
Protocol

Protocol to implement a computational
pipeline for biomedical discovery based on a
biomedical knowledge graph

Biomedical knowledge graphs (BKGs) provide a new paradigm for managing abundant

biomedical knowledge efficiently. Today’s artificial intelligence techniques enable mining BKGs

to discover new knowledge. Here, we present a protocol for implementing a computational

pipeline for biomedical knowledge discovery (BKD) based on a BKG. We describe steps of the

pipeline including data processing, implementing BKD based on knowledge graph embeddings,

and prediction result interpretation.We detail how our pipeline can be used for drug repurposing

hypothesis generation for Parkinson’s disease.
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SUMMARY

Biomedical knowledge graphs (BKGs) provide a new paradigm for managing
abundant biomedical knowledge efficiently. Today’s artificial intelligence tech-
niques enable mining BKGs to discover new knowledge. Here, we present
a protocol for implementing a computational pipeline for biomedical knowl-
edge discovery (BKD) based on a BKG. We describe steps of the pipeline
including data processing, implementing BKD based on knowledge graph
embeddings, and prediction result interpretation. We detail how our pipeline
can be used for drug repurposing hypothesis generation for Parkinson’s
disease.
For complete details on the use and execution of this protocol, please refer to
Su et al.1

BEFORE YOU BEGIN

This protocol will give a step-by-step guide to develop a computational pipeline for biomedical

knowledge discovery (BKD) based on a comprehensive BKG, the iBKH.1 We formulate the BKD

task in the iBKH as the procedure to predict entities that are potentially linked to the target entity.

This protocol includes the following steps including data collection, Python and package installa-

tion, knowledge graph embedding, knowledge discovery and evaluation, and prediction result

interpretation. We demonstrate a use case of our pipeline for drug repurposing hypothesis gener-

ation for Parkinson’s disease (PD), i.e., predicting drug entities that could potentially link to the PD

entity in the iBKH. This protocol can be also adapted to other BKD tasks such as prediction of disease

risk genes2,3 and drug-drug interaction discovery,4,5 etc.

Data collection

Timing: 15 min

1. Download the project zip file from GitHub: https://github.com/wcm-wanglab/iBKH/tree/main/

iBKH-KD-protocol

2. Unpack the downloaded file.

3. Download the latest version of iBKH knowledge graph (KG) data (entities and relations) at:

https://github.com/wcm-wanglab/iBKH/tree/main/iBKH-KD-protocol.

STAR Protocols 4, 102666, December 15, 2023 ª 2023 The Authors.
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4. Put the downloaded files (codes and data) following the structure as shown in Figure 1.

Python and package installation

Timing: 30 min

5. Go to the Anaconda webpage at https://www.anaconda.com/download, download appropriate

Anaconda installer according to your computer system, and install it. (Note: please choose

Anaconda installer with Python version no later than version 3.7.0)

6. Install required Python packages (NumPy, pandas, scikit-learn, neo4j, networkx) as following:

7. Install PyTorch.

Note: Installation of PyTorch should follow instructions at: https://pytorch.org.

a. Navigate to the ‘‘PyTorch Build’’ section, and there, choose the ‘‘Stable’’ version from the

available choices.

b. Move to the ‘‘Your OS’’ section and choose the appropriate operating system you’re using.

c. Decide on the installation approach you intend to employ (we recommend either ‘‘pip’’ or

‘‘conda’’).

d. Indicate that you are working with Python as your chosen programming language for PyTorch.

Figure 1. An illustration of file organization of the

protocol

>pip install numpy

>pip install pandas

>pip install sklearn

>pip install neo4j

>pip install networkx
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Note: For this procedure, we don’t need a GPU, so proceed to select the ‘‘Default’’ option

within the ‘‘Compute Platform’’ category.

e. Once these selections are made, copy the automatically generated command under the ‘‘Run

this Command’’ section and execute it in the command line (for Windows and Linux users) or in

the terminal (for Mac OS users).

Note: This will initiate the installation process.

8. Install the DGL-KE (DeepGraph Library – Knowledge Embedding) package.6DGL-KE is a Python-

based implementation for the deep learning (DL)-based knowledge graph embedding algo-

rithms. Installation of DGL-KE follows instructions at: https://github.com/awslabs/dgl-ke. Specif-

ically, run the following commands to initiate the installation process for DGL-KE:

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

The following are detailed instructions on how to how to implement the biomedical knowledge dis-

covery pipeline. We show examples of each step in a tutorial Jupyter Notebook project called

‘‘Knowledge_Discovery_Pipeline.ipynb’’, which can be found in our GitHub repository.

iBKH data preprocessing

Timing: 30 min

Note: This section introduces steps for preprocessing the iBKH BKG data.

This protocol uses a comprehensive BKG we built, termed iBKH.1 Figure 2 illustrates the schema of

iBKH. Currently, iBKH includes 11 entity types (including anatomy, disease, drug, gene, molecule,

>sudo pip install dgl

>sudo pip install dgl-ke

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Anaconda (with Python
3.7.0 or later version)

Anaconda Inc. RRID: SCR_018317;
https://www.anaconda.com/download

iBKH Our recent paper1 http://ibkh.ai and https://github.
com/wcm-wanglab/iBKH

Source code This paper https://github.com/wcm-wanglab/
iBKH/tree/main/iBKH-KD-protocol
https://doi.org/10.5281/zenodo.8371233

Software and algorithms

NumPy 1.21.5 or later version Harris et al.7 SCR: 008633; https://numpy.org/

pandas 1.3.5 or later version NumFOCUS Inc. https://pandas.pydata.org

neo4j 5.3.0 or later version Neo4j Inc. https://neo4j.com/developer/python/

Network 2.6.3 or later version NetworkX Developers https://networkx.org

scikit-learn 0.23.1 or later version Buitinck et al.8 https://scikit-learn.org/stable/

PyTorch 1.4.0 or later version PyTorch Foundation https://pytorch.org

DGL-KE Zheng et al.6 https://github.com/awslabs/dgl-ke
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symptom, pathway, side effect, dietary supplement ingredient [DSI], dietary supplement product

[DSP], and dietary’s therapeutic class [TC]) and 45 relation types within different entity pairs such

as Drug- Disease (DDi), Drug-Drug (DD), Drug-Gene (DG), etc.

In a BKG, like the iBKH, a triplet is the smallest unit for storing information. Typically, a triplet can be

formulated as ðh;r ;tÞ, where h and t are the head and tail entities, and r is the relation linking h to t.

This section describes the steps for iBKH KG data preprocessing, i.e., extracting and formatting trip-

lets from the iBKH, which will be used to train knowledge graph embedding models.

1. Open the Anaconda-Navigator and launch the Jupyter Notebook.

2. In the Jupyter Notebook interface, run the following codes to import required packages.

Figure 2. Schema of iBKH knowledge graph

Each circle denotes an entity type, and each link denotes a meta relation between a pair of entities. Of note, a meta

relation can represent multiple types of relations between a specific pair of entities. For example, five potential

relations including ‘Associates’, ‘Downregulates’, ‘Upregulates’, ‘Inferred_Relation’, ‘Text_Semantic_Relation’ can

exist between a pair of disease and gene entities.

>import pandas as pd

>import numpy as np

>import pickle

>import torch as th

>import torch.nn.functional as fn

>import os

>import sys

>sys.path.append(’.’)

>import funcs.KG_processing as KG_processing
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3. Extract triplets from raw data of iBKH.

a. Set up the input and output file paths.

b. Extract triplets of different entity pair types by running following codes.

Note: This will result in a set of CSV files in the ‘‘iBKH-KD-protocol/data/triplets/’’, storing trip-

lets regarding each entity pair type.

c. Combine the triplets to generate a TSV file based on the DGL-KE input requirement.

> /* Input iBKH-KG data path */

>kg_folder = ’Data/iBKH/’

> /* Output path */

>triplet_path = ’Data/triplets/’

>if not os.path.exists(triplet_path):

> os.makedirs(triplet_path)

> /* Output data file path */

>output_path = ’Data/dataset/’

>if not os.path.exists(output_path):

> os.makedirs(output_path)

>KG_processing.DDi_triplets(kg_folder, triplet_path)

>KG_processing.DG_triplets(kg_folder, triplet_path)

>KG_processing.DPwy_triplets(kg_folder, triplet_path)

>KG_processing.DSE_triplets(kg_folder, triplet_path)

>KG_processing.DiDi_triplets(kg_folder, triplet_path)

>KG_processing.DiG_triplets(kg_folder, triplet_path)

>KG_processing.DiPwy_triplets(kg_folder, triplet_path)

>KG_processing.DiSy_triplets(kg_folder, triplet_path)

>KG_processing.GG_triplets(kg_folder, triplet_path)

>KG_processing.GPwy_triplets(kg_folder, triplet_path)

>KG_processing.DD_triplets(kg_folder, triplet_path)

> /* Specify triplet types you want to use. */

>included_pair_type = [’DDi’, ’DG’, ’DPwy’, ’DSE’, ’DiDi’, ’DiG’,

’DiPwy’, ’DiSy’, ’GG’, ’GPwy’, ’DD’]

> /* Combine triplets */

>KG_processing.generate_triplet_set(triplet_path=triplet_path)

> /* Generate DGL-KE required input triplet file */
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Note: The variable ‘‘included_pair_type’’ specifies a list of triplet types that we plan to use for

analysis. The generated data files can be found in the folder ‘‘iBKH-KD-protocol/data/data-

set/’’, including ‘‘training_triplets.txt’’, ‘‘validation_triplets.tsv’’, and ‘‘testing_triplets.tsv’’,

which will be used for training and evaluating the knowledge graph embedding models, as

well as ‘‘whole_triplets.tsv’’, which will be used for training the final models.

Knowledge Graph Embedding Learning

Timing: variable depending on hardware, approximately 8–24 h

Note: This section introduces steps for learning embedding vectors for entities and relations

in the iBKH.

Knowledge graph embedding aims to learn machine-readable embedding vectors for entities and

relations in a BKH (e.g., the iBKH) while preserving the graph structure.9,10 We engage four deep

learning-based knowledge graph embedding algorithms implemented in the DGL-KE, including

TransE,11 TransR,12 ComplEx,13 and DistMult.14 This section describes the steps for training the

models.

4. This step trains each knowledge graph embedding model (TransE, TransR, ComplEx, and

DistMult) using the iBKH.

a. Open command line (Windows OS and UNIX OS) or terminal (MAC OS) and change directory

to the project as below.

b. Train and evaluate the knowledge graph embedding model using below command:

>KG_processing.generate_DGL_training_set(triplet_path=triplet_path,\

output_path=output_path)

>cd [your file path]/iBKH-KD-protocol

> DGLBACKEND=pytorch \

dglke_train --dataset iBKH --data_path ./data/dataset \

--data_files training_triplets.tsv \

validation_triplets.tsv \

testing_triplets.tsv \

--format raw_udd_hrt --model_name [model name] \

--batch_size [batch size] --hidden_dim [hidden dim] \

--neg_sample_size [neg sample size] --gamma [gamma] \

--lr [learning rate] --max_step [max step] \

--log_interval [log interval] \

--batch_size_eval [batch size eval] \

-adv --regularization_coef [regularization coef] \

--num_thread [num thread] --num_proc [num proc] \
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Note:Weusemultiple measurements to evaluatemodel performances including: HITS@k, the

average number of times the positive triplet is among the k highest ranked triplets; Mean Rank

(MR), the average rank of the positive triplets; and Mean Reciprocal Rank (MRR), the average

reciprocal rank of the positive instances. Higher values of HITS@k and MRR and a lower value

of MR indicate good performance, and vice versa. Some useful arguments of the DGL-KE

command are listed in Table 1. Detailed instructions for the DGL-KE commands can be found

at: https://dglke.dgl.ai/doc/train.html.

c. Once the model can achieve a desirable performance in the testing set, we can re-train the

model using the whole dataset by running:

Note: This will generate two output files for each model: ‘‘iBKH_[model name]_entity.npy’’,

containing the low dimension embeddings of entities in iBKH and ‘‘iBKH_[model name]_rela-

tion.npy’’, containing the low dimension embeddings of relations in iBKH. These embeddings

can be used in downstream BKD tasks.

We run above procedures based on TransE, TransR, ComplEx, and DistMult, respectively, to gain

embedding vectors of entities and relations in the iBKH.

Note: The user may repeat the Step 4b multiple times to find the optimal hyperparameters of

each model. Here, we share the optimal hyperparameter values we found in our experiments

as listed in Table 2. For simplicity, the user can directly use the suggested hyperparameter

values to train the models. In addition, running time of the knowledge graph embedding pro-

cedure varies, depending on hardware used. For our experiments, we used a machine equip-

ped with an Intel i7-7800X CPU, boasting 6 cores and 12 threads, with a fundamental clock

speed of 3.5 GHz, coupled with 62GB of RAM. Training the four knowledge graph embedding

models within the dataset took approximately 8 hours in our experiment. The required

running time could extend to 24 hours or even more if a user expects to tune the models to

find the optimal hyperparameters for enhancing model performance.

--neg_sample_size_eval [neg sample size eval] \

--save_path ./data/embeddings --test

> DGLBACKEND=pytorch \

dglke_train --dataset iBKH --data_path ./data/dataset \

--data_files whole_triplets.tsv \

--format raw_udd_hrt --model_name [model name] \

--batch_size [batch size] --hidden_dim [hidden dim] \

--neg_sample_size [neg sample size] --gamma [gamma] \

--lr [learning rate] --max_step [max step] \

--log_interval [log interval] \

-adv --regularization_coef [regularization coef] \

--num_thread [num thread] --num_proc [num proc] \

--save_path ./data/embeddings
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Biomedical knowledge discovery – biomedical hypothesis generation

Timing: 30 min

Note: This section introduces the implementation of BKD based on knowledge graph embed-

dings learned from iBKH.

Here, we showcase a case study of drug repurposing hypothesis generation for Parkinson’s dis-

ease (PD).

5. Turn to the Jupyter Notebook interface and run the following script to import required package

packages.

6. Define the PD entity using

Table 1. Some useful arguments for training a knowledge graph embedding model using DGL-KE

Arguments Description

–dataset Dataset name.

–data_path Folder where the dataset is stored.

–data_files A list of input data files including [training data file], [validation data
file], and [testing data file], each of which contains a list of triplets
extracted from the BKG. The [training data file] is required and used
to train the model, while [validation data file] and [testing data
file] are optional and used for evaluating model performance.

–model_name Model used. DGL-KE provides multiple knowledge graph
embedding models. In the protocol, we suggest using TransE_l2,
TransR, DistMult, and ComplEx, whose robustness in iBKH has
been validated in our previous work.1

–batch_size The batch size for training.

–batch_size_eval The batch size used for model evaluation.

–neg_sample_size The number of negative samples we use for each positive
sample in the training.

–neg_sample_size_eval The number of negative samples we use to evaluate a positive sample.

–hidden_dim The sizes of the learned embeddings of relations and entities.

–gamma The margin value in the score function. It is used by TransE and TransR.

–lr The learning rate.

–max_step The maximal number of steps to train the model in a single process.

–log_interval Print runtime of different components every log_interval steps.

–regularization_coef The coefficient for regularization.

–num_thread The number of CPU threads to train the model in each process.

–num_proc The number of processes to train the model in parallel.

–test/–valid Evaluate the model on the testing/validation set after
the model is trained.

–save_path The folder where embedding vectors and logs are saved.

More details can be found at: https://dglke.dgl.ai/doc/train.html

>from funcs.KG_link_pred import generate_hypothesis,\

generate_hypothesis_ensemble_model

> PD = ["parkinson’s disease", "late onset parkinson’s disease"]
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Note: Here we collect a list of PD terms. These PD terms can be obtained in the entity vocab-

ularies in the ‘‘data/iBKH/entity’’ folder.

7. The task is to predict drug entities that don’t have ‘‘treats’’ and ‘‘palliates’’ relationships with PD in

the iBKH but can potentially treat or palliate PD. Therefore, we define a relation type list:

Note: More relation types can be found in the ‘‘data/iBKH/relation’’ folder.

8. Predict repurposable drug candidates for PD (in this example, we use embedding vectors based

on the TransE model for prediction):

Running the above code will result in an output CSV file within the ‘‘output’’ folder, which stores top-

100 ranked repurposable drug candidates for PD based on the TransE model.

Note: Please refer to Table 3 for detailed information regarding arguments of the function.

9. Using the code in Step 8 can make predictions based on a single knowledge graph embedding

model (TransE in the example). To enhance prediction performance, we also proposed an

ensemble model, which combines the four embedding algorithms to make predictions. In our

Table 2. Suggested hyperparameters for training the knowledge graph embedding models

Arguments TransE TransR ComplEx DistMult

–model_name TransE_l2 TransR ComplEx DistMult

–batch_size 1024 1024 1024 1024

–batch_size_eval 1000 1000 1000 1000

–neg_sample_size 256 256 256 256

–neg_sample_size_eval 1000 1000 1000 1000

–hidden_dim 400 200 200 400

–gamma 12.0 12.0 12.0 12.0

–lr 0.1 0.005 0.005 0.005

–max_step 10000 10000 10000 10000

–log_interval 100 100 100 100

–regularization_coef 1.00E-09 1.00E-07 1.00E-07 1.00E-07

> r_type = ["Treats_DDi", "Palliates_DDi"]

> proposed_df = generate_hypothesis(target_entity=PD,

candidate_entity_type=’drug’,

relation_type=r_type,

embedding_folder=’data/embeddings’,

method=’transE_l2’,

kg_folder = ’data/iBKH’,

triplet_folder = ’data/triplets’,

topK=100, save_path=’output’,

save=True, without_any_rel=False)
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preliminary work, we have demonstrated that the ensemble model can improve knowledge dis-

covery performance in iBKH.1 The following code introduces the usage of the ensemble model to

predict repurposable drug candidates for PD.

Running the above code will result in an output CSV file within the ‘‘output’’ folder, which stores top-

100 ranked repurposable drug candidates for PD based on the ensemble model.

Note: Please refer to Table 3 for detailed information regarding arguments of the function.

Prediction result interpretation

Timing: 30 min

Note: This section introduces the procedure of interpreting the prediction results based on

the iBKH.

We extract the shortest paths that connect the target entity (e.g., PD) with the predicted entities

(e.g., the predicted repurposing drug candidates of PD) to generate a contextual subnetwork.

10. Taking the PD drug repurposing task as an example, we can generate the contextual subnetwork

surrounding PD and some predicted repurposing drug candidates as below.

a. Import required package.

b. Specify the predicted drug candidates to interpret. Here, we focus on the top four candidates

predicted using the ensemble model, including Glutathione, Clioquinol, Steroids, and

Taurine.

c. Create a contextual subnetwork linking PD and the drug candidates.

> proposed_df = generate_hypothesis_ensemble_model (target_entity=PD,

candidate_entity_type=’drug’,

relation_type=r_type,

embedding_folder=’data/embeddings’,

kg_folder = ’data/iBKH’,

triplet_folder = ’data/triplets’,

topK=100, save_path=’output’,

save=True, without_any_rel=False)

>from funcs.knowledge_visualization as kv

> drug_list = [’Glutathione’, ’Clioquinol’, ’Steroids’, ’Taurine’]

> kv.subgraph_visualization(target_type=’Disease’,

target_list=PD,
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This will result in a figure saved as a PDF file in the ‘‘output’’ folder. Please refer to Table 4 for detailed

information regarding arguments of the function.

Note: The shortest path query is based on iBKH deployed using the Neo4j, an efficient graph

database. Please refer to https://github.com/wcm-wanglab/iBKH#neo4j-deployment for

detailed information if you want to create your own iBKH Neo4j instance.

EXPECTED OUTCOMES

The expected outcome of this protocol is the predicted new knowledge.

Following instructions in Steps 1–4, we could extract iBKH knowledge graph data and conduct

knowledge graph embedding with different algorithms including TransE, TransR, complEx, and

DistMult. First, each model will be trained in the training set and evaluated in the testing set (see

Step 3). This will result in link prediction performance of the embedding models. Of note, we can

repeat Step 4 multiple times to find the optimal model hyperparameters (see Table 1) to enhance

the learned embeddings. For convenience, we suggest the optimal hyperparameter values we

found as listed in Table 2. Given this, we could re-train the models using the whole data set, which

will result in entity and relation embedding vectors saved in the .npy files.

predicted_type=’Drug’,

predicted_list=drug_list,

neo4j_url = "neo4j://54.210.251.104:7687",

username = "neo4j", password = "password",

alpha=1.5, k=0.8, figsize=(15, 10),

save=True)

Table 3. Descriptions of arguments for hypothesis generation (the generate_hypothesis and

generate_hypothesis_ensemble_model functions)

Arguments Description

target_entity A list of terms of the target entity. Please refer to entity vocabularies
under the ‘‘data/iBKH/entity’’ directory. Note: only the names of the
entities should be used, and it is case sensitive.

candidate_entity_type A list of relation types to predict, linking the target entities and
candidate entities. Note: details of relation types can be found under
the ‘‘data/iBKH/relation’’ directory.

embedding_folder The folder that saves knowledge graph embedding results obtained in
the previous step. Default: ‘‘data/embeddings’’.

method Knowledge graph embedding method used. Options: transE_l2,
transR, DistMult, and ComplEx. Default: transE_l2. Note: only
applicable to the function: generate_hypothesis.

kg_folder The folder that saves the raw knowledge graph data. Default: ‘‘data/
iBKH’’.

triplet_folder The batch size used for validation and test.

without_any_rel If True, exclude candidate entities that have any relations with the
target entity. If False, only exclude candidate entities that have already
linked to the target entity with relations in the candidate_entity_type.
Default: False.

topK The output result will include the top K ranked candidate entities that
potentially link to the target entity. Default: 100.

save_path The folder to save the output results. Default: ‘‘output’’.

save This parameter determines whether the output results are saved in the
designated save_path. If True, the results will be stored; if False, the
results will not be saved. Default: True.
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Following instructions in Steps 5–9, we could conduct knowledge discovery. Taking the PD drug re-

purposing hypothesis generation task as an example, we can obtain a list of top-ranked potential

drug candidates as shown in Figure 3.

Additionally, following instructions in Step 10, we can extract the shortest paths linking PD and pre-

dicted drug candidates of interest, in the iBKH. This will result in a subnetwork as illustrated in

Figure 4.

LIMITATIONS

First, we used our iBKH knowledge graph in this protocol. iBKH has integrated data from a wide

spectrum of sources; however, the information contained therein can still be incomplete due to

the volume and speed of the new biomedical knowledge that has been generated everyday.1 For

instance, knowledge regarding entities like protein, protein structure, complex, mutation, etc. are

important resources but haven’t been included into iBKH yet. This may limit the capacity of our

approach in discovering knowledge related to these entities. . To address this, we will make curating

and adding new information into iBKH a continuous effort to enhance biomedical knowledge

discovery.

Second, this protocol leveraged knowledge graph embedding algorithms including TransE, TransR,

complEx, and DistMult which have demonstrated state-of-the-art performances. Beyond these,

other models like graph neural networks have also demonstrated significant performance in knowl-

edge discovery based on knowledge graph.15,16 We will incorporate more models to advance our

pipeline in the future.

Third, it is important to validate the novel knowledge discovered from iBKH. The current pipeline

supports generating a subnetwork based on shortest paths linking the target and predicted entities

Table 4. Descriptions of arguments for prediction result interpretation

Arguments Description

target_type Type of the target entity.

target_list A list of terms of the target entity. Please refer to entity vocabularies
under the ‘‘data/iBKH/entity’’ directory. Note: only the names of the
entities should be used, and it is case sensitive.

predicted_type Type of the predicted entities.

predicted_list A list of predicted entities.

excluded_r_type A list of relation types to be excluded for visualization. Default: [].

neo4j_url URL of Neo4j knowledge graph instance.

user_name Username of Neo4j instance.

password Password of Neo4j instance.

alpha Float. Alpha controls space between the target and predicted entities
in the illustration. Default: 1.

K Float. It controls distance between nodes. Default: 0.3.

nsize Node size.

target_size_ratio The ratio of target/predicted nodes to intermediate nodes. 1, all nodes
have the same size; >1, amplifying the target/predicted nodes.
Default: 2.5.

with_node_label Show node label if True. Default: True.

node_label_size Node label font size. Default: 10.

with_edge_label Show edge label if True. Default: True.

edge_label_size Edge label font size. Default: 7.

figsize Tuple. Figure size. Default: (14, 10).

save Save output figure as a file if True.

save_path The folder to save the output figure. Default: ‘‘output’’.

save_name The name of the output file. Default: None.

ll
OPEN ACCESS

12 STAR Protocols 4, 102666, December 15, 2023

Protocol



to interpret the results. As a relevant effort, we have built a biomedical evidence generation engine

based on literature mining, which can retrieve and synthesize evidence supporting particular hy-

potheses from state-of-the-art scientific publications.17 Taking the drug repurposing task as an

example, for each predicted drug candidate, we can retrieve relevant literature that discussed the

drug and the target disease. After that, we can generate a piece of textual summary to demonstrate

early evidence regarding potential relationships of the two entities. We plan to add this new func-

tionality to our pipeline in the future.

TROUBLESHOOTING

Problem 1

Fail to install the required Python packages (before you begin – python and packages installation).

Potential solution

Create a Conda virtual environment and install the packages following our instruction. Detailed in-

formation for creating a Conda virtual environment can be found at: https://conda.io/projects/

conda/en/latest/user-guide/tasks/manage-environments.html.

Problem 2

iBKH currently contains over 2 million entities and 50 million relations among them. Training the

knowledge graph embedding algorithms in such a huge graph data is time-consuming and the

running time highly depends on hardware used. (step-by-step method details – knowledge graph

embedding learning).

Potential solution

To address this issue to obtain the embedding vectors of entities and relations efficiently, potential

solutions include.

� Train the knowledge graph embedding models using a high-performance computation platform

equipped with more CPU cores (R 4) with high processing speed and memoryR 16GB.

� Use less triplet types. For instance, in the drug repurposing task, to save computation resource, we

can use included_pair_type = [’DDi’, ’DiG’, ’DG’, ’GG’, ’DD’, ’DiDi’] (see Step 3 in the instruction).

� Use our suggested hyperparameter values to train the models (Table 2).

� Use our pre-trained embeddings. Specifically, download the pre-trained embedding vectors at

https://drive.google.com/drive/folders/1HYDepbB2Vb2fMaHl_WjPwhWikRNJ5Lq5?

usp=share_link, and put the entire folder into the ‘‘./iBKH-KD-protocol/data’’ directory. Then, the

user can move to Step 5 for knowledge discovery.

Figure 3. An illustration of predicted potential drug candidates (top 20) for Parkinson’s disease using our protocol
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Problem 3

In knowledge graph embedding model fine-tuning, operating the DGL-KE command in Step 4 in a

large hyperparameter searching space is difficult. (step-by-step method details – knowledge graph

embedding learning).

Potential solution

We can create a terminal-executable Shell script to conduct grid search in the hyperparameter

space. For instance, we can create a Shell script named ‘‘fine-tune.sh’’ as below.

Figure 4. An illustration of subnetwork indicating the shortest paths that link Parkinson’s disease and four selected repurposable drug candidates

(Glutathione, Clioquinol, Steroids, and Taurine) in the iBKH

>#!/bin/bash

>seq_num=0

>for embed_size in 200 400

>do

>for lr in 0.001 0.005 0.01 0.05 0.1

>do

>echo "$embed_size; $lr"

>DGLBACKEND=pytorch \

dglke_train --dataset iBKH --data_path ./data/dataset \
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Problem 4

Entities (nodes) and relations (edges) appear disorganized and improperly configured in the subnet-

work visualization (step-by-step method details – prediction result interpretation).

Potential solution

Increase alpha, k, and target_size_ratio, and decrease nsize in the subgraph_visualization function

(Table 4).

Problem 5

Fail to generate subnetwork for prediction result interpretation due to failure of access to iBKH

instance in AWS. (step-by-step method details – prediction result interpretation).

Potential solution

Create a new iBKH instance using an Amazon Web Services server (AWS) or local server. Detailed

instructions can be found at: https://github.com/wcm-wanglab/iBKH#neo4j-deployment. Modify

the Neo4j login information (‘‘neo4j_url’’, ‘‘user_name’’, and ‘‘password’’) accordingly to generate

and visualize the subnetwork for interpreting results.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Prof. Fei Wang (few2001@med.cornell.edu).

Materials availability

This study did not generate any reagents.

Data and code availability

� The harmonized entity and relation source files for iBKH knowledge graph in CSV (comma-sepa-

rated values) format are publicly available online at https://github.com/wcm-wanglab/iBKH.

� The computer codes are publicly available online at https://github.com/wcm-wanglab/iBKH/tree/

main/iBKH-KD-protocol.

� Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

--data_files whole_triplets.tsv --format raw_udd_hrt \

--model_name [model name] --batch_size [batch size] \

--hidden_dim $embed_size --gamma [gamma]

--lr $lr --max_step [max step]

--log_interval [log interval] -adv

--regularization_coef [regularization coef]

--num_thread [num thread] --num_proc [num proc]

>done

>done

Then, turn to the command line (Windows OS and UNIX OS) or terminal (MAC OS), and run the commands

below

>sudo chmod 777 fine-tune.sh

>sh fine-tune.sh
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