*® However, medical
data are often siloed, making it difficult to access large multi-
modal datasets. Qayyum et al. introduced clustered federated
learning (CFL), an algorithm that uses a federated multitasking
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framework to group clients into modality-dependent clusters
with jointly trainable data distributions for COVID-19 diagnosis
prediction. CFL outperformed other unimodal federated
models.”’ Another study developed a generalized federated
multimodal disease diagnosis prediction model using a fusion
and least-squares algorithm, which significantly outperformed
locally trained unimodal counterparts.*? Agbley et al. employed
a multi-modal federated learning (MMFL) framework to create
a melanoma detection model using matched EHR data and
skin lesion images.*® Alam et al. developed FedSepsis, a model
for early detection of sepsis that incorporated tabular and textual
data from EHRs using FML. The study used low-computational
edge devices, such as Raspberry Pi and Jetson Nano, to
address practical challenges.**

Models developed for C* have demonstrated comparative ad-
vantages over both unimodal federated models and multimodal
single-institution models for risk prediction. Although heteroge-
neity across silos still needs to be addressed when developing
models in a C* setting, these studies have shown clinical poten-
tial in terms of performance and interpretability.

Personalized omics for precision health

The advent of next-generation sequencing technologies has led
to increased interest in studying human health by interpreting
molecular intricacies and variations at multiple levels, such as
the genome, epigenome, proteome, and metabolome. These
omics data integrate large amounts of personalized patient
data, which is crucial for understanding individual disease
states, distinguishing subphenotypes, and developing digital
twins, among other applications.***” ML methods offer innova-
tive techniques for integrating various omics data to discover
new biomarkers, potentially aiding in accurate disease predic-
tion and precision medicine delivery. The study of integrative
ML methods for multiomics data enables a deeper understand-
ing of biological systems during normal physiological functioning
and in the presence of disease, supporting insights and recom-
mendations for interdisciplinary professionals. Shen et al.
recently introduced a method to capture and examine multiple
molecular data types from a mere 10-pL blood sample, including
thousands of metabolites, lipids, cytokines, and proteins, further
enriched by physiological data from wearables.*® Nonetheless,
the study’s limitations stem from its small dataset, potentially
affecting its representativeness and statistical robustness. C*
could address these limitations by collecting data from various
sites and integrating it, allowing for a larger, more representative
sample size.

Automated pipelines such as GenoML, developed by Makari-
ous et al., enable users to analyze multiomics data in combina-
tion with clinical data while providing a federated module for
basic privacy-preserving omics analysis across data silos.*®
Many current multimodal methods incorporating omics data
use matrix factorization methods or canonical correlation anal-
ysis (CCA) to combine information from multiple modalities.*
LungDWM uses multiomics data to diagnose lung cancer
subtypes by fusing omics-specific features extracted from an
attention-based encoder. Missing omics-specific features are
imputed through generative adversarial learning.*°

Currently, no platform can efficiently integrate clinical, multio-
mics, and other data modalities while simultaneously enabling
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effective management of data analytics accessible to physi-
cians.®®? Successful integration of different omics data with
other data types, such as EHRs and medical images, has the
potential to enhance our understanding of a patient’s health, al-
lowing for the development of personalized preventive and
therapeutic interventions. Such integrations require big data
platforms or methodologies that facilitate the fusion of heteroge-
neous modalities from multiple silos while allowing real-time
care.”®

Digital clinical trials

The ever-increasing sources of clinical data from EHRs, claims,
and billing data have generated massive amounts of real-world
data (RWD) with the potential for translational impacts on pa-
tients. In recent years, trial emulation, the process of mimicking
targeted randomized controlled trials (RCTs) with RWD such as
electronic health records, has gained attention in the medical
community. Although RWD is more representative of real patient
populations, numerous challenges are associated with con-
ducting trial emulation, such as identifying and controlling con-
founding variables, constructing proper RCT designs, and deter-
mining appropriate causal inference methods for outcome
estimation. Although there is a growing body of research ad-
dressing these challenges, data access remains a significant lim-
itation, especially for trial emulations focused on less common
conditions and treatments. Gaining access to RWD can be a
lengthy and costly process, and due to privacy concerns, aggre-
gating private health data, which is often richer in information on
specific conditions, can be difficult. Accessing RWD from
various clinical sites can help combat data heterogeneity in pa-
tient populations, allowing trial emulation hypotheses to be
generalized across demographic and geographic groups.”* Liu
et al. introduced the distributed algorithm for fitting penalized
(ADAP) regression models to integrate patient-level data from
multiple sites, studying risk factors for opioid use disorder. To
securely share information and mitigate heterogeneity across
multiple sites, collaborating sites only share first- and second-or-
der gradients when conducting trial emulation.®”

Integrating data from wearable technologies can also improve
trial emulation outcomes. Readings from wearables, such as
sleep, physical activity, vital signs, and questionnaires, can pro-
vide valuable information for balancing confounders during trial
emulation pipelines, despite being noisy. ML techniques can
be employed to integrate data from wearables, omics, EHRs,
and medical images for digital clinical trials.’® % Currently, the
performance of multimodal trial emulation pipelines is restrained
by the lack of compatibility among RWD databases. Moreover,
architectures that can concurrently utilize longitudinal RWD
from multiple modalities are still not in existence.”® Despite the
high cost of conducting clinical trials, causal inference using C*
can help identify pertinent medications or treatments through
trial emulation. By integrating heterogeneous sources of data,
both in terms of features and samples, confounding variables
can be controlled, enhancing the capabilities of digital clinical tri-
als. SurvMaximin is one such algorithm in this field that combines
multiple prediction models from different source outcomes in a
federated manner for predicting survival outcomes.®°

As the costs of real-world clinical trials continue to rise,
computational tools will be essential for supplementing
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hypothesis generation. Confounding patient and environmental
variables, spread across multiple data modalities, must be ac-
counted for even in extensive collections of RWD. C* formula-
tions can offer unique ways to mitigate confounding variables
and integrate private data sources, enabling hypothesis genera-
tion for rare medical conditions.

Remote monitoring
Medical Internet of Things (MloT) devices, such as wearables
and mobiles, facilitate real-time monitoring of vital physiological
parameters and behaviors.®' Data such as heart rate, blood
pressure, body temperature, blood oxygen saturation, posture,
and physical activities are acquired through tools like electrocar-
diograms (ECGs) and ballistocardiograms (BCGs). These data
aid in preventing health issues and predicting COVID-19 symp-
toms remotely.®> Monitoring mental conditions via wearables,
which detect key physiological markers, is an evolving field.
For example, Xu et al. devised FedMood, a system using
mobile phone keystrokes and accelerometer data for depression
detection.®® Fed-ReMECS fuses various signals for real-time
emotional state classification.®* Liang et al. developed a pri-
vacy-focused multimodal model for mood assessment, surpass-
ing unimodal models in performance.®® By facilitating the early
identification of health irregularities, wearable technology can
also enhance the efficiency of patient management in hospitals.
Wireless communication in wearable techniques enables re-
searchers to design a new breed of point-of-care (POC) diag-
nostic devices.®®%®

However, processing information from wearables can be chal-
lenging. Data from wearables are intrinsically multimodal,
ranging from audio and images to time-series data. Although ef-
forts have been made to fuse data types from various sensors,
there are further advantages to combining wearable data with
formalized clinical data, such as those recorded in EHRs.
Wang et al. proposed an architecture design for COVID-19 diag-
nosis using a combination of demographic information, medical
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record text data, patient mobile data, and image data stored
across different nodes. While not implementing this design,
they highlight the advantages of enabling such architectures
for real-time pandemic monitoring.®®

Another issue with wearable information is data privacy. Health-
care data from different people with diverse monitoring patterns
are difficult to aggregate together to generate robust results. Pa-
tient confidentiality and data security are major concerns when
using wearable devices because ensuring compliance with Health
Insurance Portability and Accountability Act (HIPAA) regulations
can be challenging. The use of FL could mitigate several of these
privacy challenges. Chen et al. extended FedHealth to develop
FedHealth 2, which creates personalized models for each client
by obtaining client similarities using a pretrained model and then
averaging weighted client models while preserving local batch
normalization. FedHealth 2 showed increased performance in ac-
tivity recognition compared to other federated methods.”® The
Federated Multi-task Attention (FedMAT) framework, built on
multimodal wearable data, outperforms baseline methods in hu-
man activity recognition and is rapidly adaptable to new individ-
uals. The framework uses an attention module at each client to
learn both client-specific features and globally correlated features
while ensuring data security.”' Reddy et al. propose a blockchain-
based FL system using multimodal wearable data to predict
COQOVID-19, enabling relatively secure transmission of pertinent
model development information.®?

Given the multimodal and secure nature of wearable sensor
data, there is a direct need for the development of algorithms
for C*. Through the use of such algorithms, wearable data can
be employed for proper remote monitoring, thereby improving
patient care.

CHALLENGES

Implementing C* systems comes with significant challenges
(Figure 3). In this section, we discuss some of the key challenges
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associated with these systems and explore potential solutions
and future directions for addressing these challenges.

Data standardization: Normalizing the data elements
across different cohorts

One crucial step before formulating a solution for C* is the
data standardization across different cohorts. For example,
the terminology coding system (e.g., for diagnosis, medica-
tions, procedures, etc.) used in one EHR cohort could be
different than the one used in another EHR cohort. In this
case, it is important to map them to a common set of
data elements, which is typically referred to as common
data models (CDMs). In clinical informatics, several CDMs
have been developed for normalizing the data elements in
EHRs from different consortiums, such as the Observational
Medical Outcomes Partnership (OMOP) developed from
the Observational Health Data Sciences and Informatics
(OHDSI), and the PCORNet CDM developed from the Patient
Centered Outcomes Research Institute (PCORI).”> Because
there are multiple distinct modalities involved within the C*
paradigm, it is critical to expand these CDMs across those
different modalities. This involves not only the normalization
of the terminology of the data elements but also the relation-
ships among them because most of the CDMs are ontol-
ogies themselves. For instance, OMOP could be enhanced
by introducing modular data structures that cater specifically
to diverse data modalities inherent in a C* setting. Further-
more, the metadata descriptors within OMOP might need
to be enriched to provide a clearer context for multimodal
datasets, making cross-cohort connections more trans-
parent. Recent developments such as ATRACTion OMOP-
CDM have taken steps to integrating omics data into the
OMOP model.”®

Representation of modalities: Effective representation
of modalities is necessary for data integration and
downstream tasks

With the diversity of healthcare data modalities, integrating the
information concisely to allow for optimal model development
is essential. Multimodal representation involves the efficient
and meaningful vector or tensor presentation of multivariate
data, which often features both redundant and supplementary
information. Representation can be broadly categorized as
either joint or coordinated. The former projects data from
various modalities into a shared space, frequently utilizing
fusion techniques. Meanwhile, the latter allocates each modal-
ity into unique yet coordinated spaces via similarity mea-
sures.”* Currently, many MML architectures utilize fusion as
a way of joining information from multiple modalities.>>"® In
the C* context, three principal fusion strategies for handling
multimodal data arise. Early fusion merges features from
different modalities before main model processing, making it
effective when there is strong correlation between data modal-
ities across silos. However, it assumes consistent modality
availability, which might be a challenge in C*s diverse data
landscape. Late fusion processes each modality separately
and combines them toward the end. This offers adaptability
within C*, especially with missing data, but might overlook
subtle intermodality relationships. Hybrid fusion, combining
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both strategies, is a versatile solution for C*. It ensures depth
in data interpretation while remaining adaptable, but its
complexity may grow with more data and clients. Recent inno-
vations such as the OpenAl Contrastive Language-Image Pre-
training (CLIP) highlight the necessity of merging modalities for
optimal ML performance. CLIP is a powerful approach that
uses a joint representation learning framework to learn a
wide array of visual models. The CLIP model is pretrained
on a large-scale dataset of images and their associated natu-
ral language descriptions, which allows it to learn a rich and
robust multimodal representation that captures both visual
and textual information.”® Multimodal large language models
(LLMs) also present novel ways to represent various modal-
ities jointly. PALM-E, a multimodal model developed by Goo-
gle Research, encodes RWD into a language-embedding
space, allowing it to integrate various types of information
from sensors. PALM-E has been used to enable effective
robot training and build state-of-the-art generalized visual-lan-
guage models.”” However, while showing promise in nonspe-
cific domains, MML fusion models still face challenges in
health care, such as being prone to overfitting.”® To address
this issue, HuggingGPT was developed, which takes advan-
tage of the hundreds of specialized models publicly available
on the Hugging Face Hub. HuggingGPT uses an LLM as a
central manager that distributes subtasks to several down-
stream multimodal models to complete an overall objective.
Although rudimentary, these objectives can easily scale in
complexity as long as certain specialized models exist down-
stream that are able to perform the subtasks.”® In a similar
vein, foundation models have gained traction due to their
capability to learn a wealth of information from large-scale da-
tasets. These models, pretrained on massive corpora, effec-
tively serve as feature extractors for multiple modalities. Given
their expansive knowledge base, foundation models can pro-
vide high-level feature embeddings which, when fine-tuned,
are attuned to specific downstream tasks.?® Furthermore,
when dealing with diverse modalities, the embeddings from
these models can be used as a common foundation. Tech-
nigues such as CCA or mutual information estimation can
further align the extracted features from different modalities
into a unified representation space. This alignment provides
a coherent foundation for subsequent tasks. Since 2022,
several medical foundation models have been developed,
including holistic artificial intelligence in medicine (HAIM),
RETFound, and CheXzero.®'"%% However, constructing medi-
cal foundation models for the C* context is challenging
due to the limited availability of extensive healthcare multi-
modal datasets.?’ Additionally, training these models in a C*
framework presents privacy concerns because they must
generalize across diverse modalities while learning across si-
loed cohorts.

In a C* setting, colearning methods might be preferable due
to their ability to function relatively well in scenarios where mo-
dalities may be missing during training or inference.®*®” Co-
learning uses knowledge transfer from one modality to learn
about a less-informed modality. Colearning methods include
the utilization of multimodal embeddings, transfer learning,
multitask learning, and generative networks, with each method
aiding in mitigating real-world issues with multimodal data,
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such as missing modalities, noisy labels, and domain adap-
tation.®®

Missing modalities and modality incongruity: Solutions
need to account for both random and nonrandom
missing data modalities

The patchwork characteristic frequently associated with C* sce-
narios is due to the disparate availability of data modalities
across various healthcare sites. Many multimodal learning
models typically assume that modalities are complete, meaning
they are fully paired during both training and inference. Yet, due
to constraints such as privacy or budget, this assumption may
not align consistently with real-world conditions. In fact, missing-
ness is often nonrandom in healthcare datasets, with certain
sites lacking specific data modalities due to infrastructure.
Furthermore, different clinical workflows for acquiring data can
also lead to nonrandom missingness across sites. Many investi-
gations have explored novel methods to tackle missingness dur-
ing inference time.”**° Although less so, there have also been al-
gorithms proposed for combating missingness in modalities
during training. Recently, generative networks such as varia-
tional autoencoders, generative adversarial networks, and
Long Short-Term Memory networks (LSTMs) have been de-
ployed to generate absent modalities. By learning the joint distri-
bution of multimodal data, these networks can create one mo-
dality from another, thereby capturing semantic correlations
between modalities.®>*° Although some of these generative
methods operate in an unsupervised manner, research indicates
the benefits of integrating ground-truth labels through classifica-
tion loss, specific types of adversarial loss, or triplet loss to more
effectively generate modalities.”*®” Lee et al. compared the
performances of an LSTM and autoencoder architecture for
generating audio modality from red, green, and blue (RGB)
images. Their investigation found that the incorporation of clas-
sifier loss enhanced the results of the autoencoder-based
approach.®® Confederated learning uses centrally trained gener-
ative networks to combat missing modalities at local sites.””
With the recent interest in diffusion models, there may be
some opportunity for those architectures to synthesize missing
modalities. Diffusion models are a class of ML algorithms that
can be used to analyze how information spreads or diffuses
through a network.®* These models are commonly used to study
the spread of diseases, ideas, or behaviors through social net-
works, but they can also be applied to other domains where in-
formation spreads through a network. One potential opportunity
of using diffusion models for synthesizing missing modalities is
that they can incorporate the structure of the network into the
synthesis process, which can provide additional context and
potentially improve the quality of the synthetic data.®*°” Howev-
er, one challenge is that diffusion models may require the avail-
ability of a network structure, which may not always be available
or may need to be constructed from other sources of data. Addi-
tionally, diffusion models can be computationally intensive,
especially for large networks, and may require specialized algo-
rithms and techniques to scale to these networks. Others have
explored the use of meta-learning to generate missing modal-
ities. Ma et al. introduced “multimodal learning with severely
missing modality” (SMIL), which leverages Bayesian meta-
learning to perturb the latent feature space so that the embed-
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dings of a single modality can approximate ones of full modality.
Notably, SMIL utilizes significantly fewer data to mitigate missing
modality issues as compared to solutions that use generative
networks.®® In a related field, multimodal translation has gained
some attention in recent years as a potential method of both
learning important semantic information from data modalities
while simultaneously generating a potential missing modality.®®

A larger parallel issue in G* is modality incongruity, where sites
may have heterogeneous data modalities available, and their
local data consist of different combinations of modalities. For
example, hospital A has omics, EHR, and CT data, whereas hos-
pital B has omics, MRI, and wearable sensor data. In this sce-
nario, hospitals A and B lack two modalities that the other has,
but knowledge can still be derived from the complementary in-
formation of these missing modalities. This warrants the need
for proper ways of learning personalizable information across
multiple sites in the presence of modality incongruity. Zhao
et al. propose an MMFL system in which clients can have unla-
beled data of different modalities, and each client trains a deep
canonical correlated autoencoder to model hidden representa-
tions between modalities. The local models are aggregated in
the central server through multimodal federated averaging,
where a supervised model is trained using the aggregated
model’s encodings on an auxiliary dataset. While dealing with
modality incongruity and the wealth of unlabeled data available
atlocal clients, the framework of Zhao et al. does not take advan-
tage of labeled data available at clients. Moreover, it requires an
auxiliary dataset to be available at the central server, which is
usually unrealistic in health care.’® The FedMSplit architecture
leverages federated multitask learning (FMTL) to train on multi-
modal distributed data without necessitating uniform modalities
across all clients. It utilizes a flexible multiview graph structure to
dynamically identify correlations among multimodal client
models. These client models are broken down into smaller
blocks, each revealing a distinct perspective on client relation-
ships. The multiview graph detects and disseminates client
correlations as edge features, facilitating the learning of
personalized yet globally connected multimodal client models.
Despite being model-architecture neutral and efficient at pro-
cessing nonindependent and identically distributed (IID) data,
FedMSplit cannot utilize unlabeled data from sites, constraining
its usability in healthcare scenarios where labeled data are
limited.'°

A critical concern when addressing modality incongruity in C*
is the preservation of data connectivity. To align the semantic
feature space between different data modalities, it is essential
that no block on the patchwork is isolated, meaning a particular
modality must not be present exclusively at one site (see
Figure 2). Isolated blocks may hinder the identification of com-
plementary information between modalities, thus impacting the
efficacy of the learning framework. Although most current inves-
tigations do not face significant data connectivity issues due to
the limited number of modalities involved, real-world systems
that incorporate 10 or more modalities are more susceptible to
such challenges. For instance, site A may possess accelerom-
eter data from a wearable sensor, which is unavailable at other
sites. This isolation restricts the ability to determine how the
accelerometer data could complement other modalities. Admin-
istratively, this could necessitate a decision on whether to
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include site A in the C* setting. In scenarios where a C* setting
has isolated blocks of data, external sources of connective infor-
mation will be needed to properly perform training. One solution
for connecting these isolated blocks is through multimodal gen-
eration via LLMs. LLMs excel at transfer learning and domain
adaptation, which enables them to transfer knowledge from
one domain or task to another with minimal labeled data. This
capability can be leveraged to establish connections between
isolated data blocks and adapt models to site-specific tasks.
The general-purpose representations learned by LLMs can be
fine-tuned on specific medical tasks or modalities, adapting
the models to the unique requirements and nuances of health-
care applications. This process of fine-tuning can help LLMs
learn to better connect isolated data blocks and facilitate the
extraction of complementary information across modalities.
Recent advancements in this field include the development of
Generative Pre-trained Transformer 4 (GPT-4, HuggingGPT,
and PalmMED, among others.”®'%""1°? These models demon-
strate the potential for LLMs to support solutions in C* by ad-
dressing modality incongruity and data connectivity challenges.
Necessary connective data can also be extracted from large-
scale knowledge graphs such as the Integrative Biomedical
Knowledge Hub and the Clinical Knowledge Graph.'%%04
Biomedical knowledge graphs can be a valuable resource for
connecting disparate datasets in C* solutions as well. These
graphs are large-scale, structured networks of biomedical infor-
mation that can be used to represent and link various concepts,
entities, and relationships in the domain of health and medicine.
By using knowledge graphs, researchers can extract external in-
formation that can be used to connect different datasets in a C*
setting. For example, knowledge graphs can be used to identify
shared concepts or entities between different datasets, such as
specific diseases, drugs, or genes. This information can be used
to map the data from different datasets onto a common ontology
or feature space, allowing the data to be more easily combined
and used for training ML models. Additionally, knowledge
graphs can be used to provide contextual information about
the data, such as the relationships between different entities or
the attributes of specific concepts. This can help improve the ac-
curacy and interpretability of the ML models and can also sup-
port the development of more complex and sophisticated
models that can better capture the complex relationships and
dynamics of health and disease. The use of external information
extracted from biomedical knowledge graphs can be a valuable
approach for connecting disparate datasets. To do so, knowl-
edge graphs need to be multimodal and need to be able to
adeptly link information across modalities.’® ' The idea of
generating connective blocks is depicted in Figure 4.

Interpretation of models: Solutions need to be
explainable for healthcare application

There is significant interest in understanding the complex cross-
modal associations in diagnostic decisions to further uncover
hidden disease mechanisms, facilitate understanding of the dis-
ease, and build trust in statistical models. In clinical decision
making, the interpretability of models is especially important,
as several checks and balances need to be established when
generating diagnoses or providing recommendations. Interpret-
ability should seek to address both modality-specific contribu-
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tions and intermodality interaction contributions.'®” Simple ap-
proaches that have seen some success involve treating each
modality separately when determining the post hoc interpret-
ability of the modality. Han et al. utilized a multimodal network
to estimate postoperative pain, employing Shapley additive ex-
planations (SHAP) for model explanations on the fused multi-
modal space. However, it falls short in providing clinically evalu-
able details about each modality’s contribution.'°® Furthermore,
such methods are constrained in detailing the contribution of
complementary information crucial for the performance of multi-
modal models. Others have developed modality-agnostic
methods through post hoc model interpretation. DIME (fine-
grained interpretations of multimodal models via disentangled
local explanations) provides explanations for model predictions
by disentangling the contributions of a model into those that
are due to unimodal contributions and multimodal interactions.
By doing so, clinicians can identify what facets of the overall
model a prediction is based on. Although DIME is model
agnostic, it has only been shown to work on models that provide
discrete outputs. Moreover, as the number and diversity of mo-
dalities increase, the cost of disentanglement and interaction
explanation becomes exponentially higher.'%°

Other multimodal networks are intrinsically interpretable
through model design. These include graph-based fusion tech-
niques, multimodal explanation networks, neurosymbolic
reasoning, or attention-based methods.?”""*""" These ap-
proaches individually focus on building interpretable compo-
nents for either modality or modality interaction. Attention-based
approaches, where weights are assigned to different input fea-
tures, have attracted significant attention recently. However,
the explanatory power of these mechanisms is questionable
since there is often a lack of association between gradient map-
pings and attention weights.''>""'* In general, these methods
suffer from only working due to careful model design and are
limited to providing explanations only on specific modalities.
Lack of access to cross-client data limits several interpretation
mechanisms in their ability to provide both global and local ex-
planations.

Causality is a crucial aspect in enhancing the interpretability of
models because causal relationships are inherently comprehen-
sible to humans. Causal ML facilitates the investigation of a sys-
tem’s response to an intervention (e.g., outcomes given a treat-
ment in the healthcare domain). Quantifying the effects of
interventions (causal effects) enables the formulation of action-
able decisions while maintaining robustness in the presence of
confounders."'® In the context of C*, multimodal data can serve
as proxies for unobserved confounders, thereby improving the
accuracy of causal effect estimation.’'® Addressing the missing-
ness of modalities is a vital consideration for this objective.
Furthermore, estimating the heterogeneous causal effects
across different sites presents a challenge for causal ML within
the C* setting.""”

Distribution drift: Heterogeneity between sites needs to
be accounted for in C*

Considering the regional disparities among participating health-
care facilities, the distribution of data across clients can vary
significantly. This not only results in sample heterogeneity and
non-1ID data dispersed across sites but also leads to potential
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variations in the relationships between input features from one
site to another. In C*, the existence of multiple modalities and
the potential absence of some modalities at specific locations
further exacerbate the challenge of addressing distribution drift.
For instance, positron emission tomography (PET) scans may be
captured using distinct scanners and protocols at various sites,
leading to differences in image resolution, size, and interslice
spacing. Consequently, the relationships between these PET
scans and their corresponding site-specific EHR data may differ.
Distribution drift has been identified as a primary factor contrib-
uting to model performance degradation and unfairness in
multidomain settings, necessitating additional communication
rounds for MMFL systems to achieve convergence.''®

Domain generalization is one ML area that addresses distribu-
tion drift. Specifically, domain generalization presumes the exis-
tence of data from multiple source sites. Several methods have
been proposed for training a model utilizing multisource data,
ensuring generalizability to any unseen site.''® Muandet et al.
suggested learning an invariant transformation of the input by
minimizing dissimilarity across domains while preserving the
functional relationship between input and output variables.'?°
Furthermore, the authors provided a learning-theoretic analysis
demonstrating that reducing dissimilarity enhances expected
generalization in new domains. This objective can also be
accomplished through adversarial training.'”' Additionally,
some studies have focused on learning an invariant transforma-
tion of the conditional distribution of the input given the outcome
class, rather than the input itself.'*> These approaches prove
effective in addressing conditional shifts across sites.

In addition to the aforementioned methodologies, a series of
techniques known as domain invariant learning have been pro-
posed to address domain generalization. Invariant risk minimiza-
tion (IRM), introduced by Arjovsky et al., aims to reduce the effect
of spurious, or noncausal, properties within different sets of
training data. In a setting in which training data are split into mul-
tiple separate environments with their own site-specific biases,
IRM promotes the learning of features that are stable across
sites.'?® More specifically, IRM starts by defining a set of tasks
that the model needs to learn. Each task is associated with a
different distribution of input data, and the goal is to learn a
model that performs well on all of these tasks. The model is
trained by minimizing a loss function that combines an ML
model’s standard loss with a penalty term that encourages
invariance across the different tasks. This penalty term is de-
signed to measure the difference between the model’s predic-
tions on two different tasks, and it is minimized when the model
produces similar outputs for similar inputs, regardless of the
task. Zare et al. introduced ReConfirm, which extends the IRM
framework by accounting for class conditional variants and
shows significant improvements over traditional trained ML
models on medical data.'?* In C* IRM can be used to train a
model that integrates information from multiple datasets that
are distributed across separate sites and contain different mo-
dalities. Specifically, IRM can be used to learn a set of features
that are consistent across different datasets, even if they contain
different modalities or have different patient populations. By do-
ing so, IRM can promote the generalization of the model to new
data modalities and patient populations, thereby reducing distri-
bution drift across sites.
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In recent years, there has been a push to generate personal-
ized, globally correlated models to mitigate drift across clients
and data modalities. Personalized federated models are group-
ed into two categories: global model personalization and local-
level personalization.’* Global model personalization trains a
single global model that is subsequently personalized for
each client through local adaptation. One implementation of
global model personalization is Per-FedAvg and its extension
pFedMe."®'?° Per-FedAvg uses model-agnostic meta-learning
(MAML) to formulate FedAvg into developing an initial global
model that performs well on heterogeneous clients, with only a
few steps of gradient descent. Chen and Li propose hierarchical
gradient blending (HGB), which adaptively calculates an optimal
blending of modalities to minimize overfitting and promote
generalization. HGB is task and architecture agnostic and shows
promise in mitigating the lack of generalization in MMFL. Howev-
er, initial implementations of HGB are not able to make the most
use of complementary information between modalities.'*°

Local-level personalization can be further divided into two cat-
egories: architecture-based and similarity-based approaches.
Architecture-based approaches enable personalization by
designing different models for each client, whereas similarity-
based approaches seek to identify client relationships and
provide related clients with similar models."® FedMD, an archi-
tecture-based approach, allows for the creation of personalized,
architecture-agnostic models at clients through the use of trans-
fer learning and knowledge distillation. Although the architec-
ture-agnostic aspect of FedMD potentially allows the incorpora-
tion of differing modalities at different clients, FedMD requires a
public dataset, which is infeasible in many healthcare sce-
narios.'?” Lu et al. use FedAP to mitigate heterogeneity across
clients by calculating the similarity between clients based on
batch normalization weights. FedAP creates personalized
models with less communication costs and has been evaluated
on several healthcare datasets.'?® An extension of these classes
of architectures, FedNorm utilizes the minibatch normalization
(MN) technique, an extension of using batch normalization, to
create personalized models in the presence of data heterogene-
ity and to combat modality incongruity. The framework normal-
izes feature information by modality before distribution across
all clients. FedNorm allows clients to have a mix of modalities
while simultaneously combating data heterogeneity by building
personalized models. However, FedNorm has shown success
only when the modalities available are all of the same data
type (e.g., PET scan and MRI—both images).'?° A widely used
strategy for local-level personalization involves federated multi-
task learning. Here, a model concurrently executes various
related tasks, utilizing domain-specific knowledge from different
clients. FMTL has shown promise in building models in federated
settings with the MOCHA and FedAMP algorithms with tech-
niques such as FedMSplit.'?'3%'%1 |n a recent study, Collins
et al. introduce FedRep, a novel FL framework and algorithm,
for the purpose of learning shared representations across
distributed clients and unique local heads for each client.
FedRep addresses the challenge of biases in current ML models
by incorporating data from different modalities and sources, re-
sulting in a shared feature representation that can be applied to a
variety of tasks. FedRep’s ability to learn shared low-dimen-
sional representations among data distributions makes it
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Table 1. Pros and cons of various methods that have been proposed to mitigate distribution drift in a C* setting

Description Pros Cons Implementation
MMFL system”? Support for multimodal data Does not take advantage of labeled -
Can cope with modality incongruity data available at clients
Uses unlabeled data at local clients Requires an auxiliary dataset
with labels at the central server
Dependence on alignment information
FedMSplit'° Uses FMTL on distributed data Cannot use unlabeled data from sites -
Uses a flexible multiview graph Can expose local models to neighboring
to identify correlations among clients during aggregation
client models Untested on real large-scale scenarios
Model-architecture neutral
Efficient with non-1ID data
Per-FedAvg Uses MAML for FedAvg to pFedMe can have high computational https://github.com/KarhouTam/

and pFedMe'®'2°

HGB'?°

FedMD'?’

FedAP'?8

FedNorm'*°

FedRep'**

create an initial global model
Effective for heterogeneous
clients after few gradient
descent steps

Task and architecture agnostic
Can minimize overfitting
and promote generalization

Allows for architecture-agnostic
personalized models at clients

Mitigates client heterogeneity
Lower communication costs
Adaptive partitioning, which

allows adaptation to non-lID data

Normalizing feature information
by modality before distribution

Allows mixed modalities per client

Learns shared low-dimensional

complexity due to use of Moreau envelopes
Need sufficient data at each client
Could have slow convergence rates

Cannot efficiently use complementary
information between modalities

Requires a public dataset and

initial training on it

Complex communication module

May not be effective in all data
heterogeneity scenarios

Dependence on the accuracy

of partitioning

Effective only when modalities are of the
same data type, (e.g., X-ray, ultrasound)

Limitations with widescale applicability

Per-FedAvg
https://github.com/CharlieDinh/
pFedMe

https://github.com/Tzgq2doc/
FedMD

https://github.com/KarhouTam/
FL-bench

https://github.com/Igcollins/

representations among data
distributions

Generates a shared feature
representation suitable

for many tasks

FedRep

useful for meta-learning and multitask learning in C* settings.'*?
Table 1 shows the advantages and disadvantages of many of the
methods described above.

Healthcare data’s rapid evolution can cause concept drift,
where models in C* may become outdated over time."*® It is
imperative to adapt these models to such distribution changes
for sustained real-world application. Current solutions involve
drift detection, followed by timely clustering or other adaptive
strategies.”'® Continual learning offers another approach, al-
lowing models to learn incrementally without forgetting past
tasks.®® Continual learning methods include frequent moni-
toring, fine-tuning, and even retraining a model over time.
Despite its promise, practical challenges such as catastrophic
forgetting—a decline in performance due to new information—
plague continual learning. Hence, online training methods that
utilize only new data may be more suited for health care. Im-
plementing these models clinically also demands addressing
the lack of standard assessment methods. Validation of these
models needs to encompass factors such as the collection
process for new data, the automated organization or labeling
of new data, knowledge transfer between new and original

data, and the overall performance of the model after incorpo-
rating data, while ensuring that no catastrophic interference
occurs.

Communication efficiency: Techniques to minimize lag
due to communication are instrumental for C* solutions
Communication is a key bottleneck to consider when developing
methods for C*. This is because a C* setting could include a
massive number of sites or individual patient silos, and commu-
nication in the system can be slower than local computation by
many orders of magnitude. With the integration of multiple
data modalities, computation time increases because many cur-
rent MML techniques require significant amounts of preprocess-
ing and/or communication to integrate. Therefore, real-world C*
solutions will have to rely on communication-efficient methods.
A category of methods emphasizes optimizing local updating
processes. These permit a variable number of parallel local up-
dates on each machine during each communication round.
The primary aim of these local updating methods is to minimize
the total communication rounds. Guha et al. introduce one-shot
FL, where the central server requires only a single round of
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communication to learn a global model through the use of en-
sembling and model distillation.’** Zhou et al. expand one-
shot FL through data distillation one-shot FL, in which each client
distills their data to be sent to the central server, where a global
model is trained.'*>* COMMUTE utilizes transfer learning and dis-
tance-based adaptive regularization to create a one-shot multi-
site risk prediction framework. Although the method mitigates
the effects of data heterogeneity across sites, it limits all clients
to using the same set of features. Moreover, its performance with
complex and deep model architectures remains unknown.'*°

Another class of methods that has seen success in decreasing
communication costs is model compression, which includes
sparsification, subsampling, and quantization. Zhang et al. intro-
duced dynamic fusion-based FL to choose participating clients
according to local performance, thereby improving communica-
tion efficiency. They applied this method to predict COVID-19
across secure nodes and showed performances comparable
to and/or higher than FedAvg on different facets.'®” Recently,
decentralized training has garnered a great deal of attention for
its ability to increase communication efficiency. Although stan-
dard FL settings require a central server for connecting all
remote devices and performing aggregations, decentralized FL
systems provide an alternative when communication to the
server becomes a bottleneck, especially when operating in low
bandwidth or high-latency networks.” Table 2 presents advan-
tages and disadvantages of the various communication
methods.

Privacy: C* solutions should have infrastructure and
methods to ensure client privacy
Data privacy is of the utmost importance in health care, particu-
larly when it comes to training ML models. Patient data are highly
sensitive and must be protected to maintain trust and confiden-
tiality. However, ML models require large amounts of data to be
effective, creating a tension between privacy and innovation.
Therefore, developing privacy-preserving ML techniques for
health care can help mitigate these concerns and enable the
development of accurate models while preserving patient pri-
vacy.”® Carlini et al. have shown that unwitting memorization
of neural networks from the training dataset may reveal person-
ally identifiable information.’® Moreover, models themselves
may contain intellectual property (IP), and the learned parame-
ters of the models can reveal valuable information about the
model’s architecture, design, and functionality, which could be
used by others to replicate or reverse-engineer the model
without the owner’s permission. If the information within the da-
tasets is leaked through ML models, it could not only harm pri-
vacy but also undermine trust in such collaborative implemen-
tations.'®°

In health care, privacy-preserving methods are essential for
ensuring the privacy of customer information, as data used to
train ML models could be compromised and exploited through
an attack from adversaries. With the introduction of FL methods
to mitigate issues with data heterogeneity and data sharing chal-
lenges, these aforementioned attacks have become more viable.
Secure multiparty computation (SMPC), differential privacy, and
homomorphic encryption were introduced to prevent malicious
attacks.'*® Each of these methods has its advantages and short-
comings. SMPC and homomorphic encryption are computation-

12 Patterns 5, February 9, 2024

Patterns

ally costly and require complex infrastructure to maintain.'“°
With differential privacy, the performance of ML models is usu-
ally compromised for increased security.'*' Moreover, although
differential privacy and other obfuscation techniques have
shown some promise in unimodal data, there are adaptation is-
sues when working in an MML setting. These methods are often
fine-tuned for specific scenarios or model algorithms. The diver-
sity of data modalities generates different definitions of differen-
tial privacy algorithms, which leads to difficulties in unifying them
into one algorithm.'*?

Recently, the large-scale use of blockchain has provided re-
searchers with another method for increasing the security of
distributed systems. Chang et al. designed a blockchain-based
FL framework for medical loT devices, which utilizes differential
privacy and gradient-verification protocols to catch poisoning
attacks. When tested on the task of diagnosing diabetes based
on EHR data, their architecture is able to limit the success of
poisoning attacks to less than 20%.'*® Another framework, pro-
posed by Rehman et al., uses blockchain and an intrusion detec-
tion system to detect malicious activity during model training
within a federated healthcare network. The end-to-end system
allows for models to be developed on several modalities, ranging
from medical loT data to medical images, and gives physicians
the ability to monitor patient risk for diseases in real time.
Although currently limited in its computational complexity, the
framework shows promise in providing a system for medical or-
ganizations to develop risk prediction models based on multi-
modal data.’**

Swarm learning (SL) uses blockchain technology to combine
decentralized hardware infrastructures to securely onboard cli-
ents and dynamically generate a global model whose perfor-
mance is comparable to models trained when all of the data
are pooled. Through the use of blockchain technology, SL is
able to mitigate the harm of dishonest participants or adversaries
attempting to undermine the network. SL has demonstrated its
utility in preliminary applications, predicting conditions such as
COVID-19 and leukemia where clients possess non-IID data.
Despite decentralization strengthening network resilience to at-
tacks and data heterogeneity, SL’s absence of central aggrega-
tors reduces some capabilities inherent in other frameworks.
Moreover, the current implementations of SL may be affected
by latency between clients, slowing calculation transpor-
tations.'*°

Fairness: Solutions should promote fairness across
clients

One major challenge of FL, which becomes even more difficult in
C*, is achieving collaborative fairness among participating cli-
ents. Each client’s contribution to the central model is usually
far from equal due to various reasons, with the primary reason
being distributional discrepancies across different clients. In
certain scenarios, some clients may be negatively affected
through distributed learning.'> As ML models are deployed in
increasingly important applications, ensuring that the trained
models do not discriminate against sensitive attributes has
become another critical factor for FL. In general, fairness
falls under two categories: (1) performance fairness, where
every client sees a performance increase from participating
and (2) collaboration fairness, where participants with higher
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Table 2. Pros and cons of various communication methods that have been proposed

Method

Description

Pros

Cons

Implementation

One-shot FL'**

DOSFL'®®

COMMUTE'*¢

Dynamic fusion-
based FL'®’

Decentralized
training®'4°

Introduced by Guha et al., it requires only

a single communication round to the central
server to learn a global model via ensembling
and model distillation

An expansion of one-shot FL by Zhou et al.;
each client distills their data before sending
it to the central server for global model training

Uses transfer learning and adaptive regularization
for a one-shot multisite risk prediction framework

Introduced by Zhang et al., it selects participating
clients based on local performance to improve
communication efficiency; applied to predict
COVID-19 across secure nodes

Does away with the central server, allowing for
direct communication between remote devices

Minimizes total
communication
rounds

Optimized for minimized
communication

Mitigates data
heterogeneity

effects

Increases communication
efficiency

Comparable or better
performance than

FedAvg in some scenarios

Enhances communication
efficiency, especially in low
bandwidth or high-latency
situations

May not be ideal for all data types and scenarios

Nuances of data handling and performance in
diverse settings need more exploration

Forces all clients to use the same set of features
Performance with deep model architectures is uncertain

Requires dynamic monitoring and more computational
resources at the client end

May be prone to security issues and requires robust
peer-to-peer networking
Data synchronization could be challenging

https://github.com/biostat-
duan-lab/multiTL

https://github.com/
GalaxyLearning/GFL

https://github.com/
pguijas/p2pfl

DOSFL, data distillation one-shot FL.
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contributions receive higher rewards or incentives. These incen-
tives can include reputation, monetary compensation, or addi-
tional computational infrastructure, among others. %47

To ensure performance fairness, Li et al. propose a g-Fair FL
framework to achieve an improved uniform accuracy distribution
across participants at the cost of model performance.'” g-Fair
FL utilizes a novel optimization technique that reweights local
objectives, which was inspired by resource allocation strategies
in wireless networks.'“? Agnostic federated learning optimizes a
model for any target distribution formed by a mixture of clients’
distributions, forcing the model not to overfit to any particular
client.”® Hao et al. propose Fed-ZDAC and Fed-ZDAS, which
utilize zero-shot data augmentation (generating synthetic data
based only on model information rather than sample data points)
on underrepresented data to decrease statistical heterogeneity
and encourage uniform performance across clients.'*® Other
methods have utilized multitask FL and other personalization
techniques to achieve performance fairness by mitigating the
presence of data heterogeneity, which is often the root cause
of nonuniform performance.’®'%°

Collaborative fairness is essential when there are discrep-
ancies in contributions between clients. These contributions
can vary due to data volume, data quality, computation power,
and the potential risks that each client takes by participating in
an C* solution. A fair collaborative environment is one in which
each participant receives a reward that fairly reflects its contribu-
tion to C*. When developing collaborative fair environments,
measurement of contribution, reward for contribution, and distri-
bution of reward all need to be determined. The federated
learning incentivizer (FLI) was proposed as a payoff-sharing
scheme to achieve contribution and expectation fairness. FLI is
formulated to work with any definition of contribution and cost
but is primarily used for monetary rewards, which is not the
norm in healthcare scenarios.'®" The robust and fair FL (RFFL)
method assigns superior-performing models to clients who
contribute more significantly. RFFL determines a “reputation”
score for each client to signify their level of contribution. Clients
falling below a specified contribution threshold are subsequently
excluded from the process."®? Cui et al. propose the concept of
collaboration equilibrium, where clients are grouped such that no
individual client could gain more in another configuration.'“®
They employ a Pareto optimization framework and benefit
graphs to create clusters of clients that reach this equilibrium.
Although this approach exhibits potential for achieving collabo-
rative fairness, it necessitates all local clients’ consent to
construct a benefit graph by a neutral third party before the initi-
ation of model training.'“®

FUTURE DIRECTIONS

Addressing C* remains a complex but rewarding endeavor. The
development of solutions that enable data integration across
multiple sites and modalities could revolutionize health care.
Such solutions could allow researchers to amalgamate data
from various datasets, thereby providing a more comprehensive
and precise perspective on health and disease. This would sup-
port the enhancement of diagnostic, predictive, and therapeutic
tools. However, these potential solutions come with challenges,
including communication efficiency, privacy, and fairness. Over-
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coming these hurdles requires continuous exploration and
development of new methods, technologies, and research into
fairness and bias. The goal is to ensure equitable and accurate
results. Ultimately, successfully addressing C* could lead to
innovative tools for diagnosing, predicting, and treating health
conditions, thereby transforming the healthcare landscape.
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