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BACKGROUND: Measuring parathyroid hormone-related 
peptide (PTHrP) helps diagnose the humoral hypercalce-
mia of malignancy, but is often ordered for patients with 
low pretest probability, resulting in poor test utilization. 
Manual review of results to identify inappropriate 
PTHrP orders is a cumbersome process.

METHODS: Using a dataset of 1330 patients from a sin-
gle institute, we developed a machine learning (ML) 
model to predict abnormal PTHrP results. We then 
evaluated the performance of the model on two external 
datasets. Different strategies (model transporting, re-
training, rebuilding, and fine-tuning) were investigated 
to improve model generalizability. Maximum mean dis-
crepancy (MMD) was adopted to quantify the shift of 
data distributions across different datasets.

RESULTS: The model achieved an area under 
the receiver operating characteristic curve (AUROC) of 
0.936, and a specificity of 0.842 at 0.900 sensitivity in 
the development cohort. Directly transporting this model 
to two external datasets resulted in a deterioration of 
AUROC to 0.838 and 0.737, with the latter having a lar-
ger MMD corresponding to a greater data shift compared 
to the original dataset. Model rebuilding using site-specif-
ic data improved AUROC to 0.891 and 0.837 on the two 
sites, respectively. When external data is insufficient for 
retraining, a fine-tuning strategy also improved model 
utility.

CONCLUSIONS: ML offers promise to improve PTHrP 
test utilization while relieving the burden of manual re-
view. Transporting a ready-made model to external 

datasets may lead to performance deterioration due to 
data distribution shift. Model retraining or rebuilding 
could improve generalizability when there are enough 
data, and model fine-tuning may be favorable when 
site-specific data is limited.
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Introduction

About 90% of total hypercalcemia cases are diagnosed as 
primary hyperparathyroidism and malignancy-related 
hypercalcemia (1, 2). The latter is primarily mediated 
by parathyroid hormone-related peptide (PTHrP), 
which stimulates calcium resorption from bone and re-
absorption in the kidneys (3). Hypercalcemia mediated 
by PTHrP is most frequently caused by malignant solid 
organ tumors, and is indicative of a poor prognosis (4). 
Clinically, measuring PTHrP levels can aid in diagnos-
ing the humoral hypercalcemia of malignancy when 
the source of elevated calcium levels is not immediately 
evident (5). However, PTHrP testing is often ordered on 
patients with a low pretest probability of this condition. 
As a result, many institutes employ a manual, rule-based 
approach in which the laboratory medicine residents re-
view PTH and calcium results and attempt to identify 
inappropriate orders in instances where the likelihood 
of an abnormal PTHrP result is low (e.g., high calcium 
levels and high PTH levels). This approach is labor- 
intensive and time-consuming. This inadequate labora-
tory utilization practice results in increased healthcare 
costs, drains laboratory resources, and can trigger un-
necessary patient anxiety.
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To improve the utilization of PTHrP tests, the 
AACC Data Analytics Steering Committee organized 
the first data competition, which challenged participants 
to develop an algorithm for predicting the normalcy of 
PTHrP results based on other laboratory results available 
for a patient at the time when the PTHrP test was ordered 
(5). Machine learning (ML) holds tremendous potential 
for uncovering intricate relationships among complex la-
boratory parameters and identifying variables that are not 
included in traditional diagnostic algorithms (6, 7). A suc-
cessful predictive model would help laboratorians to iden-
tify inappropriate PTHrP orders when the laboratory data 
available at the time of order already suggests a normal 
PTHrP result and it would also provide timely clinical in-
formation to ordering physicians (8).

In addition to model development, evaluating a 
model’s performance on external datasets that are inde-
pendently collected from different geographic or demo-
graphic populations is crucial to understand its 
real-world utility (9, 10). However, the differences among 
various laboratories, including instrument platforms, test-
ing methodologies, sample handling, or use of send-out 
laboratories, pose technical challenges for model general-
ization. Based on a recent review of ML papers in the field 
of laboratory medicine (6), only a small proportion of 
studies have conducted external validation to demonstrate 
cross-center generalizability. Therefore, there is a pressing 
need for the rigorous evaluation of model generalizability.

We developed a ML model that achieved the best pre-
dictive performance among the 24 participating teams in 
the AACC ML data challenge (8). To further evaluate 
our model’s generalizability, we evaluated it on unseen da-
tasets obtained from two independent clinical centers. In 
this paper, we present the workflow of data collection, 
data preprocessing, model development, and evaluation, 
as well as a comprehensive analysis of feature distributions 
among the three sites and different strategies to improve 
model generalizability when deploying to external sites.

Methods

DATASETS

A real, de-identified, clinical dataset consisting of 1330 
PTHrP orders from 2012 to 2022 along with patients’ 
other laboratory results available at the time of PTHrP or-
der was provided by Washington University School of 
Medicine in St. Louis (WUSM) in the contest. For pa-
tients who had multiple PTHrP orders, only the first order 
and its associated data were retained. The day and time 
when each laboratory test was ordered and performed, as 
well as its corresponding reference interval, were also pro-
vided. PTHrP testing offered by WUSM was performed 
by Mayo Clinic Laboratories (method in the 
Supplemental Materials). This dataset was anonymously 

divided by the organizer of the contest into 2 parts, includ-
ing 1064 patient data (80%) used for training and 266 pa-
tient data (20%) for testing model performance. Data were 
collected in the same format from 2 independent external 
institutes, Weill Cornell Medicine (WCM, New York, 
NY) and University of Texas MD Anderson Cancer 
Center (MDA, Houston, TX). A total of 1101 PTHrP or-
ders from 2017 to 2022, performed by Quest Diagnostics 
(method in the Supplemental Materials), were collected 
from WCM and 1090 PTHrP orders from 2021 to 
2022, performed by Mayo Clinic Laboratories, were col-
lected from MDA. The proportion of positive samples, 
i.e., PTHrP values greater than the reference interval, in 
WUSM, WCM, and MDA were 17.5% (232/1330), 
15.9% (175/1101), and 23.9% (260/1090), respectively. 
Instrumentation and methodologies of routine laboratory 
tests offered by each site are listed in the Supplemental 
Materials. This study was approved by the Institutional 
Review Board of each site (WUSM:202202087 and 
202204007; WCM: 21-03023422; MDA: 2022-0760).

DATA PREPROCESSING

The input feature vectors of the prediction model were 
constructed with the laboratory tests collected within a 
1-year observation window prior to a specific PTHrP 
test. Only laboratory tests that had available measurements 
during the observation window from at least 50% of the 
patients were selected. The missing rate of each laboratory 
test is shown in Supplemental Table 2. Since methodolo-
gies of some tests and the reference intervals have changed 
in the past years, we normalized each laboratory result value 
(V ) by its corresponding reference interval (RR) using 
the following formula: Vnorm = (V—lower limit of RR)/ 
(higher limit of RR—lower limit of RR). After normaliza-
tion, the statistics of each laboratory test within the obser-
vation window were calculated, including minimum value 
(min), maximum value (max), mean, latest value, and 
rate of change (slope of the fitted linear regression model). 
If there were insufficient measurements to calculate the 
statistics for a given patient, the corresponding statistics 
were treated as missing values and were imputed with 
the median value of the statistics across all patients. 
Comparisons between different imputation methods are 
shown in Supplemental Table 5. Next, statistics of the la-
boratory tests were selected if they showed a significant dif-
ference (P value after false discovery rate correction (11) less 
than 0.05) between the PTHrP normal and abnormal pa-
tients. Finally, to ensure consistency among the selected 
features, z-score normalization was employed, given the 
lack of reference intervals for certain laboratory tests.

MODEL DEVELOPMENT AND EVALUATION

We evaluated 4 popular classifiers including the random 
forest, support vector machine, extreme gradient boosting 
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(XGBoost), and multilayer perceptron models on the 
WUSM dataset, using the scikit-learn package v.1.1.3 
with the sklearn.model_selection.StratifiedKFold func-
tion. For each model, the appropriate hyperparameters 
were determined through a standard 5-fold cross- 
validation, where the training data were randomly split 
into 5 equal folds with the same positives/negatives ratio 
as the ratio of overall cases. Parameters of each model and 
comparison of their performance in cross-validation are 
shown in the Supplemental Fig. 1 and Supplemental 
Table 7. Once the hyperparameters were determined, 
the entire training set (80%) was used to train a model, 
which was then applied to the test set (20%) to evaluate 
the performance measured by area under the receiver op-
erating characteristic curve (AUROC). For the best per-
forming model, we also measured its specificity and 
precision (or positive predictive value) at an operating 
point that was set to sensitivity (or recall) at 0.900, given 
that this model is primarily intended for a screening pur-
pose. The partial AUROC, which is calculated as the area 
above the sensitivity line of 0.9 on the receiver operating 
characteristic (ROC) curve, quantifies the predictive per-
formance with sensitivity exceeding 0.900. This metric 
ranges between 0 and 0.1. The Shapley Additive 
Explanations technique (12) (http://github.com/ 
slundberg/shap, v.0.41.0) was employed to interpret the 
selected model and explain the impact of each feature 
on the model predictions. The features were ranked based 
on their global Shapley values, which were the average of 
the magnitudes of their Shapley values with respect to 
each sample. A force plot of top impactful features illus-
trates how features act as “force” to push the model to 
make a prediction of normal or abnormal PTHrP result. 
Overall, a pipeline of the XGBoost modeling framework 
is illustrated in Fig. 1.

INVESTIGATION OF MODEL GENERALIZABILITY

Both WCM and MDA data were randomly split into a 
training set (80%) and a test set (20%) with the same ratio 
of PTHrP positives/negatives in their respective overall 
sample populations. The datasets were preprocessed using 
the same process as in the original WUSM dataset. 
Initially, the model developed on WUSM data was directly 
applied to the test sets of the WCM and MDA data. 
AUROC and specificity/precision calculated at sensitivity 
level of 0.900 were reported. ΔAUROC was calculated 
as the difference between AUROC of the model evaluated 
in the training site and AUROC obtained from directly 
transporting the model to the testing site. Moreover, we 
have implemented 2 additional strategies: (a) retraining 
the model using site-specific data with the same model 
architecture, feature sets (intersection of the feature sets 
present in both the training and test datasets), and hyper-
parameters; and (b) rebuilding the model using site-specific 

Fig. 1. Illustration of the modeling workflow. 
Patients’ laboratory test results available within 
1 year prior to the order of PTHrP testing were 
used to construct the feature vectors, on which 
an extreme gradient boosting (XGBoost) classifier 
was developed to predict the normalcy of PTHrP 
results. For each laboratory test, 5 statistics, in-
cluding maximum, minimum, mean, latest values, 
and the rate of change, were calculated with the 
measurements during the collection window. 
These laboratory features were concatenated to 
construct the feature vectors. The model outputs 
a probability score ranging from 0 to 1, indicating 
the likelihood of an abnormal PTHrP result. The 
PTHrP model was evaluated on the internal test 
set and 2 external datasets. Color figure available 
online at clinchem.org.
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data including feature selection, hyperparameter tuning, 
and model parameter learning (Details of the retraining 
and rebuilding strategies are in Supplemental Materials. 
Features and their missing rate for WCM and MDA data-
sets are shown in Supplemental Tables 3 and 4, respective-
ly). Both model retraining and rebuilding were conducted 
on the same training sets (80%) and model performances 
were evaluated on the same test sets (20%).

We also investigated a low-resource scenario where 
a target institution had limited PTHrP test results that 
were not enough to retrain a good model, in which case 
we implemented a fine-tuning strategy for the model 
developed from the source institution to be adapted 
in the target institution. In our investigation, sample 
subsets from WCM were used to mimic a target insti-
tution with limited PTHrP orders, and WUSM was 
used as the source institution for model development. 
New decision trees of the XGBoost model were added 
to the original model during the fine-tuning process. 
The learning rate for fine-tuning was set to one-tenth 
of that used to train the original model, while other hy-
perparameters remained unchanged. Cross-validation 
was utilized on the available samples to determine the 
optimal number of decision trees for fine-tuning (de-
tails in Supplemental Materials).

To further understand the different performances of 
the model across different sites, we quantified the distribu-
tion discrepancies between the data acquired from 3 insti-
tutes (13). Specifically, we first picked the top 20 
important features of each dataset, which were selected 
based on their global Shapley values, and then calculated 
the maximum mean discrepancy (MMD) (14) on the dis-
tribution of the intersection of the top 20 features for each 
pair of institutes. A gaussian kernel was selected, which was 
used to measure the similarity between pairs of data points. 
MMD was calculated as the difference between the mean 
of the kernel values for pairs of data points drawn from the 
2 distributions being compared. Given samples from 2 dis-
tributions: X = {x1, . . . , xN }, X̃ = {x̃1, . . . , x̃M }, the 
calculation of MMD was as:

MMD=
1

N (N − 1)

ÿN

j=1

ÿN

i≠j

κ(xj, xi)

+
1

M (M − 1)

ÿM

j=1

ÿM

i≠j

κ(x̃j, x̃i)

−
2

NM

ÿN

j=1

ÿM

i=1

κ(xj, x̃i) 

where κ(xj, xi) was the kernel function that was used to de-

termine the latent space where the data points were pro-
jected to.

Results

DEVELOPMENT AND EVALUATION OF THE PTHRP PREDICTION 

MODEL ON THE WUSM DATA

In the WUSM dataset, a total of 48 laboratory tests (listed 
in Supplemental Materials) were selected based on their 
missing rate during the 1-year observational window. For 
each of these tests, 5 statistics, including minimum, max-
imum, mean, latest, and rate of change, were calculated, re-
sulting in a total of 240 features. After feature selection as 
described in the Method section, 159 features, which ex-
hibited statistical significance for discrimination between 
PTHrP normal and abnormal patients, were used to build 
the ML model. To select the model with the best perform-
ance, AUROCs of the random forest, support vector ma-
chine, XGBoost, and multilayer perceptron models were 
compared using 5-fold cross-validation. The XGBoost 
model outperformed the other 3 models in cross-validation 
(Supplemental Fig. 1). In the test set, the XGBoost model 
achieved an AUROC of 0.936. At the operating point with 
a sensitivity (recall) of 0.900, the model achieved a specifi-
city of 0.842 and a precision (or positive predictive value) 
of 0.539 (Fig. 2A).

The force plot illustrates the impact of top features 
on the predictive performance of the PTHrP model ac-
cording to their Shapley values shown in Fig. 3. For in-
stance, the latest result of albumin level, the maximum 
total calcium level, the mean phosphorus level, the latest 
count of white blood cells (WBC), and the mean sodium 
level within a year prior to the PTHrP order were the 5 
most important predictors in the model. Moreover, low-
er levels of albumin, intact PTH, and phosphate drove 
the model to make a prediction of abnormal PTHrP re-
sults, while higher levels of total calcium and WBC 
counts led to the same prediction.

EXTERNAL EVALUATION OF THE PTHRP PREDICTION MODEL IN 

2 INDEPENDENT INSTITUTES

To further investigate the generalizability of the model 
developed on the WUSM data, the XGBoost model’s 
performance was assessed in 2 unseen external datasets 
obtained from WCM and MDA. The rate of positive 
PTHrP results were 15.9% in WCM and 23.9% in 
MDA, compared to 17.5% in WUSM. First, when 
the ready-made model was directly applied “as-is” to 
the 2 independent datasets, its performance moderately 
deteriorated in MDA (AUROC = 0.838) but substan-
tially in WCM (AUROC = 0.737). Next, with the fixed 
model architecture and hyperparameters, as well as the 
selected input features, retraining the model parameters 
using local data led to an improved performance at both 
sites (MDA AUROC = 0.889, WCM AUROC =  

0.819). Further improvements on AUROC at both sites 
were achieved by rebuilding the model with site-specific 
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data, which optimized both the selected feature sets and 
model hyperparameters (MDA AUROC = 0.891, 
WCM AUROC = 0.837). The ROC curves of each 
scenario are shown in Fig. 2B (WCM) and 2C
(MDA). The force plots illustrating the impact of the 
top features on the rebuilt WCM and MDA models 
were shown in Supplemental Fig. 2A and B. Overall, 
the model that was retrained or rebuilt using data 
from the test site achieved better performance (Table 1).

ANALYSIS OF THE DIFFERENCES IN FEATURE DISTRIBUTIONS 

ACROSS THREE SITES

On transporting the ready-made model developed on 
WUSM data to new patient data collected from 
WCM and MDA, there was a deterioration in the mod-
el’s performance, measured by AUROC, specificity, and 
precision. To better understand the reasons causing such 
degradation of predictive performance, we calculated the 
MMD between each pair of datasets (13), which quan-
tified the degree of distribution shift between them, with 
a higher MMD value indicating a larger shift. As shown 
in Table 2, the MMD between WUSM and MDA data 
was smaller than the MMD between WUSM and WCM 
data, which was consistent with the observed deterior-
ation in cross-site performance, as measured by a drop 
in AUROC (ΔAUROC).

ANALYSIS OF THE PERFORMANCE OF MODEL FINE-TUNING IN 

LOW-RESOURCE SCENARIOS

We also considered a scenario where smaller hospitals do 
not have sufficient local PTHrP and other laboratory data 
to retrain or rebuild the model. To explore how the ready- 
made model can be applied to hospitals with limited train-
ing data, we assessed the effectiveness of a model fine-tuning 
strategy. We compared the performance of the following 3 
strategies on WCM data since it showed a larger MMD 
with WUSM data: (a) directly using of the WUSM model; 
(b) retraining the WUSM model with varying amounts of 
data from WCM; and (c) fine-tuning the WUSM model 
with varying amounts of available data from WCM. The 
results are shown in Fig. 4, which demonstrates that the 
fine-tuning strategy performed best when the amounts of 
available data samples were relatively small (<200). 
However, when the number of available samples exceeded 
200, model retraining appeared to be a better option.

Discussion

In this study, we built an ML model to predict the nor-
malcy of PTHrP level using routine laboratory test re-
sults available at the time when the patient’s PTHrP 
test was ordered. When evaluated in the WUSM internal 
test data, the model exhibited a high AUROC, as well as 

Fig. 2. Comparison of the extreme gradient boosting (XGBoost) model performance on different data-
sets and training strategies using the ROC curves. The ROC curves depict the performance of the 
XGBoost model on various datasets and training strategies. The y-axis of the ROC curve is sensitivity, 
and x-axis is 1-specificity. AUROC indicates the ability of a classifier to distinguish between 2 classes. 
(A), The model’s ROC curve when trained on 80% of the WUSM dataset and evaluated on the remaining 
20% test data; (B, C), The model’s performance when tested on the 20% of the WCM (B) and MDA (C) da-
tasets. The green dotted line indicates that the model was trained on the entire WUSM dataset and dir-
ectly transported to the WCM (B) and MDA (C) test data. The orange dashed line indicates that model was 
retrained on the 80% local data and accessed on the 20% test data, whereas the red dotted line indicates 
that the model was rebuilt on the 80% local data and tested on the 20% test data. The large colored dot 
on each line indicates the operating point with a sensitivity of 0.9. Color figure available online at 
clinchem.org.
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reasonable clinical interpretability. We further assessed 
the generalizability of this model on patient data collected 
from two independent external sites. Not surprisingly, 
transporting the ready-made model “as-is” led to a de-
creased model performance on both datasets. 
Nevertheless, after retraining and rebuilding the model 
using site-specific data, we observed significant 

improvements on model performance at both sites. In 
the low-resource scenario where a site does not have en-
ough data to retrain and rebuild a customized model, 
we demonstrated that a fine-tuning strategy could be a fa-
vorable choice. Overall, our study developed an ML mod-
el that shows promise in improving PTHrP test 
utilization and demonstrated a comparison of strategies 

Fig. 3. Impact of each laboratory test statistics on the predictive performance of the PTHrP model, using 
the Shapley Addictive Explanations (SHAP) technique. The force plot of top features illustrates how fea-
tures act as “force” to push the model to make a prediction of normal or abnormal PTHrP results. 
Individual values of each laboratory test statistics for each patient are colored according to their relative 
values, with the blue color representing lower values of laboratory results, and the red color representing 
higher values. The laboratory test statistics were ranked based on their global Shapley values shown on 
the x-axis. Positive Shapley values to the right-hand side indicate predictions of abnormal PTHrP results, 
and negative SHAP values to the left-hand side indicate predictions of normal PTHrP results. The thickness 
of the line represents the number of value points. Color figure available online at clinchem.org.
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for improving the generalizability of ML in external 
health systems.

In contemporary clinical practice, measuring PTHrP 
level aids in determining the cause of unexplained hyper-
calcemia, characterized by elevated calcium levels without 
a concurrent increase in PTH (15). However, elevation 
of total calcium levels often prompts simultaneous requests 
for both PTH and PTHrP tests, which is an inappropriate 
utilization of the PTHrP test (5). Excessive PTHrP testing 
can result in unnecessary and expensive procedures, such as 
invasive laboratory tests to identify a cancerous tumor that 
may not even be present (16). However, manually 

reviewing PTHrP orders by comparing them with a pa-
tient’s PTH and calcium results can be a cumbersome 
and time-intensive process. The organizer of this ML com-
petition found that our XGBoost model achieved a signifi-
cant improvement compared to their manual approach for 
identifying patients at risk for PTHrP (8). In addition, in 
the WUSM dataset, if we build a XGBoost model using 
only the total calcium and PTH intact results available 
at the time of the PTHrP order to predict the PTHrP nor-
malcy, the AUROC of the model would be 0.762, and 
specificity would be 0.471 when sensitivity is set to 
0.900. The predictive performance would be significantly 
worse compared to the XGBoost model incorporating 
other laboratory tests. Thus, if implemented, the proposed 
ML model that predicts normal and abnormal PTHrP re-
sults has the potential to complement the current workup 
algorithm by detecting inappropriate PTHrP orders, thus 
facilitating automation of the decision-making process 
and test utilization. Furthermore, the ML-based data- 
driven approach detects variables that are presently not 
included in the existing workup algorithm consisting of 
intact PTH and total calcium. For instance, patients who 
have hypercalcemia of malignancy may exhibit lower levels 
of albumin partly due to liver dysfunction, nephrotic syn-
drome, or malnutrition. In addition, hypercalcemia of ma-
lignancy may be associated with systemic inflammatory 
response leading to higher levels of WBC and lower levels 
of albumin. The clinical interpretability of the ML model is 
crucial as laboratorians and clinicians prefer to use models 
that can be comprehended and aligned with their knowl-
edge and experience (6).

Before an ML model can be deployed in clinical 
practice, its generalizability and transportability, i.e., 

Table 1. A summary of the extreme gradient boosting (XGBoost) model performance using different 
training and test datasets.

Method AUROC

Partial AUROC given 

sensitivity ≥ 0.900

Specificity given 

sensitivity = 0.900

Precision (or positive predictive 

value) given sensitivity = 0.900

Testing: WUSM

In-site test 0.936 0.068 0.842 0.539

Testing: WCM

Off-the-shelf model 0.737 0.037 0.441 0.235

Retrain the model 0.819 0.044 0.559 0.281

Rebuild the model 0.837 0.046 0.532 0.269

Testing: MDA

Off-the-shelf model 0.838 0.050 0.633 0.435

Retrain the model 0.889 0.061 0.705 0.490

Rebuild the model 0.891 0.064 0.753 0.534

Partial AUROC is calculated as the area above the sensitivity line of 0.9 on the ROC curve, which quantifies the predictive performance with 

sensitivity exceeding 0.9.

Table 2. A summary of the MMD and XGBoost 
model performance using different training 

and test datasets.

Training 

site

Testing 

site

Maximum 

Mean 

Discrepancy 

(MMD) AUROC ΔAUROCa

WUSM WCM 0.084 0.737 0.199

MDA 0.073 0.838 0.098

WCM WUSM 0.076 0.707 0.130

MDA 0.050 0.743 0.094

MDA WUSM 0.011 0.858 0.033

WCM 0.038 0.633 0.258

aΔAUROC is calculated as the difference between AUROC of 

the model evaluated in the training site and AUROC obtained 

from directly transporting the model to the testing site.
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the ability of a model to perform well on independent 
datasets collected from different geographic or demo-
graphic populations or different hospital settings, need 
to be assessed (17). In the setting of clinical laboratory 
medicine, various factors such as instrument platforms, 
test protocols, sample handling, and send-out laborator-
ies, can affect a model’s generalizability. Here, we ob-
served that, when transported directly, although the 
model built on the WUSM data showed deterioration 
on both WCM and MDA data, its performance was bet-
ter on MDA data than on WCM data. This difference 
could be partially attributed to the fact that both 
WUSM and MDA laboratories use the same analyzers 
to conduct routine chemistry tests and send their 
PTHrP samples to the same reference laboratory. By 
contrast, the WCM laboratory employs a different ven-
dor’s chemistry analyzers and sends their PTHrP to an-
other reference laboratory. In fact, we observed that 
some laboratory test features exhibited distinct distribu-
tions between WUSM and WCM, which could be due 
to variations in clinical or laboratory processes, or 

different patient populations. Based on our analysis, if 
a ready-made model cannot be directly transported to 
new data due to the shift of data distribution, some local 
customization strategies can be utilized to improve mod-
el performance, such as retraining or rebuilding the 
model using site-specific data.

We have further investigated the quantitative re-
lationship between the performance drop when trans-
porting the model from one data set to another and 
the discrepancy between their data distributions mea-
sured by MMD. Supplemental Fig. 6 shows that 
MMD and ΔAUROC correlate, suggesting a larger 
discrepancy could lead to a greater performance deg-
radation. This suggests that the MMD value, which 
has been a widely adopted statistical metric for meas-
uring distribution shift in transfer learning, could be 
used to predict performance deterioration of ML 
models when transported to external sites. A previous 
study on an acute kidney injury prediction model 
across 6 institutes also drew a similar conclusion 
(13). While there is not a specific threshold of 
MMD value that ensures successful generalization, 
calculating MMD can facilitate the adoption process 
of ML models in external hospitals.

Our investigation on low-resource scenarios 
where the testing site has a limited amount of 
PTHrP requests and other available laboratory test re-
sults showed that fine-tuning model parameters works 
better than retraining a customized model. In prac-
tice, we can store models trained from different sites 
into a “model bank.” When a model is needed for a 
new site, we can first assess whether there are enough 
samples on this site to retrain a customized model; if 
not, we can pick a model (from the model bank) 
trained from the site that is the most similar to the 
new site (according to hospital operation patterns, pa-
tient populations, etc. or MMD between data distri-
butions if possible) and fine-tune it.

Unfortunately, patient demographic and other clin-
ical information was not provided in the original 
WUSM dataset, and thus was not incorporated into 
the model’s input. It would be interesting to explore 
whether model performance can be further enhanced 
with additional clinical features.

In conclusion, our proposed PTHrP prediction 
model is a feasible and promising technique that has 
the potential to improve utilization of PTHrP testing. 
While directly transporting the ready-made model to ex-
ternal datasets led to a deterioration of model perform-
ance due to a shift of data distribution, site-specific 
customization strategies were employed to improve the 
predictive performance in a new context. Calculating 
MMD prior to model fitting on a new dataset could pro-
vide valuable insight into the degree of model generaliz-
ability, thereby facilitating the model adoption process. 

Fig. 4. Comparison of the extreme gradient 
boosting (XGBoost) model’s performance when 
deploying the model from WUSM to WCM using 
different amount of WCM samples. Three strat-
egies, including direct transporting (green dot-
ted line), retraining (orange dashed line), and 
fine-tuning (purple line with star), were evalu-
ated for the model developed from the source 
institution (WUSM) to be adopted in the target 
institution (WCM). The performance of each 
strategy was compared using AUROC. When 
number of samples was <200, fine-tuning was 
a more favorable strategy; whereas retraining 
generated a better result when number of sam-
ples was >200. Color figure available online at 
clinchem.org.
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However, the path toward fully operational implemen-
tation is still long and laden with obstacles that span 
technical challenges, regulatory requirements, and the 
need for clinical education. The successful deployment 
of this model into clinical practice will require a collab-
orative effort among IT specialists, clinical teams, and la-
boratory professionals.

Supplemental Material

Supplemental material is available at Clinical Chemistry 
online.

Nonstandard Abbreviations: PTHrP, parathyroid hormone-related 
peptide; ML, machine learning; MMD, maximum mean discrepancy; 
AUROC, area under receiver operating characteristic curve; WUSM, 
Washington University School of Medicine in St. Louis; XGBoost, ex-
treme gradient boosting; WBC, white blood cells.
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