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High-throughput target trial emulation for
Alzheimer’s disease drug repurposing with
real-world data

Chengxi Zang 1,2, Hao Zhang 1, Jie Xu3, Hansi Zhang3, Sajjad Fouladvand4,

Shreyas Havaldar5, Feixiong Cheng 6,7,8, Kun Chen 9, Yong Chen10,

Benjamin S. Glicksberg 5, Jin Chen4, Jiang Bian 3 & Fei Wang 1,2

Target trial emulation is the process of mimicking target randomized trials

using real-world data, where effective confounding control for unbiased

treatment effect estimation remains a main challenge. Although various

approaches have been proposed for this challenge, a systematic evaluation is

still lacking. Here we emulated trials for thousands of medications from two

large-scale real-world data warehouses, covering over 10 years of clinical

records for over 170 million patients, aiming to identify new indications of

approved drugs for Alzheimer’s disease. We assessed different propensity

scoremodels under the inverse probability of treatment weighting framework

and suggested a model selection strategy for improved baseline covariate

balancing.Wealso found that the deep learning-based propensity scoremodel

did not necessarily outperform logistic regression-basedmethods in covariate

balancing. Finally, we highlighted five top-ranked drugs (pantoprazole, gaba-

pentin, atorvastatin, fluticasone, and omeprazole) originally intended for

other indications with potential benefits for Alzheimer’s patients.

Pharmaceutical development of novel therapeutics for Alzheimer’s

disease (AD) has consumed a large amount of resources over the past

decades but the majority of AD clinical trials have failed to produce

positive results1. Drug repurposing, i.e., identifying novel indications

for already approved drugs with well-defined safety and toxicity pro-

files can potentially serve as a cost-effective way to accelerate AD drug

developmentwith a higher success rate2,3. Although repurposing drugs

for AD has received increasing attention, no success has been reported

on clinical sites4. One important reason is that existing efforts have

been mostly based on pre-clinical (e.g., -omics, chemical, etc.) data,

however, due to the complexity of the disease, these insights may not

be directly translational to clinical settings.

On theother hand, large-scale real-world patient data (RWD), such

as electronic health records (EHR) or administrative claims, has been

accumulated in recent years and becoming readily available. Gen-

erating drug repurposing hypotheses from RWD through emulating

randomized clinical trials (RCTs) has demonstrated great potential in

accelerating drug development and discovery innovations5–8. Due to

the complexity of RWD, trial emulation with large-scale RWD has

becomeagreat touchstone for advancedmachine learning algorithms,
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including machine learning (such as deep learning)-based propensity

score (denoted as ML-PS) methods, for effective inference of treat-

ment effects of drugs by adjusting for confounding issues within the

observational data. As an example, recently a long short-termmemory

with attention-based propensity score model (LSTM-PS) showed

superior performance in balancing covariates than the conventional

logistic regression-based PS model under the inverse probability of

treatment weighting (IPTW) framework7. However, the superiority of

theseML-PSmodels still lacks systematic studies andevaluations in the

context of target trial emulation on different RWD databases and dis-

ease areas.

In this study, we systematically investigated the feasibility of

generating AD drug repurposing hypotheses through a high-

throughput target trial emulation pipeline, using ML-PS models

under the inverse probability of treatment re-weighting (IPTW) fra-

mework. We used two large-scale longitudinal RWD datasets. One is

OneFlorida9, which is a large-scale electronic health record dataset.

The other is MarketScan10, which includes general administrative

insurance claims. Rather than focusing on generating one AD drug

repurposing hypothesis at a time as did in the existing literature3,11–13,

we emulated trials for thousands of drugs recorded in the RWD data-

bases, trying to estimate their adjusted associations with incident AD

diagnoses among mild cognitive impairment (MCI) patients and gen-

erate top-ranked AD drug repurposing hypotheses. Inferring such

associations from large-scale RWD requires that the distribution of

high-dimensional baseline covariates of different drug exposure

groups be balanced after re-weighting, mimicking the randomization

procedure in RCTs5,7,14–16. However, by investigating different ML-PS

models including the gradient-boosted machine-based PS models

(GBM-PS)17–19, multi-layer perception neural network-based PS models

(MLP-PS)20 and the long short-term memory neural network with

attention mechanisms-based PS models (LSTM-PS)7, we found that

these advanced ML-PS models did not necessarily lead to better per-

formance in terms of balancing baseline covariates. In addition, using

the standard model selection strategy for ML-PS models, which splits

the data intomutually exclusive training and testing sets and picks the

hyper-parameters based on cross-validation on the training set (say,

according to the area under the receiver operating characteristic curve

on predicting treatment assignment)21,22, may lead to inferior perfor-

mance. We, therefore, proposed a new model selection strategy by

leveraging both the cross-validation framework and balance diag-

nostics, which yields better performance in balancing baseline cov-

ariates.With this strategy, we showed that a simple regularized logistic

regression-based PS model can outperform other complicated

machine learning models including deep learning in covariate balan-

cing. With the best-performed model, performance, we identified five

top-ranked drugs (summarized in Fig. 3) including pantoprazole,

gabapentin, atorvastatin, fluticasone, and omeprazole, which were

associatedwith reduced risk of AD amongMCI patients in the five-year

follow-up period across both RWD databases. These drugs can

potentially be repurposing candidates for AD. Figure 1 illustrates the

overall pipeline, which includes the following steps.

First, we specified the protocols of hypothetical targeted trials

and their emulations using RWD. For each drug recorded in the data-

sets, we tried to estimate its association with AD onset (Fig. 1a). Briefly,

for each target drug, we included MCI patients who were at least 50

years old at their MCI diagnosis, we need such MCI diagnosis to be

before the date of the first target drug prescription (the index date),

and there is at least one year of records in the database before the

index date for collecting covariates, and noADor AD-related dementia

diagnoses up to five years before the index date. For each target drug,

we emulated one hundred trials by constructing different comparison

groups by selecting patients exposed to either a random alternative

drug or a similar drug within the same therapeutic class (e.g.,

the second-level Anatomical Therapeutic Chemical classification23).

All patients were followed up to five years in the primary analyses and

the two-year follow-up results were provided in the sensitivity ana-

lyses. In total, we investigated over 4300 unique drugs (grouped by

their major active ingredients) in these two databases and emulated

430,000 trials, which are thus referred to as high throughput target

trial emulations. The protocol specifics are outlined in the “Method”

section.

Then, we estimated the adjusted association of the target drug

and the five-year risk of AD under the IPTW framework. To achieve

better baseline covariate balancing, we proposed a new model selec-

tion strategy for ML-PS modeling (Fig. 1b). Specifically, we randomly

partitioned each emulated trial data into mutually exclusive training

and testing sets, and then selected the best modeling hyper-

parameters following the K-fold cross-validation framework on the

training set by leveraging the balance performance on both the

training and validation folds and generalization performance on

the validation fold. We quantified the balance performance by the

standardized mean difference (SMD)15,16 and the generalization per-

formance by the area under the receiver operating characteristic

(AUC). We tested four different ML-PS models including LR-PS, GBM-

PS,MLP-PS, and LSTM-PS, and observed that (i) all theseML-PSmodels

balanced more emulated trials using our proposed ML-PS model

selection strategy than using typical ML model selection strategies,

and (ii) with our strategy, complicated machine learning models such

as LSTM and GBDT did not necessarily outperform the simple reg-

ularized logistic regression model in covariate balancing.

Based on the proposed ML-PS model selection practice, we per-

formed the stabilized IPTW for re-weighted survival analysis in each

emulated trial as shown in Fig. 1c. We estimated the adjusted hazard

ratio of successfully balanced trials after re-weighting. We prioritized

drug candidates that showed significantly reduced risk associatedwith

AD in the following five years after the adjustment, and their adjusted

associations were replicated across the two databases (See details in

the Method-Screening section). Extensive sensitivity analyses (includ-

ing model selection under a nested cross-validation framework, dif-

ferent comparison groups, different baseline covariates selection

driven by both knowledge and causal discovery algorithms, different

follow-up periods, etc.), simulation studies, and rapid literature

reviews were further conducted to show the robustness of our results.

Our proposed high-throughput target trial emulation pipeline can

inform hypothesis generation at scale and can potentially accelerate

real-world evidence generation in the drug development process.

Results
A model selection strategy tailored for ML-PS models results in
better balancing
Taking the OneFlorida database (see Data Section) as our discovery

set, we included 73,927 patients withMCI diagnosis from 2012 to 2020

(Fig. 1a). We found 1,825 unique drug ingredients and, for each drug

ingredients we emulated 100 trials by building different comparison

groups (exposed to random alternative drugs, or exposed to similar

drugs under the same ATC-L2 category), leading to 182,500 trials in

total. We focused on 66 drugs with 6, 600 emulated trials of which

each treatment group has ≥ 500 patients. For each emulated trial, we

randomly partitioned the data into mutually exclusive training and

testing subsets with a ratio of 80:20. Different machine learning-based

propensity score (ML-PS) models, including regularized logistic

regression (LR), gradient-boosted machines (GBM), multi-layer per-

ceptrons (MLP), and long short-term memory networks (LSTM), were

trained on the same training set following a tenfold cross-validation

(CV) procedure (“Method” Section and Fig. 1b), and the best model

hyperparameters were selected by following three strategies: (a) the

area under the receiver operating characteristic curve (AUC) score on

the validation fold during the CV procedure, (b) the cross-entropy loss

(negative log-transformed likelihood) on the validation fold during the
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CV procedure, and (c) our proposed strategy, which leverages balance

performance on the training and validation combined folds, and AUC

on the validation fold during the CV procedure (Method Section and

Box 1). We evaluated the performance of selected models in terms of

balancing baseline covariates before and after IPTW on the training,

testing, and combined datasets. We considered 267-dimensional

baseline covariates including age, gender, comorbidities, and medi-

cation use history (Method section). We considered one covariate as

balanced if its standardized mean difference (SMD) of its prevalence

≤0.124, and one emulated trial before/after IPTW is balanced if the ratio

Fig. 1 | System overview. a Target trial emulations were conducted for all drugs in

two large-scale and longitudinal real-world data: the OneFlorida electronic health

records data and MarketScan administrative claims. The contrast was made

between individuals exposed to the target drug versus different comparison drugs

(a random drug or a similar drug). b Machine learning-based propensity score

models and inverse probability of treatment re-weighting were used for adjusting

high-dimensional baseline covariates (e.g. age, gender, disease comorbidities,

medications, etc) or covariates selected based on causal diagrams and knowledge.

A model selection framework tailored for ML-PS models was proposed to better

balancebaseline covariates on the train, unseen test, and combined sets. cAdjusted

survival analysis per endpoint was computed for each drug. Top-ranked repur-

posing hypotheses were selected. RWD Real-World Data, EHR Electronic Health

Records,MCIMild Cognitive Impairment, AD Alzheimer’s Disease, ATC Anatomical

Therapeutic Chemical classification, DAGs Directed Acyclic Graphs, CV Cross

Validation, ML-PS Machine Learning-based Propensity Score modeling, IPTW

Inverse Probability of Treatment Weight.
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of unbalanced features among all covariates before/after IPTW ≤ 2%7.

We summarized our cross-validation algorithm for the ML-PS model

selection and training in Box 1 (Method section), the evaluation algo-

rithm in Box 2 (Method section), and an illustration in Fig. 1b.

Figure 2 summarizes the balancing performance of the LR-based

PS model on the seen training, the unseen testing, and the combined

datasets after IPTW when using different ML-PS model selection stra-

tegies. We illustrated drugs with at least 10% balanced emulations

among emulations after re-weighting. Figure 2a shows the proportion

of successfully balanced drug trials on the training and testing com-

bined data; we observed that LR-PS models built with our proposed

model selection strategy balanced more emulated trails than using

typical ML model selection strategies. Strategies based on AUC or the

cross-entropy loss on the validation set selected less superior PS

models which balanced far fewer trials across different drugs. Speci-

fically, the existing ML-based model selection strategy selected PS

models that reduced more unbalanced covariates than others on the

testing set (Fig. 2d), but reduced fewer unbalanced covariates on the

training set (Fig. 2c), leading to less superior reduction of unbalanced

covariates on the training and testing combined data (Fig. 2b). Our

proposedmodel selection strategy balanced well on both training and

unseen testing sets, leading to better overall balance performance on

the training and testing combined set (Fig. 2b). The same phenomena

were also observed in other ML-PS models, including GBM-PS (Sup-

plementary Fig. S1), MLP-PS (Supplementary Fig. S2), and LSTM-PS

(Supplementary Fig. S3): existing ML-based model selection strategy

focusedmore on the generalizable performance on the testing set but

showed less superior balance performance on the training set. By

contrast, our prosed model selection strategy achieved improved

overall balancing performance for different ML-PS models.

To test the generalizability of our conclusion, we further applied

ourmodel selection strategy to another type of RWD, theMarketScan,

which is a national healthcare insurance claims database (see

Data Section). Following the same procedures as we did with the

OneFlorida data, we identified a total of 424,961 MCI patients from

2009 to 2020 amongwhich, therewere 2489 unique drug ingredients.

BOX 1

Cross-validation algorithm for training and selecting the machine
learning-based propensity score model

Input: train dataset (X, T) where covariates X 2 Rn×d and treatment

assignment T 2 0,1f gn;

FΘ,Φ: a set ofmachine learning-basedpropensity scoremodelswith

hyperparameter set Θ and learnable parameter set Φ;

Output: fθ0
,ϕ0 : the best propensity score model with the best

hyperparameter setting θ
0
Θ and learned parameter ϕ0Φ estimated

from (X, T).

1. Initialize the best hyperparameter θ
0 =θ Θ, the best balance

performance n0
unbalance = +1 and the best generalization perfor-

mance AUC0 =0.

2. For each θ in Θ do:

3. Randomly split (X, T) into K equal-sized

folds X,Tð Þ=
SK

k= 1

ðXk,TkÞ:

4. For each (Xk, Tk) fold in the K folds do:

5. Train fθ,ϕ on the remaining K-1 folds (XK�k,TK�k) by minimizing

binary cross-entropy loss LðT,fθ,ϕðXÞÞ leading to f
k

θ,ϕ̂.

6. On the whole (X, T), (a) compute stabilized IPTW w by using f
k

θ,ϕ̂

and Eq. (1); (b) compute reweighted SMDk using w, Eqs. (2, 3); and (c)

compute the number of unbalanced features nk

unbalance after

reweighting using Eq. (4).

7. On the validation set (Xk,Tk), compute the AUCk using f
k

θ,ϕ̂

8. Repeat step 4. to 7. until finishing K-fold iterations.

9. Compute average balance performance

nθ
unbalance

=Eθ
k∼K

½nθ
unbalance

� and generalization performance

AUCθ =E
θ
k∼K

½AUCk� over K folds.

10. Update θ
0 =θ, n0

unbalance =n
θ
unbalance

and AUC0 =AUCθ, if

nθ
unbalance

<n0
unbalance or if nθ

unbalance
ties n0

unbalance and AUCθ>AUC
0.

11. Repeat step 2. to 10. until all the hyperparmater settings are

iterated.

12. Retrain fθ0
,ϕ on the whole (X, T) leading to fθ0

,ϕ0

13. Use fθ0
,ϕ0 on the whole (X, T), (a) compute stabilized IPTW w by

using Eq. (1); (b) compute reweighted SMD usingw, Eqs. (2), (3); and (c)

compute the number of unbalanced features n0
unbalance after

reweighting using w and Eq. (4).

14. return fθ0
,ϕ0 , n0

unbalance, and AUC0.

BOX 2

Evaluation algorithm for themachine learning-basedpropensity score
model on both the seen train and unseen test data

Input: train data (X, T) and test dataðXtest,TtestÞ; fθ0,ϕ0 the propensity

score model with hyperparameter setting θ
0
and learned para-

meter ϕ0.

Output: the number of unbalanced covariates after re-weighting

using fθ0,ϕ0 on the train set, test set, and particularly their

combined set.

1. Use fθ0,ϕ0 on the train (X, T), (a) compute stabilized IPTW wtrain by

using Eq. (1); (b) compute reweighted SMDtrain usingwtrain, Eqs. (2), (3);

and (c) compute the number of unbalanced features n0
train after

reweighting using wtrain and Eq. (4).

2. Use fθ0,ϕ0 on the test ðXtest,TtestÞ, (a) compute stabilized IPTWwtest

by using Eq. (1); (b) compute reweighted SMDtest using wtest, Eqs. (2)

and (3); and (c) compute the number of unbalanced features n0
test after

reweighting using wtest and Eq. 4.

3. Use fθ0,ϕ0 on the combined ðX,TÞ∪ ðXtest,TtestÞ, (a) compute sta-

bilized IPTWwall by using Eq. (1); (b) compute reweighted SMDall using

wall, Eqs. (2) and (3); and (c) compute the number of unbalanced fea-

tures n0
all after reweighting using wall and Eq. (4).

4. return n0
train n0

test and n0
all
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We emulated 24,600 trials for 246 drugs that had ≥500 patients

in their respective treated groups. With the MarketScan data, we were

able to obtain the same conclusions: our model selection strategy

selected betterML-PSmodelswhich balancedmore trials than existing

model selection strategies for different ML-PS classes (Supplementary

Figs. S5, S6).

Do deep learning-based PS models result in better balancing?
Recently deep learning-basedmodels have demonstrated great promise

in various applications and researchers have proposed to apply these

models for PS calculation in trial emulation7. However, they followed

model selection strategies based solely on the validation set, leading to

less superior overall balancing performance than our proposed model

selection strategy as shown in the last subsection. Here, using the pro-

posed model selection strategy, we evaluated the performance of the

ML-PS calculationmodel basedon the long short-termmemorynetwork

with attention mechanisms (LSTM) used in Liu et al.7 and the deep

multilayer perceptron network (MLP) on the RWDs.

We observed that both LSTM-PS and MLP-PS did not necessarily

outperform simple LR-PS in terms of balancing baseline covariates in

our emulated trials. Supplementary Table S2 summarizes the balance

performance of different ML-PS models under the best model selec-

tion practice on theOneFlorida data.We also added results fromGBM-

PS as a comparison. We highlighted the best balancing performance in

bold. When considering the number of unbalanced covariates before

(column 5) and after (columns 6 and 9) re-weighting, we observed that

all the ML-PS models greatly reduced the unbalanced covariates after

re-weighting. However, the LR-PS model achieved fewer unbalanced

covariates (columns 6 and 9) andmore balanced trials (column 8) than

otherML-PSmodels after re-weighting. Thus, towards the best balance

a

b c d

Fig. 2 | Balance performance of the regularized logistic regression-based pro-

pensity score models (LR-PS) selected by different model selection strategies,

OneFloridadatabase, 2012–2020. aTheproportionof successfully balanced trials

by LR-PS selected using different model selection strategies. b–d The average

number of unbalanced baseline covariates before and after re-weighting on (b)

train and test combined set, (c) train set, and (d) unseen test set. Three model

selection strategies are (i) the AUC score on the validation fold during the cross-

validation procedure, (ii) the cross-entropy loss on the validation fold, and (iii) our

proposed strategy, which leverages balance performance on the training and

validation combined folds and generalization performance on the validation fold.

We reported drugs with ≥10% balanced trials among 100 emulations. A covariate is

assumed balanced if its standardized mean difference (SMD) of its prevalence

between exposure groups is at most 0.1 and a trial is assumed balanced if the ratio

of unbalanced features among all covariates before/after re-weighting is ≤2%. The

errorbars indicate 95%confidence intervals by 1000-timesbootstrapping.Welch’s t

test (two-sample, two-sided) is used for testing the means of binary indicators for

balanced trials, and p values and their associated significance marks are shown.

*p <0.05; **p <0.01; ***p <0.001; not significant with p ≥0.05 were not marked;

AUC, area under the receiver operating characteristic curve. Source data are pro-

vided as a Source Data file.
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practice in our empirical studies, we adopted our proposed ML-PS

model selection strategy (“Method” section, Box 1) and the LR-PS

model under the inverse probability of treatment weighting (IPTW)

framework to adjust for baseline covariates (Method sections).

Generating drug repurposing hypotheses for AD
We took the OneFlorida database as our discovery set and the Mar-

ketscan database as our validation set. For each drug ingredient in the

databases, we emulated 100 trials with varying comparison groups: (a)

50 groups with subjects being exposed to random drugs, and (b) 50

groups with subjects being exposed to similar drugs under the same

ATC-L2 category (mimicking active-comparator design25). We focused

on 66 drugs from OneFlorida and 246 drugs from Marketscan of

which emulations had at least 500 patients in their treated groups. The

outcome event was the AD onset in the five-year follow-up period

among the MCI patients, and we quantified the risk by the adjusted

hazard ratio (aHR) with 95% confidence intervals (CI). Toward the best

balancing performance, we adopted our proposed selection strategy,

the LR-PS model, and the IPTW framework to adjust for 267-

dimensional baseline covariates (Method sections). A repurposable

drug candidatewas identified if (i) it was associatedwith a reduced risk

(aHR <1) of developing AD among MCI patients than comparison

groups, (ii) its decreased riskwas replicated in both twodatasets (EHRs

and administrative claims), and (iii) to control for potential false

findings, we used the corrected significance level of 1:6× 10�4 by the

Bonferroni method26. Fig. 3 highlights the identified five repurposable

drug candidates, and for additional evidence, we further conducted a

rapid literature review27 for each drug. We summarized the results as

follows:

Pantoprazole is a proton pump inhibitor (PPI) drug for treating

gastroesophageal reflux disease (GERD), a damaged esophagus, and

high levels of stomachacid causedby tumors.The associationbetween

using PPI drugs and the risk of incident AD or non-AD dementias was

contradictory in the existing literature28,29. We observed that panto-

prazole was associatedwith a reduced risk of ADwith aHR 0.81 (95%CI

0.80–0.83) from the OneFlorida and aHR 0.94 (95% 0.92–0.96) from

the MarketScan in the five-year follow-up period.

Gabapentin is an anti-epileptic drug for treating seizures and pain.

Previous research suggested the possible benefit of gabapentin for

behavioral and psychological symptoms of dementia in AD patients

based on summarizing case reviews30 and revealed a crucial role of

gabapentin in the Amyloid Beta toxicity cascade31. We observed that

gabapentin was associated with a reduced risk of AD with aHR 0.76

(95% CI 0.73–0.77) from the OneFlorida and aHR 0.79 (95% CI

0.77–0.81) from the MarketScan in the five-year follow-up period.

Atorvastatin is used to treat high cholesterol and triglyceride

levels and shows potentially beneficial but not significant effects on

AD32,33. We observed that atorvastatin was associated with a reduced

risk of AD with aHR 0.74 (95% CI 0.73–0.76) from the OneFlorida and

aHR 0.92 (95% CI 0.90–0.94) from the MarketScan in the five-year

follow-up period.

Fluticasone is used to treat nasal symptoms, skin diseases, and

asthma. Xu et al. validated fluticasone fromMarketScan and showed a

decreased risk for AD (HR 0.86, 95% CI 0.83–0.89)11, and Lehrer et al.

also suggested a lower incidence of AD after taking fluticasone in

another independent database, FDA MedWatch Adverse Events

Database34. We observed that fluticasone was associated with a

decreased risk of AD with aHR 0.92 (95% CI 0.89–0.95) and aHR 0.86

(95% CI 0.84–0.87) in the five-year follow-up period from the One-

Florida and the MarketScan, respectively.

Omeprazole is also a PPI drug. There is still no consensus on the

role of PPIs and AD28,29,35. We observed that omeprazolewas associated

with a decreased risk of ADwith aHR 0.86 (95%CI 0.84–0.88) from the

OneFlorida and aHR 0.91 (95% CI 0.89–0.94) from the MarketScan in

the five-year follow-up period.

Sensitivity analyses
To assess the robustness of our results, we conducted multiple sensi-

tivity analyses to investigate how the generated repurposing hypoth-

eses would change when we modified different modeling aspects.

First, we developed our primaryML-PSmodel selection under the

cross-validation framework. We further extended our model selection

strategy to the nested cross-validation procedure (with 10-fold outer

cross-validation and 5-fold inner cross-validation)36. As shown in Sup-

plementary Fig. S4, we got similar results as our primary analysis

in Fig. 2.

Second, we investigated how the estimated adjusted hazard ratios

will change when constructing comparison groups in different ways,

including patientswhowere exposed to randomdrugs or similar drugs

under the same ATC-L2 category (Method Section). Two types of

controls are trying to mimic placebo-comparator design and active-

comparator design respectively. As shown in Fig. 3, the aHR results in

sensitivity analyses (-Rand, -ATC) were consistent with primary results

(-All) across both the OneFlorida (FL) and the MarketScan (MS) data-

bases for most of the drugs. One exception is the fluticasone when

using ATC-L2 controls and using the OneFlorida data (Fig. 3d, FL-ATC),

exhibiting a nonsignificant aHR 1.02 (95% CI 1.00–1.04).

Third, adjusting for high-dimensional baseline covariates might

introduce additional bias by conditioning on “bad controls” (e.g.,

mediator, or collider covariates)37,38. Here we adjusted for likely “good

controls”38 by considering hypothetical causal diagrams in the form of

directed acyclic graphs (DAGs). The DAGs were built based on both

existing knowledge and data-driven causal discovery algorithms.

Specifically, we selected a subset of baseline covariates which are,

based on the best available knowledge, risk factors for or associated

with AD, including age (the single most significant factor), gender,

hypertension, hyperlipidemia, obesity, diabetes, heart failure, stroke,

ischemic heart disease, traumatic brain injury due to brain damage,

anxiety disorders, sleep disorders, alcohol use disorders, menopause,

and periodontitis3,39. Second, we used the constraint-based causal

structure learning algorithm stable PC-algorithm40 in each emulated

trial to learn its associated DAGs. For each emulated trial, we excluded

identified colliders (includingM-colliders) andmediators and assumed

that the remaining covariates were more likely to be confounders of

the treatment assignment and theADonset to adjust for.We replicated

our analyses by adjusting for these baseline covariates across two

databases and summarized the results in Fig. 4 (See more on experi-

ment setup and DAG examples in Supplementary Method). Again, we

found consistent aHR trends in this sensitivity analysis as in our pri-

mary results (Fig. 3) for the top five drugs. One additional drug iden-

tified in this sensitivity analysis is albuterol, which is a drug for asthma

and chronic obstructive pulmonary disease (COPD) treatment. We

found aHR 0.85 (95% CI 0.83–0.88) in the OneFlorida and aHR 0.75

(95% CI 0.73–0.76) in the MarketScan in this sensitivity analysis. By

contrast, in the primary analysis albuterol showed aHR of 1.09 (95% CI

1.07-1.10) in the OneFlorida and aHR of 0.72 (95% CI 0.71-0.73) in the

MarketScan.

Lastly, we investigated how different follow-up periods will influ-

ence the generated hypotheses. We estimated aHR at the end of the

two-year follow-up and summarized results in Supplementary Fig. S7.

We replicated all five generated repurposing hypotheses as in the

primary analyses (Fig. 3). One additional hypothesis generated is the

albuterol, as shown in Supplementary Fig. S7f, showing aHR 0.80 (95%

CI 0.79–0.82) in the OneFlorida and 0.78 (95% CI 0.75–0.80) in the

MarketScan.

Simulation studies
We further conducted simulation studies to validate the balancing

performance and, more importantly, the bias reduction when using

our proposed ML-PS model selection algorithm and LR-PS model as

used in our primary analysis. We generated high-dimensional baseline
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covariates X, treatment assignments Z, and time-to-event (t2e) out-

comes T, aiming to simulate high-dimensional covariate space

encountered in our real-world data settings. The data generation

process was detailed in the Method section and illustrated in Supple-

mentary Fig. S8.We simulated trialswith different numbers of subjects

(3000, 3500, 4000, 4500, 5000), different treatment assignment

mechanisms in generation (linear and nonlinear), and different treat-

ment assignment mechanisms in estimation (correctly specified and

incorrectly specified). We summarized the results in Supplementary

Figs. S9, S10. Specifically, our ML-PSmodel selection strategy selected

LR-PSmodels which consistently balancedmore emulated trials under

different settings than other strategies (Supplementary Fig. S9a) and

did well in reducing the number of unbalanced covariates after re-

weighting on the seen training and unseen testing combined set

(Supplementary Fig. S10a). What’s more, regarding the outcome esti-

mation, our strategy showed best 95% confidence interval coverage of

true hazard ratios (Supplementary Fig. S9b) and best reduction of bias

of the estimated marginal hazard ratio (Supplementary Fig. S10d–f)

and lowest mean squared error of the estimatedmarginal hazard ratio

after reweighting (Supplementary Fig. S10g–i) on both seen training

and unseen testing sets (See details in the Method section, and sum-

marized results in Supplementary Table S7). In all, our modeling

(d) fluticasone

Sensitivity analysis on                                          with random drugs as controls 

Sensitivity analysis on                                          with ATC-L2 drugs as controls 

(a) pantoprazole (b) gabapentin

(c) atorvastatin

Primary analysis on 

(Lower risk) (Higher risk) (Lower risk) (Higher risk)

OneFlorida / MarketScan

OneFlorida / MarketScan

OneFlorida / MarketScan

(e) omeprazole

Fig. 3 | Generated drug repurposing hypotheses for AD with adjusted hazard

ratios and 95% confidence intervals in the five-year follow-up period. Target

Trial emulations of these drugs (a–e) were performed on OneFlorida and Market-

Scan data separately. For each drug, treated groups consisted of patients whowere

exposed to the trial drug, and control groups were built by either: (i) randomly

selecting alternative drug groups, or (ii) using drug groups under the same second-

level Anatomical Therapeutic Chemical classification codes (ATC-L2) as the trial

drug. The primary analysis emulated 100 trials consisting of 50 random control

groups and 50 ATC-L2 control groups (FL-All and MS-All), and two sensitivity

analyses using only random controls (FL-Rand and MS-Rand) or only ATC-L2 con-

trols (FL-ATC and MS-ATC). The error bars indicate 95% 1000-time-bootstrapped

confidence intervals of aHR from balanced trials. The aHR was calculated by the

Cox proportional hazard model for each balanced trial after re-weighting. The

average number, denoted by #, of patients in treated and control arms was also

shown. FL OneFlorida, MS MarketScan, aHR adjusted hazard ratio, CI confidence

interval, ATC Anatomical Therapeutic Chemical classification. Source data are

provided as a Source Data file.
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strategy showed superior performance than existing model selection

strategies in both balance diagnostics and outcome estimation in our

simulation settings.

Discussion
Leveraging our ML-PS model selection algorithm towards the best

balancing performance, a high-throughput clinical trial emulation

pipeline, and two large-scale RWD data warehouses covering both

EHRs and claims, we generated drug repurposing hypotheses which

were associated with decreased risk of AD over a five-year follow-up

period among MCI patients. The robustness of our results was further

validated by extensive sensitivity analyses (including a nested cross-

validation framework extension, two ways of building comparison

groups, baseline covariates selection driven by both existing knowl-

edge and causal discovery algorithms, two-year follow-up period, etc.)

and simulation studies. There are several aspects we would like to

highlight.

First, existing AD repurposing studies typically focused on vali-

dating one hypothesis at a time with a single type of RWD3,11–13. By

contrast, our study enables generating multiple AD repurposing

hypotheses by screening hundreds of drugs using high-throughput

trial emulations onboth EHRs and claims,whichwould further scaleup

(d) fluticasone

(a) pantoprazole (b) gabapentin

(c) atorvastatin

(Lower risk) (Higher risk) (Lower risk) (Higher risk)

(e) omeprazole

Sensitivity analysis on                                          

Sensitivity analysis on                                          

Sensitivity analysis on OneFlorida / MarketScan

OneFlorida / MarketScan

OneFlorida / MarketScan

considering DAGs and with both controls

considering DAGs and with random drugs as controls 

considering DAGs and with ATC-L2 drugs as controls 

Fig. 4 | Sensitivity analysis of generated drug repurposing hypotheses when

adjusting for baseline covariates selected by using both existing knowledge

and causal discovery algorithms. The adjusted hazard ratios and 95% confidence

intervals in the five-year follow-up period were reported. Trial emulations of these

drugs (a–e) were performed on OneFlorida and MarketScan data separately. For

each drug, treated groups consisted of patientswhowere exposed to the trial drug,

and control groups were built by either: (i) randomly selecting alternative drug

groups, or (ii) using drug groups under the same second-level Anatomical Ther-

apeutic Chemical classification codes (ATC-L2) as the trial drug. The overall analysis

emulated 100 trials consisting of 50 random control groups and 50ATC-L2 control

groups (FL-All and MS-All), and two separate analyses using only random controls

(FL-Rand and MS-Rand) or only ATC-L2 controls (FL-ATC and MS-ATC). The error

bars indicate 95% 1000-time-bootstrapped confidence intervals of aHR from

balanced trials. The aHR was calculated by the Cox proportional hazard model for

each balanced trial after re-weighting. The average number of patients, denoted by

#, in treated and control armswas also shown. FLOneFlorida,MSMarketScan, DAG

directed acyclic graphs, aHR adjusted hazard ratio, CI confidence interval, ATC

Anatomical Therapeutic Chemical classification. Source data are provided as a

Source Data file.
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innovations in AD drug discovery or can be broadly applied to other

diseases.

Second, we emulated hundreds of trials for each drug based on

two different ways of constructing comparison groups, which allowed

for a potentially more robust estimation of treatment effects. In our

investigation, indeed, we sometimes observed a large discrepancy

between emulated trials when building control groups in different

ways (Fig. 3d, fluticasone, FL-Rand, aHR 0.84, 95% CI 0.80–0.87 versus

FL-ATC, aHR 1.02, 95% CI 1.00–1.04). These variabilities can become

big challenges for existing observational studies that use a single

control group41or a singlewayof buildingmultiple control groups (e.g.

only random control groups)7. Besides, we observed inconsistent

results across different RWD datasets. For example, escitalopram

showed a reduced risk in the OneFlorida data (aHR 0.70, 95% CI 0.63-

0.79 at 2-yr follow-up, Supplemental Table S5) but increased risk in the

MarketScan database (aHR 1.56, 95% CI 1.49–1.62 at 2-yr follow-up,

Supplemental Table S6). Potential explanations were rooted in intrin-

sic heterogeneity across the two datasets: OneFlorida is a regional

database that mainly covers patients’ EHRs in the Florida area, while

MarketScan is a nationwide claims database across the US (Supple-

mentary Table S1). For example, the number of patients in the escita-

lopram group in OneFlorida and MarketScan were 767 and

5041, respectively. Such inconsistency highlights the necessity of

leveraging different RWD data sets to derive robust and consistent

evidence42,43.

Lots of recent research efforts have been devoted to developing

complex machine learning-based or deep learning-based models for

propensity score-based modeling using the IPTW framework, aiming

to better balance the distribution of covariates between treated and

control patients observed from the RWD, in lieu of randomization7,44,45.

In this paper, after emulating hundreds of thousands of trials from two

large-scale RWD warehouses, we found that GBM-PS, MLP-PS, and

LSTM-PS, which are representative ML-PS methods, did not outper-

form LR-PS in terms of balancing performance on training and testing

combined sets. Our study highlighted the importance of model

selection and we proposed a strategy tailored for ML-PS modeling.

Specifically, directly applying the cross-validation framework based on

AUC on the validation set, i.e., the typical MLmodel selection practice,

might select ML-PS models that lead to less superior balancing per-

formance on both the real-world data (Fig. 2) and simulated data

(Supplementary Figs. S9a, S10a–c), and estimated adjusted hazard

ratio with serious bias issues in our simulation studies (Supplementary

Figs. S9b, S10d–i). Thus, we emphasize the need for a better model

selection strategy for ML-PS calculation. With all these investigations,

we were able to show that our proposed model selection strategy

under the cross-validation framework (or its nested CV extension)

could serve as a better choice than existing model selection strategies

for ML-PS models in emulated trials.

This study has several limitations. First, we identifiedMCI patients

and AD onsets using ICD codes (Supplementary Table S3) which were

provided by physicians and validated46,47 yet there might be a certain

level of inaccuracy due to mis- and under-diagnosis or the lack of

clinical details in EHRs or claims48. Information contained in clinical

notes will be explored in the future through natural language proces-

sing to complement the structured codes. Second, we balanced both

high-dimensional baseline covariates as well as those selected by

knowledge anddata-driven causal discovery algorithmswith identified

likely mediators or colliders excluded38, measurement error, residual

confounding, and selection bias were still possible. Therefore, devel-

oping negative control tools49, consider the per-protocol association

analysis under the time-varying exposures, or incorporating more

ML-PS model classes by an ensemble framework50 under our high-

throughput trial emulation settings would be other promising

directions. In addition, we assumed non-informative censoring in our

time-to-event analyses and detecting and modeling potentially

informative censoring can be a future extension to our current pipe-

line. Third, assessing the comparability of different exposure groups in

the weighted sample is a very crucial step in the IPTW-based method

and should not be omitted15,51. However, would like to suggest that a

good performance of SMD is necessary but not sufficient for a good

balance or less-biased estimates in light of our simulation studies.

Thus, we would like to explore more simulation setups in the future

under more complex scenarios including different non-linear treat-

ment assignment mechanisms and time-to-event generation beyond

proportional hazard assumptions. In addition, we would like to

incorporate the relative effects of each covariate on the outcome as

future extensions. Fourth, we generated repurposing hypotheses by

considering the intention-to-treat association at a five-year or two-year

follow-up period as the outcome and adopted a concise set of elig-

ibility criteria. Further directions include considering the real-world

safety profiles46 as another outcome or automatically designing elig-

ibility criteria52 tailored for each emulated trial under our high-

throughput setting. Last but not least, to generate more generalizable

hypotheses, we validated our system on a nationwide claim database

and a regional EHR database. However, it is still worthwhile to validate

our proposed system or generate hypotheses based on more RWD

databases. Thus, adapting the proposed system with a federated

learning framework53 is also a potential future direction.

In conclusion, this study proposed a high-throughput target trial

emulation system for generating AD drug repurposing hypotheses

based on two longitudinal RWD databases, leveraging ML-PS models,

a tailored model selection strategy for ML-PS models, and the

IPTW framework. In two large-scale RWD datasets covering both EHRs

and general claims, we identified five top-ranked drugs (pantoprazole,

gabapentin, atorvastatin, fluticasone, and omeprazole) with different

original indications that could be potentially beneficial to AD

patients amongMCI patients. Our analyses highlighted that the model

selection, which is largely ignored compared with the design of the

ML-PS models, is critical in balancing emulated trials. Our study can

inform future target trial emulations at scale and can potentially

accelerate innovations in the drug discovery and development

process.

Methods
This study was approved by the Institutional Review Board of Weill

Cornell Medicine with protocol number 21-07023759. The use of

OneFlorida data for this study is approved under the University of

Florida IRB number IRB202001888. Access to the MarketScan data

analyzed in this manuscript is provided by the University of Kentucky.

Data
We used two large-scale real-world longitudinal patient-level

healthcare warehouses, including OneFlorida Clinical Research Con-

sortium and IBM MarketScan Commercial Claims and Encounters

(Data availability section). The OneFlorida database contains robust

patient-level electronic health record data for nearly 15 million

(14,883,388) patients mostly from Florida and selected cities in Geor-

gia and Alabama from January 2012 to April 2020, and the IBM Mar-

ketScan database (formerly known as Truven) contains administrative

claim records from January 2009 to June 2020 for over 164 million

(164,148,434) enrollees across the US, serving as a nationally repre-

sentative database of the US population (See Supplementary Table S1

for the population characteristics of two databases). Both databases

contain comprehensive longitudinal information on demographics,

diagnoses, procedures, prescriptions, andoutpatient dispensing for all

enrollees.

High-throughput target trial emulation specifications
We emulated trials for thousands of drugs recorded in two RWD

databases, aiming to find potentially new indications of non-AD
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drugs for AD among MCI patients. We described the protocol of

high-throughput trial emulations as follows and compared hypothe-

tical target trials and their emulations in Table 1. An illustration of the

high-throughput cohort selection process is shown in Fig. 1a.

Eligibility criteria
We included patients with at least one mild cognitive impairment

(MCI) diagnosis between January 2012 and April 2020 in the One-

Florida database (January 2009 to Jun 2020 in the MarketScan data).

Patients required with age ≥ 50 years old at MCI diagnosis, no history

of AD or AD-related dementia diagnoses within five years before the

index date, the first MCI diagnosis date should be before the index

date, and the baseline period captured in the database should ≥ one

year without an upper limit. We defined the index date as the date of

initiation of the trial drug, and at baseline, all of the above criteria

should have been met.

Treatment strategies
We compared two strategies for each drug trial: initiation of the trial

drug at baseline (treated group), and initiation of an alternativedrug at

baseline (comparison group).We defined the treatment initiation date

with the drug of interest as the first prescription date of the drug and

we required at least two consecutive drug prescriptions over 30 days

since the first prescription date in our database as a valid drug

initiation.

Treatment assignment procedures
We classified patients into different drug groups according to their

baseline eligibility criteria and their treatment strategies. We assumed

that the treated group and comparison group were exchangeable at

baseline conditional on baseline covariates, including age, self-

reported gender/sex, baseline comorbidities, medications, and time

from the MCI diagnosis date to the drug initiation date. The baseline

comorbidities consisted of selected comorbidities from Chronic

Conditions Data Warehouse54 and established risk factors for AD

selected by experts, resulting in 64 covariates (Supplementary

Table S4); each defined by a set of selected ICD-9/10 codes. We

grouped drug prescriptions coded as National Drug Code (NDC) or

RXNORM codes into their major active ingredients coded in RXNORM

defined in Unified Medical Language System55 for the OneFlorida case

and into the Medi-Span Generic Product Identifier (GPI)56 by their first

8 digits for the MarketScan data. We used the top 200 prevalent pre-

scribed drug ingredients for the covariates for the medication history.

The age and the time from theMCI diagnosis date to the drug initiation

date were encoded as continuous variables, and the gender, comor-

bidities, and medication uses were encoded as binary variables.

Table 1 | Specifications of hypothetical target trials and their high-throughput emulations using real-world data from
OneFlorida electronic health records and MarketScan claims

Protocol

component

Target trial specification Target trial emulation

Eligibility criteria Patients with MCI, age ≥ 50 at MCI diagnosis, and no upper age limit.

No history of AD or dementia before baseline. No trial drug prescrip-

tion before baseline. The baseline is defined as the date when all

eligibility criteria are met.

Same as for the target trial.WedefinedMCI diagnosis according to the

selected ICD-9/10 codes between January 2012 and April 2020 in the

OneFlorida data, and January 2009 and June 2020 in the MarketScan

data We required a minimum of one year and no upper limit from one

individual’s first record in the database to his/her index date. We

required no AD or related dementia five years before the index date.

We required the first MCI diagnosis before the trial drug initiation. The

index date is defined as the first date of the trial drug prescription and

at that time point, all eligibility criteria are met.

Treatment

strategies

Strategy a: Initiation of the trial drug at baseline. Strategy b: Initiation

of an alternative drug at baseline.

Same as for the target trial. We defined a drug initiation date to be the

first date of a prescription of the trial drug andwe required at least two

prescriptions separated at least onemonth from the initiation date as a

valid initiation.

Treatment

assignment

Patients are randomlyassigned to either treatment strategyat baseline

and are aware of the strategy they are assigned to.

We classified patients into different arms according to their baseline

eligibility criteria and treatment strategy.We assumed that the treated

group and control group were exchangeable by adjusting for covari-

ates collected before the baseline, including age, gender, comorbid-

ities, medications, time lag betweenMCI initiation and index date, etc.

Outcomes AD onset Same as for the target trial. We defined the incident AD outcome by

using selected ICD-9/10 diagnosis codes in the follow-up period.

Follow-up We followed each patient from his/her baseline date until the date of

his/her first AD diagnosis, loss to follow-up, or five years after the

baseline, whichever happens first.

Same as for the target trial.

Causal contrast Intention-to-treat effect Observational analog of intention-to-treat effect.

High-throughput

trials

For a largenumber of trial drugcandidates,weconducteda target trial

for each of themby following the above protocol to estimate its effect.

We emulated target trials for all drugs in the database with ≥ 500

patients in the trial drug group, and for each drug, we emulated 100

trials by constructing different comparison groups by selecting eligi-

ble patients exposed to either a random alternative drug or a similar

drug within the same therapeutic class. Patients who were prescribed

the trial drug were excluded from comparison groups.

Statistical analysis Intention-to-treatment analysis as the time-to-first event. Applying

IPTW to adjust for baseline covariates. Non-parametric bootstrapping

for 95% CIs

Same intention-to-treat analyses. ApplyingML-PSmodels to adjust for

baseline covariates under the IPTW framework. The bestML-PSmodel

was selected by our proposed model selection strategy. Adjusted

hazard ratio by CoxPH, survival difference by KMmethod, and sample

mean with 95% bootstrapped CIs for balanced trials from high-

throughput emulations were reported. The Bonferroni corrected sig-

nificance level was adopted for screening. Sensitivity analyses

regarding different comparison groups, different follow-up periods

(e.g. two years), different covariates selected by existing knowledge

and causal discovery algorithm, and different significance levels.

MCImild cognitive impairment, AD Alzheimer’s disease, KM Kaplan-Meier, aHR adjusted hazard ratio, CoxPH Cox proportional hazards, CIs confidence,ML-PS Machine learning-based propensity

score models, IPTW Inverse Probability of Treatment Weight.
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In total, there were 267 covariates to adjust for. In addition to the 267

baseline covariates, we also considered the sequences of each of the

comorbidities and medications variables over time for the deep long

short-term memory network with attention mechanisms-based PS

calculation.

On the other hand, following the arguments that bad controls

should not be adjusted for38, we also built the baseline covariates by

considering hypothetical causal diagrams built by both existing

knowledge and data-driven causal discovery algorithms. Specifically,

basedon thebest available knowledge,we selected a subset ofbaseline

variables that are risk factors for or associated with AD, including age

(the single most significant factor), gender, hypertension, hyperlipi-

demia, obesity, diabetes, heart failure, stroke, ischemic heart disease,

traumatic brain injury due to brain damage, anxiety disorders, sleep

disorders, alcohol use disorders, menopause, and periodontitis3,39.

Next, we applied the constraint-based causal structure learning algo-

rithm stable PC-algorithm40 to each emulated trial to learn its likely

underlying directed acyclic graph. For each emulated trial, we exclu-

ded detected colliders (including M-colliders) and mediators and

assumed that the remaining covariates are more likely to be con-

founders of the treatment assignment and the AD onset to adjust for.

We used corrected significance level 2:9× 10�4 and Fisher-z’s test for

the stable PC-algorithm. See details in Supplementary Method.

Follow-up
We followed eachpatient fromhis/her baseline until the dayof thefirst

AD diagnosis, loss to follow-up (censoring), five years after baseline, or

the end date of our databases, whichever came first. As a sensitivity

analysis, we further shrunk the follow-up period from five years to

two years.

Outcomes
The outcome of interest is the incident AD diagnosis recorded in the

database within the follow-up period, which was denoted as a positive

event. If there was no AD diagnosis recorded in a patient’s follow-up

period, and the last prescription date or the last diagnosis date

recorded in the database came after the end of the follow-up, then we

marked it as a negative event. A censoring event is a case where there

was no AD diagnosis recorded in a patient’s follow-up period and the

last prescription date and the last diagnosis date recorded in the

database came before the end of the follow-up. The time to a positive

event is defined as the days between the baseline date and the first

diagnosis of AD. The time to a negative event is the time of the follow-

up period. The time to censoring is defined as the days between the

baseline date and the last prescription date or the last diagnosis date,

whichever comes last. Clinical phenotypes were identified by the

selected diagnosis codes by experts (Supplementary Table S3).

Causal associations of interest
The observational analogy of the intention-to-treat effect of being

assigned to trial drug initiation versus comparison drug initiation at

baseline.

High-throughput emulation
We emulated trials for all drugs that appeared in our databases. We

limited our analyses to drugs with at least 500 eligible patients in the

treated groups. For each emulated trial, its treated group consists of

eligible patients who initiated the trial drug, and its comparison group

consists of eligible patients who initiated alternative drugs. We con-

structed the comparison group by selecting patients who were

exposed to (a) a random drug other than the target trial drug, or (b) a

similar drug from the same second-level Anatomical Therapeutic

Chemical classification category (ATC-L2) as the target trial drug23,

trying to mimic active-comparator design25. We further excluded any

of those patients who were also in the trial drug group or prescribed

the trial drug before baseline.We emulated 100 trials for each targeted

drug among which 50 emulated trials adopted random controls and

the other 50 emulated trials adopted ATC-L2 controls as described

above. Different combinations of control groups were explored as

sensitivity analyses.

Adjusted survival analysis and generating repurposing drugs
We adopted machine learning models for propensity score modeling

(ML-PS) and followed the inverse probability of treatment weighting

(IPTW) framework for the adjustment15,51,57.

ML-PS and IPTW
We used (X, Z, Y, T) to represent data of the study population in one

emulated trial where X, Z, Y, T represent the baseline covariates,

treatment assignment, outcome indicator, and time to events,

respectively. The PS is defined as P(Z = 1|X) where Z is treatment

assignment (Z = 1 and Z = 0 for treated and control respectively) andX

denotes patients’observedbaseline covariates. The inverseprobability

of treatmentweight (IPTW) is defined as Z
PðZ= 1jXÞ +

1�Z
1�PðZ= 1jXÞ, which tries

to make the original trial into a more balanced pseudo-randomized

trial by re-weighting each data sample. We used an updated version

named stabilized IPTW, defined as

w=
Z×PðZ= 1Þ

PðZ= 1jXÞ
+
ð1� ZÞ×PðZ=0Þ

1� PðZ= 1jXÞ
ð1Þ

and further trimmed the top 1% smallest or biggest weight values, to

deal with extreme re-weighting weights and thus potentially inflated

sample size and large variance15.

A machine learning-based propensity score (ML-PS) model is a

binary classification model f »,× 2 FΘ,§ : X ! Z, to estimate PðZ= 1jXÞ

by f »,× with pre-specified hyper-parameters θ and learnable para-

meters ϕ. Here, we use FΘ,§ to denote a set of machine learning

models specified by a set of hyper-parameters Θ, and use f »,× to

denote one specific ML-PS model instance. We considered four

representative classes of machine learning models including (a) reg-

ularized logistic regression-based PSmodels (LR-PS), encompassing its

special case logistic regression without any regularization term which

is the most widely used statistical model for PS calculation; (b) the

gradient boosted machine-based PS models (GBM-PS) with the ran-

dom forest as base learners;17–19 (c) multi-layer perception network-

based PS models (MLP-PS)20, and (d) the long short-term memory

neural network with attention mechanisms for PS modeling

(LSTM-PS)7.

We searched the LR-PS model by varying regularizer terms

including L1-norm, L2-norm, and no regularizer, and varying inverse of

regularization strengths for the corresponding regularizer

ð10�3,10�2:5,10�2,10�1:5,10�1,10�0:5,100,100:5,101,101:5,102,102:5,103Þ.

The GBM-PSmodel space was defined by themaximumdepth (3, 4, 5),

max number of leaves in one tree (5, 25, 45, 65, 85, 105), and the

minimal number of samples in one leaf (200, 250, 300). The MLP-PS

model space was defined as a forward neural network with hidden

dimension (32, 64, 128, [32, 32], [64,64]), learning rate (1e-3, 1e-4),

weight decay (1e-3, 1e-4. 1e-5, 1e-6). The LSTM-PS model spaced was a

two-layered bidirectional LSTM by searching hidden dimensions (64,

128, 256), learning rate (1e-3, 1e-4), andweight decay (1e-3, 1e-4. 1e-5, 1e-

6). Both MLP-PS and LSTM-PS adopted 15 epochs and 128 batch sizes.

The best hyperparameter was selected by grid search for each of the

tenfold cross-validation rounds.

Balance diagnostics
We evaluated the performance of estimated ML-PS models in terms of

balancing baseline covariates. The goodness-of-balance is measured

by the standardized mean difference (SMD) of the covariates’
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prevalence15,16, defined as:

SMD xtreat,xcontrol

� �

=
j¿treat � ¿controlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
treat +S

2
controlÞ=2

q

ð2Þ

where xtreat,xcontrol 2 RD represent the vector representations of D

covariates of the treated group and control group respectively,

¿treat,¿control 2 RD are their sample means, and s2treat,s
2
control 2 RD are

their sample variances. Suppose that we have learned sample IPTW

weight wi for each patient i, the weighted sample means and variance

are:

¿weight =

P

wixi
P

wi

ð3Þ

sweight =

P

wi
P

wi

� �2
�
P

w2
i

X

wi xi � ¿weight

� �2

Theweighted versions ofmean and variance hold for both treated

and control groups and thuswe ignored their cornermarks for brevity.

The SMDweight can be calculated by applying the above-weightedmean

and variance to Eq.2. All operations in Eqs.2 and 3 are conducted in an

element-wise way for each covariate. For each dimension d of either

original SMD or weighted SMD, it is considered balanced if its SMD

value SMD(d) ≤0.124, and the treated and control groups are defined as

balanced if the total number of unbalanced features ≤ 2% * D7. More

stringent balance criteria (e.g., requiring non-unbalanced features)

were also considered as sensitivity analysis. Taking a re-weighted case

as an example, the number of unbalanced covariates after IPTW by:

nweight =
X

D

d = 1

l½SMDweightðdÞ>0:1� ð4Þ

To quantify the balance performance of high-throughput emula-

tions of one drug trial, we further defined the probability of success-

fully balancing one specific drugM trials by a set of ML-PS modelsFΘ

as PM,FΘ
, which can be estimated by the fraction of successfully

balanced trials over all emulations as follows:

PM,FΘ
=

Pne

i= 1 l½nweight ≤ 2% � Dj X,Z,Y,Tð Þi, f best 2FΘ�

ne

ð5Þ

where ne is the total number of emulations X,Z,Y,Tð Þi,i= 1,2, . . . ,ne for

drug M, f best is the best ML-PS model amongFΘ learned from the ith

emulated trial, and the IPTWand nweight are calculated by applying f best
to the ith emulated trial. We will discuss how to learn and select f best 2

FΘ in the next section. In general, the larger the balancing success rate

PM,FΘ
is, the betterFΘ the model balances the drug M trials.

Model selection, training, and evaluation
Here, we detail our cross-validation algorithm tailored for the ML-PS

model in Box 1, trying to select the best modeling hyper-parameters

from model space concerning the best balance performance on both

the train and unseen test datasets.We used binary cross-entropy loss L

as the objective function and gradient descend-based optimization

algorithms for learning empirical binary propensity scores. We

describe the evaluation (testing) algorithm for ML-PSmodels in Box 2,

to evaluate and benchmark different learned and selected ML-PS

models, in terms of their balance performance on the train and test

combined dataset..

Statistical analysis
The adjusted hazard ratio (aHR) and its P value were modeled by

the Cox proportional hazard model58 and the Wald Chi-Square test.

The adjusted survival difference was modeled by adjusted Kaplan-

Meier estimator59 for each emulated trial at the end of the follow-up.

we assumed non-informative censoring in our time-to-event analyses.

The stabilized inverse probability of treatment weights (IPTW) was

calculated by the best ML-PS model configuration selected by our

model selection strategy from regularized logistic regression model

space. For each drug, we reported their sample means of different

outcome estimators with 1000-time bootstrapped 95% confidence

intervals over all the balanced trials. The bootstrapping hypothesis

testing is used to test if the sample means of the adjusted aHRs is

<1 and we reported the aHR’s bootstrapped P value. The significance

level of aHR was corrected by the Bonferroni method for multiple

testing.

Screening and prioritization
To generate robust repurposing hypotheses, we required that

the fraction of successfully balanced trials of any drug candidate

after re-weighting should be ≥ 10%, the adjusted hazard ratios from

all the balanced trials smaller than 1, the aHR’s P value smaller

than the significance level 1:6× 10�4 (0.05/312) corrected by the

Bonferroni method, and the significantly reduced risk (aHR<1 and

aHR’s P value < 1:6× 10�4) should be replicated over both two RWD

databases. The candidate drugs were further ranked by their

estimated aHRs.

Comparison with existing works
We compared the analytic approach by Liu et al.7 and we found that

their methods led to biased SMD estimation and worse balance per-

formance as shown in Supplementary Table S2 due to their deep

LSTM-PSmethods. Besides, there are other major concerns. First, they

selected patients at baseline according to patients’ treatment strategy

over follow-up and such post-baseline information should not be used

at baseline60. Second, they estimated treatment effect by the average

treatment effect (ATE) ATE= E½Y1 � Y0� (Y1 and Y0 are the potential

outcomes for each patient under the treatment or the control

respectively), which can introduce selection bias due to loss to follow-

up (censoring)61. Third, they generated hypotheses only on one data-

base and used only random controls, ignoring the potential variability

we found over different databases and emulations with different

control groups.

Experimental settings
We implemented our high-throughput target trial emulation system

for drug repurposing using Python 3.9 and Pytorch 1.8 and trained

deep learning models by Adam optimizer62 on a Linux server with two

GeForce RTX 2080 Ti GPUs and 16 CPU cores. We used the Python

package lifelines-0.26 for survival analysis63, scikit-learn-0.23 for

machine learning models including regularized logistic regression64,

and lightgbm-3.2 for the gradient boostingmachine19. Python package

gcastle 1.0.3 for stable PC algorithm. We followed Liu et al. for their

LSTM-PS implementations7. We randomly partitioned each emulated

trial into complementary training and testing data sets with a ratio of

80:20, and 10-fold cross-validations were conducted on the training

set. Please refer to our python package for more details. For repro-

ducibility, we open-sourced our Python code package at https://

github.com/calvin-zcx/RWD4Drug.

Sensitivity analyses
We conducted multiple sensitivity analyses including (a) model

selection under a nested cross-validation framework, (b) different

comparison groups using patients who were exposed to random

alternative drugs or similar drugs as the trial drug, (c) different set of

baseline covariates selected by using existing knowledge and causal

discovery algorithms, (d) different follow-up periods like two-year

follow-up.
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Simulation Study
Here we conducted a simulation study to validate the balance per-

formance and bias reduction performance of our proposed model

selection algorithm for LR-PS as we did in our primary analyses.

Data generation. We generated baseline covariates X, treatment

assignments Z, and time-to-event (t2e) outcomes T for each subject by

adapting existing simulation algorithms65,66 from generating less than

ten baseline covariates to hundreds of baseline covariates, aiming

to simulate a high-dimensional covariate space encountered in our

real-world data experiments. We summarized the causal diagram

for our simulation algorithm in Supplementary Fig. S8a. In total

267 baseline covariates (X1,…, X267) were simulated for each subject,

following the distributions and causal coefficients shown as follows:

X1,X3 ∼Bernoulli 0:5ð Þ, X2 ∼Bernoulli 0:3 +0:1*X1

� �

, X4,X6 ∼Normal

0,1ð Þ, X5 ∼0:3 +0:1*X6 +Normal 0,1ð Þ, X7:11 ∼Bernoulli 0:4ð Þ, and

X12:267 ∼Bernoullið0:2Þ.

The treatment assignment for each subject was drawn from one

linear generative mechanism as follows:

where U was sampled from a uniform distribution on (0,1). All the

generated survival times were censored at 200 and we didn’t assume

other censoring mechanisms. The distributions of time-to-events,

survival curves, and cumulative incidence curves of generated samples

were illustrated in Supplementary Fig. S8b-d. To estimate ground truth

marginal hazard ratios, we followed the strategy detailed by Austin,

et al.69 by generating 1 million samples with both potential outcomes,

assuming proportional hazard assumption, and using the Cox model

to estimate the ground truth marginal hazard ratio. Here we used a

ground truth hazard ratio of 0.578 for both the linear and nonlinear

treatment assignment models.

Simulation setups. We generated subjects by varying (1) sample sizes

(3000, 3500, 4000, 4500, 5000), (2) (1) linear andnonlinear treatment

assignment, and (3) using correct versus incorrect treatment assign-

ment mechanisms for estimating, leading to 20 simulation scenarios.

For each scenario, we repeated experiments 100 times with different

random seeds. We used a training set (80%) for model training and

model selection, following the tenfold cross-validation strategy, and

held out a test set (20%) to evaluate the generalization performance.

We compared our model selection algorithm with two typical model

selection strategies: (a) model selection strategy based on AUC on the

validation set, and (b) cross-entropy loss (negative log-transformed

likelihood) on the validation set. The best model was selected from a

model space defined based on logistic regression with different reg-

ularization terms (L1, L2, and no regularizer) with different inverse

strengths of the regularization ð10�3,10�2:5,10�2,10�1:5,10�1,10�0:5,

100,100:5,101,101:5,102,102:5,103Þ:). The incorrect X specifications

in the linear scenario are ðX2
1 ,X

2
2,X

2
3,X4,X5,X6,X7:11,X12:267Þ and

the incorrect specifications in the nonlinear scenario are

ðX 1,X2,X3,X4,X5,X6,X7:11,X12:267Þ.

Evaluation metrics. Different modeling performances were evaluated

in terms of (1) the ratio of successfully balanced simulations for each

scenario, (2) the average number of unbalanced features before and

after re-weighting, (3) theestimatedmarginal hazard ratios (HRs), (4) the

standarddeviationof the estimatedmarginalHRs, (5) the averagebias of

estimated marginal HRs, (6) the mean squared error of the estimated

marginal HRs, and (7) the confidence interval coverage (the percentage

of times the confidence interval contains the truth). The oracle standard

deviation is the standard deviation of the HR estimates across all simu-

lations; that is, (ψ1,…, ψB), for ψb representing the estimated hazard

ratio for simulation b, b 2 f1,:::,Bg, of B total simulations. TheWald type

95% confidence intervals, calculated as ψb ± 1.96 * σ, were used for

confidence interval (CI) coverage. The CI coverage is defined as the

proportion of times, across all simulations, the CI contains the true HR.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The OneFlorida data can be requested through https://

onefloridaconsortium.org/front-door/. Since the OneFlorida data is a

HIPAA-limited data set, a data use agreement needs to be established

with the OneFlorida network. The MarketScan dataset is available

from IBM at https://www.ibm.com/products/marketscan-research-

databases. The relevant raw data for each figure and table are pro-

vided in the Source Data file. Source data are provided with this paper.

Code availability
For reproducibility, we open-sourced our Python code package at

https://github.com/calvin-zcx/RWD4Drug with https://doi.org/10.

5281/zenodo.10070359.
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