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In brief

Data distribution drift is a key challenge
when building predictive models with
data from multiple institutions under the
FL framework. This work proposes an
adaptive FL framework to address this
challenge by separating input features
based on their relationships to clinical
outcomes. On the tasks of predicting the
onset risk of sepsis and acute kidney
injury for intensive care unit patients, this
framework outperforms existing FL
models. It can also provide reasonable
feature interpretations.
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baselines and it is also clinically interpretable.

00 : 00

THE BIGGER PICTURE With the wide use of machine learning to train clinical risk prediction with EHR data,
combining data from multiple institutions can benefit model training. It is, however, usually infeasible to
transfer data between institutions because of data privacy regulations. While FL is proposed to enable pri-
vacy-preserving collaboration between institutions to train predictive models, data distribution drift across
different institutions makes learning a universally good “global” model very challenging. We propose an
adaptive FL framework to address this challenge and evaluate it on a large-scale intensive care unit dataset
to predict the onset risk of sepsis and AKI. The experiment results show that our framework outperforms FL

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Clinical risk prediction with electronic health records (EHR) using machine learning has attracted lots of at-
tentions in recent years, where one of the key challenges is how to protect data privacy. Federated learning
(FL) provides a promising framework for building predictive models by leveraging the data from multiple in-
stitutions without sharing them. However, data distribution drift across different institutions greatly impacts
the performance of FL. In this paper, an adaptive FL framework was proposed to address this challenge. Our
framework separated the input features into stable, domain-specific, and conditional-irrelevant parts accord-
ing to their relationships to clinical outcomes. We evaluate this framework on the tasks of predicting the onset
risk of sepsis and acute kidney injury (AKI) for patients in the intensive care unit (ICU) from multiple clinical
institutions. The results showed that our framework can achieve better prediction performance compared
with existing FL baselines and provide reasonable feature interpretations.

INTRODUCTION

In recent years, due to the better availability of healthcare data
such as electronic health records (EHRs) and rapid advancement
in artificial intelligence techniques, more and more effort has
been made to mine data-driven insights for improving the quality
of care delivery. Among these efforts, machine learning (ML)-
based clinical risk prediction, which aims at building ML models
for predicting clinical outcomes (e.g., mortality or disease onset)
using observational data (e.g., EHR), has been one of the most
important research topics.' Most of the existing studies used

Gheck for
Updates

data from a single institution to build the predictive model, which
was challenging to generalize well to other institutions with
different patient demographics.? Aggregating data from multiple
institutions can increase the training data sample size for build-
ing the model, diversify the patient population, and benefit model
generalizability.® However, the sensitive information contained in
patient data prohibits them to be shared straightforwardly due to
privacy concerns.*

Federated learning (FL),° which constructs ML models
collaboratively by leveraging the data from multiple local sites
but without sharing them out, holds great promise in medical

Patterns 5, 100898, January 12, 2024 © 2023 The Authors. 1

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).




¢ CellPress

OPEN ACCESS

applications because of their privacy-preservation design.®’
Classical FL updates the model parameters iteratively. At
each iteration, there are two main steps: updating model pa-
rameters locally with site-specific data and transmitting these
local model parameter updates to a central server for aggrega-
tion to a new set of model parameters. This strategy aims to
learn a global model that can work better than the locally
trained models. However, the data distributions at different
local sites are usually different due to the distinct population
characteristics, which makes it challenging to learn a univer-
sally good model without special considerations.® In a recent
paper,® we investigated this issue and demonstrated the het-
erogeneous performance of FL models across different local
sites for clinical risk prediction tasks. There have been existing
studies (such as model-agnostic meta-learning and federated
multitask learning’®™"®) trying to address this issue, but these
methods are not designed specifically for medicine and are
difficult to explain.

To fill this research gap, we propose an adaptive FL frame-
work for predictive modeling of clinical risks with EHR data
from multiple clinical institutions. In particular, we treat each
institution as a specific domain and propose to separate the
input patient features into three parts: stable, domain-specific,
and conditional-irrelevant. Stable/domain-specific features are
predictive of the clinical outcome, but the relationships be-
tween stable features and clinical outcome are the same across
all domains, while the relationships between domain-specific
features and clinical outcome are different with respect to
different domains. Conditional-irrelevant features are the resid-
ual features excluding stable and domain-specific features. To
account for the heterogeneity of sample distributions across
different sites, we learn a specific model for each site, and
these site-specific models are jointly learned. The model pa-
rameters for stable features are shared across sites and the
model parameters for domain-specific features are different
at different sites. Similar to other FL approaches, our frame-
work does not share any data outside the sites they reside in
during the model training process. We validated the effective-
ness of our method on a large-scale real-world patient EHR
corpus collected from the intensive care units (ICUs) of hun-
dreds of hospitals, where we focused on predicting the onset
risk of two critical conditions in the ICU. We demonstrated
that our approach could perform better than other baseline
FL approaches. The identified shared and domain-specific fea-
tures are clinically interpretable.

RESULTS

Cohort characteristics

Patients’ EHR used in our experiments were extracted from the
elCU Collaborative Research Database (elCU-CRD)'* which is a
deidentified and publicly available dataset comprising informa-
tion of patients admitted to critical care units between 2014
and 2015 across the United States, including demographics, vi-
tal sign measurements, diagnoses, and treatments. We identi-
fied the sepsis patients and the patients with acute kidney
injury (AKI) based on the Sepsis-3 clinical criteria'® and Kidney
Disease Improving Global Outcomes (KDIGO), ®respectively.
Basic cohort characteristics of these patients across different
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hospitals are summarized in Table 1. To build models for pre-
dicting the risk of sepsis and AKI, we leveraged four types of pa-
tient information as input features including vital signs, labora-
tory measurements, medications, and demographics, which
result in a total of 358 feature variables. For sepsis, we predicted
the onset risk of sepsis in the next 6 h based on their historical
data.”” For AKI, we used data during the first 24 h from
ICU admission to predict risk of AKI onset within the next 24
h."® The overview of this framework is illustrated in Figure 1.
The details of elCU, definition of KDIGO, Sepsis-3 criteria, con-
struction of feature vector were introduced in the Experimental
procedures.

Model performance

Our method was compared with (1) a pooled model (Pooled): a
global model shared across all sites trained with their combined
data; (2) an individual model (Indiv): individual models, each of
which is trained and tested with data from each individual site;
(3) models for multi-domain learning: Indiv-L2,'® regularized
multi-task learning,”® multi-task adversarial network,”’ and
adapt to adaptation for federated learning.?

Individual area under the receiver operating characteristic
(AUROC) calculated at each hospital (indexed from 1 to 7) are re-
ported in Table 2, which shows that our method obtained the
best results in three of seven sites for AKI prediction, and four
of seven for sepsis prediction. Table 3 summarizes the micro
and macro AUROC over all seven sites of different algorithms,
which demonstrates that our method performs the best on
both tasks. In addition, an ablation study was performed to
investigate the performance of using different types of input fea-
tures on building these risk prediction models, and the results are
demonstrated in Table 4, which shows that laboratory findings
and vital signs along with medications are more predictive than
demographics for both tasks.

Interpretation

To obtain an intuitive understanding of the sample distributions
across different hospitals, we visualize the patient vectors using
the uniform manifold approximation and projection (UMAP) tech-
nique®® as in Figure 2, where the patients from hospitals are
colored differently. The left column of Figure 2 is the embeddings
of patient vectors composed of all features, which clearly dem-
onstrates the distribution heterogeneity (e.g., samples from hos-
pital 5 in the AKI task are separated from other samples). The
middle column of Figure 2 is the UMAP embeddings of sample
vectors formed by the learned stable features, where the sam-
ples from different hospitals are really blended with each other.
The right column of Figure 2 is the UMAP embeddings of the
sample vectors formed by domain-specific features, from which
we can observe more scattered point clouds that are specific to
individual sites.

The top 10 stable and domain-specific features for AKI and
sepsis prediction are reported in Table 5. The quantitative con-
tributions of representative features to the predictions calcu-
lated by Shapely Additive exPlanations (SHAP)** are shown
in Figures 3 and 4, where, for all subfigures, the horizontal
axes represent the feature value (0 or 1 for binary features, Z
score normalized value for continuous features) and the verti-
cal axes are the Shapley values. In both figures, the top row
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Table 1. Summary statistics of the demographic and outcome variables in all hospitals (indexed from 1 to 7) for AKI and sepsis
prediction

Hospital ID 1 2 3 4 5 6 7
No. (%) 5,545 2,848 2,990 3,665 3,302 2,957 2,939
AKI Positive 306 (5.5%) 16 0(5.6%) 286 (9.6%) 177 (4.8%) 195 (5.9%) 226 (7.6%) 251 (8.5%)
Age
18-39 505 (9.1%) 355 (12.5%) 243 (8.1%) 407 (11.1%) 429 (13.0%) 313 (10.6%) 633 (21.5%)
40-59 1,699 (30.6%) 773 (27.1%) 888 (29.7%) 1,133 (30.9%) 983 (29.8%) 928 (31.4%) 1,123 (38.2%)
> 60 3,334 (60.1%) 1,715 (60.2%) 1,854 (62.0%) 2,119 (57.8%) 1,888 (57.2%) 1,713 (57.9%) 1,155 (39.3%)
Sex
Female 2,452 (44.2%) 1,232 (43.3%) 1,316 (44.0%) 1,741 (47.5%) 1,429 (43.3%) 1,198 (40.5%) 1,251 (42.6%)
Male 3,093 (55.8%) 1,616 (56.7%) 1,673 (56.0%) 1,924 (52.5%) 1,873 (56.7%) 1,756 (59.4%) 1,684 (57.3%)
Ethnicity
Caucasian 4,151 (74.9%) 2,761 (96.9%) 1,953 (65.3%) 3,192 (87.1%) 3,072 (93.0%) 2,542 (86.0%) 1,301 (44.3%)
African American 813 (14.6%) 43 (1.5%) 909 (30.4%) 272 (7.4%) 47 (1.4%) 131 (4.4%) 1,513 (51.5%)
Hispanic 397 (7.2%) 26 (0.9%) 0 (0.0%) 11 (0.3%) 44 (1.3%) 2 (0.1%) 32 (1.1%)
Asian 72 (1.3%) 2 (0.1%) 28 (0.9%) 31 (0.8%) 11 (0.3%) 46 (1.6%) 13 (0.4%)
Others 112 (2.0%) 16 (0.6%) 100 (3.3%) 159 (4.3%) 128 (3.9%) 236 (8.0%) 80 (2.7%)
Sepsis  No. (%) 5,919 2,996 3,212 2,748 3,578 2,276 3,344
Positive 89 (1.5%) 135 (4.5%) 187 (5.8%) 123 (4.5%) 21 (0.1%) 459 (20%) 13 (0.4%)
Age
18-39 523 (8.8%) 359 (12.0%) 259 (8.1%) 297 (10.8%) 443 (12.4%) 235 (10.3%) 694 (20.8%)
40-59 1,813 (30.6%) 835 (27.9%) 947 (29.5%) 899 (32.7%) 1,057 (29.5%) 694 (30.5%) 1,305 (39.0%)
>60 3,576 (60.4%) 1,797 (60.0%) 2,000 (62.3%) 1,549 (56.4%) 2,076 (58.0%) 1,344 (59.1%) 1,316 (39.4%)
Sex
Female 2,629 (44.4%) 1,293 (43.2%) 1,404 (43.7%) 1,234 (44.9%) 1,541 (43.1%) 936 (41.1%) 1,424 (42.6%)
Male 3,290 (55.6%) 1,702 (56.8%) 1,807 (56.3%) 1,514 (55.1%) 2,037 (56.9%) 1,338 (58.8%) 1,916 (57.3%)
Ethnicity
Caucasian 4,394 (74.3%) 2,896 (96.7%) 2,055 (64.0%) 1,757 (63.9%) 3,329 (93.0%) 1,942 (85.6%) 1,439 (43.0%)
African American 899 (15.2%) 44 (1.5%) 1,019 (31.7%) 805 (29.3%) 52 (1.5%) 100 (4.4%) 1,766 (52.8%)
Hispanic 428 (7.2%) 36 (1.2%) 0 (0.0%) 0 (0.0%) 48 (1.3%) 2 (0.1%) 38 (1.1%)
Asian 82 (1.4%) 3 (0.1%) 31 (1.0%) 38 (1.4%) 11 (0.3%) 43 (1.9%) 13 (0.4%)
Others 116 (2.0%) 17 (0.6%) 107 (3.3%) 148 (5.4%) 138 (3.9%) 189 (8.3%) 88 (2.6%)

corresponds to the plots for stable features, and the bottom
row are the plots for domain-specific features. These figures
show similar curves for stable features across different hospi-
tals, suggesting that the relationships between these features
and predicted outcomes are similar across hospitals. In
contrast, the curves for domain-specific features are much
more heterogeneous (e.g., features such as ASPIRIN play a
fairly important role for AKI prediction at hospital 3, but not
in others, and the contributions of LISPRO are positive for
AKI prediction at hospital 6, but negative for other hospitals,
suggesting that these domain-specific features do have
distinct effects for individual sites.

DISCUSSION
The main contribution of this paper is the development of an

adaptive FL framework to handle the data distribution discrep-
ancies across different sites in FL setting. Our framework splits

the input features into stable, domain-specific, and condi-
tional-irrelevant parts. This procedure effectively teases out
the shared and specific factors contributing to the prediction
of certain clinical outcomes, which can further explain the
impact of distribution heterogeneity to clinical risk predic-
tion tasks.

The effectiveness of our proposed framework was evaluated on
the tasks of predicting the onset risk of sepsis and AKI in critical
care setting,?®2® where our model has demonstrated better quan-
titative performance over a set of state-of-the-art baselines. Such
performance improvement could be coming from (1) a diverse set
of information, including demographics, lab tests, vital signs, and
medications, were incorporated as input features to build the ML
models. This captures the patient characteristics more compre-
hensively compared with models only using certain types of pa-
tient information.'®?"We also demonstrated that different types
of information play different roles for clinical risk prediction in
Table 4. (2) The proposed framework learns a set of site-specific
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Figure 1. The overview of our proposed
framework
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] pressure.*®
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structured information within the EHR was
leveraged in our empirical study. The un-
structured portion of EHR, such as clinical
notes, contains important patient informa-
tion as well and can further boost the pre-
diction performance. (2) Two particular

models collaboratively in a privacy-preserving way of not exposing
local data, which also effectively accounts for the distribution het-
erogeneity of samples across different sites.

In addition to superior quantitative performance, the identifica-
tion of stable, domain-specific, and conditional-irrelevant fea-
tures greatly helps model interpretability. With the SHAP tech-
nique, we showed in Figures 3 and 4 that the learned stable
features contribute similarly on predicting the clinical outcomes
across different hospitals, while prediction contributions from
the learned domain-specific features vary greatly from hospital
to hospital. The learned stable and domain-specific features
shown in Table 5 also make clinical sense. In the task of AKI
risk prediction, the level of creatinine is a critical indicator of
the kidney function and it is used to diagnose AKI,'® and it has
been identified as an important stable feature by our model. In
addition, there are several blood pressure-related stable fea-
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/ tasks, AKI and sepsis onset prediction in

critical care, were investigated to evaluate
the effectiveness of our proposed model. In the future we plan
to implement our framework on more clinical risk prediction
tasks of different types to understand its full potential.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed
to and will be fulfilled by the lead contact, Fei Wang (few2001@med.cornell.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

The data can be requested and downloaded at: https://physionet.org/content/
eicu-crd/2.0/.%° Our source code is available at GitHub (https://github.com/
adap-fed-ehr-code/adap-fed-ehr) and has been archived at Zenodo.*’
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Table 2. AUROC performance of AKI and sepsis prediction for all hospitals (indexed from 1 to 7)

Hospital ID 1 2 3 4 5 6 7
Pooled 0.719 (0.027) 0.722 (0.019) 0.801 (0.026) 0.723 (0.045) 0.674 (0.039) 0.761 (0.022) 0.775 (0.031)
Indiv 0.629 (0.034) 0.692 (0.042) 0.757 (0.028) 0.669 (0.052) 0.645 (0.045) 0.711 (0.024) 0.729 (0.040)
Indiv-L2 0.693 (0.030) 0.700 (0.057) 0.762 (0.028) 0.685 (0.038) 0.651 (0.059) 0.727 (0.024) 0.747 (0.022)
AKI RMTL 0.736 (0.022) 0.733 (0.043)*  0.805 (0.028) 0.727 (0.056) 0.677 (0.051) 0.736 (0.036) 0.799 (0.042)*
MAN 0.624 (0.032) 0.678 (0.028) 0.743 (0.026) 0.645 (0.052) 0.615 (0.046) 0.697 (0.048) 0.720 (0.036)
APPLE 0.736 (0.033) 0.718 (0.043) 0.821 (0.027)*  0.710 (0.043) 0.660 (0.061) 0.790 (0.051)  0.782 (0.040)
Ours 0.754 (0.025)*  0.728 (0.049) 0.818 (0.034) 0.735 (0.030)* 0.679 (0.026)  0.777 (0.037) 0.787 (0.051)
Sepsis  Pooled 0.833 (0.028) 0.687 (0.022) 0.778 (0.027) 0.777 (0.024) 0.614 (0.041) 0.761 (0.027) 0.810 (0.027)
Indiv 0.736 (0.048) 0.696 (0.025) 0.772 (0.034) 0.776 (0.042) 0.637 (0.033) 0.761 (0.028) 0.784 (0.056)
Indiv-L2 0.805 (0.047) 0.708 (0.038) 0.790 (0.045) 0.777 (0.025) 0.633 (0.042) 0.772 (0.026) 0.830 (0.023)
RMTL 0.798 (0.061) 0.704 (0.036) 0.761 (0.049) 0.771 (0.031) 0.626 (0.032) 0.736 (0.023) 0.812 (0.044)
MAN 0.745 (0.063) 0.709 (0.031)*  0.771 (0.056) 0.752 (0.027) 0.609 (0.033) 0.761 (0.012) 0.801 (0.037)
APPLE 0.802 (0.034) 0.675 (0.052) 0.772 (0.027) 0.807 (0.029)*  0.627 (0.067) 0.778 (0.019) 0.853 (0.061)*
Ours 0.861 (0.049)*  0.701 (0.034) 0.825 (0.041)*  0.803 (0.028) 0.659 (0.046)  0.790 (0.025)*  0.841 (0.057)

APPLE, adaptation for federated learning; MAN, multi-task adversarial network; RMTL, regularized multi-task learning. Asterisks denote the best-per-

forming approaches within the respective columns.

Study cohort

The EHRs employed in this study are from the elCU-CRD, * which is a deidenti-
fied and publicly available dataset that meets the safe harbor provision of the
U.S. Health Insurance Portability and Accountability Act. The elCU-CRD is a
multi-center database sourced from the Philips elCU program, a telemedicine
initiative where healthcare workers remotely monitor acutely ill patients. It com-
prises 200,859 patient unit encounters for 139,367 unique patients admitted be-
tween 2014 and 2015 across the United States. The patient information includes
demographics, vital sign measurements, care plan documentation, severity of
illness measures, diagnosis information, treatment information, and more.

Ethics statement

The elCU database was accessed via the PhysioNet platform. Access to the
database was approved after completing the Collaborative Institutional
Training Initiative program “Data or Specimens Only Research” (certificate
ID: 33510902), as well as signing the data usage agreement of the
PhysioNet Review Board. The study was exempt from approval from the
institutional review board of the Massachusetts Institute of Technology
because of the retrospective design, lack of direct patient intervention, and
the security schema, for which the re-identification risk was certified as
meeting safe harbor standards by an independent privacy expert (Privacert)
(Health Insurance Portability and Accountability Act Certification no.
1031219-2). The institutional review board of the Massachusetts Institute
of Technology waived the need for informed consent for the same reason.

Table 3. Macro/micro AUROC performance of AKI and sepsis
prediction

AKI Sepsis

macro micro macro micro
Pooled 0.740 (0.023) 0.738 (0.019) 0.752 (0.030) 0.805 (0.024)
Indiv 0.690 (0.021) 0.680 (0.022) 0.737 (0.043) 0.775 (0.021)
Indiv-L2 0.709 (0.017) 0.706 (0.018) 0.759 (0.034) 0.808 (0.018)
RMTL 0.744 (0.023) 0.742 (0.021) 0.744 (0.024) 0.811 (0.023)
MAN 0.674 (0.024) 0.673 (0.019) 0.736 (0.037) 0.784 (0.028)
APPLE 0.746 (0.018) 0.748 (0.018) 0.759 (0.023) 0.824 (0.012)
Ours 0.754 (0.019)* 0.753 (0.017)* 0.783 (0.025)* 0.826 (0.016)*

APPLE, adaptation for federated learning; MAN, multi-task adversarial
network; RMTL, regularized multi-task learning. Asterisks denote the
best-performing approaches within the respective columns.

The study was conducted following the Declaration of Helsinki. All methods
used in this study were performed in accordance with the relevant guidelines
and regulations.

Data preparation and preprocessing
In this study, each ICU stay is considered as an individual data sample. In
cases where a patient has multiple ICU stays, we only consider the first ICU
stay to prevent any potential information leakage. We focus on predicting
the onset of AKI and sepsis. For both AKI and sepsis, the task is to predict
the risk of disease onset during the prediction window using data collected
during the data observation window, as illustrated in Figure 1. To ensure that
our settings align with existing clinical research,®>° we tailor our prediction
and data observation windows differently for AKI and sepsis.

For AKI prediction, we used data from the first 24 h from ICU admission to
predict disease risk within the next 24 h. AKI is defined by KDIGO.® It is
defined as any of the following.

(1) Increase in serum creatinine by >0.3 mg/dL (>26.5 umol/L) within
48 h; or

(2) Increase in serum creatinine to > 1.5 times baseline, which is known or
presumed to have occurred within the prior 7 days; or

(3) Urine volume <0.5 mL/kg/h for 6 h.

We applied the definition above to all the patients with available lab test re-
cords within 48 h after ICU admission. Positive samples are samples that are
diagnosed as AKI in the prediction window while negative samples are sam-
ples that are not diagnosed as AKI. We included the patients with end-stage
renal disease or those on dialysis, as we aimed to predict AKl in all situations.

For sepsis prediction, we aim to predict the onset of sepsis in the next 6 h based
on their historical data after ICU admission. The onset of sepsis is determined in

Table 4. Macro AUROC performance of AKI and sepsis prediction
using different kinds of medical information

AKI Sepsis
Overall 0.754 (0.019)* 0.783 (0.025)*
Demographic 0.582 (0.007) 0.606 (0.011)

Lab and vital signs 0.695 (0.015) 0.735 (0.019)
0.703 (0.013) 0.729 (0.022)

Asterisks denote the best-performing approaches within the respective
columns.

Medication
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Figure 2. UMAP visualization of the features
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The top row of subfigures displays UMAP visualizations for the AKI prediction task, depicting all features, stable features, and specific features from left to right.
And the down row displays UMAP visualizations for the sepsis prediction task. In each subfigure, individual data points represent patients, while distinct colors

are used to denote different hospitals.

accordance with the Sepsis-3 clinical criteria.'® For each septic patient, we spec-
ified the following three time points to define the onset time tsepsis Of Sepsis.

(1) tsuspicion: Clinical suspicion of infection identified as the earlier time-
stamp of intravenous (IV) antibiotics and blood cultures within a given
time interval. If IV antibiotics were given first, then the cultures must
have been obtained within 24 h. If cultures were obtained first, then
IV antibiotic must have been ordered within 72 h. In either case, IV an-
tibiotics must have been administered for at least 72 consecutive
hours. Note that, if there are not enough culture data, the infection
can be identified according to documented diagnosis. For example,
in elCU-CRD, microbiology data were not well populated due to the
limited availability of microbiology interfaces; instead, infection was
identified according to documented diagnosis.
tsora: Occurrence of organ failure as identified by a 2-point increase in
the Sequential Organ Failure Assessment (SOFA) score within a 24-h
period (SOFA score >2).
(3) tsepsis: Onset of sepsis identified as the earlier of tsspicion and tsora as
long as tsora Occurred no more than 24 h before or 12 h after tsyspicion-

@

=

Positive samples are samples that are diagnosed as sepsis, while controls
are samples that are not diagnosed as sepsis. For positive samples, we identify
the earliest time point when the aforementioned criteria are met as the onset
time. For negative samples, we randomly select an index time from the distribu-
tion of onset times of the sepsis patients. Subsequently, we define the obser-
vation window as the period extending from ICU admission to 6 h prior to the
onset time (for positive samples) and the index time (for negative samples).

Finally, we selected the top 7 hospitals with the most patients and available
clinical records to define AKI and sepsis. The label distributions and demo-
graphics in all hospitals are shown in Table 1.

After determining the labels of the samples and the corresponding observa-
tional window, the input features are extracted from the clinical data within the
observation window for predicting disease onsets. The EHR data include vital
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signs, laboratory tests, medications, and demographic variables. The entire
feature list is in Tables S1, S2 and S3.

(1) Forvital signs and laboratory tests, we extracted the earliest, latest, maximal,
and minimal values within the observational window of different vital signs
and laboratory tests. including heart rate, temperature, and the count of
the white blood cells. For urine, only the summation is calculated. There
are 29 different vital signs and laboratory tests, resulting in 113 features.
For demographics, gender, age, ethnicity, and BMI were extracted in
addition to a feature indicating whether the patient underwent elective
surgery during the admission. There are eight demographic features.
For medications, the medications were aggregated by ingredient. For
each medication, whether the medication is used within the observa-
tional window was extracted as the feature. The dosage was not
considered in this study. There are 237 medication features.

2

3

Adaptive prediction model

In the following section, we use capitalized/lower-case letters in italics to
represent a variable/value of the variable. We use capitalized/lower-case
letters in boldface to represent a variable set/values of the variable set. We
represent the input feature set as X = {X(1),...,X(K)} and the outcome as
Y. Suppose there are M different sites, each with N, samples (m is the
index of the site). The data samples we observe are {x7,y7"},n= 1,...,Np,
m= 1,...,M, where x' e R is the input feature vector of the n -th sample
at m-th site and y;" is its ground-truth outcome.

The overall architecture of our proposed model is shown in Figure 5. A
feature separator F is utilized to separate X into three subsets: S representing
stable features, D for domain-specific features, and C for conditional-irrelevant
features. F comprises two cascaded stochastic gates,*’ namely Sy and S». S;
initially selects S and D from C as a whole, and subsequently, S, distinguishes
between S and D. It is worth noting that F is shared across the sites, which
means the separation of S, D and C is the same across the sites. After feature
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Table 5. The list of top-10 stable and domain-specific features for AKI prediction

suJaljed

Name Type Description
AKI stable bun_first continuous the first value of blood urea nitrogen (BUN)
in the data observation window
age continuous the age of the patient at admission
sysbp_first continuous the first value of systolic blood pressure in
the data observation window
platelet_first continuous the first value of platelet in the data
observation window
furosemide binary the usage of furosemide
creatinine_first continuous the first value of creatinine in the data
observation window
tempc_min continuous the minimal value of temperature in the data
observation window
meanbp_first continuous the first value of the mean of systolic blood
pressure and diastolic blood pressure in the
data observation window
sysbp_max continuous the maximal value of systolic blood
pressure in the data observation window
resprate_last continuous the latest value of respirator rate in the data
observation window
specific glucose binary the usage of glucose
nitroglycerin binary the usage of nitroglycerin
aspirin binary the usage of aspirin
lispro binary the usage of lispro
heparin binary the usage of heparin
pantoprazole binary the usage of pantoprazole
glucose_last continuous the latest value of glucose in the data
observation window
aspart binary the usage of aspart
docusate binary the usage of docusate
chlorhexidine binary the usage of chlorhexidine %
(Continued on next page) % 0
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Y
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Table 5. Continued

Name Type Description
Sepsis stable piperacillin binary the usage of piperacillin

vancomycin binary the usage of vancomycin

BMI continuous BMI

spo2_max continuous the maximal value of oxygen saturation in
the data observation window

bg_paco?2_first continuous the first value of partial pressure of carbon
dioxide in the data observation window

race_black continuous whether the ethnicity of the patient is
African American

hematocrit_last continuous the latest value of hematocrit in the data
observation window

sysbp_first continuous the first value of systolic blood pressure in
the data observation window

sodium_last continuous the latest value of sodium in the data
observation window

diasbp_min continuous the minimal value of diastolic blood
pressure in the data observation window

specific chlorhexidine binary the usage of chlorhexidine

glucose binary the usage of glucose

glucagon binary the usage of glucagon

nitroglycerin binary the usage of nitroglycerin

ondansetron binary the usage of ondansetron

heparin binary the usage of heparin

bands_last the latest value of bands in the data
observation window

aspirin binary the usage of aspirin

lispro binary the usage of lispro

fentanyl binary the usage of fentanyl
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Figure 3. Shapley value plots of the top important variables for AKI prediction
The top row displays the plots of the stable features, while the down row corresponds to the plots of the specific features. Within each subfigure, the horizontal
axis represents the feature value (0 or 1 for binary features, Z score normalized value for continuous features) and the vertical axis illustrates the Shapley values.

separation, S is passed into a shared network G while D is passed into a
domain-specific network £™ where m denotes the index of the site. The out-
puts from G and £™ are then combined to get the final prediction Y. G and
{£™} are implemented as multilayer perceptron (MLP). C does not contribute

to the prediction, as it is not predictive of the outcome.

Training process
The primary objective function for training our model is the prediction loss,
which is formulated as follows:

1 Nim

where BCE is the binary cross-entropy loss and 57'”"

is calculated as follows:

Vo =0o(G(sy) +1"(d])),

where ¢ is the sigmoid function: a(x) =

_1
T+e**

Beside Lreq, We also design other objective functions to ensure the proper-
ties of S, D, and C: (1) Since the features in C are not predictive to the outcome,
S and D should be the minimal feature set to build the optimal model for pre-
dicting Y. And incorporating any features in C will not improve the prediction
performance. (2) Regarding the stable features S, their relationships with Y
should be the same across different sites: P'(Y(S) = ... = PM(Y|S) = P(Y|S)

where P™(Y|S) is the conditional distribution of Y given S in the m-th site

M =m
Lpred = Zm:1m n:1BCE(y:7n7Yn)7
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Figure 4. Shapley value plots of the top important variables for sepsis prediction
The top row displays the plots of the stable features, while the down row corresponds to the plots of the specific features. Within each subfigure, the horizontal
axis represents the feature value (0 or 1 for binary features, Z score normalized value for continuous features) and the vertical axis illustrates the Shapley values.
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Figure 5. The structure of our proposed model

output

shared networks

domain-specific networks

global data

domain data

The blue components represent shared elements across different domains (sites), while the red components are domain specific. Solid arrows indicate the flow of
data from all domains passing through the shared components, while dotted arrows signify data flow from each specific domain into the corresponding specific
components. F is for separating the input features into stable, domain-specific and conditional-irrelevant parts. ¢ and { ™} are the shared and specific prediction
networks, respectively, taking stable and domain-specific features as inputs. {G ™} represent the auxiliary prediction networks that cooperate with G to identify

the stable features.

and P(Y|S) is the conditional distribution over all sites. By considering these
two properties with, we can first identify C by Sy and not include them in the
prediction networks. Then we can identify S by S», the rest are domain-spe-
cific features D.

For (1), we add a regularization loss to minimize the proportion of the fea-
tures in S and D:

S|+|D
Ly = S

where K is the number of the features in X and |S| + |D| can be computed with
the parameters of Sy.

To ensure S to meet the property in (2), we need to estimate P(Y|S) and
{P™(Y|S)}. we directly use G to estimate P(Y|S). And we build a set of auxiliary
predictors {G™} to estimate {P™(Y|S)} where {¢"} are also implemented as
MLP. With G and {¢"}, we utilize the following loss functions with respect to
the stable features:

M N
Lasc = mZ1 N ;DIST(U(Q(ST))J(G’" (s7))) -

where DIST is the distance function and:
M

Lgrad = Z

m=1

w3 35mom0 ot

2

where V, . is the gradient of the parameters in G. Then the stable l0ss Lstapie is
defined as the summation of Lgisc and Lgrag-
F, G, and {H™} are jointly trained to minimize the final objective function:

L= Lpred + A1Lsrable + A2Lreg7
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where 11 and A, are hyper-parameters to be tuned on the validation set.

The implementation details can be found in Supplementary Appendixes
B and C. Supplementary Appendix B introduces the details of the optimi-
zation, while Supplementary Appendix C further introduces how to imple-
ment the learning algorithm under federated setting to avoid directly
sharing the data.

Hyperparameter optimization

There are four hyperparameters in configuration: learning rate, weight decay,
A1, and A, as the weights of stable and regularization losses. A grid search was
used to perform hyperparameter optimization. The hyperparameters selected
are the same for both tasks as follows: learning rate = 0.01, weight decay =
0.0001, A4 =0.2, and A2 = 0.1.

Evaluation and metrics

For each task, we established training, validation, and testing subsets
through a stratified random split of 70:15:15. We use the AUROC for assess-
ing the performance of each method across all tasks. Beside the AUROC on
each site, we also reported the micro/macro AUROC over all the sites. These
metrics have been used to evaluate the prediction performance across
different ICU units.*’ The micro AUROC is the AUROC calculated after pool-
ing all predictions across different sites together. And the macro AUROC is
the average of the AUROC across the sites. For individual AUROC(s) calcu-
lated at hospitals and macro/micro AUROC, we conducted 10 runs and re-
ported the average results.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
patter.2023.100898.
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