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ABSTRACT
In statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approx-
imating the distribution of genetic variation data under complex evolutionary models. Methods based
on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype
phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for
likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents
a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing
the space of trees in a way that is awkward and creates bias. In this work, we propose a method that
circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a
continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC.
Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical
optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available
online.
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1. Introduction

Probabilistic models of evolution have played a central role in
genetics since the inception of the field a century ago. Begin-
ning with foundational work by Ronald Fisher and Sewall
Wright, and continuing with important contributions from
P.A.P. Moran, Motoo Kimura, J.F.C. Kingman, and many oth-
ers, a succession of increasingly sophisticated stochastic models
were developed to describe patterns of ancestry and genetic
variation found in a population. Statisticians harnessed these
models to analyze genetic data, initially with the now quaint-
seeming goal of understanding the evolution of a single gene.
More recently, as next-generation sequencing has enabled the
collection of genome-wide data from millions of people, interest
has risen in methods for studying evolution using large numbers
of whole genomes.

In this article, we study a popular subset of those methods
which are likelihood-based; that is, these methods work by
inverting a statistical model that maps evolutionary parameters
to a probability distribution over genetic variation data. As we
will see, exact inference in this setting is impossible owing to the
need to integrate out a high-dimensional latent variable which
encodes the genome-wide ancestry of every sampled individual.
Consequently, a number of approximate methods have been
proposed, which try to strike a balance between biological real-
ism and computational tractability.

We focus on one such approximation known as the sequen-
tially Markov coalescent (SMC). The sequential or “spatial”
formulation of the coalescent was first derived by Wiuf
and Hein (1999), and based on their ideas McVean and
Cardin (2005) described an efficient Markovian algorithm for
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performing inference under a coalescent model with recombi-
nation. Although the term SMC is often used to refer to McVean
and Cardin’s original algorithm, there are actually many meth-
ods in the literature that are simultaneously (a) sequential, (b)
Markov, and (c) approximations of the coalescent with recom-
bination (McVean and Cardin 2005; Marjoram and Wall 2006;
Carmi et al. 2014; Hobolth and Jensen 2014). In this article, we
therefore use SMC more generally to refer to any method that
meets these criteria. In particular, both the influential haplo-
type copying model of Li and Stephens (2003) and the popular
program PSMC (Li and Durbin 2011) for inferring population
history are in the family of SMC methods under this definition
(Paul and Song 2010).

SMC models lead quite naturally to the use of hidden Markov
models (HMMs) to analyze genetic sequence data. However, in
order to bring the HMM machinery to bear on this problem,
additional and somewhat awkward assumptions are needed. The
latent variable in an HMM must have finite support, whereas the
latent variable in SMC is a continuous tree. Therefore, the space
of trees must be discretized, and, in some cases, restrictions must
also be placed on the topology of each tree. In applications, the
user must select a discretization scheme, a non-obvious choice
which nonetheless has profound consequences for downstream
inference (Parag and Pybus 2019).

The main message of our article is that this is not necessary:
it is possible to solve a form of the sequentially Markov coales-
cent exactly, in its natural setting of continuous state space. We
accomplish this by slightly modifying the canonical SMC model
of McVean and Cardin (2005), in a way that does not greatly
impact inference, but renders the problem theoretically and
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computationally much easier. In particular, this modification
allows us to leverage recent innovations in changepoint detec-
tion, leading to algorithms which are computationally efficient
and have reduced bias. Of course, some tradeoffs are necessary
in order to achieve this: we must place some restrictions on
the types of priors that can be used to model the instantaneous
rate of coalescence, and, in contrast to existing approaches, the
asymptotic running time of our algorithm is not known to us
exactly. These restrictions, and their implications for inference,
are explored in greater detail below.

The rest of the article is organized as follows. In Section 2
we formally define our data and model, introduce notation,
and survey related work. In Section 3 we derive our main
results: exact and efficient Bayesian and frequentist algorithms
for inferring genealogies from genetic variation data. In Sec-
tion 4 we thoroughly benchmark our method, compare it to
existing approaches, and provide an application to real data
analysis. We provide concluding remarks in Section 5.

2. Background

In this section we introduce notation, formalize the problem
we want to solve, and survey earlier work. We presume some
familiarity with standard terminology and models in genetics;
introductory texts include Hein, Schierup, and Wiuf (2005) and
Durrett (2008).

2.1. Motivation

Our method aims to infer a sequence of latent genealogies using
genetic variation data. To motivate our interest in this, consider
first a related problem with a more direct scientific application:
given a matrix of DNA sequence data Y ∈ {A,C,G,T}H×N from
H > 1 homologous chromosomes each N base pairs long, and
an evolutionary model ϕ hypothesized to have generated these
data, find the likelihood p(Y | ϕ). This generic formulation
encompasses a wide variety of inference problems in genetics
and evolutionary biology; if we could easily solve it, important
new scientific insights would result.

Unfortunately, this is not possible using current methods.
The difficulty lies in the fact that the relationship between the
data Y and the scientifically interesting quantity ϕ is mediated
through a complex, latent combinatorial structure known as the
ancestral recombination graph (ARG; Griffiths and Marjoram
1997), which encodes the genealogical relationships between
every sample at every position in the genome. The ARG is
sufficient for ϕ: evolution generates the ARG, and conditional
on it, the data contain no further information about ϕ. Thus,
the likelihood problem requires the integration

p(Y | ϕ) =
∫

A∈A
p(Y | A)p(A | ϕ), (1)

where A denotes an ARG, and A denotes the support set of
ARGs for a sample of H chromosomes. This is a very challenging
integral; although a method for evaluating it is known (Griffiths
and Marjoram 1996), it only works for small datasets. That is
because, for large N and H, there are a huge number of ARGs
that could have plausibly generated a given dataset, such that the

complexity of A explodes as N and H grow. Indeed, (1) cannot
be computed for chromosome-scale data even for the simplest
case H = 2.

The sequentially Markov coalescent addresses this problem
by decomposing the ARG into a sequence of marginal gene
trees X1, . . . , XN , one for each position in the chromosome, and
supposing that this sequence is Markov. Then, we have

p(Y | ϕ) ≈
∫

X1,...,XN
π(X1 | ϕ)p(Y1 | X1)

N∏

n=2
p(Yn | Xn)p(Xn | Xn−1, ϕ), (2)

where π(· | ϕ) is a stationary distribution for the Markov chain
X1, . . . , XN , the transition density p(Xn | Xn−1, ϕ) governs the
transition from one marginal tree to the next, and [Y1 | · · · |
YN] = Y are the data at each site.

Even under the Markov assumption, the integral (2) is chal-
lenging, since each Xi represents a genealogy. To make the
problem tractable, existing methods further assume that these
genealogies have special structure. For example, in the widely
used program PSMC (Li and Durbin 2011), each “genealogy”
has only two leaves, representing the ancestry of a pair of homol-
ogous chromosomes, so each Xi ∈ R≥0 can be taken to be a
real number representing the height of the corresponding tree.
The problem is then further simplified by discretizing time, such
that the height of each tree falls into one of a pre-specified
collection of discrete intervals. Similarly, the foundational Li-
Stephens copying model (Li and Stephens 2003) allows for more
than two chromosomes to be analyzed, but assumes that the
tree height is fixed to a single, pre-specified value and has a
distinctive, “forest-of-trunks” structure (Paul and Song 2010). In
both cases, once the state space of the Xi has been made finite,
inference methods for hidden Markov models can be employed.
Typically these are used to infer ϕ via the EM or Baum-Welch
algorithm, which requires computing the posterior distribution

p(X1, . . . , XN | Y, ϕ). (3)

2.2. Applications of the Sequentially Markov Coalescent

A number of noteworthy methods in statistical genetics and
evolutionary biology depend on this model. Among the most
widely used are methods for performing phasing and imputa-
tion (Scheet and Stephens 2006; Marchini et al. 2007; Howie,
Donnelly, and Marchini 2009). Imputation methods leverage
the fact that closely related members of a population tend to
share genetic material to fill in missing genotype calls, and
are an essential pre-processing step for improving power in
genomewide association studies (Huang et al. 2015; Rubinacci
et al. 2021). Phasing seeks to resolve diploid genotype calls,
which, for technological reasons, are cheapest and easiest to
produce, into constituent haplotypes. Phased haploid data is a
necessary precursor for most evolutionary studies, and is also
used to improve imputation accuracy (Howie et al. 2012). Cru-
cially, through their underlying use of the Li-Stephens haplotype
copying model (Li and Stephens 2003), most existing phasing
and imputation methods rely on accurate posterior estimates of
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local ancestry, p(Xi | Y, ϕ) in the notation of (3). We discuss this
connection in further in Section 4.4.2.

Haplotype copying models are also directly used to study
evolution, for example to estimate rates of recombination and
gene conversion (Li and Stephens 2003; Gay, Myers, and McVean
2007; Chan, Jenkins, and Song 2012), to detect signatures of
recent positive selection (Voight et al. 2006; Palamara et al.
2018), or to infer local ancestry (Price et al. 2009; Lawson
et al. 2012). These methods aim to fit a particular evolutionary
model ϕ to data using, essentially, (2) and (3), and frequentist or
Bayesian model fitting procedures. For example, in their original
paper Li and Stephens defined ϕ to be a sequence of local
recombination rates (which enter into the likelihood through
the transition density p(Xn | Xn−1, ϕ) in (2)) and estimated
ϕ̂ using the EM algorithm. Similarly, Palamara et al. (2018)
compared local posterior distributions p(Xi | Y, ϕ), where i
indexes a particular location in the genome, to a genomewide
null distribution in order to detect signatures of local adaptation
within the last ∼ 104 years.

A problem of particular interest is so-called demographic
inference (Spence et al. 2018), where ϕ represents historical
fluctuations in population size. In this case, we can identify
ϕ with a function Ne : [0, ∞) → (0, ∞), such that Ne(t)
is the coalescent effective population size t generations before
the present (Durrett 2008, sec. 4.4). This function governs the
marginal distribution of coalescence time at a particular locus
in a sample of two chromosomes. Specifically, setting η(t) =
1/Ne(t), the density of this time is

π(t) = η(t)e−
∫ t

0 η(s) ds. (4)

Note that η(t) = 1 recovers the well-known case of Kingman’s
coalescent, π(t) = e−t , which we treat as the default prior in
what follows.

Apart from intrinsic interest in learning population history,
it is important to get a sharp estimate of Ne(t) as unmodeled
variability in Ne(t) confound attempts to study some of evo-
lutionary phenomena mentioned above, such as natural selec-
tion, or mutation rate variation. Many demographic inference
methods have been proposed, using various underlying models
and sources of data. One class (Gutenkunst et al. 2009; Bhaskar,
Wang, and Song 2015; Jouganous et al. 2017; Kamm, Terhorst,
and Song 2017; Kamm et al. 2020) infers demographic history
using so-called site frequency spectrum data, which is a low-
dimensional summary statistic that is computed from muta-
tion data assuming free recombination between markers. A
second class of models, which includes ours, are designed to
analyze whole-genome sequence data, and extract additional
demographic signal from patterns of linkage disequilibrium.
These methods are usually based on some form of the sequen-
tially Markov coalescent (Li and Durbin 2011; Sheehan, Harris,
and Song 2013; Rasmussen et al. 2014; Terhorst, Kamm, and
Song 2017; Schiffels and Durbin 2014; Steinrücken et al. 2019).
Another recent development is the emergence of algorithms for
inferring complete ancestral recombination graphs using large
amounts of sequence data (Speidel et al. 2019; Kelleher et al.
2019), from which the demographic history can be estimated.
Finally, there has been significant parallel work in phylogenet-
ics on so-called skyline models, which are Bayesian procedures

designed to infer population history under the assumption of a
nonrecombining genealogy (Pybus, Rambaut, and Harvey 2000;
Drummond et al. 2005; Minin, Bloomquist, and Suchard 2008;
Gill et al. 2013).

2.3. Our Contribution

As discussed in Section 1, discretizing Xi is unnatural and results
in bias. In this work, we derive efficient methods for computing
the posterior distribution p(X1, . . . , XN | Y), or its “maximum a
posteriori” estimate

arg max
X1,...,XN

p(X1, . . . , XN | Y)

when each Xi is a tree with continuous branch lengths. (To sim-
plify the formulas, we suppress dependence on the evolutionary
model ϕ until turning to inference in Section 4.4.) That is, unlike
existing methods, we do not assume that the set of possible Xi is
discrete or finite. For the important case of H = 2 chromosomes,
our method is “exact” in the sense that it is devoid of further
approximations (beyond the standard ones which we outline in
the next section). In this case, the gene tree Xi is completely
described by the coalescence time of the two chromosomes. For
H > 2 our method makes additional assumptions about the
topology of each Xi, but still retains the desirable property of
operating in continuous time.

2.4. Notation and Model

We now fix necessary notation and define the model that is
used to prove our results. For simplicity, we first focus on the
case of analyzing just one pair of chromosomes (H = 2 in the
notation of the previous section). In Section 3.4 we describe how
to extend our results to larger sample sizes.

Assume that we have sampled a pair of homologous chro-
mosomes each consisting of N non-recombining loci. Meiotic
recombination occurs between loci with rate ρ per unit time,
and does not occur within each locus. The number of genera-
tions backwards in time until the two chromosomes meet at a
common ancestor (TMRCA) at locus i is denoted Xi ∈ R>0.
The number of positions where the two chromosomes differ at
locus i is denoted by Yi. Under a standard assumption known
as the infinite sites model (Durrett 2008, sec. 1.4), Yi has the
conditional distribution

Yi | Xi ∼ Poisson(θXi),

where θ is the mutation rate. We assume that both θ and ρ are
small. In particular, some of our proofs rely on the fact that
ρ ≪ 1. These are fairly mild assumptions which hold in many
settings of interest. For example, in humans, the population-
scaled rates of mutation and recombination per nucleotide
are O(10−4). Conversely, if recombinations are frequent, then
there is little advantage in employing the methods we describe
here, which depend on the presence of linkage disequilibrium
between nearby loci.

The sequentially Markov coalescent is a generative model for
the sequence X1, . . . , XN , which we abbreviate as X1:N hence-
forth (and similarly for Y1:N). SMC characterizes how shared
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ancestry changes when moving from one locus to the next.
Assuming there is at most one recombination between adjacent
loci, and we can specify an SMC model by the conditional
density

fXn+1|Xn(t | s) := p(Xn+1 ∈ (t, t + dt) | Xn = s)
= δ(t − s)e−ρs + (1 − e−ρs)q(t | s), (5)

where δ(·) is the Dirac delta function, and q(t | s) is the
conditional density of t given that a recombination occurred
and that the existing TMRCA equals s. Various proposals for
q(t | s) exist in the literature, each with slightly different
properties (McVean and Cardin 2005; Marjoram and Wall 2006;
Paul, Steinrücken, and Song 2011; Li and Durbin 2011; Carmi
et al. 2014). Importantly, they share the common feature that (5)
is (approximately, in the case of Li and Durbin 2011) reversible
with respect to the coalescent. That is,

π(s)fXn+1|Xn(t | s) = π(t)fXn+1|Xn(s | t), (6)

where π is the stationary measure in (4). This can be verified
in each of the above models by checking the detailed balance
condition (Hobolth and Jensen 2014).

2.5. Connection to Changepoint Detection

Our work is motivated by the observation that (5) is essentially
a changepoint model. Indeed, SMC can be viewed as a prior
over the space of piecewise constant functions spanning the
interval [0, N); conditional on realizing one such function, say
ξ : [0, N) → [0, ∞), each Xi = ξ(i − 1), and the data Y1:N
are independent Poisson draws with mean E(Yi | Xi) = θXi.
In genetics, each contiguous segment where Xi = Xi+1 =
· · · = Xi+k−1 = τ , say, is known as an identity by descent (IBD)
tract, with time to most recent common ancestor (TMRCA) τ ;
the flanking positions where Xi−1 ̸= Xi and Xi+k ̸= Xi+k−1
are called recombination breakpoints. In changepoint detection,
these are called segments, segment heights (or just heights), and
changepoints, respectively. In what follows, we use these terms
interchangeably depending on what is most descriptive in a
given context.

A common assumption in changepoint detection is that
neighboring segment heights are independent, which is to say
that Xi ⊥ Xi+1 for any i such that Xi ̸= Xi+1. As we
will see, this enables fast and accurate algorithms for inferring
the sequence X1:N . SMC violates this assumption through the
conditional density q(t | s): the correlation between t and
s in (5) makes the problem nonstandard from a changepoint
perspective. Although there has been recent work on detecting
changepoints in data with dependence between segments (e.g.,
Fearnhead and Liu 2011; Chan et al. 2021; Shi et al. 2022),
particularly in time series, to the best of our knowledge the
running time of these methods scales at least quadratically in
the length of the underlying sequence.

In our application, sequence length is extremely long (a
typical genetic sequence contains millions of observations),
so methods with linear running time are essential. Perhaps
the simplest way to achieve this is to approximate prior evo-
lutionary model by one which ignores correlations in seg-
ment height. Indeed, if q(t | s) were replaced by some

function π(t) which did not depend on s, then (5) would
become a so-called product partition model (PPM; Barry
and Hartigan 1992). In a PPM, a sequence of observa-
tions y1, . . . , yn is randomly partitioned into disjoint blocks
(y1, . . . , yb1), (yb1+1, . . . , yb2), . . . , (ybk−1+1, . . . , ybk), such that
the observations in each block are independent of all others.
In the identity-by-descent problem described above, each block
corresponds to an IBD segment, and the random partition has
break points wherever recombinations occurred. PPMs are well-
understood, and linear-time approximate methods have been
developed to analyze them in both Bayesian (Barry and Hartigan
1993; Fearnhead 2006) and frequentist (Jackson et al. 2005;
Killick, Fearnhead, and Eckley 2012) settings.

2.6. A Renewal Approximation

In biological applications, the orientation of the data sequence
Y1:N is arbitrary; we could equivalently work with the reversed
sequence YN , YN−1, . . . , Y1 instead. Additionally, both theoret-
ical and empirical evidence overwhelmingly support that King-
man’s coalescent is a robust and accurate description of ancestry
at a particular gene. For these reasons, it is important that any
SMC model maintain the detailed balance condition (6). Given
this desideratum, the obvious choice for π becomes

π(t) ∝ tπ(t), (7)

leading to the modified transition density

f R
Xn+1|Xn(t | s) = δ(t − s)e−ρs + (1 − e−ρs)π(t). (8)

Checking the detailed balance condition (6), we obtain

π(s)(1 − e−ρs)tπ(t) ?= π(t)(1 − e−ρt)sπ(s), s ̸= t. (9)

Though (9) is not true in general, equality holds when both
sides are expanded to first-order in ρ, which suffices for the
applications we consider here.

The renewal approximation preserves an important piece of
prior information concerning the nature of identity-by-descent:
an IBD tract with TMRCA x experiences recombination at rate
ρx, so more recent tracts are longer, a familiar fact to geneticists.
On the other hand, prior information on the correlation between
neighboring segment heights is dropped. We hypothesized that,
for inference, it is more important that the prior capture the
former effect than the latter. This is similar to the observation
in changepoint detection that identifying changepoint locations
tends to be harder than identifying the corresponding segment
heights. Conditional on a given segmentation, finding the most
likely segment heights is usually trivial, with a solution that
depends mostly on the data and very little on the prior. Thus,
it seems most important to encode prior information about the
nature of the segmentation itself.

2.7. Prior Work

The Markov chain defined by (8) was previously studied by
Carmi et al. (2014), who coined the term renewal approxima-
tion. Carmi et al. derived theoretical results and performed
simulations to study identity-by-descent patterns produced by
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SMC models. They found that the renewal approximation is
comparable to other variants of SMC with some inaccuracy
mainly in the tails of the IBD distribution. Importantly, these
results pertain to the accuracy of these methods as priors; they
do not necessarily imply that the renewal approximation is
inferior for inference. Indeed, generally one hopes that “the data
overwhelm the prior,” so that inferences do not depend strongly
on the choice of prior model.

There have been a few papers specifically devoted to improv-
ing the efficiency of SMC. Harris et al. (2014) and Palamara
et al. (2018) derived O(MN) decoding algorithms for certain
SMC models, where M is the number of hidden states (time
discretizations) used in the underlying hidden Markov model.
Separately, Lunter (2019) recently showed that MAP estimation
can be performed for the Li and Stephens model in O(N) time
irrespective of the size H of the underlying copying panel, after
a preprocessing step that costs O(HN) time (Durbin 2014).

3. Methods

In this section we derive exact representations for the sequence
of marginal posterior distributions p(Xn | Y1:N), n =
1, 2, . . . , N, and efficient algorithms for sampling paths from the
posterior density p(X1:N | Y1:N) and for computing the MAP
path

X∗
1:N = arg max

X1:N
p(X1:N | Y1:N).

To save space, proofs are deferred to Appendices S1–S2 in the
supplementary material. For the reader’s convenience, the vari-
ous notations introduced in this section are listed in Table S1.

3.1. Exact Marginal Posterior

In what follows, we write f (x) ∈ M)(K) to signify a the
probability density f is a mixture of K gamma distributions, with
the mixing weights, scale and shape parameters left unspecified.
By abuse of notation, we also write X ∼ M)(K) to signify that
the random variable X is distributed according to such a mixture.

Let α(Xn) = p(Xn | Y1:n) denote the (rescaled) forward
function from the standard forward-backward algorithm for
inferring hidden Markov models (Bishop 2006, sec 13.2.4). Our
first result shows that, under the renewal approximation, α(Xn)
is a mixture of gamma distributions.

Proposition 1. Suppose that π(x) ∈ M)(K). Then α(Xn) =
p(Xn | Y1:n) ∈ M)(nK).

Using this result, we can derive a representation for the
marginal posterior distribution.

Proposition 2. If π(x) ∈ M)(K) then there exists f (Xn) ∈
M)(Kn) and g(Xn) ∈ M)(K(N − n)) such that

p(Xn | Y1:N) = f (Xn)g(Xn)

π(Xn)
. (10)

We can also derive exact expressions for the mixing pro-
portions, shape, and scale parameters for p(Xn | Y1:n), and
by extension, the exact algebraic expression for p(Xn | Y1:N).

This requires substantial additional notation and is deferred to
Appendix S5.

3.2. Efficient Posterior Sampling

The exact posterior formula derived in Proposition 2 is useful
for visualization, or numerically evaluating functionals (e.g., the
posterior mean) of the posterior distribution. However, it is
less suited to sampling since the denominator does not divide
the numerator except when K = 1; and even then, sampling
requires expanding the numerator in (3) into (as many as)
O(K2N2) mixture components.

Instead, we provide an algorithm for efficiently sampling
entire paths from p(X1:N | Y1:N). This idea is due to Fearnhead
(2006) (see also Barry and Hartigan 1992), with necessary mod-
ifications to accommodate our model’s dependence between
segment length and height.

Let Rv denote the event that a new IBD segment begins at
position v, let Ru:v :=

(⋃v−1
i=u+1 Ri

)C
denote the event that

there is not a recombination event between positions u and v
(exclusive), and set Ȳu:v := ∑v

i=u Yi. The joint likelihood of the
data Yu:v and the event that an IBD segment starts at position
u and extends + = v − u + 1 positions before terminating at
position v is

p(Yu:v, Ru:v, Rv) (11)

=
∫

x
x1{u>1}π(x)ρxe−ρ+x

v∏

i=u
e−θx(θx)Yi/Yi! =: P(u, v).

A special case for u = 1 is necessary because the initial segment
height is sampled from the stationary distribution π , while suc-
cessive segments heights are distributed according to π ; see (2)
and (8).

For the last segment, we know only that it extended past
position N, so we make the special definition

P−1(u, N) = p(Yu:N , Ru:N) (12)

=
∫

x
x1{u>1}π(x)e−ρ+x

N∏

i=u
e−θx(θx)Yi/Yi!.

Our algorithm can be used whenever (11) can be efficiently
evaluated, in particular when π(t) is a gamma mixture.

Defining Q(u) = p(Yu:N | Ru) and integrating over the loca-
tion v where the segment originating at position u terminates,
we have (Fearnhead 2006, Theorem 1)

Q(u) =
N−1∑

v=u
P(u, v)Q(v + 1) + P−1(u, N) (13)

which can be solved by dynamic programming starting from
v = N − 1 in O(N2) time. When v − u is large, P(u, v)
tends to be extremely small, so the summation in (13) can
be truncated without loss of accuracy to obtain an algorithm
which is effectively linear in N. Except when noted otherwise,
we followed Fearnhead’s original suggestion, and truncated the
summation as soon as P(u, v)Q(v + 1) was less than 10−4.
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To sample the next recombination breakpoint τ ′ from the
posterior given that the previous breakpoint occurred at location
τ , note that

p(τ ′ | τ , Y1:N) = p(Y1:N , Rτ , Rτ ′ , Rτ ,τ ′)

p(Y1:N , Rτ )

= p(Y1:τ−1, Rτ )p(Yτ :τ ′−1, Rτ ′ , Rτ :τ ′ | Rτ )Q(τ ′)
p(Y1:τ−1, Rτ )Q(τ )

= P(τ , τ ′ − 1)Q(τ ′)/Q(τ )

for τ ′ = τ + 1, . . . , N − 1, with the remaining probability
mass placed on the event that there are no more changepoints.
If sampling the first changepoint we set τ = 1.

Having sampled a segmentation 0 < τ1, . . . , τK < N
from the posterior, we then sample heights conditional on this
segmentation. Given that observations u, u + 1, . . . , v − 1, v are
all on the same segment and are flanked by recombinations,
the joint probability of the data Yu:v, the segment length +,
and the segment height x, is the integrand in (11). Hence, the
posterior distribution of the segment height x conditional on the
underlying segmentation is

p(x | Yu:v, Ru:v, Rv) ∝ x1{u>1}π(x)ρxe−ρ+xe−θxx
∑v

i=u Yi . (14)

If π(x) is a gamma (mixture), then (14) is also a gamma mixture,
and hence easy to sample.

3.3. Exact Frequentist Inference

To complement the Bayesian results in the preceding section,
we also derive an efficient frequentist method for inferring the
maximum a posteriori (MAP) hidden state path,

X∗
1:N := arg max

X1:N
p(X1:N , Y1:N). (15)

When X1, . . . , XN ∈ X have discrete support, |X | = M, the
MAP path can be found in O(NM2) time using the Viterbi
algorithm (Bishop 2006), and in some cases in O(NM) time
by exploiting the special structure of the SMC (Harris et al.
2014; Palamara et al. 2018). Our goal is to efficiently solve the
optimization problem (15) when X = R>0.

To accomplish this, we start by defining the recursive
sequence of functions

V1(t) = log π(t) + e1(t)
Vn(t) = max

s
Vn−1(s) + φ(t | s) + en(t), n ≥ 2

V∗
n = max

t
Vn(t)

where ei(t) = log p(Yi | Xi = t), and

φ(t | s) = log p(Xi+1 = t | Xi = s)

=
{

−ρt, t = s
log(1 − e−ρs) + log π(t), otherwise

≈
{

−ρt, t = s
log(ρs) + log π(t), otherwise,

(ρ ≪ 1)

This is the usual Viterbi dynamic program, but defined over a
continuous instead of discrete domain. By standard arguments
(Bishop 2006, sec. 13.2.5), we have

X∗
N = V∗

N = arg max
XN

[
max

X1:N−1
p(X1:N , Y1:N)

]
,

and the full path X∗
1:N can be recovered by backtracing.

Thus, if we could calculate Vn(t) then the optimization prob-
lem (15) would be solved. In general, it is not obvious how to
accomplish this, since Vn(t) is a function, that is an infinite-
dimensional object which cannot be represented by a computer
program. However, our next theorem shows that, in fact, each
Vn(t) has a finite-dimensional representation.

Definition 1. Let VK be the space of all functions f : [0, ∞) → R
which can be piecewise defined by K functions of the form t /→
at + b log t + c. That is, f ∈ VK if and only if there exists there
exists an integer K, a vector τ ∈ RK+1 satisfying

0 = τ1 < τ2 < · · · < τK+1 = ∞,
and vectors a, b, c ∈ RK such that

f = akt + bk log t + ck, t ∈ [τk−1, τk).

Proposition 3. Suppose that Ne(t) ∈ VK is piecewise constant.
Then for each n = 1, . . . , N, there exists Kn < ∞ such that
Vn(t) ∈ VKn .

The proof of the theorem (Appendix S3) shows that in order
to efficiently compute Vn(t) we need to be able to take the point-
wise maximum between any two functions in VK . We provide an
O(K) procedure for doing this in Appendix S6.

Our next result establishes the functional form of Vn(t). Each
piece of Vn(t) comprises an interval I ⊂ R where, conditional
on the TMRCA at position n being t ∈ I, the most probable
recombination event occurred a certain number of positions
ago. In the statement and proof of the theorem, we use double
brackets, !·", to refer to individual entries of subscripted vectors.

Proposition 4. For each Vn(t), with breakpoints τn ∈ RKn+1,
there exists vectors in ∈ ZKn

≥0 and Cn ∈ RKn such that, for t ∈
[τn!k", τn!k + 1"),

Vn(t) = Cn!k" + log π(t) + Ȳin!k":n log(θ t)
− t(θ + ρ)(n − in!k") − θ t.

Hence, up to the constant Cn!k", Vn(t) equals the log-likelihood
of Ȳin!k":n given that the most recent recombination event
occurred at position in!k" and Xin!k" = · · · = Xn = t.

Complete pseudocode for our algorithm, based on Proposi-
tions 3 and 4, is given in the supplement (Algorithm S1).

In Section 4.2, it will be seen that the posterior distribution
is sometimes not centered over the MAP path: the latter tends
to oversmooth, missing many changepoints, whereas the pos-
terior mode/mean is generally close to the truth (Figure S5).
This is a known feature of the Viterbi decoding of a hidden
Markov model, and is not specific to our problem setting (Yau
and Holmes 2013; Lember and Koloydenko 2014). In Appendix
S7 we derive a generalization of Proposition 3 which allows
us to efficiently compute other paths which are suboptimal
with respect to (15), but have better pointwise accuracy, thus,
enabling a range of possible decodings.
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3.4. Extension to Larger Sample Sizes

The preceding sections focused on inferring the sequence of
TMRCAs in a pair of sampled chromosomes. In modern appli-
cations where hundreds or thousands of samples have been
collected, methods that can analyze larger sample sizes are desir-
able.

We can generalize the problem of decoding the pairwise
TMRCA among two chromosomes by treating one of the chro-
mosomes as a fixed genealogy, and considering where the other
chromosome joins onto this genealogy at each position. Then,
more generally, given a “panel” of H ≥ 1 chromosomes, we can
ask where at each position an additional “focal” chromosome
joins onto the panel genealogy.

Extending sequentially Markov coalescent methods to larger
sample sizes is not trivial for the simple reason that there is
more than one possible tree topology to consider when n > 2.
Instead of inferring a sequence of numbers X1:N (representing
the height of a tree with two leaves), as in the preceding sections,
one must consider as hidden states the space of edge-weighted
binary trees on n leaves. To circumvent this difficulty, we employ
a so-called trunk approximation (Paul and Song 2010), which
supposes that the underlying ancestral recombination graph is
a disconnected forest of H trunks extending infinitely far back
into the past. The state space of this model is {1, . . . , H} ×
R>0, where the first, discrete coordinate describes the panel
haplotype onto which a focal haplotype is currently coalesced,
and the second, continuous coordinate gives them time at which
that coalescence occurrred. Although the trunk assumption is
strong, it has proved useful in a variety of settings (Sheehan,
Harris, and Song 2013; Spence et al. 2018; Steinrücken et al.
2019).

Modifying our methods to use the trunk approximation is
straightforward and amounts to, essentially, replacing the coa-
lescence measure p(X ∈ [t, t + dt)) = π(t) dt with the product
measure p((X, h) ∈ ([t, t + dt), {i})) = π(Ht) dt in all of our
formulas. (Note that this measure is properly normalized.) In
other words, coalescence occurs with each haplotype at rate 1,
and conditional on coalescence, it occurs uniformly onto each
haplotype.

4. Results

In this section we compare our method to existing ones, bench-
mark its speed and accuracy, and conclude with some applica-
tions.

4.1. Local Ancestry Inference is Comparable to Existing
Methods

As described in the introduction, our initial hypothesis was that
posterior inferences for the haplotype decoding problem are
relatively insensitive to the choice of prior model on the way that
the sequentially Markov coalescent transitions from one posi-
tion to the next. Here we confirm this hypothesis. To study the
relationship between the posterior and prior, we compared the
renewal model developed above to the conditional Simonsen-
Churchill (CSC) model of Hobolth and Jensen (2014). The CSC
is the most accurate sequentially Markovian model known in

the literature, and other models such as SMC (McVean and
Cardin 2005) and SMC’ (Marjoram and Wall 2006) are further
approximations of it. Hence, CSC and the renewal model can
be viewed as the least and most approximative SMC methods,
respectively.

To compare models, we used the procedure described in
Hobolth and Jensen (2014, sec. 4.4) to compute the transition
probability matrix T, where

Tij = p(Xℓ+1 ∈ [tj, tj+1) | Xℓ ∈ [ti, ti+1))

is the probability that the TMRCA at site ℓ + 1 is in the interval
[tj, tj+1) given that the TMRCA of an adjacent site is in [ti, ti+1).
We then used this transition matrix to perform posterior decod-
ing in a discrete-state coalescent HMM as previously described
(Li and Durbin 2011). We compared the CSC and renewal prior
under both constant population size and varying population
size, as well as when the recombination rate is equal to the
mutation rate and when it is lower. Taking all the combinations
of the different population size histories and the recombination
rate gives us a total of 4 scenarios. Scenarios 1 and 3 have
constant population size, and scenarios 2 and 4 have the variable
population size. Scenarios 1 and 2 have recombination rate r =
10−9, and scenarios 3 and 4 have recombination rate r = 1.4 ×
10−8 per base-pair per generation. We bucketed consecutive
base pairs into groups of size w = 100 and assume that the
recombinations occur between these groups. Additional details
of our simulation can be found in Appendix S8.1.

Supplemental Figures S1 and S2 show the Viterbi path and
the posterior heatmap for one run of each scenario of the sim-
ulation. From Figure S1, there is little difference in the Viterbi
plot between the CSC and renewal priors. Both priors produce
a Viterbi path very similar to the true sequence of TMRCAs.
When the recombination rate increases, the Viterbi paths pro-
duced by the two priors fail to capture all the recombination
events, but are still very similar in their outputs. We performed
a similar analysis for the posterior decoding (Figure S2). Again,
it is hard to discern any meaningful difference in all scenarios
between the two priors. This is especially the case in scenarios 1
and 2 where the recombination rate is lower.

Confirming these qualitative observations, Table 1 shows the
average absolute error for the two priors over the 25 simulations.
In terms of absolute error, the renewal prior does about as well
as the more correct CSC prior. In fact, the renewal prior outper-
forms CSC under scenarios 3 and 4, the scenarios with higher
recombination rate. A potential explanation for this surprising
result, suggested by visually inspecting the posterior decoding
obtained from the two methods (e.g., Figure S2, bottom panel), is
that the signal-to-noise level in the high recombination regime is
low enough that ignoring correlations between (noisily) inferred
adjacent segments can actually improve estimation. Provision-
ally, we hypothesize that the renewal approximation acts as a sort
of shrinkage prior in the high-noise regime, trading some bias
for lower average risk. However, we observed this effect in only
a small number of high-recombination settings, and it is not as
pronounced when considering relative error (Table S2).

To better understand these results, we also stratified the error
measure by quarter of the true TMRCA distribution (Tables 2
and S3). We expected to see a greater difference between the
two priors for larger values of the true TMRCA since, under the
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Table 1. Mean absolute error (ErrA) over 25 runs under each scenario.

Scenario Constant Ne Variable Ne Constant Ne Variable Ne
Low ρ (1) Low ρ (2) High ρ (3) High ρ (4)

CSC 5686.79 (198.96) 5201.35 (228.23) 12207.96 (316.49) 11949.15 (146.20)
Renewal 5683.52 (192.43) 5212.97 (226.64) 11660.02 (303.80) 11427.61 (147.19)

NOTE: CSC results were obtained from the conditional Simonsen-Churchill model. Renewal results are from our method. Both methods were discretized. Standard error in
parentheses.

Table 2. Mean absolute error (ErrA) over 25 runs under each scenario stratified by quartile.

Scenario Qtr. Constant Ne Variable Ne Constant Ne Variable Ne
Low ρ (1) Low ρ (2) High ρ (3) High ρ (4)

CSC Q1 2676.74(115.50) 2271.89(126.87) 6932.49(242.41) 6550.15(118.46)
Renewal Q1 2714.53(117.88) 2330.01(127.42) 5365.78(184.23) 5168.37(77.63)
CSC Q2 5961.49(111.73) 6263.63(159.11) 13407.48(60.54) 13255.75(45.30)
Renewal Q2 6061.91(98.98) 6289.53(147.09) 11575.83(44.20) 11549.62(29.92)
CSC Q3 9679.44(148.74) 9770.56(259.23) 18853.84(41.04) 18811.84(58.56)
Renewal Q3 9569.68(156.41) 9673.67(283.39) 19620.79(71.97) 19470.72(52.02)
CSC Q4 15833.47(265.34) 15968.86(426.23) 33105.92(170.73) 33412.66(200.11)
Renewal Q4 15439.84(322.81) 15760.62(527.12) 40368.10(208.78) 39760.70(241.19)

NOTE: Other details are as in Table 1.

CSC prior, the distribution of tree height of the current segment
conditioned on the tree height of the previous segment, q(t | s)
is approximately uniform in t for large s, that is q(t | s) ≈ 1/s
when s ≫ t, where under the renewal prior π(t) = e−t has an
exponential tail. Conversely, since lims→0 q(t | s) = e−t , the
methods should be comparable for recent TMRCAs.

Table 2 contains the mean absolute error over the 25 simu-
lations after stratification. Under scenarios 1 and 2 where the
recombination rate is lower, again we see virtually no difference
between the two priors across all quarters. Under scenarios 3
and 4 where the recombination rate is higher, we see that in the
first and second quarters, the renewal prior actually has lower
error compared to CSC. The results are reversed in the third
and fourth quarters where the Markov approximation is more
accurate than the renewal prior. This trend is mostly mirrored
in Table S3 with the mean relative errors. The renewal prior
does just slightly worse than the Markov prior under scenarios
1 and 2 across all quarters. Under scenarios 3 and 4 as the
underlying true TMRCA increases, so too does the difference
in ErrB.

Next, we studied the extent to which the demographic prior
π(t) affects the resulting estimates. We simulated data under
three different demographic models and then measured the
resulting accuracy of the posterior when each model was used
as a prior to infer TMRCAs on data generated from the other
models (details in Appendix S8.2).

We display the posterior of one pair of chromosomes for
all nine pairs of demographies used as data generation and
demographic priors in Figure . The plots show that regardless
of which demographic prior was used, the resulting posteriors
all had the same shape. Table S5 shows that in terms of mean
absolute error, all three demographic models perform similarly
when used as prior, regardless of which one of them in fact
generated the data. Relative error measurements (Table S6)
tell a similar story. Given the large differences between the
three demographic models (Figure S3), if the posterior were
sensitive to the demographic model we would expect each
column in the table to be quite different from one another.

However, this does not seem to be the case; using the correct
prior results in an average improvement of a few percent in
most cases.

In conclusion, our results suggest that, as long as the chosen
prior is not pathological, its effect on inference will be limited.

4.2. Comparison of Bayesian and Frequentist Inferences

In Section 3 we derived various methods for inferring tree
heights. Here we compare the Bayesian method where we sample
from the posterior and the frequentist method where we take the
MAP path. We apply these two methods to the same simulated
data from the first simulation in Section 4.1. For the Bayesian
method we sample 200 paths from the posterior and take the
median to compare against the MAP path.

Figure S5 shows the results of running the two methods on
one set of simulated chromosomes under each scenario. The
top two panels of the figure show that when the recombination
rate is an order of magnitude lower than the mutation rate, both
methods give a faithful approximation of the true sequence of
TMRCAs. However, the bottom two panels where the recom-
bination rate is larger displays the key difference between the
two methods: the MAP path fails to detect many recombination
events, whereas the posterior median is an average over many
paths so it can detect recombination events that the MAP path
cannot.

We use the same measures of absolute and relative we used in
the previous sections. For this simulation, we look at the error
at each position so N/w = N. The results in Tables S7 and S8
show that the posterior median dominates the MAP path. Again,
since the MAP path is the most likely single path whereas in the
Bayesian method we take the pointwise median of many paths,
the MAP path has inferior pointwise accuracy. This result is
expected, but it should be noted that when compared to Tables 1
and S2, the MAP path performs similarly to, and the Bayesian
method outperforms, the posterior decoding of the discretized
SMC models used in Section 4.1.
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4.3. Empirical Time Complexity

In Section 3.2, we suggested that by pruning the state space
of our methods in certain ways, their running time could be
effectively linear in the number of decoded positions. In this
section we confirm this by simulations.

We benchmarked our methods on simulated sequences of
length N = 104 to N = 108. For each length, we simulated 10
pairs of chromosomes. Figure S6 confirms that there is a linear
relationship between chromosome length and running time for
both the Bayesian sampler method and the MAP decoder. Note
that, if decoding against a larger panel of chromosomes (cf. Sec-
tion 3.4), the amount of work performed by our algorithms
scales linearly in the panel size H. We further verified (Figure S7)
that the scaling is linear in both panel size (H) and chromosome
length (N); in Figure S8, we tracked the quantity Kn defined in
Proposition 3, that is the average number of pieces needed to
represent the function Vn(t) for each 1 ≤ n ≤ N, and found
that it too appears to be bounded on average.

We confirmed a similar empirical scaling for the Bayesian
algorithm by tracking the number of summands considered
in summation (13) before the truncation threshold was met
(Figure S9). On average, the number seems to be bounded by
a small constant as the dynamic program (13) proceeds from
u = N to u = 1. It is possible that this truncation strategy could
perform poorly for closely related haplotypes which are cosan-
guineous over long intervals. To investigate this, we simulated 50
chromosomes and selected the two most closely related pairs of
haplotypes in terms of overall IBD sharing. We benchmarked the
accuracy and runtime of our sampler using various settings for
the truncation cutoff. The results (Table S9) suggest that absolute
accuracy is fairly unaffected, but relative accuracy does continue
to decline as we decrease the threshold from 10−2 to 10−6. This is
attributable to the fact that we the TMRCA between two closely-
related chromosomes is small on average, which inflates relative
error.

4.4. Applications

We tested our method on the two most common real-world
applications of the sequentially Markov coalescent.

4.4.1. Exact SMC
The pairwise sequentially Markov coalescent (PSMC; Li and
Durbin 2011) is a method for inferring the historical population
size (i.e., the function Ne(t) defined in Section 2.2) using genetic
variation data from a single diploid individual. Although in
some settings PSMC has been superseded by more advanced
methods which can analyze larger sample sizes (Schiffels and
Durbin 2014; Terhorst, Kamm, and Song 2017), it remains very
widely used in many areas of genetics, ecology and biology,
because it is fairly robust, and does not require phased data,
which can be difficult to obtain for species that have not been
studied as intensively as humans. SMC++ (Terhorst, Kamm, and
Song 2017) is a generalization of PSMC that does not require
phased data which scales to larger sample sizes. Additionally,
SMC++ uses the more accurate CSC model (see Section 4.1),
whereas PSMC is based on SMC.

As noted in Section 1, both PSMC and SMC++ use an HMM
to infer a discretized sequence of genealogies. The discretization
grid is a tuning parameter which is challenging to set properly—
finer grids inflate both computation time and the variance of
the resulting estimate, and for a fixed level of discretization, the
optimal grid depends on the unknown quantity of interest Ne(t).
A poorly chosen discretization can have serious repercussions
for inference (Parag and Pybus 2019).

One potential solution to this problem is to employ general
algorithms designed to perform inference in continuous state-
spaces. Particle filtering is one such example. The sequential
Monte Carlo for the sequentially Markov coalescent (SMCSMC;
Henderson et al. 2021) is another method that performs demo-
graphic inference using particle filtering. However, a potential
downside is that it is simulation-based, and potentially very
computationally intensive.

Our method proceeds differently from either of these
approaches. Recalling (4), we see that inference of Ne(t) is
tantamount to estimating (the reciprocal of) η(t). In survival
analysis, η is known as the hazard rate function, and a variety
of methods have been developed to infer it (Wang 2014). Thus,
if we could somehow sample directly from π , then inference of
Ne(t) would reduce to a fairly well-understood problem. While
this is impossible in practice, the simulated results shown in
the preceding sections inspire us to believe that samples drawn
from the posterior p(X1:N | Y1:N) could serve the same purpose.
Concretely, we suppose that a random sample x1, . . . , xk drawn
from the product measure

p(Xi1 | Y1:N) × p(Xi2 | Y1:N) × · · · × p(Xik | Y1:N), (16)

where the index sequence i1, . . . , ik ∈ [N] is sufficiently sep-
arated to minimize correlations between the posteriors, is dis-
tributed as k iid samples from coalescent density. We then use
a kernel-smoothed version of Nelson-Aalen estimator (Wang
2014) in order to estimate N̂e(t). As a hyperprior on the coa-
lescent intensity function, we simply used Kingman’s coalescent,
π(t) = e−t .

We first compared the performance of our method with
PSMC, SMC++, and SMCSMC on simulated data. Figure 1
compares the results of running our method, which we call
XSMC (eXact SMC), and the three competing methods on data
simulated from three size history functions (plotted as dashed
grey lines). We simulated a chromosome of length N = 5 × 107

base pairs for 25 diploid individuals (total of 50 chromosomes),
and then ran both methods on all 25 pairs. For XSMC, we drew
100 random paths from the posterior distribution, and then
sampled marginal TMRCAs from each path according to (16)
with 50,000 base pair spacing between sampling locations. The
plots show the pointwise median, with the interquartile range
(distance between the 25th and 75th percentiles) plotted as an
opaque band around the median. For the first two simulations
we assumed that the mutation and recombination rates were
equal, µ = r = 1.4 × 10−8 per base pair per generation. For
reasons discussed below, we assumed in the third simulation that
r = 10−9. Both methods were run with their default parameters
and provided with the true ratio r/µ used to generate the data.

The left column of the figure (“Constant”) depicts the most
basic scenario, where the population size is unchanged over
time. While all methods do an acceptable job, PSMC and
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Figure 1. Comparison of XSMC, PSMC, SMCSMC, SMC++ on various simulated size histories.

XSMC exhibit less bias. For PSMC, there is some bias from the
piecewise-constant model class it uses to perform estimation.
(We note that with its default settings, PSMC actually initializes
to the true model in this scenario.) XSMC has a slight downward
bias in the recent past, but is otherwise centered over the true
values Ne = 104. Both methods appear slightly biased in
the period 103-104 generations, though in opposite directions.
SMCSMC performs well after 103 about generations, however, it
incorrectly estimates a large increase in Ne toward the present.
SMC++ exhibits a slight downward bias toward the recent past
and also incorrectly estimates a population crash further back in
time.

In the center column (“Growth”), we simulated a cartoon
model of recent expansion, in which the population experi-
ences a brief bottleneck from 2000–1000 generations ago, before
suddenly increasing in size by two hundredfold. This model is
more difficult to correctly infer using only diploid data, because
the large recent population size prevents samples from coa-
lescing during this time, depriving methods of the ability to
learn size history in the recent past. Nevertheless, XSMC does
an acceptable job of showing that the population experienced
a dip followed by a sharp increase, though the estimates are
oversmoothed. In contrast, PSMC estimates size history that is
nearly flat, with no acknowledgement of the bottleneck. SMC++
estimates a similar trajectory as XSMC, but is slightly more
downward biased at all points in time. At an initial glance,
SMCSMC looks to have most faithfully estimated the population
size history. However, the results from the other two scenarios
indicate that SMCSMC tends to infer a recent growth in pop-
ulation whether or not it actually occurred. Even so, without
considering this feature of the model, SMCSMC returns a similar
result to XSMC. This result also illustrates another benefit of
the nonparametric approach: XSMC only returns an answer

where it actually observes data. Because no coalescence times
were observed before ∼ 103 generations when sampling from
the posterior, our method does not plot anything outside of
that region. This compares favorably with PSMC and related
parametric methods (e.g., Schiffels and Durbin 2014; Terhorst,
Kamm, and Song 2017; Steinrücken et al. 2019), which have to
model Ne(t) over all 0 ≤ t < ∞ in order to perform an analysis,
even when the data contain no signal outside of a limited region.

Lastly, in the right-hand column we examined a difficult
demography known in the literature as the zigzag model (Schif-
fels and Durbin 2014). This is a pathological model of repeated
exponential expansions and contractions, and is designed to
benchmark various demographic inference procedures. We
found that with the default setting ρ = θ used in the preceding
two examples, the methods failed to produce good results on
the zigzag. We therefore lowered the rate of recombination
to r = 10−9/bp/generation in order to create more linkage
disequilibrium for the methods to exploit. Here, a fairly sub-
stantial difference emerges between the two methods. XSMC
does the best job of inferring this difficult size history, with
accurate results to almost 102 generations in the past, and almost
no discernible bias. It is also the only method to successfully
infer the final population crash in the recent past. In contrast,
PSMC and SMC++ return similar results where the methods are
able to recover the true value accurately after 103 generations.
SMCSMC also returns similar results to PSMC and SMC++, but
again the method incorrectly infers a population increase both
toward the present and further back in the past.

Table 3 displays the total running time in minutes of the
four methods of the 75 total simulations across the three dif-
ferent demographies. Each method was parallelized across the
simulations and run on a 32-core machine. XSMC and PSMC
completed the simulations significantly faster than SMC++ and
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Table 3. Total running time of XSMC, PSMC, SMCSMC, and SMC++ in minutes of 75
total simulations on various simulated size histories.

Method Minutes

SMC++ 519.865721
SMCSMC 1840.547969
XSMC 0.891570
PSMC 1.401326

Figure 2. Result of fitting XSMC to 1000 Genomes data. For each superpopulation,
20 samples were chosen. Solid line denotes the median across all samples, and
shaded bands denote the interquartile range.

SMCSMC, and between the two methods, XSMC outperformed
PSMC computationally by a relatively large margin. The simula-
tion results show that XSMC can deliver high quality estimates
of demography more quickly than competing methods.

Encouraged by these results, we next turned to analyzing
real data. We performed a simple analysis where we analyzed
whole genome data from 20 individuals from each of the five
superpopulations (African, European, East Asian, South Asian,
and Admixed American) in the 1000 Genomes dataset (The
1000 Genomes Project Consortium 2015). Results are shown
in Figure 2. Broadly speaking, our method agrees with other
recently published estimates (Li and Durbin 2011; Terhorst,
Kamm, and Song 2017), and succeeds in capturing major recent
events in human history such as an out-of-Africa event 100–
200kya, a bottleneck experienced by non-African populations,
and explosive recent growth beginning around 20kya. On the
other hand, certain features that have been found in previous
analyses (e.g., the peak and drop before 100Kya in Figure 3a of
Li and Durbin 2011) are smoothed out by our method, likely
due to the novel use of kernel methods here. These estimates
could probably be improved with fine-tuning and the use of
additional data, but we did not attempt this, the message being
that our method has moderate data requirements and produces
reasonable results with minimal user intervention. Finally, we
note that our method is highly efficient: to analyze all 20 × 5 ×
(3 × 109Mbp) ≈ 300Gbp of sequence data took approximately
40 min on a 12-core workstation. A single human genomes (all
22 autosomes) can be analyzed in about 30 sec.

4.4.2. Phasing and Imputation
The Li and Stephens (2003) haplotype copying model (hereafter,
LS) is an approximation to the conditional distribution of a
“focal” haplotype (e.g., a chromosome) given a set of other
“panel” haplotypes. It supposes that the focal haplotype copies

with error from different members of panel, occasionally switch-
ing to a new template due to recombination. Genealogically,
this can be interpreted as finding the local genealogical nearest
neighbor (GNN) of the focal haplotype within the panel. LS
has been used extensively in applications, for example phasing
diploid genotype data into haplotypes (Stephens and Scheet
2005) and imputing missing data (Scheet and Stephens 2006;
Marchini et al. 2007; Howie, Donnelly, and Marchini 2009). The
method’s undeniable success is actually somewhat surprising,
since it assumes an extremely simple genealogical relationship
between the focal and panel haplotypes which ignores time
completely (Paul and Song 2010). Hence, while we motivated
XSMC as a fast and slightly more approximate SMC prior, it can
also be seen as a more biologically faithful version of LS.

We wondered whether our method could be used to improve
downstream phasing and imputation. Fully implementing a
phasing or imputation pipeline is beyond the scope of this arti-
cle, so we settled for checking in simulations whether decoding
results produced by XSMC were more genealogically accurate
than those obtained using LS. We simulated data using realistic
models of human chromosomes 10 and 13 (Adrion et al. 2019).
We chose these two because chromosome 10 is estimated to
have an average ratio of recombination to mutation slightly
above 1 (ρ/θ = 1.07), while in chromosome 13 the ratio is
slightly below 1 (ρ/θ = 0.87). The ratio of recombination to
mutation affects the difficulty of phasing and imputation, with
higher ratios leading to less linkage disequilibrium and thus less
accurate results. We also explored the effects of varying the size
of the haplotype panel. For each chromosome, we simulated 10
datasets with panels of size H = 2, 4, 10, 25, 100.

As a proxy for phasing and imputation accuracy, we studied
which method identified a genealogical nearer neighbor on
average. The GNN at a given position is defined to be any panel
haplotype that shares the earliest common ancestor with the
focal haplotype. In other words, any panel haplotype that has the
smallest TMRCA with the focal haplotype is a GNN. (Note that
there may be more than one GNN.) For purposes of accurate
phasing and imputation, it is desirable to identify the GNN as
closely as possible.

For each simulation we computed the Viterbi path from
XSMC and LS, as well as the posterior modal haplotype, and
studied the proximity of those paths to the true GNN at each
segregating site. Table S10 shows the proportion of segregating
sites where XSMC and LS both estimated the same haplotype
to be the GNN. For the MAP path, there is a high level of
agreement, 80%–90%, between the two methods for both small
and large panel sizes. When the panel size is small (H =
2), there are few possible choices, and when the panel size is
large (H = 100) the decoding consists mostly of long, recent
stretches of IBD which are fairly easy to estimate. Disagreement
is highest for intermediate values H = 4, 10, 25 where neither
of these effects dominates. At sample size H = 10 the meth-
ods only agree at about half of segregating sites. The posterior
mode appears to be less stable, with the agreement between
the two methods decreasing monotonically as the panel size
increases, down to agreement at only abouth 1/3rd of sites when
H = 100.

At the 10%–66% of sites where the methods disagree,
the results indicate a statistically significant gain for XSMC
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compared to LS. Table S11 shows that conditional on the two
methods inferring different haplotypes as the GNN at that site,
XSMC finds a genealogical nearer neighbor more often except
in one case (chromosome 10, H = 10, MAP path.) Using
MAP estimation, the advantage of using XSMC increases, as
the panel size increases, up to a roughly 6%–10% advantage on
chromosome H = 100. For the posterior mode, the methods
perform more comparably, and the largest difference is on the
order of a few percentage points. The performance difference is
significantly different from equal odds in almost every case.

5. Conclusion

In this article, we studied the sequentially Markov coalescent,
a framework for approximating the likelihood of genetic data
under various evolutionary models. We proposed a new infer-
ence method which supposes that the heights of neighboring
identity-by-descent segments are independent. We showed that
this led to decoding algorithms which are faster and have less
bias than existing algorithms.

There are several possible extensions to our work. It is
straightforward to extend our techniques to allow for position-
specific rates of recombination and mutation, which could then
be used to infer spatial or motif-specific variation in these pro-
cesses.

Although we focused here on analyzing data from a single,
panmictic population, we can also use posterior samples or
MAP estimates to infer more complicated models of population
structure. It is also possible to extend some of our techniques
to other priors which model correlations between adjacent IBD
segments. For the Viterbi decoder, we were able to implement a
version of the algorithm in Section 3.3 which works for McVean
and Cardin’s original SMC model. This could be useful, for
example, if analyzing data from a structured population, to
the extent that adjacent segments of identity by descent are
more likely to derive from members of the same subpopulation.
However, the resulting procedure is much more complicated.
The Viterbi function Vn(t) no longer has the tractable form
derived in Proposition 3. Consequently, we cannot use a simple
method like the one in Appendix S6 to perform the pointwise
maximization in (4). Instead, numerical optimization must be
used instead, resulting in a slower algorithm.

Another interesting possibility is to use our method to esti-
mate ancestral recombination graphs. Recently, there has been a
resurgence of interest in inferring ARGs using large samples of
cosmopolitan genomic data (Kelleher et al. 2019; Speidel et al.
2019). Although these represent an impressive breakthrough,
they rely on heuristic estimation procedures that do not directly
model the underlying genealogical process that generates ances-
try. Our method provides a new possibility for ARG estima-
tion, by iteratively adding samples onto a sequence of estimated
genealogies, but without the need to discretize those genealogies.
These and other extensions are the subjects of ongoing work.

Supplementary Materials

In the supplement we present supporting lemmas, proofs of the theorems,
and additional plots and tables. (pdf)
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