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Abstract—Knowledge graphs (KGs), with their flexible en-
coding of heterogeneous data, have been increasingly used in
a variety of applications. At the same time, domain data
are routinely stored in formats such as spreadsheets, text, or
figures. Storing such data in KGs can open the door to more
complex types of analytics, which might not be supported by
the data sources taken in isolation. Giving domain experts the
option to use a predefined automated workflow for integrating
heterogeneous data from multiple sources into a single unified
KG could significantly alleviate their data-integration time and
resource burden, while potentially resulting in higher-quality KG
data capable of enabling meaningful rule mining and machine
learning.

In this paper we introduce a domain-agnostic workflow
called BUILD-KG for integrating heterogeneous scientific and
experimental data from multiple sources into a single unified
KG potentially enabling richer analytics. BUILD-KG is broadly
applicable, accepting input data in popular structured and
unstructured formats. BUILD-KG is also designed to be carried
out with end users as humans-in-the-loop, which makes it domain
aware. We present the workflow, report on our experiences with
applying it to scientific and experimental data in the materials
science domain, and provide suggestions for involving domain
scientists in BUILD-KG as humans-in-the-loop.

Index Terms—Integrating heterogeneous data into knowledge
graphs, domain-agnostic integration workflow enabling richer
data analytics, domain experts as humans in the loop.

I. INTRODUCTION

Recent years have seen a rise in the popularity of knowledge
graphs (KGs) in many applications. KGs store real-world facts
in the format of subject-predicate-object (s, p, o) triples, where
the subject s and object 0 are KG nodes representing real-
world entities, and the predicate p indicates the real-world
relationship between them. This format can be used to flexibly
encode large-scale heterogeneous data, making KGs well
suited for a variety of applications. At the same time, domain
data are in many cases routinely stored in other formats, e.g.,
as spreadsheets, text, or figures. While such formats can be
familiar and intuitive to users, storing the same data in KGs
can open the door to more complex types of analysis, such
as rule mining and machine learning. Moreover, combining
heterogeneous data from multiple sources into a single unified
KG could lead to even richer analytics not supported by the
sources taken in isolation. As such, the KG format can be
preferable to other data-storage formats in many scenarios.

This research has been supported by the National Science Foundation under
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Consider a motivating example arising from the use case
that we work with in this paper. Figs. 1(a)-(b) show fragments
of the large-scale data coming from two materials-science
teams working in the Science and Technologies for Phospho-
rus Sustainability (STEPS) Center.! While both teams study
interactions between phosphate-binding proteins (PBPs) and
phosphate ions in solvents, they do not use the exact same
materials, nor do they use the same experimental procedures
or settings. Moreover, they do not use the same storage format
for their data: The first team stores their data as spreadsheets
in (Data) Source 1, see Fig. 1(a), while the second team stores
data as regularized text and images in Source 2, see Fig. 1(b).

The research teams would like to improve the utilization
of their large-scale scientific and experimental data, by inte-
grating the data into a single unified KG. Fig. 1(c) shows
one such possible KG, which would allow the researchers
to accelerate scientific discovery compared to what could be
supported by their isolated source data. The desired integration
process would involve conversion of the heterogeneous source
data into the KG format. It would also involve combining the
resulting KG fragments in a way that would ensure overlap in
the shared entities, with potential addition of extra connections
across the converted sources, see the dashed edges in Fig. 1(c).

Integrating their data into a KG might not be trivial for the
research teams to accomplish on their own. Further, adding
the extra connections across the converted sources might be
a challenge in case the teams are not very familiar with
each other’s projects. These issues could make it difficult for
unassisted domain scientists to integrate their data effectively
into the unified KG format that could enable richer analytics.

Given enough time and resources, domain scientists could
certainly solve their KG-integration problem in a one-off way
for their particular purpose. At the same time, their being
able to use instead a predefined automated workflow for
integrating heterogeneous data from multiple sources into a
single unified KG could significantly alleviate the time and
resource burden, while potentially resulting in higher-quality
KG data conducive to accelerating scientific discovery. Ideally,
such a workflow would allow the scientists to input their
data in familiar formats and to control the KG ontology.
Furthermore, it would output an integrated KG that would
reflect the data-analysis expectations of the scientists, allowing
them to make adjustments as needed in the integration process.

Lhttps://steps-center.org/
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Fig. 1. The motivating example for our proposed BUILD-KG workflow, showcasing a scenario in which data of different types from multiple sources (a)-(b)
need to be converted into a single unified KG (c). Source 1 (a) provides spreadsheet data, while Source 2 (b) provides images and regularized text data. A
KG capturing and connecting these data is shown in (c). The dashed edges in (c) provide examples of relationships between entities across the data sources.

In this paper we introduce a domain-agnostic workflow
called BUILD-KG for integrating heterogeneous scientific and
experimental data from multiple sources into a single unified
KG potentially enabling richer analytics. By design, BUILD-
KG is broadly applicable, accepting input data in popular
structured and unstructured storage formats. To enable ap-
propriate processing of domain-specific data, it accepts inputs
from domain scientists regarding the semantics and handling
of the data, in an effort to ensure that the resulting KG will
be accurate and useful for their needs. This makes BUILD-
KG domain agnostic and domain aware at the same time.
Moreover, the workflow is designed to be carried out with end
users as humans-in-the-loop. In this way, BUILD-KG enables
domain scientists to facilitate the KG construction and verify
that the end result will align with their expectations, potentially
enabling acceleration of scientific discovery.

To the best of our knowledge, most KG-construction ap-
proaches are not analogous to ours, as their efforts focus only
on textual data, see, e.g., [1]-{3], and/or are domain-specific,
see, e.g., [4]-{11]. The approach of [12], which converts data
in multiple formats to the KG format, is domain independent,
but does not directly involve domain experts as humans-in-
the-loop. The KG-construction procedure of [13], which also
accepts non-textual data inputs from users and is applicable
to multiple domains, is complementary to our work, as it only
supports data in the JSON and audio formats.

Our specific contributions are as follows:

o We propose a domain-agnostic, human-in-the-loop work-
flow called BUILD-KG to construct KGs from structured
and unstructured data according to domain experts’ spec-
ifications, which makes BUILD-KG domain aware;

o Within BUILD-KG, we introduce a collection of conver-
sion procedures for three popular data types: spreadsheet
data, images with annotations, and regularized text data;

e We propose a BUILD-KG methodology for combining
multiple heterogeneous data sets into a unified KG;

o We outline our implementation of the BUILD-KG work-

flow, and report on our experiences with applying it to
scientific and experimental STEPS-center data; and

e We report on our experiences working with STEPS re-
searchers, and provide tips on involving domain scientists
as humans-in-the-loop in the BUILD-KG workflow.

The remainder of this paper is organized as follows. We
review related work in Section II and provide a problem
statement in Section III. In Section IV we introduce the
proposed BUILD-KG workflow, illustrating it in Section V
with a STEPS-center materials-science use case. In Section
VI we describe the role of humans-in-the-loop in the BUILD-
KG workflow. We conclude in Section VII.

II. RELATED WORK

Our work is most closely related to the topic of knowledge-
graph (KG) construction, see, e.g., [1]1-[3], [12]-[15]. KG
construction is a complex process, with approaches ranging
from fully manual to semi-automatic to fully automatic. Since
fully manual construction is not scalable and fully-automated
construction is error prone, most KG-construction approaches,
including ours, are semi-automatic.

The most common format of source data in KG construction
is text, with many approaches, such as [1]-[3], supporting tex-
tual inputs only. These approaches rely on machine learning,
most commonly natural-language processing (NLP), to extract
data. In contrast, our BUILD-KG workflow is specifically
designed to handle a variety of input types, including some
of the most popular data-storage formats, so that domain
scientists can use BUILD-KG to convert their data to the
KG format while continuing their regular data collection. The
domain-independent approach of [12], which also converts
multiple data formats to the KG format, does not directly
involve domain experts, so it is unclear how much control they
would have over the handling of their data. Moreover, [12]
does not discuss how overlapping portions of disparate data
are handled; in contrast, our approach covers this scenario, as
these “junction points” can be crucial for domain scientists in
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their KG exploration. The KG-construction procedure of [13],
which also accepts non-textual data inputs from users and is
applicable to multiple domains, is complementary to our work,
as it only supports data in the JSON and audio formats.
Domain-specific KG construction has become popular due
to the nuances present in domain-specific data [14]. Domain-
specific KGs have been generated in many domains, including
geosciences [4], education [5], science [6], medical records
[7], e-commerce [8], power-grid equipment [9], finances [10],
and surveying and remote sensing [11]. In contrast, while our
use case is in the materials-science (MS) domain, our proposed
BUILD-KG workflow is entirely domain agnostic. Moreover,
our workflow allows scientists in a variety of domains to
input their existing data and easily specify their desired KG
ontology, which makes our approach domain aware, while at
the same time enabling richer analytics on the output KGs.
To handle textual data, our BUILD-KG workflow includes
an NLP component that performs named entity recognition
(NER) [16]. Despite the recent advances in pretrained NER
models, most are trained on common-sense and common-
knowledge corpora, see, e.g., WikiBERT [17] and bert-base-
NER [18], [19]. Such general models may not always perform
well on domain-specific texts. Pretrained language models
have also been built in some scientific domains, e.g., [20], [21]
in the biomedical domain and [22], [23] in the MS domain.
Howeyver, in our MS use case, these MS pretrained language
models cannot achieve a high prediction accuracy, due to the
variety in language used by scientists in different subdomains
of MS. Thus, in our proposed BUILD-KG workflow, to
complete the NER step we use the NLP tool flair [24],
as it allows users to easily build their own language model.

III. PROBLEM STATEMENT

We define a knowledge graph (KG) G as a 5-tuple G =
(E,T,0,P, L), where £ is the set of entities, T is the set of
entity-types, ¢ : € — T is the entity-type labeling function, P
is the set of predicates, and £ C £ x P x € is the set of triples.
Each element (s,p,0) € L is called a triple and represents
the real-world fact that the subject s has a relationship of
type p with the object o. For example, the triple (Solution
01, contains, orthophosphate) represents the fact that “the
solution with ID 01 contains orthophosphate.”

We now introduce the formal problem statement for the
problem addressed by our BUILD-KG workflow: Given a set
D of heterogencous data files, integrate the data in D into
a unified KG G = (£,7T,¢,P,L) that could enable richer
analytics not supported by the sources taken in isolation.

To limit the scope of this general problem for this paper,
we focus on three distinct data types for the data files in D:
(1) spreadsheet data, (2) images with annotations, and (3)
regularized text data. These data types have been chosen due
to their popularity among domain scientists for storing their
data. Spreadsheet data are relational-type data stored in data
sheets in the spreadsheet format. Data sheets contain data on
objects stored as rows; the columns headers indicate the spe-
cific components of the data objects. These components have
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relationships between them that are specified in triple sheets
and can be encoded as KG edges. Images with annotations
consist of sets of figures, graphics, etc. that are annotated
with additional sets of properties of interest (metadata) stored
in annotations files. Regularized text data consist of sets of
sentences that share a similar structure, in the sense that similar
entities or entities of the same type appear in the same general
location in the sentence. This parallel structure allows for a
“universal form” to be extracted, such that each sentence in the
set is an instantiation of the universal form. The entities in each
sentence have relationships between them that are specified in
triple sheets and can be encoded as KG edges. More detailed
descriptions of these data types can be found in Section IV.

IV. THE BUILD-KG WORKFLOW

We now introduce our proposed domain-agnostic BUILD-
KG workflow for integrating heterogeneous data into a knowl-
edge graph (KG) that could enable richer analytics not sup-
ported by the sources taken in isolation. In Sections IV-A-IV-C
we present procedures for constructing KGs from spreadsheet
data, images with annotations, and regularized text data,
respectively. Then, in Section IV-D we outline the procedure
for combining data in multiple formats into a unified KG.

A. Converting Spreadsheet Data into the KG Format

We present here construction of a KG from spreadsheet
data, the first data type that we consider in this work. In the
proposed domain-agnostic conversion procedure, we require
the data to be in the format described in Section IV-Al. The
output KG and its ontology are discussed in Section IV-A2,
and the conversion procedure is presented in Section IV-A3.

1) The Input Data: The proposed procedure accepts spread-
sheets in a specific format, which can be arrived at in collabo-
ration with domain scientists, see Section VI for an illustration.
The data in the desired format are stored in two spreadsheets:
(1) a data sheet D, and (2) a triple sheet T. The data sheet
D is similar to a relation, in that each row in D corresponds
to a single data object. Each cell represents an entity in the
resulting KG; related entities appear in the same row and will
have corresponding edges in the resulting KG. If the same
entity name appears in multiple rows, then it will correspond to
a single entity in the resulting KG. This situation arises when
an entity contributes to multiple data objects, and therefore
has relationships with other entities from multiple rows.

The triple sheet T has three columns, one for each of
subject, predicate, and object. Each row of T describes a
triple type in the resulting KG, that is, a (sT'ype, p, oType)
triple, in which sT'ype, oType € T represent respectively the
subject and object entity-types corresponding to column names
in the data sheet D, and p € P is the predicate indicating the
relationship type between them. As such, the triple sheet T'
enumerates the relationships between the entities present in
the data sheet D. See Section V-C for an illustration.

2) The Output KG: The KG G = (£, T, ¢, P, L) returned
by the conversion procedure of Section IV-A3 contains the
data from the data sheet D according to the format specified
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Algorithm 1: Converting spreadsheet data into a KG.

Input: Data sheet D and triple sheet 7.
Output: A KG G containing the data from D in the format
specified by T.
1: G« 0; /] initialize the KG G
// create a node of G for each entity:
2: for row € D do
3 for column € D do
4 e + D[row][column]; t + column.name;
5 G < G U create node of type ¢ for e;
/l create all the edges of G:
: for sType,p,oType € T do
for row € D do
s + row[sTypel; o < row[oTypel;
G + G U create edge of type p from s to o;
return G,

- 100 Sl UION

by the triple sheet 7. The entity set £ of G consists of all
the unique entries in D, and the entity-types 7 of G are the
column headers of D. The entity-type labeling function ¢ in G
maps each entry in D to its corresponding column header, and
the predicate set P consists of all the entries from the second
column of 7. Finally, the set of triples £ consists of a single
triple of each triple type (sT'ype, p, oType) in T for each data
object d in D, where the subject and object are the entries
from d in columns sType and oT'ype, and the predicate is p.

3) The Conversion Procedure: Once the data are in the
proper format, they can be converted into a KG in a straightfor-
ward manner, as outlined in Algorithm 1. The algorithm takes
as inputs the data sheet D and the triple sheet T" formatted as
specified in Section IV-A1, and outputs the KG G described in
Section IV-A2. The procedure works in two stages: (i) creating
the nodes of the KG G, and (ii) creating the edges of G.

First, to create all the nodes of G, the algorithm extracts
from the data sheet D (lines 2-5) each entity e along with its
type ¢ (line 4), and creates the corresponding node of type ¢ in
the KG G (line 5). If the Neo4j system [25] is used for storing
and processing the KG data, this process can be implemented
via the following Cypher [26] query:

MERGE (n:t) SETn.id=e

In Cypher, the keyword MERGE is used to either identify an
already existing node pattern in the graph, or to create a new
node pattern if one does not exist. Thus, the above query will
create a node n in G of type ¢ with the unique identifier e only
if a node corresponding to e does not already exist in G. In
this way, Algorithm 1 guarantees that only a single node will
be created for each unique entity in the data sheet D.

Next, to create all the edges in the KG G, Algorithm 1 makes
a triple of each triple type in T for each row in the data file
D. To this end, the algorithm loops through the rows of T
(lines 6-9), where each row specifies a subject type sT'ype,
a predicate p, and an object type oType. Then, the algorithm
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loops through the rows of D (lines 7-9), extracting from each
row the subject s and the object o from the sType and oT'ype
columns (line 8). Finally, it creates an edge in the KG G of
type p from s to o (line 9). Line 9 can be implemented using
the following Cypher query:

MATCH (nl), (n2)
WHERE n;.id = s AND n;.id =0
MERGE (n;) — [r: p|] — (m2)

This query first identifies the nodes n; and n, corresponding
to the subject s and object o, and then creates an edge with
the predicate type p from n; to np.

Finally, Algorithm 1 returns the KG G that has been
populated with the data from the input data sheet D according
to the format specified by the input triple sheet T (line 10).

B. Converting Images with Annotations into the KG Format

We now describe KG construction from images with an-
notations. To enable a domain-agnostic conversion procedure,
we require that the annotations (image properties) be provided
in a specific format described in Section IV-B1. The output
KG and its ontology are discussed in Section IV-B2, and the
conversion procedure is presented in Section IV-B3.

1) The Input Data: For this data type, the input consists of
(1) a set I of one or more image files, and (2) an annotations
file A. The image data in I can be in any of the popular image
formats, e.g., JPG or PNG. The annotations file A consists of
a single row for each image file in I. The column names in
A are the property names provided by the annotations, and
the row entries are the corresponding property values for the
image. While the properties and values can be customized, for
uniformity we recommend using consistent property names for
similar images. See Section V-D for an illustration.

2) The Output KG: After executing the conversion proce-
dure, see Section IV-B3, the resulting KG G = (£, 7,4, P, L)
contains the set of images I and the data from the annotations
file A. The entity set £ of G consists of the images in I,
along with all the property values in A. The entity types 7
are Image and the column headers of A, and the entity-
type labeling function ¢ maps each image to Image and
each property value to its corresponding column header. The
predicate set P = { has_property }. The set £ consists
of triples (s, has_property, o), where s is an image from
I and o is a property value from the corresponding row in A.

It is possible that some use cases may require additional
triples to be present in the output KG g, specifically, triples
that relate property values to one another. In this case, the
desired relationships can be encoded in a triple sheet 7*
according to the spreadsheet data format specified in Section
IV-Al, with T™ serving as an optional third input.

3) The Conversion Procedure: This conversion procedure
takes as inputs the set of images I and the annotations file A
described in Section IV-B1, and outputs the KG G described
in Section IV-B2. To construct G, the procedure adapts the
inputs I and A to the spreadsheet data format described in
Section IV-Al, and then invokes Algorithm 1.
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To adapt the files in I and A to the spreadsheet data format,
the procedure adds to A a column with the Image header.
The values in this column are the image-file names for each
row. The resulting annotations file A’ is the data sheet D that
is input into Algorithm 1. For the triple sheet 7" that is also
required as an Algorithm 1 input, the procedure generates a
sheet with one row for each column in the annotations file
A; the subject of the row is Image, the predicate is has_
property, and the object is the column name from A.

As discussed in Section IV-B2, it is possible that additional
triples may be desired. In this case, the optional triple sheet
T* generated for the extra triples can be concatenated with
the triple sheet T' before invoking Algorithm 1.

Once the data sheet D and the triple sheet T' have been
generated, they are passed as inputs to Algorithm 1, which
generates the KG G outlined in Section IV-B2.

C. Converting Regularized Text Data into the KG Format

We now describe construction of a KG from regularized
text data. To handle the lack of uniformity present in textual
data, we require that the text be regularized as described in
Section IV-C1, to facilitate accurate triple extraction via named
entity recognition (NER) [16]. The output KG and its ontology
are discussed in Section IV-C2, and the conversion procedure,
including the use of NER, is presented in Section I'V-C3.

1) The Input Data: The input data consist of (1) a set S
of regularized sentences, some of which are tagged sentences
ST ¢ S, and (2) a triple sheet T formatted as described in
Section IV-Al. Regularized means that the sentences share a
similar structure. E.g., consider the sentences:

« Fig. 1 shows the RMSD for the interaction between 2HP

and E. coli in clean water.

o Fig. 3 shows the radius of gyration for the interaction
between dihydrogen phosphate and E. coli in multi-ion
water.

The shared structure can be specified as “<Figure> shows
the <Parameter> for the <Process> between <Ion>
and <Protein> in <Solvent>.

Despite recent advances in NER performance, it still has
limitations, especially with domain-specific terminology [27].
Therefore, we require that the input sentences be regularized
this way to maximize the performance of the NER step of
Section IV-C3, resulting in higher-quality KGs. We do not
expect such regularization to be burdensome to domain scien-
tists, as they may already tend to write sentences with similar
structures in their work. We have confirmed this expectation
with the scientists who provided the data for our use case.

We require some of the sentences ST C S to be tagged, to
serve as the training data for the NER model. By using an NER
model, we relieve domain scientists from the arduous task of
tagging all the sentences in S. Tagging NER data consists of
assigning a label to each token (word) in the text indicating
the named entity that the token corresponds to. Entities in
the sentence that consist of multiple tokens, e.g., clean water,
have the first token labeled as B—tokenName, which stands
for the “beginning” of the entity, and the subsequent tokens
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labeled as I-tokenName, which stands for the “inside” of
the entity. The tag O (other) is used for any token that does
not correspond to a named entity in the text.

The triple sheet T used in the procedure is in the format
described in Section IV-Al. The entries in the subject and
object columns of T must correspond to named entity types
from the tagged sentences. See Section V-E for an example.

2) The Output KG: The conversion procedure of Section
IV-C3 outputs a KG G = (£,7,¢,P, L) that contains the
named entities from the sentences S connected by the relation-
ships specified in the triple sheet T'. The entity set £ consists
of the named entities in S, and the entity types 7 are the
tags from the tagged sentences (aside from O). The entity-type
labeling function ¢ maps each named entity to the tag assigned
by the NER model, and the predicate set P consists of all the
entries from the second column of the triple sheet T'. The set
of triples £ consists of a single triple of each possible triple
type (sType, p, oType) in T for each sentence in S, where the
subject and object are the sType- and oType-tagged entities
in the sentence, and the predicate is p.

3) The Conversion Procedure: The procedure takes as
inputs the set of sentences S, with some ST C § tagged, and
the triple sheet 7', see Section IV-C1, and outputs a KG G, see
Section IV-C2. To construct G, an NER model is trained on ST
and used to extract named entities from S. Then, Algorithm
1 is invoked on the result of converting the outputs to the
spreadsheet-data format described in Section IV-Al.

If the set ST C S is too small for successful training of
a NER model, then ST can be synthetically enlarged by au-
tomatically generating many sentences with similar structure.
This generation can be done by substituting entity tokens in
the regularized sentence structure with random words from
a dictionary provided by the domain scientists. We used this
technique to enlarge the training data set for our use case.

The trained model is used to provide tags for the remaining
sentences in .S \S’T. Then, a data sheet D is generated from the
complete set of tagged sentences S, just as for the spreadsheet
data format, see Section IV-A1. The column headers of D are
the NER tags (aside from O), and each row corresponds to a
sentence in S, with the t-tagged entities in S appearing in the
columns of D with column header t. The resulting data sheet
D and the triple sheet T are passed as inputs to Algorithm 1,
which returns the output KG G.

D. Assembling a KG from Multiple Data Types and Data Sets

We now discuss the scenario in which a KG is created by
combining data of multiple types. The KG can be constructed
by using our proposed procedures for the corresponding data
types, see Sections IV-A-IV-C. The data from individual
sources can be converted one source at a time into a single
unified KG, by executing Algorithm 1 on each source and
using the same KG G for all the runs. To ensure that the
data align and connect properly, one must pay particular
attention to the terminology used across the sources. Terms
representing the same entity/concept should be unified across
the sources, such that the MERGE queries executed during the
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runs of Algorithm 1 will identify pre-existing entities when
appropriate instead of creating new entities, see Section IV-A3
for a discussion of the semantics of MERGE in Cypher.

In this scenario, we recommend maintaining data prove-
nance when constructing the KG. Keeping data provenance is
useful in general, but when assembling a KG from multiple
data sources, it can be imperative down the line, e.g., for data
cleaning or verification. Thus, we recommend maintaining as
provenance the specific data set (input files) from which each
KG triple originated. This can be achieved by adding the
provenance property to each triple that would store the name
of the data set from which the triple originated. The Cypher-
query implementation of line 9 of Algorithm 1 can be modified
to accomplish this by adding an appropriate SET clause.

In addition to ensuring that the same nodes are used
when entities are shared across the input data sets, domain
scientists might also choose to add to the KG extra edges
connecting nodes across the converted source data, to express
extra relationships based on domain semantics. Our proposed
BUILD-KG workflow makes this possible with additional
inputs. Domain scientists can input a set of specific (s, p,0)
triples that would connect entities s and o via predicate p
across the converted source data. These triples can be added
to the KG using the command of line 9 in Algorithm 1.

V. THE USE CASE WITH MATERIALS SCIENCE DATA

In this section we outline our implementation of the pro-
posed BUILD-KG workflow, and illustrate its application to a
use case in the materials-science (MS) domain. Section V-A
describes the tools used in our implementation of the BUILD-
KG workflow, and Section V-B presents the source data for the
use case. Sections V-C—V-E describe our instantiations of the
workflow for the use-case MS spreadsheet data, images with
annotations, and regularized text data, respectively. Finally,
Section V-F describes the process of assembling a single
unified KG from the three use-case data sets.

A. Tools Used in our Implementation of BUILD-KG

Implementing the BUILD-KG workflow requires a graph
data-management system (DBMS), a graph query language,
and a programming language. In our implementation, we used
the Neodj graph DBMS [25] with the Cypher graph query
language [26]. The workflow was implemented in Python
[28], including its publicly available package py2neo [29]
for connecting to Neodj and executing Cypher queries within
Python code. For the named entity recognition (NER) model,
we used the flair [24] package in Python. As training the
NER model requires a data corpus and a tagger, for our use
case we built the corpus by using the ColumnCorpus object
in flair, with SequenceTagger from flair as the
tagger. To train the SequenceTagger, we used the popular
word-embedding model GloVe [30].

B. The Source Data in the Materials Science Use Case

As a use case for testing the proposed BUILD-KG work-
flow, we used data provided by researchers in the Science and
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Technologies for Phosphorus Sustainability (STEPS) Center.
STEPS is sustainability driven, with a focus on creating
systems that would allow successful capture of phosphates
from a variety of environments. To build such systems, one
needs to consider materials with high affinity to phosphate
binding, low toxicity, and amenability to being easily cleaned
or destroyed. Possible solutions include soft materials, such as
bio-inspired proteins found in plants or microorganisms.

In our use-case data, the Escherichia coli (E. coli)
phosphate-binding protein was used as a test model. This
protein was investigated in various environments for its capa-
bility to bind with several forms of phosphate ions. We used
data sets generated by experimental and computational E. coli
tests. Merging the data sets into a KG would enable domain
scientists to identify “junction points” and direct links between
the data that may not be easily identifiable as the data sets
grow in sizes. This would allow domain scientists to perform
deeper analyses of the phosphate-binding properties of E. coli.

The data sets generated by STEPS scientists are as follows:

1) Data Set 1: Spreadsheet Data: This data set was ob-
tained via conducting a series of experiments with the E.
coli protein. The data consist of ultraviolet—visible (UV-Vis)
spectrophotometer measurements summarized in spreadsheets.
These measurements include absorbance, through which one
can derive the phosphate capture rate via comparisons to the
baseline. This series of experiments measured the capture rate
under several conditions: temperature gradient, pH variations,
ionic strength variations (concentration of the salt ions KCl
present in the test solution), as well as in several system
configurations: different amounts of the E. coli protein intro-
duced in the test solution, different dihydrogen phosphate ion
concentrations, several water matrix models, different types
of nanoparticles used as the carrier, and various numbers of
cycles in which the proteins were used.

2) Data Set 2: Images with Annotations: This data set was
generated via analysis and summary of the raw data from Data
Set 1 described in Section V-B1. It contains various graphs
and charts, as well as data on the process kinetics and related
isotherms, which were derived from the raw data points.

3) Data Set 3: Regularized Text Data: The data in this
set were derived from atomistic simulations of the E.coli
phosphate-binding protein carried out via all-atom molecular
dynamics (MD) simulations. In the simulations, the test protein
interacted with various phosphate ion types, and several values
were computationally observed at the atomistic level, including
binding rate, binding strength, speed of binding, and the
particular regions of the protein affected by the presence of
ions. This approach provides some insight into the kinetics of
the binding process and supplements the experimental results.

The data for the MD simulations consist of input files
(systems configurations, scripts, etc.), output data (files rep-
resenting the dynamics of the systems across the simulation),
and summary data (parameters derived from the systems via
analysis). We used the summary data, which include various
figures, together with their captions and descriptions.



C. Constructing a KG from the MS Spreadsheet Data

In this section we discuss our experience of constructing a
KG from the spreadsheet data in our MS use case. Those data
come from Data Set 1, see Section V-B1 for the details.

1) The Input Data: To arrive at the required input format
specified in Section IV-A1, we used the data sheet D provided
by Data Set 1, and generated a triple sheet 7" with the help of
domain scientists. Table I shows a fragment of the data sheet
D, which contains data about the experimental trials outlined
in Section V-B1. For each trial, there is a single data object
(row) containing information describing the trial, e.g., the trial
ID, the protein used, and the solution used. For example,
the first row of Table I details the trial Templ.l. This trial
used the protein E. coli on solution Temp 01, which contained
clean water and orthophosphate at the original concentration
of 1.12 mg/L; the trial used the temperature setting of 10°C
and resulted in the absorbance of 0.234 nm.

Table II shows a fragment of the triple sheet 7', which
specifies the triple types desired in the resulting KG. Each
row contains the subject, predicate, and object for a sin-
gle triple type. E.g., the first row specifies the triple type
(Trial, used_protein, Protein), with the meaning that
each Trial and the corresponding Protein are linked by the
used_protein relationship.

2) The Output KG: The inputs D and T determine both
the ontology and the contents of the resulting KG G; = (&,
T1, ¢1, P1, L1). The components of the KG G; resulting from
the inputs outlined in Section V-C1 are as follows. The entity
set & consists of all the unique entries in D, that is, £;
{ Templ.1, Templ1.2, Templ.3, E. coli, Temp 01, clean water,
orthophosphate, 10, 0.234, 0.240, 0.226, 1.12 }. The entity-
types 71 are the column headers of D, so 7; = { Trial,
Protein, Solution, Solvent, ..., Original Conc.
(mg/L) }. The entity-type labeling function ¢; maps each en-
try in D to its corresponding column header, e.g., ¢1 : Templ.1
— Trial and ¢; : Temp 01 — Solution. The predicate
set P; consists of all the entries from the second column of T,
ie, P; = { used_protein, used_environment, ...,
contains }. Finally, the set of triples £ consists of a single
triple of each triple type (sType, p,0T'ype) in T for each data
object d in D, where the subject and object are the entries
from d in columns sT'ype and oT'ype, and the predicate is p.
For example, (Temp 1.1, used_protein, E. coli) € L;.

3) The Conversion Process: We implemented the
spreadsheet-conversion procedure of Algorithm 1, see Section
IV-A3, in Python [28] using the py2neo [29] package to
connect to our graph database stored in Neo4j [25]. Using
the data sheet D and the triple sheet 1" of Section V-C1 as its
inputs, Algorithm 1 returned the KG G; = (€1, T1, ¢1, P1, L£1)
described in Section V-C2.

D. Constructing a KG from the MS Images with Annotations

In this section we discuss our experience of constructing a
KG from the images with annotations in our MS use case. The
data come from Data Set 2, see Section V-B2 for the details.
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Fig. 2. An image from Data Set 2 described in Section V-B2.

1) The Input Data: To align with the required input format
specified in Section IV-B1, we used the set of images [
provided by Data Set 2, and compiled all the annotations into
a single annotations file A with one row of annotations per file
in I. Figure 2 shows a sample image from the set I of images
in Data Set 2; this is a graph generated by MS researchers
to summarize their experimental results. Table III shows the
annotations for the image of Figure 2, which comprise a single
line in the annotations file A. The annotations, i.e., properties
of interest of the image, include in this case title, x-axis, y-axis,
description, and meaning. E.g., the first annotation indicates
that the image title is “Removal vs. Temperature.”

2) The Output KG: The components of the KG G
(&2, T2, p2, P2, L2) resulting from the inputs discussed in
Section V-D1 are as follows. The entity set £ consists of
the images in I and the unique entries in A, that is, & = {
Figure 2, Removal vs. Temperature, temperature, removal rate
(%), ...}. The entity types T2 are Image and the column
headers of A: To = { Image, title, z-axis, y-axis,
description, meaning }. The entity-type labeling func-
tion ¢ maps each image to Image and each property value
to its corresponding column header, e.g., ¢o : Figure 2 —
Image and ¢ : temperature — r-axis. The predicate set
P2 = { has_property }. The set of triples L5 consists of
triples (s, has_property, o), where s is an image from I
and o is a property value from the corresponding row in A.
E.g., (Figure 2, has_property, temperature) € Lo.

3) The Conversion Process: Following the procedure of
Section IV-B3, we converted the set of images I and the
annotations file A of Section V-D1 into the spreadsheet
data format, obtaining a data sheet D and a triple sheet 7.
The adaptation procedure, described in Section IV-B3, was
implemented as a Python [28] script. Table IV shows the data
sheet D generated for the inputs I and A, see Section V-D1. D
consists of the image annotations A with an additional column
indicating the image corresponding to the annotations. Table
V shows a fragment of the triple sheet 7', which contains
a single row for each column in the annotations file A.
We passed these inputs D and 7' into our implementation
of Algorithm 1 of Section V-C3, which returned the KG
Ga = (&2, T2, ¢2, P2, L2) described in Section V-D2.

E. Constructing a KG from the MS Regularized Text Data

In this section we discuss our experience of constructing a
KG from regularized text data in our MS use case. These data
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TABLE I
FRAGMENT OF THE DATA SHEET FROM DATA SET 1 (SEE SECTION V-B1) INGESTED WITH THE DATA IN TABLE Il BY THE CONVERSION PROCEDURE OF
SECTION IV-A3 FOR SPREADSHEET DATA. EACH ROW DESCRIBES A SINGLE DATA OBJECT, AND THE COLUMNS REPRESENT DIFFERENT ENTITIES.

Trial Protein  Solution Solvent Ton Temperature (°C)  Absorbance (nm)  Original Conc. (mg/L)
Templ.l E.coli Temp 0l clean water orthophosphate 10 0.234 1.12
Templ.2 E.coli Temp Ol clean water orthophosphate 10 0.240 1.12
Templ.3 E.coli Temp 0l clean water orthophosphate 10 0.226 1.12
TABLE II }. Finally, the set of triples £ consists of a single triple of each

FRAGMENT OF THE TRIPLE SHEET FOR DATA SET 1 (SEE SECTION V-B1)
INGESTED WITH THE DATA IN TABLE I BY THE CONVERSION PROCEDURE
OF SECTION IV-A3 FOR SPREADSHEET DATA. EACH ROW DESCRIBES A
TRIPLE TYPE OF THE FORM (subjectType, p, objectType).

Subject  Predicate Object
Trial used_protein Protein
Trial used_environment  Solution
Protein used_on Solution
Protein had_property Absorbance
Solution contains Solvent
Solution contains Ton

come from Data Set 3, see Section V-B3 for the details.

1) The Input Data: To align with the required input format
of Section IV-C1, we used the set S of regularized sentences
from Data Set 3, tagging some of the sentences ST C S.
For example, the sentence “Figure 1 shows the RMSD for
the interaction between 2HP and E. coli in clean water” in
S has been converted to the following sequence of (Token,
Tag) pairs in ST: [(Figure, B-Figure), (1, I-Figure), (shows,
0), (the, 0), (RMSD, B-Parameter), (for, O), (the, O), (in-
teraction, B-Process), (between, O), (2HP, B-IonMD), (and,
0), (E, B-ProteinMD), (coli, I-ProteinMD), (in, O), (clean,
B-SolventMD), (water, I-SolventMD)]. The tags indicate the
named entities in the sentence and their types. E.g., the first
two tokens in the example form a named entity of type Figure,
while the third and fourth tokens are not named entities.

We also generated a triple sheet 7" with the help of domain
scientists; a fragment of T' is shown in Table VI. The triple
sheet specifies the triple types desired in the resulting KG.
Each row of the sheet contains the subject, predicate, and
object for a single triple type. For example, the first row
denotes the triple type (Figure, illustrates, Process),
meaning that each Figure and the corresponding Process have
an illustrates relationship between them.

2) The Output KG: The components of the KG G =
(&s, T3, 3, P3, L3) resulting from the sample inputs provided
in Section V-E1 are as follows. The entity set £ consists of
the named entities in S, that is, &3 = { Figure 1, RMSD,
interaction, 2HP, E. coli, clean water }. The entity types T3
are the tags from the tagged sentences (aside from 0), so T3 =
{ Figure, Parameter, Process, IonMD, ProteinMD,
SolventMD }. The entity-type labeling function ¢35 maps
each named entity to the tag that it is assigned by the trained
NER model, e.g., ¢3 : RMSD — Parameter and ¢z : 2HP
— IonMD. The predicate set P3 consists of all the entries
from the second column of the triple sheet T, ie., P3 = {
illustrates, measured_by, involves, occurs_in
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possible triple type (sType,p, 0Type) in T for each sentence
in S, where the subject and object are the sType- and oType-
tagged entities in the sentence, and the predicate is p. For
example, (interaction, measured_by, RMSD) € L3.

3) The Conversion Process: Following the conversion pro-
cedure of Section IV-C3, we first trained a named entity
recognition (NER) model on the set of tagged sentences ST
synthetically enhanced by automatically generating sentences
with similar structure, see Section V-E1 for an example. See
Sections V-A and I'V-C3 for more details about our NER model
and the process for generating synthetic sentences.

Next, we used the trained model to provide tags for the
sentences S\ ST. Then we adapted the complete set of tagged
sentences S to the format of the data sheet D used for the
spreadsheet data input (see Section IV-Al). To this end, we
implemented the adaptation procedure described in Section
IV-C3 as a Python [28] script. Table VII shows the data sheet
D that was generated for the sample sentence and tags given in
Section V-E1. D consists of a single row for the sentence; each
entry is a named entity from the sentence, and each named
entity appears in the column corresponding to its tag (type).

Finally, we passed the newly generated data sheet D and
the triple sheet T (see Section V-E1) to our implementation of
Algorithm 1 of Section V-C3. The run of Algorithm 1 returned
the KG G3 = (&3, T3, 3, P3, L3) described in Section V-E2.

F. Assembling a KG from Multiple Data Types and Data Sets

For our use case, it would be valuable to the domain
scientists if the KGs G, G2, and G3 were unified into a single
KG. As discussed in Section IV-D, this can be accomplished
by building a single KG G using the BUILD-KG conversion
process for each data type and each data set. Executing
the conversion processes of Sections V-C3, V-D3, and V-E3
resulted in the KG G with the contents of the KGs G1, G, and
Gs described in Sections V-C2, V-D2, and V-E2, respectively,
with G having the unified ontology of the three KGs. Further,
each node or edge that is shared between G1, G2, and G3 was
mapped by BUILD-KG into the same node or edge in G.

Following the recommendations given in Section IV-D, we
consulted domain scientists to ensure that the three data sets
in our use case would use common terminology where ap-
propriate. Additionally, we maintained data provenance when
assembling G. To this end, each triple (edge) £ in G has a
property t.porovenance that stores the ID of one of the three
source data sets from which that triple originated.

The domain scientists were also looking for additional
relationships that would connect entities across the data sets,
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TABLE Il
THE ANNOTATIONS FROM DATA SET 2 DESCRIBED IN SECTION V-B2 FOR THE IMAGE SHOWN IN FIGURE 2. THE ANNOTATIONS HAVE BEEN USED AS
INPUTS TO THE CONVERSION PROCEDURE OF SECTION IV-B3 FOR IMAGES WITH ANNOTATIONS.

title Z-axis y-axis description meaning
Removal vs. temperature removal rate (%) Removal rate as a function of temperature The amount of phosphate that is
Temperature (the temperature-dependence of removal) removed at different temperatures

TABLE IV
THE DATA SHEET GENERATED WHEN EXECUTING THE CONVERSION PROCEDURE OF SECTION IV-B3 FOR IMAGES WITH ANNOTATIONS; THE PROCEDURE
USED AS INPUTS THE IMAGE SHOWN IN FIGURE 2 AND ITS ANNOTATIONS SHOWN IN TABLE III.

Image title T-axis y-axis description meaning
Figure 2 Removal vs. temperature removal rate (%) Removal rate as a function of temperature = The amount of phosphate that is
Temperature (the temperature-dependence of removal) removed at different temperatures
TABLE V TABLE VIII

FRAGMENT OF THE TRIPLE SHEET GENERATED WHEN EXECUTING THE
CONVERSION PROCEDURE OF SECTION IV-B3 ON THE IMAGE OF FIGURE
2 AND ITS ANNOTATIONS SHOWN IN TABLE III.

Subject  Predicate Object

Image has_property title

Image has_property  x-axis

Image has_property y-axis
TABLE VI

FRAGMENT OF THE TRIPLE SHEET FOR THE DATA SET 3 OF SECTION
V-B3, USED AS AN INPUT TO THE CONVERSION PROCEDURE OF SECTION
IV-C3 FOR REGULARIZED TEXT DATA. EACH ROW DESCRIBES A TRIPLE
TYPE OF THE FORM (subjectType, p, objectType).

Subject  Predicate Object
Figure illustrates  Process
Process measured_by  Parameter
Process involves TonMD
Process involves ProteinMD
Process occurs_in SolventMD

thus enabling richer analytics on G than what the data sets
or even G1, G, and G3 could allow in isolation. To this end,
the scientists provided a set of (s, p,0) triples to connect such
entities; s and o would come from different data sets but have
the relationship p between them in G. An example of such
a triple is (2HP, simulates, orthophosphate), where 2HP
is a node of type IonMD in Data Set 3 (see Section V-E1)
and orthophosphate is a node of type Ion in Data Set 1
(see Section V-C1). The triple, see Figure 1, indicates that
the TonMD 2HP is used to simulate the Ton orthophosphate
in molecular-dynamics simulations. We added the triples to G
via the Cypher query implementing line 9 of Algorithm 1.
These steps completed our BUILD-KG conversion and uni-
fication process for the use case. We provided the resulting KG
G to the STEPS scientists for their further use and exploration.

TABLE VII
THE DATA SHEET GENERATED BY THE CONVERSION PROCEDURE OF
SECTION IV-C3 FOR REGULARIZED TEXT DATA FOR THE SAMPLE TAGGED
SENTENCE OF SECTION V-E1 FROM THE DATA SET 3 OF SECTION V-B3.

Figure Parameter  Process IonMD  ProteinMD  SolventMD
Figure 1 RMSD interaction = 2HP E. coli clean water
2973

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 02,2024 at 14:40:03 UTC from IEEE Xplore. Restrictions apply.

SAMPLE SEMANTIC SENTENCES GENERATED BASED ON A SEMANTIC
DESCRIPTION OF DATA SET 1 PRESENTED IN SECTION V-B1.

Defines Semantic sentence

Entity-type  E. coli is a Protein.

Entity-type  Water containing orthophosphate is a Solution.

Predicate An experimental trial resulted in 0.234 nm of absorbance.
Predicate A solution had an original concentration of 1.12 mg/L.
Predicate The protein E. coli was used on solution Temp 01.

VI. HUMANS-IN-THE-LOOP IN THE WORKFLOW

We now detail the preprocessing steps that should be taken
in order to properly format the data that are to be integrated
by our proposed BUILD-KG workflow. This preprocessing
involves close collaboration with domain scientists as humans-
in-the-loop, and is needed for achieving full understanding of
their data and for ensuring that the data are captured in the
knowledge graph (KG) as accurately as possible.

To facilitate productive collaboration with domain scientists,
we recommend the following four data-preprocessing steps:

1) Obtain raw data from the domain scientists, along with
semantic descriptions of the data elements;

2) Generate sample semantic subject-predicate-object sen-
tences based on the semantic descriptions;

3) Ask the domain scientists to validate or correct the
semantic sentences; and

4) Based on the semantic sentences, format the raw data
such that they would meet the formatting requirements
presented in Sections IV-Al, TV-B1, and IV-C1.

Examples of the data received from the STEPS scientists
in Step 1 are shown in Figs. 1(a)-(b). From these data, we
generated semantic subject-verb-object sentences to show the
scientists (Step 2). The second column of Table VIII shows
some sample semantic sentences that were generated based on
the semantic descriptions of the spreadsheet data from Data
Set 1 (see Section V-B1) given by the scientists. The first two
sentences in Table VIII are used to define entity-types in the
resulting KG. They take the general form “<Ent ityName>
is a <EntityType>.” The last three sentences in Table VIII
are used to define predicates in the resulting KG. They take the
general form “<Subject> <Predicate> <Object>.



After the generation of the semantic sentences, domain
scientists validate them in Step 3 to ensure that the data are
understood and captured correctly before the KG construction.
Based on the entity-type sentences, the scientists can verify the
entities selected from the data sets and the types assigned to
the entities. Based on the predicate sentences, the scientists can
verify the related entities and the relationship names. Verifying
and correcting these items enables the scientists to control the
data in the resulting KG and its ontology, so that it would
align with their expectations and needs. In this step, we found
it useful to generate with the STEPS scientists a dictionary
of domain-specific terminology, to enable us to align the
terminology used across the data sets. The dictionary allowed
us to build the ontology more efficiently. It also cleared up
some misunderstandings about the terms used. E.g., instead
of using a single node of type Solution for the liquids used in
the experiments, the scientists requested that we use nodes of
types Solvent and Ion to separate the contents of the liquids.

Steps 2 and 3 can be repeated as many times as necessary
to produce an integrated KG that satisfies the needs of the
domain scientists. Such a KG will have a proper structural
and semantic representation of the original data, and will
provide insightful connections (junction points) across the
data. Once this iterative process is done, in Step 4 the raw
data can be reformatted to match the BUILD-KG input-format
requirements. In our use case, the semantic sentences shown
in Table VIII were used to generate the spreadsheet data-type
inputs shown in Tables I and II and discussed in Section V-C1.

VII. CONCLUSION

In this paper we introduced a domain-agnostic workflow
called BUILD-KG for integrating heterogeneous scientific
and experimental data from multiple sources into a single
unified KG that can enable richer data analytics. BUILD-
KG is broadly applicable, accepting input data in popular
structured and unstructured storage formats. It is also designed
to be carried out with end users as humans-in-the-loop, which
makes BUILD-KG domain aware. We presented the BUILD-
KG workflow, reported on our experiences with applying it to
data in the materials-science domain, and provided suggestions
on involving domain scientists in BUILD-KG as humans-in-
the-loop. We posit that our proposed BUILD-KG workflow can
enable domain scientists to seamlessly convert their data into
the KG format, unify their data with those shared by other
domain scientists, and then apply to the resulting KG data-
analysis tasks, such as rule mining and machine learning, that
may not be supported by the data sources taken in isolation.
In this way, the BUILD-KG workflow can make KGs more
accessible to domain scientists, thus encouraging greater use
and exploration, while increasing collaboration and richness
of research results. OQur future work includes expanding the
proposed collection of conversion procedures within BUILD-
KG to include other popular data-storage formats.
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