SIMPLE CLOSED CURVES IN STABLE COVERS OF SURFACES

NICK SALTER

ABSTRACT. Let f : X — Y be a regular covering of a surface Y of finite type with nonempty
boundary, with finitely-generated (possibly infinite) deck group G. We give necessary and sufficient
conditions for an integral homology class on X to admit a representative as a connected component of
the preimage of a nonseparating simple closed curve on Y, possibly after passing to a “stabilization”,

i.e. a G-equivariant embedding of covering spaces X «— X .

1. INTRODUCTION

Let X be an oriented surface of finite type. It is a classical fact that H;(X;Z) is spanned by
geometric classes, i.e. elements v € Hy(X;Z) represented as v = [y] for v C X some connected simple
closed curve. Moreover, there is a simple algebraic criterion to determine if v € Hy(X;Z) admits such
a representative: if X has at most one boundary component, it is necessary and sufficient that v be
integrally primitive: any expression of the form v = kv’ necessarily has |k| = 1.

The situation becomes vastly more complicated when one moves to the relative setting, and considers
a covering f : X — Y of surfaces, typically regular with covering group G. Here, one is interested in the
class of relatively geometric elements: classes v € Hy(X;Z) represented by a connected simple closed

curve ~ for which moreover f(v) is simple on Y. The facts mentioned above now become questions:

Question 1.1. For which covers f : X —'Y is the span H1(X; A)*° of relatively-geometric classes
equal to all of Hy(X; A), where A is an abelian group (typically A =17,Q,C)?

Question 1.2. For a cover f : X — Y, what is an algebraic characterization of the relatively geometric

elements of H1(X;Z)?

Aside from the intrinsic merit of these questions as being foundational to the study of equivariant
geometric topology, they have been encountered in the study of the moduli space of curves and are closely
intertwined with the Ivanov conjecture and with the representation theory of the mapping class group
and its connection to the theory of arithmetic groups. See, e.g. [PW13,MP19, FH17,Loo97, GLLM15]
for further discussion of these topics.

In recent years, substantial (although by no means exhaustive) progress has been made on Ques-
tion 1.1 for the class of finite covering groups: work of Farb—Hensel, Koberda—Santharoubane, and
Malestein-Putman [FH16,KS16,MP19] has highlighted the important role played by the representation

theory of G, and has furnished examples of covers for which H;(X; A)%*¢ is a strict subgroup of
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H,(X;A), both for A =7Z and A = Q. See also [Fla21] for an investigation of the analogue of
Question 1.2 for graphs.

In light of the delicate nature of the emerging answer to Question 1.1, it might seem overly audacious
to attack the much more refined question posed in Question 1.2. However, the purpose of this paper is
to do precisely this, with the caveat that our answer requires us to stabilize our covers by equivariantly
embedding them in certain larger covers (see Definition 2.3 for our precise conventions). In the
stable setting, we are able to completely characterize relatively geometric classes that project onto
nonseparating curves in Y (it is an initially-surprising fact that a nonseparating curve v C X can
project onto a separating curve in Y'; the analysis of this class of curves is substantially more intricate
and is postponed to future work). Remarkably, our techniques impose no requirements on the covering
group G whatsoever, other than that G admit a surjection from a fundamental group of a surface -
that is to say, G can be an arbitrary finitely-generated group.

We identify four purely algebraic conditions necessary for a class v € Hy(X;Z) to be relatively
geometric and nonseparating in the above sense; these are given in Theorem B (see the paragraph
following Theorem B for an overview of their meaning). Our main result Theorem A shows that these

conditions are sufficient in the stable setting.

Theorem A (Relative geometricity: stably-sufficient conditions). Let Y be a connected oriented
surface of finite type and nonempty boundary, let G be a finitely-generated group and let f: X — Y
be a connected regular G-covering classified by a surjective homomorphism ¢ : m(Y) — G. Let
v € Hi(X;Z) be given with with f.(v) € Hy(Y;Z) representable by a multiple of a nonseparating
simple closed curve. Then there exists a stabilization fT : X+t — YT on which v is relatively geometric

if and only if the necessary conditions of Theorem B hold.

Theorem B (Relative geometricity: stably-necessary conditions). Let Y be a connected oriented
surface of finite type and nonempty boundary, let G be a finitely-generated group and let f: X — Y
be a connected regular G-covering classified by a surjective homomorphism ¢ : w1 (Y) — G. Suppose
v € Hi(X;Z) is relatively geometric and that f.(v) € H1(Y;Z) is nonseparating. Then there is a
stabilization fT: Xt — YT such that the following must hold:

(1) (v,v) =0 (isotropy)

(2) a(v) =0 (parity)

(3) I, = Z[G]¢, (primitivity)

(4) Gy = (@ «(Ty +(v)/ |Gy|)) (coherence)

Necessary conditions: overview. Here we give brief descriptions of the four conditions of Theo-
rem B; see Sections 3 to 5 for full details. The isotropy and primitivity conditions both are formulated
in terms of a relative intersection pairing (-,-): this is a Z[G]-valued skew-Hermitian form defined
and studied in Section 3. The relative intersection pairing records intersections not just between
fixed homology classes, but their G-orbits. The isotropy condition then is simply a reflection of
the fact that components of the G-orbit of a relatively geometric class are disjoint. The primitivity
condition concerns the pairing ideal I, (defined as the left ideal in Z[G] of elements of the form (u,v)
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for uw € H1(X;Z) arbitrary), and asserts that this must be a certain left-principal ideal; in the case
where the stabilizer G, of v is trivial, this ideal is Z[G] itself (see Section 5.2 for a full discussion).
The parity condition concerns a certain mod-2 quadratic refinement ¢ of the intersection pairing
which is studied in Section 4. This is also a condition on the self-intersection of the orbit of v which
repairs the fact that the relative intersection pairing is blind to the 2-torsion elements in G. Finally
the coherence condition is an extra condition that is only relevant when the class v has nontrivial
stabilizer G,,. It asserts that the stabilizer subgroup be “recoverable” from the behavior of the element

itself in relation to the classifying map of the cover - see Section 5.3 for details.

Remark 1.3 (Where is stabilization necessary?). Note that both the necessary and the sufficient
conditions require the surface to be stabilized. In the necessary case, the conditions of isotropy, parity,
and coherence hold without further stabilization, but primitivity is not guaranteed (and indeed can fail)
without stabilization - see Lemma 5.4. The proof of sufficiency makes systematic use of stabilization.
At root, stabilization is used to repair points of self-crossing on Y by rerouting the crossing through
a new handle - see Section 7 - and our arguments provide no bound on the size of a stabilization
required to realize even a single class. It is possible to refine the techniques described in the paper
and obtain a result asserting that there is a fixed stabilization X+ of X (adding genus slightly more
than the minimum number of generators of G) on which all classes in Hy(X;Z) satisfying Theorem B
are relatively geometric. However, some of the required constructions are rather elaborate and so we

postpone this line of inquiry to future work.

Relationship with surgery theory. As pointed out to us by Stephan Stolz, the central arguments
in this paper have a close spiritual analog in the foundations of surgery theory. In that setting, one is
interested in knowing when an immersion of a half-dimensional sphere i : S*¥ — M?2* can be promoted
to an embedded sphere in the same homotopy class. The obstruction for doing so is encoded in an
intersection form valued in Z[m; (M)]: it is necessary and sufficient that the corresponding homology
class be (in the language of Theorem B) isotropic and even. Thus the results of this paper can be
viewed as a kind of “equivariant surgery theory” in dimension 2, replacing homotopy with homology.

There are some places where these storylines diverge. Firstly, we find that isotropy and parity are
not sufficient to characterize the classes we are interested in. More subtle is the fact that we are forced
to tailor our quadratic refinement ¢ in the parity condition to be sensitive to the stabilizer subgroup of
the class v € Hy(X;Z) under study; without this modification, the “naive” construction of ¢ imported
directly from surgery theory would not be sensitive enough to detect all points of self-intersection
as required. This is the reason we do not package the relative intersection form and its quadratic
refinement together into a single invariant as is typical - we would be forced to make our construction
conscious of the stabilizer subgroups of the elements, which we feel would be an encumbrance that

would obscure the overall picture.

Relationship with Hermitian K-theory. The study of modules equipped with (skew)-Hermitian
forms (such as the Z[G]-module H;(X;Z) equipped with (-,-)) belongs to the domain of algebraic
K-theory. The subject provides tools to study generating sets for the unitary automorphisms of

the module, orbits of vectors, and other aspects of these groups which are quite pertinent to the
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problem at hand. While the ideas of this field served as a deep source of inspiration for this project,
we should emphasize the fact that the arguments of this paper are purely topological and make no
actual use of the technology of Hermitian K-theory. Indeed, we are able to obtain our results for
arbitrary finitely-generated groups, whereas (to the author’s knowledge) understanding of Hermitian
K-theory for the group rings of finitely-generated groups is quite incomplete. We think it would be
very worthwhile to investigate the extent to which the topological ideas of the paper could provide
a new set of tools to study automorphism groups of skew-Hermitian modules by viewing them as

quotients of the associated “liftable” subgroup of the mapping class group.

Organization. Section 2 recalls the necessary background from the theory of covering spaces, and
fixes our definitions and conventions regarding stabilizations. Section 3 establishes the basic theory
of the relative intersection pairing appearing in the isotropy condition of Theorem B, and Section 4
does likewise for the quadratic refinement ¢ of the parity condition. Section 5 discusses the remaining
necessary conditions of primitivity and coherence, and proves Theorem B. The final three sections
are devoted to the proof of Theorem A: Section 6 discusses a special class of elements (“purely-unital
vectors”) for which the question of relative geometricity can be resolved by hand, Section 7 introduces

the resolution process underlying the main argument, and finally Section 8 establishes Theorem A.

Acknowledgements. I would like to extend a hearty thanks to Corey Bregman for many profitable
discussions on matters surrounding this work. I would also like to thank Stephan Stolz for highlighting
the connections with surgery theory and for drawing my attention to the reference [LUQ], and to

Sebastian Hensel for alerting me to the work of Flamm [Fla21].

2. COVERINGS OF SURFACES AND THEIR STABILIZATIONS

2.1. Covering spaces and elevations of curves. Here we recollect some basic notions from covering
space theory. The discussion here is largely routine and is included to fix notation and establish
conventions, although Lemma 2.1 is (slightly) less elementary, and will play an important role
throughout the paper.

Standing assumptions. Throughout the paper, G denotes a finitely-generated group, and f : X - Y
denotes a regular G-covering of a connected oriented surface Y of finite type and nonempty boundary.
We assume that X is connected, so that f is classified by a surjective homomorphism ¢ : 71 (Y) — G.
We further assume that Y has a distinguished boundary component Ay C 3Y, subject to the condition
that ¢(Ag) = 1, when Ag is viewed as an element of 7 (V).

Elevations. Let v C Y be a curve. An elevation of v is a choice of component ¥ C f~1(v). We will

use the notation
Yo € M1 (K *) (1)

to indicate the element of 1 (Y, *) obtained by choosing an arbitrary basepoint x € . Covering space

theory asserts that the conjugacy class of ve is well-defined independently of choice of basepoint.
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The deck group G acts on the set of elevations of « from the left with cyclic stabilizer subgroup
(d(7e)), well-defined as a subgroup relative to a fixed basepoint, and as a conjugacy class of subgroup
when no basepoint is specified.

Basepoint conventions. We will occasionally need to be careful about basepoints. We assume
throughout that Y is equipped with a basepoint * contained on the distinguished boundary component
Ay. By the assumption that ¢(Ag) = 1, the elevations of Aj are in bijective correspondence with G.
We choose a distinguished elevation 30 of Ag, and base X at the lift ¥ of * contained in 80.

Geometric stabilizers are finite cyclic. The following lemma will play an important background
role in what is to follow; it asserts that even when G is infinite, the stabilizer subgroups of classes
v € Hq1(X;Z) with geometric representatives are finite cyclic. A stronger version valid for finite covers
appears as [F116, Proposition 2.1].

Lemma 2.1. Let G be a finitely-generated group and let f: X — Y be a regqular G-covering. Suppose
that X is connected and has non-empty boundary. Let v € Hy(X;7Z) be represented by an elevation 5
of a monseparating simple closed curve v C Y. Then the stabilizer subgroup G, < G of v is a finite

cyclic group.

Proof. We first observe that necessarily |¢(7.)| is finite, otherwise the elevations of v do not have
compact support and so do not represent elements v € Hy(X;Z). Certainly g € (¢(7,)) fixes the
elevation ¥ as an oriented simple closed curve, and so G, contains the finite cyclic group (¢(7e))-
Any g & (¢(7.)) takes ¥ to some disjoint elevation 5’ of . It therefore suffices to show that distinct
elevations lie in distinct homology classes.

Suppose to the contrary: then 7 and 7" are disjoint homologous curves in X. Therefore X \ {7,7'}
is disconnected, and moreover at least one component is a compact subsurface S with boundary 5y U7’.
Necessarily then S does not contain any elevation of any component of X and so f(S) does not
contain any component of Y. But this is absurd: let « C Y be an arc connecting v to dY whose
interior is disjoint from ~. There is a lift of a to X that is contained in S for sufficiently small ¢
(relative to an arbitrary parameterization beginning at 7), and since o does not cross +, this lift of «

never leaves S, showing that S contains a component of X, contrary to assumption. O

Homology classes and their representatives: standing conventions. In the sequel we will
frequently pass between a homology class v € H;(X;Z) and a representative cycle. Here we fix
conventions that are to be understood throughout.

Convention 2.2. Let v € H1(X;Z) be arbitrary. By a representative for v, we mean an oriented
weighted multicurve v C X with [y] = v. By standard transversality considerations, we always assume
that v is in general position with respect to the projection map f: X — Y - we assume that f(y) is
immersed with a finite number of transverse self-intersection points and no triple intersections. If we

consider two classes v, w simultaneously, we moreover assume that f(v) and f(w) are transverse.



6 NICK SALTER

2.2. Stabilization. In this paper we do not work with the absolutely most general notion of stabiliza-
tion one could formulate. To delineate our conventions and fix notation, we give a precise definition of

the stabilization operation we consider.

Definition 2.3 ((Simple) stabilization). Let f: X — Y be a regular G-cover satisfying the standing

assumptions. A stabilization of f is an embedding of regular G-covers

XHZ-XjL

o]

2

satisfying the following conditions:

(1) The total space X™T is connected, so that f* : Xt — Y7 is classified by an extension
¢t :m(YT) — G of ¢ (i.e. the restriction of ¢T to m1(Y) is given by ¢),

(2) The closure of the complement Y+ \ Y is a connected surface with two boundary components,
one of which is Ay and the other of which (denoted A;) is contained in 9V,

(3) ¢T (A1) =1 and we take Ay as the distinguished boundary component of Y.

We write
Hl(X+; Z)stab < Hl(XJr; Z)

to denote the submodule of H; (X T;Z) induced by the inclusion X\ X < X+,
A stabilization f+ of f is simple if the restriction of ¢* to w1 (Y +\Y) is the trivial homomorphism.

Note that while our conventions provide for a canonical choice of new distinguished boundary
component A; of YT, this does not in general lift to a canonical choice of elevation A;. Such a choice
can be made as follows: let a C Y\ Y be a properly-embedded arc connecting Ay to Aj; then the
lift & based at Ag ends at an elevation of A; which we take to be the distinguished lift Ay If ffisa
simple stabilization, then this choice is independent of such o and hence is canonical, but in general

the set of possible choices is in bijection with elements of the subgroup ¢(m (Y \Y)) < G.

2.3. Basic g-handles. In practice, the stabilizations we consider will be of an especially simple form.

Definition 2.4 (Basic g-handle). Let g € G be a chosen element. A basic g-handle H is a torus with
two boundary components, along with a homomorphism ¢ : 71 (H) — G given by

(where the elements &,1,Ag, A; € w1 (H) are shown in Figure 1), as well as a choice of properly-
embedded arc o connecting Ag to Ay (also shown in Figure 1).

When f: XT — YT is a stabilization of f such that there is a homeomorphism Y\ Y = H with
a basic g-handle H that is compatible with the homomorphisms to G, we say that fT is obtained from
f by attaching a basic g-handle.
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X+

Y+

FIGURE 1. A basic g-handle lying below its preimage in X+. The curve 7 lifts to X,
while the lift of ¢ based at ¥ ends at g*. More generally, crossing over the branch cut

from the right moves from sheet h to sheet hg.

Note that the possibility that ¢ =1 € G is allowed; we hope that the term “basic 1-handle” should
not create too much confusion with the more conventional Morse-theoretic meaning, since stabilizing
by attaching a basic g-handle to Y for any g € G is, on a topological level, merely attaching a 1-handle
to Y in the Morse-theoretic sense. Note also that a simple stabilization is merely a sequence of

stabilizations by basic 1-handles.

3. THE RELATIVE INTERSECTION PAIRING

In this section, we discuss a crucial algebraic invariant of H;(X;Z) which we call the relative
intersection pairing. This has appeared in the literature in various guises and by various names, in
surface topology, 3-manifold topology, and in surgery theory. See e.g. [Put ll,L()Q] for further discussion
and references.

Section 3.1 establishes the basic algebraic properties of the relative intersection pairing. In Section 3.2,
we establish a local formula for the relative intersection pairing in terms of intersection points of the
projections of cycles on Y. Finally in Section 3.3, we study how a simple stabilization affects the

homology of a cover and the associated relative intersection form.

3.1. Basic algebraic properties. We denote the ordinary algebraic intersection pairing on H (X;Z)
by (-, ). This is a bilinear alternating form valued in Z. Using this, we define the relative intersection
pairing valued in Z[G].
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Definition 3.1. The relative intersection pairing is the form
() Hi(X;Z) ® Hi(X;Z) = Z|G]

defined by the formula
(v,w) =Y (v, gw)g. (2)
geG
Remark 3.2. When G is infinite, the sum defining (-, -) is over an infinite set, posing the question of
well-definedness. However, the classes v, w are necessarily represented by cycles with compact support,
while the covering group G acts freely and properly-discontinuously, so that (v, gw) is nonzero for only

a finite number of elements g € G.

Lemma 3.3. The relative intersection form is skew-Hermitian, i.e. (-,-) is Z[G]-linear in the first
component, and satisfies (w,v) = —(v,w), where = : Z|G] — Z[G] is the involution induced by the

inversion map on G.
Proof. This is a straightforward exercise and is left to the reader. ]

3.2. The local formula. The goal of this subsection is to establish Lemma 3.7, which gives a formula
for (v, w) “localized” over the points of intersection of suitable representatives for v, w projected onto
Y. This is formulated in terms of a local sheet index presented in Definition 3.4.

Suppose v,w € H1(X;Z) are represented by oriented cycles v, on X. We do not assume that v
and w are relatively geometric, but we do assume that ~ is stabilized setwise by some finite cyclic
subgroup G, and likewise that § is stabilized by G; (of course if v,w are relatively geometric and
nonseparating, then this is forced by Lemma 2.1). Observe that G., is a subgroup of the stabilizer G,
of v = [v] and likewise that G5 < G,,. For now we do not assume that this is an equality (but see
Lemma 4.4).

By Convention 2.2, f(v), f(d) have a finite number of crossings. Each crossing contributes a local
factor to the pairing (v, w); Lemma 3.7 below records this formula. To state it, we define the local
sheet index as follows. Let p; € Y be a point of crossing between f(7), f(6). In X, the local branch of
f(y) is covered by an orbit G of local branches of 7, and likewise f(J) is covered by an orbit Gsd of
local branches of §.

The sheets above p; can be non-canonically identified with G via the following procedure: choose a
basepoint * € Y, and choose a distinguished lift of * in X; in this way the fiber above * is identified
with G. Next choose a path @ C Y connecting * to p;, and use the lifts of a to identify the fiber
above p; with G. If some other path 8 C Y is used instead, covering space theory shows that the two
identifications differ by right-multiplication by some element k& € G. Under any such identification, the
local branches of + lie in the sheets corresponding to some coset G, g1, and likewise the local branches

of § lie in the sheets corresponding to a coset Gsgo.

Definition 3.4 (Local sheet index). With notation as in the above paragraph, the local sheet index at
p; is the double coset

i(7,6,pi) == Gyg195 'Gs.
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Lemma 3.5. The local sheet index at p; is well-defined independently of the identification of sheets
above p; with G.

Proof. As mentioned above, if m; : f~!(p;) — G for j = 1,2 are two such markings, then there exists
k € G such that

ma(q) = mi(q)k

for all ¢ € f~1(p;). If the distinguished cosets under the first marking are G~91,Gsg2, then in the
second marking they are G,g1k, Gsgok. The double coset is GyglgglG(; in either case. ]

In order to understand the contribution to (v, w) associated to a crossing point with given local
sheet index, we introduce a key piece of notation. For an element v € H;(X;Z) with finite cyclic
stabilizer G, < G, define the element ¢, € Z[G] via

Gi= > 9 (3)
g€G,

With (, defined, we come to the formulation of the local crossing factor.

Definition 3.6 (Local crossing factor). With notation as in Definition 3.4, the local crossing factor at
p; is the element ¢(7, d,p;) € Z[G] defined by

(v, 6,pi) == (9195 1) Gs

(note that this expression indeed depends only on the associated double coset).

Lemma 3.7. Let v,w € H1(X;Z) be represented by oriented cycles v,0 on X. Suppose that f(7), f(9)
are immersed in'Y and intersect in general position at points p1,...,px € Y. For a point of intersection
pi, let e; € {1} denote the local intersection number, and let c(v,d, p;) = (7(91,1-92_71.1)(5 € Z|G] denote

the local crossing factor. Then

k k
(v,w) = (], [0]) = Z&C(%&pi) =G <Z 51‘(91,@‘92_71‘1)) G-
i=1 i=1
Proof. By (2), (v, w) is computed as follows:

(v,w) = (W), [8)) = > (7, 99)g-
geG
For fixed g € G, the intersection number (7, gd) has a local formula given by summing the local
intersection numbers ; at the crossings of v with gd. Such crossings appear only at points in the fibers
I~ (pi). Let ¢; 4 denote the number of crossings between v and gé that occur in the fiber f~!(p;).
Then

k k
D (rgd)g =D cicigg=> €Y cigg
e geq i=1 i=1 g€G
Recall that we have identified the fiber f~!(p;) with G in such a way that the local branches of v lie

in sheets corresponding to some coset G, g1,;, and the local branches of d lie in sheets corresponding to
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a coset G'5g2,;. Then the local branches of g lie in the sheets gG5g2,:, and so ¢; 4 can be computed by
the following expression:

Ciyg = |Gyg1,i N 9Gsg2.l = |G (91.951) N 9Gs| -

To finish the argument, we claim that

> |Gy (91i92) N9Gslg= | Y. f | 91921 (Z h> = G (91,1921 )Cn = (7,8, p2).

geG fea, heGs

To see this, we expand the double summation:

s ()= X g
feGg, heGss (f,h)eGyxGs

Thus g € G appears in this sum as many times as g admits an expression of the form g = f(gl’igiil)h for
some f € G, h € Gs, or equivalently, the number of equalities f(glﬁig;’il) = gh~!', i.e. the cardinality
|G (91,i95.1) N 9Gs| = cig- O

In practice, Lemma 3.7 can be applied as follows: tracing along f(y) C Y, at each crossing p;
with f(9), add €;c(v,d,p;), where e; = 1 if and only if the local branches of «,d in that order are
positively-oriented. As a corollary of this point of view, we examine how the formula specializes in the
case of self-intersection.

Corollary 3.8. Let v € H1(X;Z) be represented by an oriented cycle vy subject to Convention 2.2,
self-intersecting at points p1,...,pr € Y. Suppose that the local sheet index at p; is given by the double
coset G,9;G,, when the local orientation of the branches is positive. Then

k

(,0) =6 Y (95— 9,6

i=1
Proof. As one traces along ~, each self-intersection point is traversed twice, once with positive local

orientation and local crossing factor (,g;(y, and once with negative local orientation and crossing
factor C,ygflcv. O

3.3. Homology of simple stabilizations. Having defined the relative intersection form, we record

here some basic information on the homological effect of a simple stabilization.

Proposition 3.9. Let ft: Xt — YT be a simple stabilization of f : X — Y obtained by adding a
basic 1-handle. Then
H(XTZ) = H\(X;Z) @ Z[G] (2, y) (4)
with Z[G] (x,y) denoting a free Z[G]-module of rank 2. Under the relative intersection form, Hy(X;Z)
is orthogonal to Z|G] (x,y), and the restriction of (-,-) to Z|G] (x,y) is hyperbolic:
(r,y) =1, (2,2) = (y,y) = 0.

The classes x,y are represented by the based loops shown in Figure 2.
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hi

hy

FiGURE 2. Coordinates on the homology of a stable handle.

Proof. The complement X+ \ X is a disjoint union of |G| surfaces, each one homeomorphic to a torus
with two boundary components. By the Mayer-Vietoris sequence, the isomorphism (4) holds on the
level of abelian groups. The action of G on X+ \ X is given by permuting the components, and it
follows that (4) holds as an isomorphism of Z[G]-modules. The assertions concerning the relative
intersection form follow from the geometric formula for (-,-) given in Lemma 3.7 in combination with
the geometric construction of cycles representing x,y shown in Figure 2, both of which are supported
on X\ X. O

4. PARITY: CONSTRUCTING A QUADRATIC REFINEMENT OF (-, -)

Recall from Corollary 3.8 that a self-intersection of v C Y at some point p € Y contributes a
local factor of ¢,(g — g~ ')¢y to ([7], [7]), where g € G measures the difference in sheets between the
local branches appearing above p € . Note that when g = 1, there is no contribution to {([v], [7]):
self-crossings with 2-torsion sheet differences are invisible to the relative intersection pairing. Thus,
isotropy alone is not sufficient to ensure that a class v € H;(X;Z) admits a representative with

no self-intersections. The goal of this section is to describe here a certain quadratic refinement of
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the mod-2 relative intersection pairing which can detect such self-crossings; this is given in Definition 4.6.

Like the relative intersection form, the quadratic refinement counts self-intersection points of a
curve v under f. Achieving the sharpest possible count will require a brief detour into group theory,
encapsulated in Lemma 4.1. Suppose that v C X is a multicurve that is setwise fixed by some finite
cyclic subgroup C' < G, and suppose that f(v) has a transverse double point at p C Y. The local sheet
index at p is then some double coset of the form ChC. Now let g € G be an element of order 2 (we
note that in the situation of interest, we will moreover have g ¢ C'). There is an action of C' x C on G
where the first factor acts by left multiplication, and the second by right multiplication by the inverse.
Define

Sc,g = Stabcxc(9)
as the stabilizer of g under this action (note that the orbit is the double coset CgC).

Lemma 4.1. Let Sc g < C x C be defined as above.

(1) Sc,4 is graph-like: Sc g N (C x {1}) = {(1,1)}, and hence the projection Sc.y — C' along the
second factor is an injection,

(2) Sc.qg is symmetric: (c,d) € Sc,4 if and only if (d,c) € Sc,4. Thus, letting Sc,, denote the
embedding of Sc,4 into C via projection, the factor-swapping involution (¢, d) — (d,c) on Sc,4
descends to an involution 1(d) = ¢ on Sc 4.

(3) Sc,4 is normalized by g, and conjugation by g induces the involution ,

(4) The subgroup of G generated by Sc., and g has the structure of a semi-direct product 5/'5; =
(g) x Sc.g, with g acting on Sc. 4 via ¢.

Proof. For (1), observe that if (¢,1) € S¢q, then cg = g, i.e. ¢ = 1. For (2), we suppose that
(c,d) € Sc,g, so that there is an equation of the form cgd~! = g. Inverting both sides and recalling
that g~ = g establishes (2).

For (3), let d € Sc, be induced from the element (c,d) € Sc,. Then there is an expression
cgd~! = g, which rearranges to gdg~! = c. For (4), we observe that any word w € <E7 <g>> has an
expression involving at most one g, since any subword of the form gcg can be re-written as ¢(¢). The

semi-direct product structure follows easily. O

Lemma 4.2. Let v C X be a multicurve such that v is setwise fixed by some finite cyclic subgroup
C <G, and let g € G be of order 2. Then vN gy C X decomposes as a union of Sc 4-orbits and hence
|y N g7 is divisible by ’SAC/Q‘ =2|Sc4/-

Proof. Suppose that p € y N g7, and take ¢g°c € 52;1 for € € {0,1}. Then

gcp € gey N giegy.

Note that ¢y = 7y since Sc¢,y < C, so that g°cy = g°y. Also note that cg = gd for some d € S¢ 4, and

SO

gegy =g dy = g7y
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Thus,

gep € FFyNg Ty =yngy.

The claimed divisibility follows from the fact that G (and hence SAC,/Q < G) acts freely on X. O

We are now in a position to define the quadratic refinement. We begin in Definition 4.3 with a
geometric formulation in terms of a choice of representing cycle, and then prove in Lemma 4.5 that

this is independent of choice.

Definition 4.3 (Parity, geometric definition). Let v C X be a multicurve fixed setwise by some cyclic
subgroup C < G, and let G5 denote the set of elements of order 2 in G. The parity of v is the vector
q(v) € (Z/2Z)%2 where the entry indexed by g € G is given as

v N gyl
QQ('V) = ‘ —— ’

SC,g

(mod 2),

i.e. the mod-2 count of %-orbits in the intersection.

The objective is now to see that ¢(y) depends only on the homology class [y]. To that end, we
establish the following lemma.

Lemma 4.4. Let H < G be a finite subgroup, and suppose v € Hy(X;Z)" is an H-invariant class.
Then v admits a representative v = [y] with v C X an oriented multicurve that is fized setwise by H.
Moreover, if v is another H-invariant representative, then v and ' are H-equivariantly cobordant:
there is a properly embedded H -invariant subsurface ' C X x [0,1] such that T'N (X x {0}) = and
rn(X x{1}) =+

Proof. Set Xp := X/H, and define the projection map fr : X — Xpg. The theory of the transfer map
provides for a homomorphism
7 Hy(Xpi Z) = Hy (X 2)7
which is represented on the cycle level by 7([y]) = [f~*(7)]. The composition
fusm Hi(Xp;Z) — Hi(Xu3 Z)

is given by multiplication by |H|. As H;(Xp;Z) is torsion-free, we can define an isomorphism

|Til| D|H| Hi(Xy;Z) — Hi(Xy;2).
We then see that ﬁny* splits 7, and so 7 is a surjection. This implies the first claim, that any
v € Hi(X;Z)" admits a representative by an H-invariant multicurve: represent v = 7([5]) for suitable
(V] € Hi(Xp; Z).

Now suppose that v, are two H-invariant multicurve representatives of a class v € Hy(X;Z)H.
Then, as (unweighted) multicurves, v = f5;'(f(7)) and likewise v = f5;'(f(7')), and moreover
[fu (V)] = [fu(¥')] as elements of Hy(Xp;Z). Since K(Z,1) = S, Poincaré duality implies that fg(7)
(resp. fu (7)) can be represented as the level set o; *(0) of a smooth map o; : Xy — S* for i = 0 (resp.
i = 1). Moreover, since [fg(v)] = [fu(7')], the maps og and o; are homotopic via some homotopy
ot,t € [0,1]. Standard transversality arguments then imply that o; can be chosen so that 0 is a regular
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value of oy : Xp x [0,1] — S, and so M = o, *(0) C Xp x [0, 1] provides a cobordism between fg(7)
and fz(7'). Taking the preimage f5;'(M) then gives an H-equivariant cobordism between v and 4/ in
X x [0, 1]. O

Lemma 4.5. The parity q() depends only on the class [y] € H1(X;Z).

Proof. Let C < G be a finite cyclic subgroup and let v,7" € X be C-invariant oriented multicurves
determining the same class in H;(X;7Z)¢. By Lemma 4.4, there is some C-invariant properly-embedded
subsurface I' C X x [ realizing a cobordism between v and +'. Altering I' by a small C-equivariant
perturbation if necessary, the intersection M = T' N gl is a properly-embedded 1-submanifold of X x I
invariant under the action of §(\;; <G

In this framework, the value g, () is given as

4o(y) = PLOOAODE g 9y,
=
likewise
a(/) = PLOLADE (15q 9)
Sc.s

To see these are the same, we analyze the components of M. As a compact 1-manifold with boundary,
M decomposes as a finite number of circles and properly-embedded arcs. The circles do not intersect
X x 91 and so do not contribute to our analysis. The arcs of M come in three types, depending on
whether 0,1, or 2 ends are embedded in X x {0}; say an arc is of type i if it has ¢ ends in X x {0}.
The following claim is the central fact from which the lemma will follow.

Claim. The action ofS/';,/g on the arcs of M is a free type-preserving involution.

Modulo the claim, we see how the result follows. If the arcs in some orbit SACZJA are of type 1,
then this orbit contributes 1 to each of g4(7), gq(7’). If the arcs in the orbit are of type 0 or 2, then it
contributes 2 to one of g,4(y) or g4(7’) and 0 to the other. It follows that g4(v) = ¢4(7’) (mod 2).

We prove the claim. It is first of all clear that the action is type-preserving, since G fixes each
Xt =X x{t}. f A C M is of type 1, we consider p = AN Xy. Then for h € Sr'é:,, we have
hAN Xy = hp, and hp # p since h acts freely on each level X;. Hence hA # A. Suppose next that A is
of type 2; let AN X x {0} = {p,q}. Suppose that hA = A for some h € S%Tg. Then the set {p,q} C X
must be h-invariant, and since h acts freely, this shows h? = 1. Consider the projection ps : A — I.
By perturbing I' if necessary, we can assume that ps is a Morse function for A. Each critical point
changes the Euler characteristic of the sublevel set by 1, and since the sublevel set for small values of ¢
has Euler characteristic 2 and A itself has Euler characteristic 1, it follows that there must be an odd
number of critical points, and thus some value of ¢ for which A N X; has odd cardinality. On the other
hand, the action of h on X, is free. It follows that A N X; cannot be h-invariant, and hence A itself is

not fixed by h as claimed. The same argument can be applied to A of type 0. O

Following Lemma 4.5, we make the following definition.
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Definition 4.6. The parity is the function ¢ : H1(X;Z) — (Z/2

any representative of v (mod 2) as a multicurve (we take ¢(v) =

2 given by ¢(v) = q(v), where 7 is

7)° )
0ifv=0 (mod 2)).

We record a local formula for ¢ analogous to Lemma 3.7.

Lemma 4.7. Let v € H1(X;Z) have finite cyclic stabilizer group G,, and suppose that v (mod 2) is
represented by the G-invariant multicurve v C X. Enumerate the self-intersection points of f(v) as

P1,---,Pk C Y, and suppose that p; has local sheet index G,g;G,. Then for any g € G5,
q9(v) = (#G9:Gy = Gp9G,)  (mod 2).

Proof. By definition,
YN g
Sa,, g’

‘Jg( v) =

The intersection points all occur in the fibers f~!(p;). Identify the local branches of v above some p;
with the right cosets G, and G,g;. Then the intersection points of v with gy are of two (mutually-
exclusive) types: a branch of v in G, intersecting a branch of gv in ¢G,g;, and a branch of v in G, g;
intersecting a branch of gy in gG,. There are |G, N gG,g;| = |Gvg; N gG,| of each type.

To proceed, we count |G,g; N gG,|, i.e. solutions (hy, hs) € G, x G, to the equation h;g; = ghs.
If the double cosets G,9G,, and G,g;G, are not equal, there are no solutions, and hence no local
contribution to g4(v). If G,9G, = G,g;Gy, then the orbit-stabilizer theorem implies that the solutions
are in bijection with the stabilizer Sg, 4 of g under the action of G, x G,. Thus in total, when
Grv9iGy = GygGy, there are 2|Sq, 4| = ’5;:;‘ intersections in the fiber above p;, and this contributes
1 to the value g4(v). O

For later use, we record a crucial structural property of q.

Lemma 4.8. Fiz g € G5 and z,y € H\(X;Z) such that G, = Gy = Gayy = (1). The function
qq : Hi(X;Z) — Z/27 is then a quadratic refinement of the “g-twisted intersection form” (-,g-)
(mod 2):

q9(z +y) = q4(7) + q4(y) + (z,9y) (mod 2).

Proof. Since G, = (1) for v € {z,y,x + y}, the corresponding subgroup 5;;: = (g) has order 2,
and so ¢4(v) counts pairs of intersection points ({g)-orbits) in the intersection v N g7y for suitable
representatives vy of v.

Represent x, y by multicurves v, § C X in accordance with Convention 2.2. Consider the configuration
(yUd)U(gyUgd) C X. Then gy4(x + y) is the mod-2 count of g-orbits in the intersection of the first
set with the second. These are of four types:

(1) vNgv
(2) 6Ngd
(3) yNgd
(4) dNgy.
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Intersections of type (1) contribute g4(x) to the total, and likewise those of type (2) contribute g4(y).
If p € yN gd is an intersection of type (3), then necessarily gp € § N gy is an intersection of type (4).
It follows that the number of g-orbits appearing in types (3) and (4) is in bijection with the number
of intersections v N gd, so that intersections of types (3) and (4) contribute (z, gy) to g4(x + y) as

claimed. O

5. NECESSARY CONDITIONS: PROOF OF THEOREM B

Throughout this section, v € H;(X;Z) denotes a relatively geometric class, represented by a
component ¥ C f~1(v) for some simple closed curve v C Y that is nonseparating. Theorem B asserts
that there are four conditions that a nonseparating relatively-geometric class must satisfy: isotropy,
parity, primitivity, and coherence. The first two of these (isotropy, parity) will be seen to hold following
the work of the previous two sections, and are discussed in Section 5.1. Following this, we discuss
primitivity in Section 5.2, and coherence in Section 5.3. Theorem B will then follow by assembling

Lemmas 5.1, 5.2, 5.4 and 5.6.
5.1. Isotropy and parity.

Lemma 5.1. Under the standing assumptions of Section 5, v is isotropic:
(v,v) = 0.

Proof. When # is simple, the formula in Corollary 3.8 that computes (v, v) = ([7], [7]) is a sum over

the empty set. O

Lemma 5.2. Under the standing assumptions of Section 5, v is even:
q(v) =0.

Proof. When v = [¥] is relatively-geometric, the local formula for ¢(v) appearing in Lemma 4.7 is

again a sum over the empty set. O

5.2. Primitivity. An element of a torsion-free abelian group is commonly called “primitive” if it
cannot be represented as a nontrivial multiple of some other element. For our purposes, we will require
a substantial refinement of this notion, adapted to the setting of Z[G]-modules with skew-Hermitian
pairing. We will use the term integrally primitive for elements that cannot be represented as nontrivial

multiples, and reserve the term primitive for elements as in Definition 5.3.

Definition 5.3 (Pairing ideal, primitive). Given v € Hy(X;Z), the pairing ideal I, < Z[G] is the left
ideal

I, = {{u,v) |u € H1(X;Z)}.
An element v € Hy(X;Z) with finite cyclic stabilizer G,, < G is primitive if the pairing ideal has the

form

(recall ¢, € Z[G] is the element defined in (3)).
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Lemma 5.4. Under the standing assumptions of Section 5, v is primitive (possibly after a stabilization):

I, = Z|GlC,.

. Y+

'y

FiGURE 3. Construction of é proceeds in two steps. In the first step, since 7 is
nonseparating, we can construct an arc « C X based at Ag that crosses v once.
Such « determines an element ¢(«) € G. In the second step, we close up « to the

simply-lifting simple closed curve § by stabilizing by a basic ¢(a)~!-handle.

Proof. Lemma 2.1 asserts that any nonseparating, relatively geometric v has finite cyclic stabilizer. To
see the containment I, < Z[G]|(y, let (u,v) € I, be arbitrary. From (3.1),

(o)=Y (ugyg= 3 3 (wgrgh=| 3 (wgo)g| G

geG geG/G, heG, geG/Gy
For the reverse containment, represent v as a component 5 C f~!(v). Perform the stabilization
X < X7 indicated in Figure 3. As indicated therein, since 7 is nonseparating, it is possible to
construct a curve ¢ with trivial stabilizer (i.e. such that ¢(de) = 1) that crosses 7 once. By Lemma 3.7,

it follows that <[5~], ['ﬂ> = (,, showing the reverse containment. O
5.3. Coherence.

Definition 5.5 (Coherence). Let v € H;(X;Z) be given, with finite cyclic stabilizer subgroup G, < G.
Define X, := X/G,, and consider the associated intermediate cover f, : X — X, classified by the map
¢y : T (Xy) = G,. Since G, is abelian, ¢, factors through ¢, . : H1(X,;Z) — G,. Such v is said to
be coherent if f, .(v) € H1(Xy;Z) is |Gy |-divisible and

G, = <¢v,*(fv,*(v)/ ‘Gv‘»

As an example of a non-coherent element, consider the surface Y = X5 1 (of genus 2 and 1 boundary
component) with Hy(Y;Z) endowed with symplectic basis 1, y1, 22, y2, and let ¢ : 71(Y) — Z/2Z be
given by ¢(v) = (v,z1) (mod 2). The handle with homology basis x5, yo is then a simple stabilization
of a mod-2 cover of the torus spanned by x1,y1; let Zo,y> denote the basis for this stabilization as in
Proposition 3.9. Letting G = Z/2Z = (t), the element v = (1 + t)Z3 has stabilizer G,, = Z/27Z. The
associated cover X, is just Y, and f.(v)/2 = 3, but ¢(z2) = (22,21) (mod 2) = 0 does not generate
7.)2.
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This example illustrates the role that coherence will play in the proof of Theorem A: coherence
ensures that a class v have a connected G,-invariant representative (here, (1 + ¢)Z5 is represented as
the full preimage of a representative of xo, but this has two components). See Lemma 8.1.

Lemma 5.6. Under the standing assumptions of Section 5, v is coherent.

Proof. Suppose v is represented by an elevation 7§ of a nonseparating simple closed curve v C Y.
Covering space theory asserts that the restriction of f, to ¥ C X is a covering map onto its image
fo(7) of degree |G,|. Thus f, «([7]) = |Go| [fo(7)] is a |G, |-divisible element of H;(X,;Z) as required.
Again by covering space theory, the order of ¢, .(fu (7)) € G, is equal to this degree, and so G, is
generated by ¢, «(fu (7)) = ¢v «(fv.«(v)/|Gy|), completing the proof. O

6. PURELY-UNITAL VECTORS

In these last three sections, we carry out the proof of Theorem A. Here, we investigate a special class
of elements we call “purely-unital vectors”, and give a direct, constructive proof that the conditions
of Theorem B suffice to realize a purely-unital vector geometrically. In the last two sections, we will
establish the general case via the following strategy: beginning with an arbitrary representative dg
for a class v, we resolve self-intersections of f(dp) by routing the crossing points through a new basic
1-handle. This has the effect of changing the homology class, but when the total change can be realized
geometrically, it is possible to account for this change via a Dehn twist, leading to a realization of the
original class v, and the alterations produced by the resolution process is precisely what the notion of
purely-unital vector captures. Accordingly, we describe this “resolution process” in Section 7, and

subsequently carry out the proof of Theorem A in Section 8.

In preparation for the definition of a purely-unital vector, we recall that a hyperbolic module over
aring R is a free module H = R?" equipped with a skew-Hermitian form (-,-) for which there is a
basis {®1,...,Zn,Y1,...,Yn} such that (x;,y;) = 1 and all other pairings of basis elements are 0. Such
a basis is called a hyperbolic basis. In this language, we can express Proposition 3.9 as saying that
a sequence of simple stabilizations affects Hy(X;Z) by adding a direct summand with a hyperbolic
Z|G]-module.

Definition 6.1 (Purely-unital vector). Let f*: X+ — YT be a simple stabilization of f: X — Y let
1,91, ..., Tk, Y form an associated hyperbolic basis for H;(X;Z)%*%. An element v € Hy (X T;7Z)ste®
is purely unital if it admits an expression of the form

k

v=" (giwi + hiy;)

i=1
for elements g1, b1, ..., gk, hy € £GU{0} C Z[G], such that g; # +h, for all indices 7 unless g; = h; = 0.
Remark 6.2. Note that a purely-unital vector v necessarily has trivial stabilizer: G, = (1). It follows

that the coherence condition is vacuously satisfied for any purely-unital vector. Moreover, every

purely-unital vector is also easily seen to be primitive.
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FIGURE 4. Connecting the four components in a pair of handles into a single simple
closed curve, as seen downstairs on Y. The colors of the strands indicate the sheets
of XT containing the indicated strands, and are labeled in the top portion of the
figure. The two middle handles on the bottom are added in the stabilization process.

The top is a basic h;ilhgi,l handle, and the bottom is a basic h;ilggi,l—handle.

Lemma 6.3. Let f*: Xt — Y™ be a simple stabilization of f : X — Y, and let v € Hy(X;Z)t®
be purely unital and satisfy the necessary conditions for relative geometricity of Theorem B. Then,

after stabilizing, v is relatively geometric.

Proof. As noted in Remark 6.2, purely-unital vectors are coherent and primitive. Thus the relevant
hypotheses are that v is isotropic and even. Computing,

k

k k
<U,U> = <Z giT; + hzyz 72 gi%; + hzyl > = Z(glh:l - higi_l)
=1 1=1

=1

and, applying Lemma 4.8,

k k
q(v) =q <Z(gi$i + hi%‘)) = Z (9iwi, ghiyi)g = Z N(g)g,
i=1 i=1 geqy geay
with N(g) € Z/2Z the mod-2 count of the number of indices i for which g = g;h; "
Thus if v satisfies the necessary conditions of Theorem B, the following conditions are satisfied by
the elements g;, h; € £G U {0}:
k

> (gihit = hig ') =0 (5)

i=1

Each g € G3 appears as an even number of g;h; *. (6)
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Note that (5) can be re-formulated as follows:
Each g € G \ G2 appears as gihgl for exactly as many indices as does g~!. (7)

Note then that (6), (7) together imply that, after re-labeling the indices, the handles can be paired:
k =2k and for all 1 <1i < k', the equalities

921’—1}12_1-1_1 = (92ih2_i1)71 (8)
hold.

To realize such v relatively-geometrically, we begin by realizing v as a cycle in X with non-simple
projection onto Y. Specifically, represent v by the cycle

k
Yo = Zgz‘& + hin,
i=1
where &;,n; generate the homology of the i* stable handle. To complete the argument we will show
how to replace o with a homologous cycle v that is connected and for which f*(v) is simple.

We resolve the crossings of f+(vo) first. The image fT (o) has exactly k transverse double points,
one for each of the k handles. By (8), these come in k' pairs. Figure 4 shows how, after stabilizing, the
four-component cycle go;—1&2;—1 + ho;—1M2:—1 + g2:€2; + ha;ne; can be replaced with the homologous
simple closed curve w; such that f*(w;) is simple.

We define the multicurve ~; as

k/
")/1: E wi.
=1

To construct v from 7y;, we connect the k' components of v; together. Fori =1,...,k'—1,let o; C YT
be an arc beginning at f*(w;), ending at f*(w;+1), and otherwise disjoint from all {w;} and other
arcs {a; }. Performing additional stabilizations if necessary, we can construct a set of such arcs such
that the lift of o; beginning at w; ends at w; 1. The iterated connect-sum of the curves {wj} along
these distinguished lifts is then a connected simple closed curve - that represents the homology class v
and such that the projection f¥ () is simple. O

7. THE RESOLUTION PROCESS

The resolution process takes as input a multicurve § C X for which f(d) has a self-crossing, and
returns a simple stabilization X+ of X and a new multicurve 6’ C X+ with one fewer self-crossing,
but homology class altered by some purely-unital vector. We begin by giving the formal definition
(Definition 7.1), and then analyze the effect on homology in Lemmas 7.4 and 7.5.

Definition 7.1 (Resolution process). Let § C X be a multicurve with finite cyclic stabilizer group
Gs. Suppose that f(d) has a transverse self-crossing at p € Y. Let a C Y be an arc connecting p to
Ag. The resolution of & along o is the multicurve ¢’ on the surface X obtained from X by adding a
basic 1-handle H C YT constructed as depicted in Figure 5.

Remark 7.2. Note that applying the resolution process to some multicurve § does not change the

number of components.
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handle H along « into the interior of Y. Whenever « crosses over a strand of f(J),
change the isotopy class of § by Gs-equivariantly moving each local branch across
the corresponding boundary component of f~*(H). When H reaches p, resolve the
crossing by routing one Gs-orbit of local branches around the core of the corresponding
handle above H, and the other orbit around the co-core. (Alternatively, one can
imagine carrying out this process by pushing the point p out to H while dragging

transverse crossings along in front.)

How does the resolution process alter the homology class [§]? The answer turns out to depend on
the choice of path «, and is presented in Lemma 7.4. In Lemma 7.5, we present a complementary result
that asserts that it is possible to choose an arc so that the change in homology under the resolution
process can be controlled. In preparation, we record the following lemma, which follows from the basic

principles of covering space theory and the discussion of the local sheet index ca. Definition 3.4.

Lemma 7.3. Let §,p,a be as above. Then a provides an identification of the local branches of § above
p with right cosets Gsg1 and Gsgo as follows: lift a with basepoint the chosen local branch; o then
ends at some component of f~1(Ao), and, having chosen a distinguished component Ay C F1(Ay),

these components are identified with G.

Lemma 7.4. Let 6 C X be given with finite cyclic stabilizer group Gs < G. Suppose that § has a
transverse self-crossing above p € Y of local sheet index i(6,0,p) = GsgGs. Let o C'Y be an arc
connecting p to Ao, and suppose that, via Lemma 7.3, o identifies the local branches with the cosets
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Gsg1 and Gsgs. Then the resolution &' of § along a has homology class

[0"] = [0] + Cs (g1 + g2y). (9)

Here x,y generate the homology of the basic 1-handle, as in Proposition 3.9.

Proof. There are two types of modifications made in transforming ¢ into §’: passing a strand across a
boundary component of f~!(H), and resolving the crossing. We analyze each in turn.

We claim that when a component of f~1(H) crosses over a strand of §, the homology class is
unchanged. This follows because the effect on homology is to add a copy of the class of the boundary
component, but the homology class of a boundary is zero.

When the crossing is resolved, Figure 5 shows that the effect on homology is to add a class of the
form (5(fiz + fay) for some fi, fo € G. The values f1, fo are determined by the conventions by which
we put coordinates on the stable handle, as in Proposition 3.9. The homology class x is by definition
the elevation based on the distinguished component Ag. Under «, the local branches are located in
the sheets corresponding to cosets Gsg; and Gsgo, and hence the added classes are (591 and (592y as

claimed. O

Lemma 7.5. Let § C X be given with finite cyclic stabilizer group Gs < G. Suppose that § has a
transverse self-crossing above p € Y of local sheet index i(9,9,p) = GsgGs. Then for any ¢’ € G5gGs,

there is an arc a such that the resolution &' of 6 along a has homology class
[0") = [0] + Cs(z + g'y).- (10)

Proof. Let o/ CY be an arbitrary arc connecting p to Ay C dY. Via Lemma 7.3, this identifies the
local branches of § above p with cosets Gsg1 and Gsgs. If 8 € m1(Y) is a loop based at the endpoint
of o/ on Ay, the concatenated path oS identifies the local branches with the cosets Gsg1¢(5) and
G5920(8).

With the notation already established, the local sheet index is Gsg195 'Gs. Thus, there exist
h1,hs € Gs such that

g = higigs 'hs.

Choose coset representatives g1 € Gsg1 and g2 € Gsge, and then choose 8 so that ¢(8) = g5 'hy. Using
the concatenation « := o’ to identify local branches with right cosets of G then gives Gsg’ and Gs.

When the crossing is resolved using «, Lemma 7.4 shows that the added homology class is of the form
Cs(z+ ¢'y) as claimed. O

8. PROOF OF THEOREM A

We come to the final stage of the proof of Theorem A. The outline is as follows. We show in
Lemma 8.1 that when v is coherent, it admits a representative as a connected G,-invariant simple
closed curve; the objective is then to replace this representative with one which moreover has simple
projection onto (a stabilization of) Y. For this, we carry out the resolution process of Section 7,
producing a relatively geometric class in the homology class v + (,w, where w is a purely-unital vector.

As explored in Lemmas 7.4 and 7.5, there is some freedom in constructing w; we show in Lemma 8.2
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that the parity and isotropy assumptions on v can be leveraged to construct w so as to be relatively
geometric (following the work of Lemma 6.3). Finally, we use the relative geometricity of w and of
v+ (yw (and the primitivity hypotheses on v) in a Dehn twist construction which sends the relatively
geometric class v + (,w via a G-equivariant diffeomorphism onto the class v, as desired.

8.1. Preparatory lemmas. Here, we collect the preliminary results (Lemmas 8.1 to 8.4) alluded to
in the above outline.

Lemma 8.1. Let v € H1(X;Z) have cyclic stabilizer subgroup G, of finite order d, and suppose that
v is coherent. Then v admits a representative v as a Gy-invariant simple closed curve.

Proof. We first recall the terminology of Definition 5.5: we consider the cyclic covering
fo: X — X,

and the classifying map ¢y, . : H1(Xy;Z) = Gy
By the theory of the transfer map, every class in H;(X;Z)%" admits a representative of the form

for some multicurve v C Y, and if v is integrally primitive (i.e. if v = kv’ for some v’ € H(X;Z), then
k = £1), then « can be taken to be a simple closed curve. The number of components of f,1(7) is
then equal to the index

iv =[Gt (Dv([(V]))]-
Again by the theory of the transfer map, f, «(v) = d[y]. The hypothesis that v is coherent then implies

that i, = 1, so that f,"!() is a connected G,-invariant simple closed curve representing v, as was to
be shown. ]

The following lemma will allow us to leverage the assumption that v is isotropic and even in order

to construct a purely-unital vector w that is relatively geometric.

Lemma 8.2. Let G,g1Gy,...,G,grG, be double cosets such that the associated sum of local crossing
factors vanishes:

k
ng(gi - gi_l)Cv =0.
=1

Then there are representatives g; € G,9;G, for which

k

> (gi—g ") =0.

i=1
If, moreover, for each g € G5, the number of double cosets G, g:G, that equal G,gG,, is even, then the

representatives g, can be chosen such that each g € G5 appears as g, for an even number of indices
1<i<k.
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Proof. Choose arbitrary representatives g; € G,¢;G,, and write

k
S gi—97) = cyu,
=1 geG
where, by construction
cg = (# times g = g;) — (# times g = g h). (11)

One computes that then

k
G (Z(gigf)) =G| D g | = > Chugna | 9

i=1 geG 9g€G \ (h1,h2)EG, X G,

By hypothesis, it follows that each coefficient ) . 4. Chign, = 0, but this sum is just a nonzero
multiple of the sum over a fixed double coset, and so for all double cosets G,g9G,,
Z Cf = 0.
fE€G,9Gy

If all coefficients cf, f € G are zero, then take g = g; and the claim holds. Otherwise, choose
some f € G with ¢y # 0. Since Y- rq, ¢ =0, we can choose ¢y > 0, and there moreover exists
f € G, fG, with ¢; < 0. By the definition of ¢; given in (11), it follows that f = g; for strictly more
indices i than f = g, ! and likewise that f’ = g; for strictly fewer indices than f’ = 9; 1. Replace
some g; = f by g, = f’; then the coefficients ¢; and ¢y both decrease in absolute value. Repeat this
process until all ¢; = 0: the resulting set of representatives {g;} satisfy

k

D (gi—gH=0.

i=1

Now suppose additionally that for each g € G5, the number of double cosets G,g;G, that equal
G,9G, is even. We first note that this can be expressed more simply as the number of appearances of
some element of G,¢gG,, among the ordered list (g;) of g/. Suppose that for some g € G5, the chosen
list (g}) has ¢g; = g for an odd number of indices . Since the total number of appearances of the coset
G,9G, in (g;) is even by hypothesis, it follows that there is some other element ¢’ € G,¢G, that
appears an odd number of times in (g}).

We claim that there is moreover some such ¢’ contained in G3; we postpone the proof to the
paragraph below. By exchanging one g} = g for g/ = ¢’, the number of appearances of g and ¢’ can

be made simultaneously even. The sum Zle(gé — g;_l) is unaltered by exchanging some g for ¢’, as

1 _ g/ _ g/—l
of g € G5 for which g appears in (g;) an odd number of times; repeat this step as many times as

both factors g — g~ = 0 vanish since g, ¢’ € G5. One has therefore reduced the number
necessary.

To establish the claim, we suppose to the contrary that there is a unique element g € G,9G, N G5
that appears in (¢}) an odd number of times. Since Zle(gg — gfl) = 0, the remaining elements of
G,9G, that appear in (g}) come in pairs g, g'~* # ¢', each appearing the same number of times. Thus
the total number of indices corresponding to elements of this type is even, and so the total number of

appearances of some ¢’ € G,gG, in (g}) must be odd, contrary to hypothesis. O
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The following lemma is well-known; see, e.g. [Lo097, Section 3.

Lemma 8.3. Let v C Y be a simple closed curve, and let 7y be a chosen elevation. Denote the stabilizer
of v:=[3] by G,. Then the Dehn twist power TV‘G”| lifts to a G-equivariant mapping class T, on X,
and the action on H1(X;7Z) is given by the formula

The following lemma will allow us to assume that a “certificate of primitivity” for v (i.e. a class u

with (u,v) = (,) is relatively geometric.

Lemma 8.4. Let uy,v € Hi1(X;Z) be given, and suppose that (uy,v) = ,. Then there is a stabilization
X and a homology class ug supported on X\ X such u := uy +us is relatively geometric, represented
byn C X with fT(n) C Y™ simple, and such that {(u,v) = (,.

Proof. First, observe that the hypothesis (u1,v) = (, implies that u; is integrally primitive and that
Gy, = (1). In particular, u; can be represented by a simple closed curve ; C X in general position.
The self-crossings of fT (1) can be resolved by the resolution process (Definition 7.1), leading to a
simple closed curve n C X+ supported on some stabilization X of X, such that f(n) C YT is simple.
Lemma 7.4 shows that on the level of homology,

7] = [m] + Z(gi,liliz' + gi,29i)

with x;,y; forming a basis for the i*” handle added in the resolution process. Such classes are indeed
supported on X+ \ X as claimed, and hence (u,v) = (u1,v) = (, as required. |

8.2. Proof of Theorem A. By Lemma 8.1, since v is coherent, it admits a representative of the
form v = [dp] for some simple closed curve dy that is invariant under the action of G,; following
Convention 2.2, we assume that d is in general position. The projection f(dg) to Y then has a finite
number of self-crossings P = {p1,...,pr} C Y.

Let G,g;G, be the local sheet index at p;. By hypothesis, v is isotropic, and so by Lemma 3.7,

k
<vvv> = ZCv(gi —g[l)Cv =0.
i=1

Likewise, v is assumed to be even, and so by Lemma 4.7, for each g € G, the number of appearances
of G,gG, among the local sheet indices {G,g;G,} is even.
By Lemma 8.2, there exist representatives g; € G, ¢;G, for which

k

Y lgi—g7) =0, (12)

i=1
and such that each g € G5 appears as an even number of the elements g;.
For each self-crossing p; € P, we perform the resolution procedure of Lemma 7.5 using an arc «; so
that the class added is of the form ¢, (x;+g;y;) (here x;,y; generate the homology of the i!” stabilization).
Since the resolution process does not alter the number of components (Remark 7.2), the result is a
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simple closed curve §; with f*(d;) possessing no self-crossings. By Lemma 7.5, [§1] € Hy(X1;Z) is

given by
k k

5] = [0 + D Colwi + giys) =v+ > Cul@i + givi)-

i=1 i=1

k
Z (@i + gii),

so that [01] = v + (,w. Then w is a purely—umtal vector by construction. We claim that w is

Define

relatively geometric, i.e. satisfies the conditions of Lemma 6.3. Recall from Remark 6.2 that every

purely-unital vector is necessarily primitive and coherent. We claim that w is isotropic:

k
<w7w> = <Z 551 +gzyz »Z x] + 9y >
i=1 j=1

> (@i + givi, w5 + 9595)

.
<.

[
™=

(i + 9iyi, xi + 9ivi)
1

.
Il

(9"

[
]~

- 9i)

Il
L

)

the latter holding by (12). Lastly we claim that w is even, so that g4(w) = 0 for all g € G5. Using
the properties of g, developed in Lemma 4.8 and the fact that each g € G5 appears as g = g; an even

number of times,

k
= Z xz + gzyz
B

= (i, 99::)
i=1

= (# indices i for which g; = ¢) (mod 2)
=0.

Thus by Lemma 6.3, w is relatively geometric: w = [w] for a simple closed curve w C X+ such that
St (w) C YT is simple.

We next invoke the hypothesis that v is primitive. To that end, let u; € H;(X™,Z) be such that
(u1,v) = (,. Represent u; by a simple closed curve n C XT. By Lemma 8.4, uj can be replaced by a
relatively-geometric class u = [n] on some further stabilization X+ of X, such that (u,v) = (,. It is

possible to construct n so that f*(n) and f*(w) are disjoint: each is constructed via a stabilization
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process on disjoint subsurfaces, and neither class separates, so it is possible to resolve crossings
of one without passing through the other on the way to the boundary. Possibly after taking one
last stabilization, one can construct an arc connecting f(n) to f*(w) so that the connect-sum of
ft(n), fT(w) along this arc has an elevation € in the homology class [n] + [w] = u + w.

To summarize, we have shown that the classes v + (,w, v and u + w are relatively geometric,
represented respectively by curves d1,7,e. The former has stabilizer subgroup G,, and the latter two
have trivial stabilizer. By Lemma 8.3, the Dehn twists T, and T, lift to diffeomorphisms ﬁ, i/] on

—~ 1

X7, and the action on homology of iT n is given as

iﬁil(v + Gw) = T. (v+ Gw — (v + Gw, u) u)

=T. (v+ G(u+w))
0t Gt w) + o ol ), ) ()

= .

~1
Thus v admits a representative T.T,, (d1) as a simple closed curve with simple projection: v is

relatively geometric as claimed. (Il
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