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BACKGROUND: Measuring parathyroid hormone-related
peptide (PTHIP) helps diagnose the humoral hypercalce-
mia of malignancy, but is often ordered for patients with
low pretest probability, resulting in poor test utilization.
Manual review of results to identify inappropriate
PTHIP orders is a cumbersome process.

METHODS:  Using a dataset of 1330 patients from a sin-
gle institute, we developed a machine learning (ML)
model to predict abnormal PTHrP results. We then
evaluated the performance of the model on two external
datasets. Different strategies (model transporting, re-
training, rebuilding, and fine-tuning) were investigated
to improve model generalizability. Maximum mean dis-
crepancy (MMD) was adopted to quantify the shift of
data distributions across different datasets.

RESULTS: The model achieved an area under
the receiver operating characteristic curve (AUROC) of
0.936, and a specificity of 0.842 at 0.900 sensitivity in
the development cohort. Directly transporting this model
to two external datasets resulted in a deterioration of
AUROC t0 0.838 and 0.737, with the latter having a lar-
ger MMD corresponding to a greater data shift compared
to the original dataset. Model rebuilding using site-specif-
ic data improved AUROC to 0.891 and 0.837 on the two
sites, respectively. When external data is insufficient for
retraining, a fine-tuning strategy also improved model

utility.

CONCLUSIONS: ML offers promise to improve PTHrP
test utilization while relieving the burden of manual re-
view. Transporting a ready-made model to external

datasets may lead to performance deterioration due to
data distribution shift. Model retraining or rebuilding
could improve generalizability when there are enough
data, and model fine-tuning may be favorable when
site-specific data is limited.

Introduction

About 90% of total hypercalcemia cases are diagnosed as
primary hyperparathyroidism and malignancy-related
hypercalcemia (1, 2). The latter is primarily mediated
by parathyroid hormone-related peptide (PTHrP),
which stimulates calcium resorption from bone and re-
absorption in the kidneys (3). Hypercalcemia mediated
by PTHrP is most frequently caused by malignant solid
organ tumors, and is indicative of a poor prognosis (4).
Clinically, measuring PTHrP levels can aid in diagnos-
ing the humoral hypercalcemia of malignancy when
the source of elevated calcium levels is not immediately
evident (5). However, PTHIDP testing is often ordered on
patients with a low pretest probability of this condition.
As a result, many institutes employ a manual, rule-based
approach in which the laboratory medicine residents re-
view PTH and calcium results and attempt to identify
inappropriate orders in instances where the likelihood
of an abnormal PTHIrP result is low (e.g., high calcium
levels and high PTH levels). This approach is labor-
intensive and time-consuming. This inadequate labora-
tory utilization practice results in increased healthcare
costs, drains laboratory resources, and can trigger un-
necessary patient anxiety.
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Generalizability of a PTHrP Machine Learning Model

To improve the utilization of PTHrP tests, the
AACC Data Analytics Steering Committee organized
the first data competition, which challenged participants
to develop an algorithm for predicting the normalcy of
PTHUIDP results based on other laboratory results available
for a patient at the time when the PTHrP test was ordered
(5). Machine learning (ML) holds tremendous potential
for uncovering intricate relationships among complex la-
boratory parameters and identifying variables that are not
included in traditional diagnostic algorithms (6, 7). A suc-
cessful predictive model would help laboratorians to iden-
tify inappropriate PTHrP orders when the laboratory data
available at the time of order already suggests a normal
PTH P result and it would also provide timely clinical in-
formation to ordering physicians (8).

In addition to model development, evaluating a
model’s performance on external datasets that are inde-
pendently collected from different geographic or demo-
graphic populations is crucial to understand its
real-world utility (9, 10). However, the differences among
various laboratories, including instrument platforms, test-
ing methodologies, sample handling, or use of send-out
laboratories, pose technical challenges for model general-
ization. Based on a recent review of ML papers in the field
of laboratory medicine (6), only a small proportion of
studies have conducted external validation to demonstrate
cross-center generalizability. Therefore, there is a pressing
need for the rigorous evaluation of model generalizability.

We developed a ML model that achieved the best pre-
dictive performance among the 24 participating teams in
the AACC ML data challenge (8). To further evaluate
our model’s generalizability, we evaluated it on unseen da-
tasets obtained from two independent clinical centers. In
this paper, we present the workflow of data collection,
data preprocessing, model development, and evaluation,
as well as a comprehensive analysis of feature distributions
among the three sites and different strategies to improve
model generalizability when deploying to external sites.

Methods

DATASETS

A real, de-identified, clinical dataset consisting of 1330
PTH:P orders from 2012 to 2022 along with patients’
other laboratory results available at the time of PTHrP or-
der was provided by Washington University School of
Medicine in St. Louis (WUSM) in the contest. For pa-
tients who had multiple PTHrP orders, only the first order
and its associated data were retained. The day and time
when each laboratory test was ordered and performed, as
well as its corresponding reference interval, were also pro-
vided. PTHIP testing offered by WUSM was performed
by Mayo Clinic Laboratories (method in the
Supplemental Materials). This dataset was anonymously

divided by the organizer of the contest into 2 parts, includ-
ing 1064 patient data (80%) used for training and 266 pa-
tient data (20%) for testing model performance. Data were
collected in the same format from 2 independent external
institutes, Weill Cornell Medicine (WCM, New York,
NY) and University of Texas MD Anderson Cancer
Center (MDA, Houston, TX). A total of 1101 PTHrP or-
ders from 2017 to 2022, performed by Quest Diagnostics
(method in the Supplemental Materials), were collected
from WCM and 1090 PTHrP orders from 2021 to
2022, performed by Mayo Clinic Laboratories, were col-
lected from MDA. The proportion of positive samples,
i.e., PTHrP values greater than the reference interval, in
WUSM, WCM, and MDA were 17.5% (232/1330),
15.9% (175/1101), and 23.9% (260/1090), respectively.
Instrumentation and methodologies of routine laboratory
tests offered by each site are listed in the Supplemental
Materials. This study was approved by the Institutional
Review Board of each site (WUSM:202202087 and
202204007; WCM: 21-03023422; MDA: 2022-0760).

DATA PREPROCESSING

The input feature vectors of the prediction model were
constructed with the laboratory tests collected within a
1-year observation window prior to a specific PTHrP
test. Only laboratory tests that had available measurements
during the observation window from at least 50% of the
patients were selected. The missing rate of each laboratory
test is shown in Supplemental Table 2. Since methodolo-
gies of some tests and the reference intervals have changed
in the past years, we normalized each laboratory result value
(V) by its corresponding reference interval (RR) using
the following formula: V., = (V—lower limit of RR)/
(higher limit of RR—lower limit of RR). After normaliza-
tion, the statistics of each laboratory test within the obser-
vation window were calculated, including minimum value
(min), maximum value (max), mean, latest value, and
rate of change (slope of the fitted linear regression model).
If there were insufficient measurements to calculate the
statistics for a given patient, the corresponding statistics
were treated as missing values and were imputed with
the median value of the statistics across all patients.
Comparisons between different imputation methods are
shown in Supplemental Table 5. Next, statistics of the la-
boratory tests were selected if they showed a significant dif-
ference (P value after false discovery rate correction (11) less
than 0.05) between the PTHrP normal and abnormal pa-
tients. Finally, to ensure consistency among the selected
features, z-score normalization was employed, given the
lack of reference intervals for certain laboratory tests.

MODEL DEVELOPMENT AND EVALUATION
We evaluated 4 popular classifiers including the random
forest, support vector machine, extreme gradient boosting
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Fig. 1. lllustration of the modeling workflow.
Patients’ laboratory test results available within
1 year prior to the order of PTHrP testing were
used to construct the feature vectors, on which
an extreme gradient boosting (XGBoost) classifier
was developed to predict the normalcy of PTHrP
results. For each laboratory test, 5 statistics, in-
cluding maximum, minimum, mean, latest values,
and the rate of change, were calculated with the
measurements during the collection window.
These laboratory features were concatenated to
construct the feature vectors. The model outputs
a probability score ranging from 0 to 1, indicating
the likelihood of an abnormal PTHrP result. The
PTHrP model was evaluated on the internal test
set and 2 external datasets. Color figure available
online at clinchem.org.
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(XGBoost), and multilayer perceptron models on the
WUSM dataset, using the scikit-learn package v.1.1.3
with the sklearn.model_selection.StratifiedKFold func-
tion. For each model, the appropriate hyperparameters
were determined through a standard 5-fold cross-
validation, where the training data were randomly split
into 5 equal folds with the same positives/negatives ratio
as the ratio of overall cases. Parameters of each model and
comparison of their performance in cross-validation are
shown in the Supplemental Fig. 1 and Supplemental
Table 7. Once the hyperparameters were determined,
the entire training set (80%) was used to train a model,
which was then applied to the test set (20%) to evaluate
the performance measured by area under the receiver op-
erating characteristic curve (AUROC). For the best per-
forming model, we also measured its specificity and
precision (or positive predictive value) at an operating
point that was set to sensitivity (or recall) at 0.900, given
that this model is primarily intended for a screening pur-
pose. The partial AUROC, which is calculated as the area
above the sensitivity line of 0.9 on the receiver operating
characteristic (ROC) curve, quantifies the predictive per-
formance with sensitivity exceeding 0.900. This metric
ranges between 0 and 0.1. The Shapley Additive
Explanations  technique  (12)  (heep://github.com/
slundberg/shap, v.0.41.0) was employed to interpret the
selected model and explain the impact of each feature
on the model predictions. The features were ranked based
on their global Shapley values, which were the average of
the magnitudes of their Shapley values with respect to
each sample. A force plot of top impactful features illus-
trates how features act as “force” to push the model to
make a prediction of normal or abnormal PTHIP result.
Opverall, a pipeline of the XGBoost modeling framework
is illustrated in Fig. 1.

INVESTIGATION OF MODEL GENERALIZABILITY

Both WCM and MDA data were randomly split into a
training set (80%) and a test set (20%) with the same ratio
of PTHrP positives/negatives in their respective overall
sample populations. The datasets were preprocessed using
the same process as in the original WUSM dataset.
Initially, the model developed on WUSM data was directly
applied to the test sets of the WCM and MDA data.
AUROC and specificity/precision calculated at sensitivity
level of 0.900 were reported. AAUROC was calculated
as the difference between AUROC of the model evaluated
in the training site and AUROC obtained from directly
transporting the model to the testing site. Moreover, we
have implemented 2 additional strategies: () retraining
the model using site-specific data with the same model
architecture, feature sets (intersection of the feature sets
present in both the training and test datasets), and hyper-
parameters; and (&) rebuilding the model using site-specific
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data including feature selection, hyperparameter tuning,
and model parameter learning (Details of the retraining
and rebuilding strategies are in Supplemental Materials.
Features and their missing rate for WCM and MDA data-
sets are shown in Supplemental Tables 3 and 4, respective-
ly). Both model retraining and rebuilding were conducted
on the same training sets (80%) and model performances
were evaluated on the same test sets (20%).

We also investigated a low-resource scenario where
a target institution had limited PTHrP test results that
were not enough to retrain a good model, in which case
we implemented a fine-tuning strategy for the model
developed from the source institution to be adapted
in the target institution. In our investigation, sample
subsets from WCM were used to mimic a target insti-
tution with limited PTHrP orders, and WUSM was
used as the source institution for model development.
New decision trees of the XGBoost model were added
to the original model during the fine-tuning process.
The learning rate for fine-tuning was set to one-tenth
of that used to train the original model, while other hy-
perparameters remained unchanged. Cross-validation
was utilized on the available samples to determine the
optimal number of decision trees for fine-tuning (de-
tails in Supplemental Materials).

To further understand the different performances of
the model across different sites, we quantified the distribu-
tion discrepancies between the data acquired from 3 insti-
tutes (13). Specifically, we first picked the top 20
important features of each dataset, which were selected
based on their global Shapley values, and then calculated
the maximum mean discrepancy (MMD) (14) on the dis-
tribution of the intersection of the top 20 features for each
pair of institutes. A gaussian kernel was selected, which was
used to measure the similarity between pairs of data points.
MMD was calculated as the difference between the mean
of the kernel values for pairs of data points drawn from the
2 distributions being compared. Given samples from 2 dis-

tributions: X = {x1, ..., xn}, X =1{%, ..., %u}, the
calculation of MMD was as:
MMD= K(x;, x;)
L
1 M M
V=T 2 2 )

17

2 N
W; ;K(x], ;)

J

where x(x;, x;) was the kernel function that was used to de-
termine the latent space where the data points were pro-
jected to.

Results

DEVELOPMENT AND EVALUATION OF THE PTHRP PREDICTION
MODEL ON THE WUSM DATA

In the WUSM dataset, a total of 48 laboratory tests (listed
in Supplemental Materials) were selected based on their
missing rate during the 1-year observational window. For
each of these tests, 5 statistics, including minimum, max-
imum, mean, latest, and rate of change, were calculated, re-
sulting in a total of 240 features. After feature selection as
described in the Method section, 159 features, which ex-
hibited statistical significance for discrimination between
PTHrP normal and abnormal patients, were used to build
the ML model. To select the model with the best perform-
ance, AUROG: of the random forest, support vector ma-
chine, XGBoost, and multilayer perceptron models were
compared using 5-fold cross-validation. The XGBoost
model outperformed the other 3 models in cross-validation
(Supplemental Fig. 1). In the test set, the XGBoost model
achieved an AUROC of 0.936. At the operating point with
a sensitivity (recall) of 0.900, the model achieved a specifi-
city of 0.842 and a precision (or positive predictive value)
of 0.539 (Fig. 2A).

The force plot illustrates the impact of top features
on the predictive performance of the PTHrP model ac-
cording to their Shapley values shown in Fig. 3. For in-
stance, the latest result of albumin level, the maximum
total calcium level, the mean phosphorus level, the latest
count of white blood cells (WBC), and the mean sodium
level within a year prior to the PTHrP order were the 5
most important predictors in the model. Moreover, low-
er levels of albumin, intact PTH, and phosphate drove
the model to make a prediction of abnormal PTHP re-
sults, while higher levels of total calcium and WBC
counts led to the same prediction.

EXTERNAL EVALUATION OF THE PTHRP PREDICTION MODEL IN
2 INDEPENDENT INSTITUTES

To further investigate the generalizability of the model
developed on the WUSM data, the XGBoost model’s
performance was assessed in 2 unseen external datasets
obtained from WCM and MDA. The rate of positive
PTHIP results were 15.9% in WCM and 23.9% in
MDA, compared to 17.5% in WUSM. First, when
the ready-made model was directly applied “as-is” to
the 2 independent datasets, its performance moderately
deteriorated in MDA (AUROC = 0.838) but substan-
tially in WCM (AUROC = 0.737). Next, with the fixed
model architecture and hyperparameters, as well as the
selected input features, retraining the model parameters
using local data led to an improved performance at both
sites (MDA AUROC=0.889, WCM AUROC=
0.819). Further improvements on AUROC at both sites
were achieved by rebuilding the model with site-specific

Clinical Chemistry 69:11 (2023) 1263

20z AINr 20 Uo Jasn Aleiq Jejusd UOREIPEY UolS AG 89208Z./09Z /1 L/69/SI0IME/WSYDUI/W0o"dNO0IWSpEoE//:SA)Y WO} POPEOjUMOQ


http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvad141#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvad141#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvad141#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvad141#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvad141#supplementary-data

A WUsSM B WCM c MDA
1.0 1.0 et 1.0 o e e e
f‘r—/ ; it
. 8 g5 ¢
r I
0.8 ~ 0.8 = 0.8 ) £
z z | z )
=3 E . = A
> > s
Z 06 2 06 . B 06 4
) [ } “n =
g g ; g ,
“n “ i @ ]
0.4 0.4 g 0.4 r‘f
i I
i f
i {
0.2 0.2 1, - Direct-transport (AUROC: 0.737) 0.2 by Direct-transport (AUROC: 0.838)
J! Re-train (AUROC: 0.819) l: Re-train (AUROC: 0.889)
—— In-site (AUROC: 0.936) 1 —:—- Re-build (AUROC: 0.837) i —:—- Re-build (AUROC: 0.891)
0.0 0.0 0.0
1 - specificity 1 - specificity 1 - specificity

Fig. 2. Comparison of the extreme gradient boosting (XGBoost) model performance on different data-
sets and training strategies using the ROC curves. The ROC curves depict the performance of the
XGBoost model on various datasets and training strategies. The y-axis of the ROC curve is sensitivity,
and x-axis is 1-specificity. AUROC indicates the ability of a classifier to distinguish between 2 classes.
(A), The model's ROC curve when trained on 80% of the WUSM dataset and evaluated on the remaining
20% test data; (B, C), The model’s performance when tested on the 20% of the WCM (B) and MDA (C) da-
tasets. The green dotted line indicates that the model was trained on the entire WUSM dataset and dir-
ectly transported to the WCM (B) and MDA (C) test data. The orange dashed line indicates that model was
retrained on the 80% local data and accessed on the 20% test data, whereas the red dotted line indicates
that the model was rebuilt on the 80% local data and tested on the 20% test data. The large colored dot
on each line indicates the operating point with a sensitivity of 0.9. Color figure available online at

clinchem.org.

data, which optimized both the selected feature sets and
model hyperparameters (MDA AUROC=0.891,
WCM AUROC =0.837). The ROC curves of each
scenario are shown in Fig. 2B (WCM) and 2C
(MDA). The force plots illustrating the impact of the
top features on the rebuilt WCM and MDA models
were shown in Supplemental Fig. 2A and B. Overall,
the model that was retrained or rebuilt using data
from the test site achieved better performance (Table 1).

ANALYSIS OF THE DIFFERENCES IN FEATURE DISTRIBUTIONS
ACROSS THREE SITES

On transporting the ready-made model developed on
WUSM data to new patient data collected from
WCM and MDA, there was a deterioration in the mod-
el’s performance, measured by AUROC, specificity, and
precision. To better understand the reasons causing such
degradation of predictive performance, we calculated the
MMD between each pair of datasets (13), which quan-
tified the degree of distribution shift between them, with
a higher MMD value indicating a larger shift. As shown
in Table 2, the MMD between WUSM and MDA data
was smaller than the MMD between WUSM and WCM
data, which was consistent with the observed deterior-
ation in cross-site performance, as measured by a drop

in AUROC (AAUROCQ).

1264 Clinical Chemistry 69:11 (2023)

ANALYSIS OF THE PERFORMANCE OF MODEL FINE-TUNING IN
LOW-RESOURCE SCENARIOS

We also considered a scenario where smaller hospitals do
not have sufficient local PTHrP and other laboratory data
to retrain or rebuild the model. To explore how the ready-
made model can be applied to hospitals with limited train-
ing data, we assessed the effectiveness of a model fine-tuning
strategy. We compared the performance of the following 3
strategies on WCM data since it showed a larger MMD
with WUSM data: (@) directly using of the WUSM model;
(b) retraining the WUSM model with varying amounts of
data from WCM; and (¢) fine-tuning the WUSM model
with varying amounts of available data from WCM. The
results are shown in Fig. 4, which demonstrates that the
fine-tuning strategy performed best when the amounts of
available data samples were relatively small (<200).
However, when the number of available samples exceeded
200, model retraining appeared to be a better option.

Discussion

In this study, we built an ML model to predict the nor-
malcy of PTHrP level using routine laboratory test re-
sults available at the time when the patient’s PTH:rP
test was ordered. When evaluated in the WUSM internal
test data, the model exhibited a high AUROC, as well as
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Fig. 3. Impact of each laboratory test statistics on the predictive performance of the PTHrP model, using
the Shapley Addictive Explanations (SHAP) technique. The force plot of top features illustrates how fea-
tures act as “force” to push the model to make a prediction of normal or abnormal PTHrP results.
Individual values of each laboratory test statistics for each patient are colored according to their relative
values, with the blue color representing lower values of laboratory results, and the red color representing
higher values. The laboratory test statistics were ranked based on their global Shapley values shown on
the x-axis. Positive Shapley values to the right-hand side indicate predictions of abnormal PTHrP results,
and negative SHAP values to the left-hand side indicate predictions of normal PTHrP results. The thickness
of the line represents the number of value points. Color figure available online at clinchem.org.

reasonable clinical interpretability. We further assessed
the generalizability of this model on patient data collected
from two independent external sites. Not surprisingly,
transporting the ready-made model “as-is” led to a de-
creased model performance on both datasets.
Nevertheless, after retraining and rebuilding the model
using site-specific data, we observed significant

improvements on model performance at both sites. In
the low-resource scenario where a site does not have en-
ough data to retrain and rebuild a customized model,
we demonstrated that a fine-tuning strategy could be a fa-
vorable choice. Overall, our study developed an ML mod-
el that shows promise in improving PTHIP test
utilization and demonstrated a comparison of strategies
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Table 1. A summary of the extreme gradient boosting (XGBoost) model performance using different
training and test datasets.

Partial AUROC given

Method AUROC sensitivity > 0.900
Testing: WUSM
In-site test 0.936 0.068
Testing: WCM
Off-the-shelf model 0.737 0.037
Retrain the model 0.819 0.044
Rebuild the model 0.837 0.046
Testing: MDA
Off-the-shelf model 0.838 0.050
Retrain the model 0.889 0.061
Rebuild the model 0.891 0.064

Specificity given
sensitivity = 0.900

Precision (or positive predictive
value) given sensitivity = 0.900

0.842 0.539
0.441 0.235
0.559 0.281
0.532 0.269
0.633 0.435
0.705 0.490
0.753 0.534

sensitivity exceeding 0.9.

Partial AUROC is calculated as the area above the sensitivity line of 0.9 on the ROC curve, which quantifies the predictive performance with

Table 2. A summary of the MMD and XGBoost
model performance using different training
and test datasets.

Maximum
Mean
Training Testing Discrepancy
site site (MMD) AUROC AAUROC?
WUSM WCM 0.084 0.737 0.199
MDA 0.073 0.838 0.098
WCM WUSM 0.076 0.707 0.130
MDA 0.050 0.743 0.094
MDA WUSM 0.011 0.858 0.033
WCM 0.038 0.633 0.258

*AAUROC is calculated as the difference between AUROC of
the model evaluated in the training site and AUROC obtained
from directly transporting the model to the testing site.

for improving the generalizability of ML in external
health systems.

In contemporary clinical practice, measuring PTHrP
level aids in determining the cause of unexplained hyper-
calcemia, characterized by elevated calcium levels without
a concurrent increase in PTH (15). However, elevation
of total calcium levels often prompts simultaneous requests
for both PTH and PTHrP tests, which is an inappropriate
utilization of the PTHIP test (5). Excessive PTHrP testing
can result in unnecessary and expensive procedures, such as
invasive laboratory tests to identify a cancerous tumor that
may not even be present (16). However, manually
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reviewing PTHIP orders by comparing them with a pa-
tient’s PTH and calcium results can be a cumbersome
and time-intensive process. The organizer of this ML com-
petition found that our XGBoost model achieved a signifi-
cant improvement compared to their manual approach for
identifying patients at risk for PTHrP (8). In addition, in
the WUSM datase, if we build a XGBoost model using
only the total calcium and PTH intact results available
at the time of the PTHIP order to predict the PTHrP nor-
malcy, the AUROC of the model would be 0.762, and
specificity would be 0.471 when sensitivity is set to
0.900. The predictive performance would be significandy
worse compared to the XGBoost model incorporating
other laboratory tests. Thus, if implemented, the proposed
ML model that predicts normal and abnormal PTHrP re-
sults has the potential to complement the current workup
algorithm by detecting inappropriate PTHrP orders, thus
facilitating automation of the decision-making process
and test utilization. Furthermore, the ML-based data-
driven approach detects variables that are presently not
included in the existing workup algorithm consisting of
intact PTH and total calcium. For instance, patients who
have hypercalcemia of malignancy may exhibit lower levels
of albumin partly due to liver dysfunction, nephrotic syn-
drome, or malnutrition. In addition, hypercalcemia of ma-
lignancy may be associated with systemic inflammatory
response leading to higher levels of WBC and lower levels
of albumin. The clinical interpretability of the ML model is
crucial as laboratorians and clinicians prefer to use models
that can be comprehended and aligned with their knowl-
edge and experience (6).

Before an ML model can be deployed in clinical
practice, its generalizability and transportability, i.e.,
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Fig. 4. Comparison of the extreme gradient
boosting (XGBoost) model’s performance when
deploying the model from WUSM to WCM using
different amount of WCM samples. Three strat-
egies, including direct transporting (green dot-
ted line), retraining (orange dashed line), and
fine-tuning (purple line with star), were evalu-
ated for the model developed from the source
institution (WUSM) to be adopted in the target
institution (WCM). The performance of each
strategy was compared using AUROC. When
number of samples was <200, fine-tuning was
a more favorable strategy; whereas retraining
generated a better result when number of sam-
ples was >200. Color figure available online at
clinchem.org.

the ability of a model to perform well on independent
datasets collected from different geographic or demo-
graphic populations or different hospital settings, need
to be assessed (17). In the setting of clinical laboratory
medicine, various factors such as instrument platforms,
test protocols, sample handling, and send-out laborator-
ies, can affect a model’s generalizability. Here, we ob-
served that, when transported directly, although the
model built on the WUSM data showed deterioration
on both WCM and MDA data, its performance was bet-
ter on MDA data than on WCM data. This difference
could be partially attributed to the fact that both
WUSM and MDA laboratories use the same analyzers
to conduct routine chemistry tests and send their
PTHrP samples to the same reference laboratory. By
contrast, the WCM laboratory employs a different ven-
dor’s chemistry analyzers and sends their PTHrP to an-
other reference laboratory. In fact, we observed that
some laboratory test features exhibited distinct distribu-
tions between WUSM and WCM, which could be due
to variations in clinical or laboratory processes, or

different patient populations. Based on our analysis, if
a ready-made model cannot be directly transported to
new data due to the shift of data distribution, some local
customization strategies can be utilized to improve mod-
el performance, such as retraining or rebuilding the
model using site-specific data.

We have further investigated the quantitative re-
lationship between the performance drop when trans-
porting the model from one data set to another and
the discrepancy between their data distributions mea-
sured by MMD. Supplemental Fig. 6 shows that
MMD and AAUROC correlate, suggesting a larger
discrepancy could lead to a greater performance deg-
radation. This suggests that the MMD value, which
has been a widely adopted statistical metric for meas-
uring distribution shift in transfer learning, could be
used to predict performance deterioration of ML
models when transported to external sites. A previous
study on an acute kidney injury prediction model
across 6 institutes also drew a similar conclusion
(13). While there is not a specific threshold of
MMD value that ensures successful generalization,
calculating MMD can facilitate the adoption process
of ML models in external hospitals.

Our investigation on low-resource scenarios
where the testing site has a limited amount of
PTHrP requests and other available laboratory test re-
sults showed that fine-tuning model parameters works
better than retraining a customized model. In prac-
tice, we can store models trained from different sites
into a “model bank.” When a model is needed for a
new site, we can first assess whether there are enough
samples on this site to retrain a customized model; if
not, we can pick a model (from the model bank)
trained from the site that is the most similar to the
new site (according to hospital operation patterns, pa-
tient populations, etc. or MMD between data distri-
butions if possible) and fine-tune it.

Unfortunately, patient demographic and other clin-
ical information was not provided in the original
WUSM dataset, and thus was not incorporated into
the model’s input. It would be interesting to explore
whether model performance can be further enhanced
with additional clinical features.

In conclusion, our proposed PTHrP prediction
model is a feasible and promising technique that has
the potential to improve utilization of PTHrP testing.
While directly transporting the ready-made model to ex-
ternal datasets led to a deterioration of model perform-
ance due to a shift of data distribution, site-specific
customization strategies were employed to improve the
predictive performance in a new context. Calculating
MMD bprior to model fitting on a new dataset could pro-
vide valuable insight into the degree of model generaliz-
ability, thereby facilitating the model adoption process.
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However, the path toward fully operational implemen-
tation is still long and laden with obstacles that span
technical challenges, regulatory requirements, and the
need for clinical education. The successful deployment
of this model into clinical practice will require a collab-
orative effort among I'T specialists, clinical teams, and la-
boratory professionals.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.
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peptide; ML, machine learning; MMD, maximum mean discrepancy;
AUROC, area under receiver operating characteristic curve; WUSM,
Washington University School of Medicine in St. Louis; XGBoost, ex-
treme gradient boosting; WBC, white blood cells.
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