

1 **Prediction of Nanoparticle Photoreactivity in Mixtures of Surface**
2 **Foulants Requires Kinetic (Non-Equilibrium) Adsorption**
3 **Considerations**

4

5 Riya A. Mathew¹, Marfua Mowla¹, Sheyda Shakiba¹, Tchemongo B. Berté,¹ and Stacey M.
6 Louie^{1*}

7

8 *¹Department of Civil & Environmental Engineering, University of Houston, Houston, TX*
9 *77004, USA*

10

11 ***Corresponding Author:**

12 **Address:** 4226 Martin Luther King Blvd, Engineering Building 1, Rm N107, Houston, TX
13 77204-4003

14 **Phone:** (713)743-8646

15 **Email:** slouie@uh.edu

16

17 **Revision Submitted to *Environmental Science & Technology***

18

19

20

21 **Abstract**

22 The adsorption of foulants on photocatalytic nanoparticles can suppress their reactivity in
23 water treatment applications by scavenging reactive species at the photocatalyst surface, screening
24 light, or competing for surface sites. These inhibitory effects are commonly modeled using the
25 Langmuir-Hinshelwood model, assuming adsorbed layer compositions follow Langmuirian
26 (equilibrium) competitive adsorption. However, this assumption has not been evaluated in
27 complex mixtures of foulants. This study evaluates the photoreactivity of titanium dioxide (TiO_2)
28 nanoparticles toward a target compound, phenol, in the presence of two classes of foulants: natural
29 organic matter (NOM), protein (bovine serum albumin, BSA), or mixtures of the two. Langmuir
30 adsorption models predict that BSA should strongly influence the nanoparticle photoreactivity
31 because of its higher adsorption affinity relative to phenol and NOM. However, model evaluation
32 of the experimental phenol decay rates suggested that neither the phenol nor foulant surface
33 coverages are governed by Langmuirian competitive adsorption. Rather, a reactivity model
34 incorporating kinetic predictions of adsorbed layer compositions (favoring NOM adsorption)
35 outperformed Langmuirian models in providing accurate, unbiased predictions of phenol
36 degradation rates. This research emphasizes the importance of using first-principles models that
37 account for adsorption kinetics when assumptions of equilibrium adsorption do not apply.

38

39 **Keywords:** Photoreactivity, nanoparticles, titanium dioxide, Langmuir-Hinshelwood model,
40 natural organic matter, bovine serum albumin

41

42 **Synopsis:** Kinetic (non-equilibrium) adsorption models are required to accurately predict the
43 photocatalytic treatment efficiency of TiO₂ nanoparticles toward pollutants in mixtures of surface
44 foulants (natural organic matter and proteins).

45

46

47 **Introduction**

48 Photocatalytic nanomaterials are of broad interest for nano-enabled water treatment,¹ with
49 much recent work focused on developing improved materials or reactors.²⁻⁷ However, their water
50 treatment efficiency can be hindered in matrices containing background salts and organic matter.⁸⁻

51 ¹² Photocatalysis involves the following steps: adsorption of reactants on the catalyst surface;
52 light-activated generation of charge carriers (electron-hole pairs) that can react directly with
53 pollutants or with water or dissolved oxygen to form reactive oxygen species (ROS); and
54 desorption of reaction products.¹³⁻¹⁶ Foulants in natural waters, including humic substances and
55 biomolecules such as proteins, often inhibit reactivity toward target pollutants by competing for
56 surface adsorption sites, screening light, or scavenging ROS or charge carriers.^{9,10,17-20} Natural
57 organic matter (NOM) can alternatively enhance reactivity in some cases.^{9,21-23} Considering that
58 different waters have varying foulant compositions, models capable of predicting reactivity in
59 complex matrices would be useful to estimate the photocatalytic efficiency of nanomaterials for
60 water treatment, as well as in natural environments where they may cause ecotoxicity.²⁴⁻²⁷

61 Prior studies on the photocatalytic degradation of pollutants in the presence of NOM were
62 summarized by Uyguner-Demirel et al.¹⁰ for titanium dioxide nanoparticles (TiO₂ NPs), one of the
63 most widely studied photocatalysts; additional discussion of modeling is provided in the
64 Supporting Information (SI) Table S1. Many studies either lack quantitative modeling or fit
65 pollutant degradation to a pseudo-first-order model to compare rate constants with versus without
66 foulants. To predict reaction rates across a range of reactant concentrations, the Langmuir-
67 Hinshelwood (L-H) model is commonly used, which incorporates an adsorption component
68 (surface coverage of each reactant) and reaction component (rate constant for each reactant).²⁸⁻³²
69 In the first-principles derivation of this model, the surface coverage of each adsorbate is specified

70 without assuming any particular adsorption isotherm. However, most studies implicitly assume a
71 Langmuir equilibrium adsorption isotherm. This assumption has already been debated with respect
72 to whether adsorption equilibrium is maintained *during the reaction* – i.e., whether the rate-
73 limiting step is the photocatalytic generation of electron/hole pairs or ROS, rather than
74 contaminant adsorption or product desorption from the photocatalyst surface.^{29,33,34} Hence, two
75 studies incorporated reactant mass transfer kinetics into the L-H model.^{18,19} However, these studies
76 only modeled degradation in the presence of a single type of foulant.

77 Here, we highlight two additional assumptions that are often overlooked: the assumption
78 that all reactants are competing for the same active sites on the photocatalyst surface, and the
79 assumption that multiple adsorbates will all exhibit Langmuirian (equilibrium) competition.
80 Macromolecular foulants (e.g., polymers, NOM, and proteins) often do not fully coat the entire
81 catalyst surface, so unoccupied sites may always remain available to small target compounds.
82 Additionally, adsorption equilibrium may not be achieved on the photocatalyst surface, even *prior*
83 *to* initiating the reactions, if the adsorption of any species is irreversible. Macromolecules exhibit
84 resistance to desorption when multiple functional groups along the molecule attach to the surface
85 or when strong surface complexation occurs, e.g., via calcium bridging.³⁵ Hence, these molecules
86 can remain adsorbed after disequilibration (e.g., washing into adsorbate-free media) and can also
87 resist displacement by higher affinity species. Our prior study found that the adsorbed layer
88 composition on TiO₂ in mixtures of NOM and a model protein, bovine serum albumin (BSA), was
89 controlled by adsorption kinetics rather than equilibrium predictions, i.e., the more rapidly
90 adsorbing species (NOM) outcompeted the higher affinity species (BSA).³⁶ Small molecules
91 would likewise diffuse more rapidly to the photocatalyst surface. We hypothesize that in this
92 scenario, Langmuirian assumptions will fail to predict the correct surface coverages of the

93 adsorbates for the L-H model; rather, kinetic adsorption models will be required. Despite the
94 simplicity of this hypothesis, to our best knowledge, it has not been tested for photocatalytic
95 nanomaterials in complex media containing multiple classes of macromolecular foulants. This
96 research gap could be attributable to the analytical challenges in measuring adsorption from mixed
97 foulant solutions, which is needed to predict adsorbed layer compositions for reactivity models.

98 The objective of this study is to predict the photoreactivity of TiO₂ NPs toward a target
99 compound, phenol, in mixtures of foulants (Suwannee River NOM and BSA). Phenol has been
100 used as a probe for hydroxyl radical generation from TiO₂ NPs.³⁷ Here, the TiO₂ NPs in the
101 photoreaction experiments were immobilized onto glass rods to achieve a consistent aggregation
102 state across various foulant exposures in moderately hard water (MHW). Immobilized NPs are
103 also more feasible for application because NP separation steps are not required post-treatment.^{2,8}
104 Photocatalytic degradation of phenol was systematically evaluated in systems of increasing
105 complexity (phenol alone, in the presence of individual foulants, or in mixtures of NOM and BSA).
106 Following this approach, the reaction models were incrementally parameterized and ultimately
107 compared to evaluate the suitability of assuming Langmuirian competitive equilibrium in the L-H
108 model, as opposed to kinetically-predicted surface coverages of NOM and BSA.

109

110 **Theory and Approach**

111 Reaction in the absence of inhibitory species at varying target compound concentrations

112 The surface-mediated photocatalytic oxidation of a probe or target compound (here,
113 phenol) in the absence of inhibitory foulants (e.g., BSA and/or NOM) can be modeled by Equation
114 1, as derived in SI Section S2 following theory presented by Loddo et al.²⁸ for heterogeneous
115 catalysis:

116

117
$$\frac{dC_{\text{target}}}{dt} = k'_{\text{target}} \theta_{\text{ox}} \theta_{\text{target}} = k'_{\text{phenol}} \theta_{\text{ox}} \theta_{\text{phenol}} \quad (1)$$

118

119 where dC_{target}/dt is the rate of loss of the target compound over time ($\text{mg L}^{-1} \text{ h}^{-1}$), k'_{target} is a rate
 120 constant ($\text{mg L}^{-1} \text{ h}^{-1}$) for reaction of target compound (phenol) with oxidant, and θ_{ox} and θ_{target}
 121 (unitless) are the fractional surface coverages of oxidant (“ox”) and target compound, respectively,
 122 on the active sites of the photocatalyst. If the phenol adsorption is assumed to follow a Langmuir
 123 isotherm and the oxidant concentration is assumed to be a constant, $\theta_{\text{ox}}^{\circ}$ (where the superscript \circ
 124 denotes the absence of inhibitory species), then Equation 2 follows:

125

126
$$\frac{dC_{\text{target}}}{dt} = k'_{\text{target}} \theta_{\text{ox}}^{\circ} \left(\frac{K_{\text{target}} C_{\text{target}}}{1 + K_{\text{target}} C_{\text{target}}} \right) = k'_{\text{phenol}} \theta_{\text{ox}}^{\circ} \left(\frac{K_{\text{phenol}} C_{\text{phenol}}}{1 + K_{\text{phenol}} C_{\text{phenol}}} \right) \quad (2)$$

127

128 where K_{target} is the Langmuir isotherm constant (L mg^{-1}) for the target compound.

129

130 Reaction in the presence of inhibitory species at a fixed target compound solution concentration

131 When introducing inhibitory species, i (e.g., BSA and/or NOM), the initial phenol
 132 concentration was fixed at a single concentration (5 mg L^{-1}) while varying the foulant
 133 concentrations. The measured degradation rate and fraction of surface active sites occupied by the
 134 target compound are represented by the constants $r_{\text{target}}^{\circ}$ ($\text{mg L}^{-1} \text{ h}^{-1}$) and $\theta_{\text{target}}^{\circ}$ (unitless),
 135 respectively, where the superscript \circ here denotes the fixed target solution concentration in the
 136 absence of inhibitory species. Following Schwarzenbach et al.,³⁸ an oxidant mass balance is
 137 written, assuming that the oxidant production rate at the catalyst surface is constant, and the steady-
 138 state oxidant concentration is depleted by reaction with the inhibitors in addition to background

139 reactions with species other than the target or inhibitory compounds, e.g. salts in the reaction
140 media. Incorporating the oxidant concentration into Equation 1 yields Equation 3 (derivation in SI
141 Section S2):

142

143
$$\frac{dc_{\text{target}}}{dt} = \frac{r_{\text{target}}^{\circ}}{1 + \sum_i (k_i \theta_i)} \left(\frac{\theta_{\text{target}}}{\theta_{\text{target}}^{\circ}} \right) = \frac{r_{\text{phenol}}^{\circ}}{1 + k_{\text{BSA}} \theta_{\text{BSA}} + k_{\text{NOM}} \theta_{\text{NOM}}} \left(\frac{\theta_{\text{target}}}{\theta_{\text{target}}^{\circ}} \right) \quad (3)$$

144

145 where θ_{target} and θ_i (unitless) are the fractions of surface active sites occupied by the target and
146 inhibitory species, respectively, in the samples with foulants; and k_i (unitless) is a lumped reaction
147 rate constant defined as $k_i \equiv \frac{A_{\text{ox}/i} k'_i}{B}$, where $A_{\text{ox}/i}$ is a stoichiometric coefficient (mass of oxidant
148 per mass of inhibitory species, i), k'_i is a zero-order rate constant ($\text{mg L}^{-1} \text{ h}^{-1}$) for reaction of i with
149 oxidant, and B is a constant ($\text{mg L}^{-1} \text{ h}^{-1}$) representing the rate of oxidant depletion by background
150 reactions.

151 Equation 3 shows that the decay rate of the target compound can be suppressed by
152 competition for adsorption sites influencing θ_{target} , as well as scavenging as represented by $k'_i \theta_i$ for
153 the surface foulants. Three implementations of this model were evaluated with different
154 assumptions on the active site competition:

155

156 (1) *Target compound adsorption is suppressed by the inhibitors, and all species' surface
157 coverages are predicted by Langmuirian competitive adsorption*

158 If all species (target compound and foulants) compete for active sites, then the Langmuir
159 predictions for surface coverages are given by Equation 4:

160

161
$$\theta_m = \frac{q_m}{q_{\max,m}} = \frac{K_m C_m}{1 + \sum_n (K_n C_n)} = \frac{K_m C_m}{1 + K_{\text{phenol}} C_{\text{phenol}} + K_{\text{BSA}} C_{\text{BSA}} + K_{\text{NOM}} C_{\text{NOM}}} \quad (4)$$

162
 163 where m represents the specific adsorbate of interest (phenol, BSA, or NOM), n represents all
 164 competing adsorbates, q_m is the adsorbed mass of m (mg m^{-2}), $q_{\max,m}$ is the maximum adsorbed
 165 mass of m (mg m^{-2}), K_m and K_n are the Langmuir isotherm constants (L mg^{-1}), and C_m and C_n
 166 are the bulk solution concentrations (mg L^{-1}) of m and n , respectively. Equation 3 then becomes
 167 Equation 5:

168
 169
$$\frac{dc_{\text{target}}}{dt} = \frac{r_{\text{target}}^{\circ}}{1 + \sum_i \left[k_i \left(\frac{K_i C_i}{1 + K_{\text{target}} C_{\text{target}} + \sum_i (K_i C_i)} \right) \right]} \left[\frac{K_{\text{target}} C_{\text{target}} / (1 + K_{\text{target}} C_{\text{target}} + \sum_i (K_i C_i))}{K_{\text{target}} C_{\text{target}} / (1 + K_{\text{target}} C_{\text{target}})} \right] \quad (5)$$

170
 171 where i includes only the inhibitory species (BSA and NOM).

172
 173 (2) *Target compound adsorption is not affected by the inhibitors, whereas inhibitors compete for*
 174 *adsorption sites following Langmuirian competitive adsorption*

175 If the foulants compete with each other following Langmuirian competition but do **not**
 176 compete with the target compound for active sites (i.e., they induce negligible displacement of
 177 target compound, and vice versa), then θ_{target} with foulants is equivalent to $\theta_{\text{target}}^{\circ}$ without
 178 foulants, and the target compound is also excluded from the foulant adsorption predictions,
 179 resulting in Equation 6:

180
 181
$$\frac{dc_{\text{target}}}{dt} = \frac{r_{\text{target}}^{\circ}}{1 + \sum_i \left[k_i \left(\frac{K_i C_i}{1 + \sum_i (K_i C_i)} \right) \right]} \quad (6)$$

183 (3) Target compound adsorption is not affected by the inhibitors, whereas inhibitors compete for
184 adsorption sites following a kinetic competitive adsorption model

185 This study questions the suitability of the Langmuir competitive adsorption assumption to
186 predict the surface coverages of the foulants and hence the degradation rate for the target
187 compound. In particular, a previous study from our group³⁶ developed and experimentally
188 validated a kinetic adsorption model for NOM and BSA adsorption to TiO₂ NPs in a MHW
189 background:

190

191
$$\ln\left(\frac{N_i}{N_{0,i}}\right) = -4\pi D(R_i + R_{\text{TiO}_2})N_{\text{TiO}_2}t \quad (7)$$

192
$$\theta_i(t_{\text{stop},i}) = \frac{q_i(t_{\text{stop},i})}{q_{\text{max},i}} = \frac{K_i C_i(t_{\text{stop},i})}{1 + K_i C_i(t_{\text{stop},i})} \left[1 - \sum_j \frac{q_j(t_{\text{stop},i})}{q_{\text{max},j}} \right] \quad (8)$$

193

194 Equation 7 is the Smoluchowski collision equation representing the depletion rate of
195 adsorbate from bulk solution upon collision with TiO₂ NPs. N_i and $N_{0,i}$ are the number
196 concentrations of dissolved species, i , at time t and time 0, respectively; N_{TiO_2} is the number
197 concentration of TiO₂ NPs; D is the summed diffusion coefficients for i and TiO₂; and R_i and R_{TiO_2}
198 are the hydrodynamic radii of i and TiO₂, respectively. Adsorbed masses are computed by dividing
199 the depleted adsorbate concentration by the TiO₂ surface area. Equation 8 is used as a criterion to
200 stop adsorption when each species, i , from the mixture of all adsorbates, j , has met the
201 thermodynamic (Langmuir) predictions with respect to the adsorption sites remaining at $t_{\text{stop},i}$ (but
202 not necessarily with respect to all adsorption sites initially available). When the NPs are
203 simultaneously exposed to NOM and BSA, this model produced better predictions of adsorbed
204 layer compositions than the Langmuir model because NOM had more rapid collision kinetics and
205 adsorption was irreversible, i.e., NOM was not displaced despite the higher affinity of BSA.

206 Resistance to displacement is also observed in sequential exposure of NOM alone followed by
207 BSA,³⁶ and vice versa,³⁹ although adsorption reversibility can depend on the water and surface
208 chemistry, e.g., presence of phosphates.^{22,23,40} It is noted that the kinetic model predicts collision
209 rates with TiO₂ to be at least two orders of magnitude higher for phenol at 5 mg L⁻¹ than for BSA
210 or NOM at their highest concentrations (100 mg L⁻¹), so the kinetic model would predict that
211 phenol adsorption should not be strongly impacted by the inhibitors. Hence, Equation 3 is simply
212 written as Equation 9:

213

214
$$\frac{dc_{\text{target}}}{dt} = \frac{r_{\text{target}}^{\circ}}{1 + \sum_i (k_i \theta_{i,\text{kinetic}})} \quad (9)$$

215

216 where $\theta_{i,\text{kinetic}}$ represents the kinetically predicted inhibitor surface coverages.

217

218 Light screening and bulk photolysis

219 The possibility for the NOM and BSA to participate in two other processes influencing the
220 phenol degradation (light screening and bulk photolysis in solution) was also incorporated into the
221 data analysis by including these processes in the mass balance as a screening factor on the oxidant
222 reactions and a second independent phenol decay process for bulk photolysis. Model derivation is
223 provided in SI Section S2.3.

224

225 Model fitting approach

226 A stepwise approach was taken to parameterize and evaluate the reaction models. First,
227 target compound decay rates were measured at varying initial phenol concentrations. The data
228 were fitted to Equation 2 to obtain two fitting parameters: K_{phenol} and $(k'_{\text{phenol}} \theta_{\text{ox}}^{\circ})$. This approach

229 was required to estimate K_{phenol} because batch adsorption experiments showed no measurable
230 phenol adsorption onto the TiO_2 nanoparticles. These experiments also provided the values for
231 r_{phenol}^0 , measured at 5 mg L^{-1} initial phenol concentration, and θ_{phenol}^0 , computed using K_{phenol} .

232 Adsorption isotherms were measured separately for NOM and BSA to determine $q_{\text{max},i}$ and
233 K_i . Then, phenol decay rates were measured in the presence of single foulants (BSA or NOM only),
234 and mixtures of the two foulants. When all species (including phenol) are assumed to participate
235 in Langmuir competition for active sites, Equation 5 was first applied to the single foulant data,
236 where each data set (BSA or NOM) has only one fitting constant each, i.e., k_{BSA} or k_{NOM} . Since
237 r_{phenol}^0 , θ_{phenol}^0 , and k_i were previously quantified and θ_i can be computed using the Langmuir
238 competitive adsorption model, there are no unknown parameters in the mixed foulant cases –
239 hence, the modeled phenol decay rates are evaluated in a purely predictive manner against the
240 measured rates. When constant phenol coverage is assumed, Equation 6 was fitted to determine k_i
241 for the single foulant data. Equations 6 and 9 for the Langmuir and kinetic adsorption models,
242 respectively, were then computed and compared for the mixed foulants (again with no fitting
243 parameters). Note that for single foulants, the kinetic model gives the same predictions as the
244 Langmuir model since the NOM and BSA are not competing with each other.

245 To correct for screening and bulk photolysis, experimental data were collected to measure
246 screening factors and bulk photolysis rates. All measured decay rates were adjusted to compute
247 only the surface reaction component using SI Equation S15. The same model fitting approaches
248 above were then applied to the adjusted decay rates.

249

250 **Materials and Methods**

251 ***Chemical Reagents***

252 TiO₂ NPs (Aeroxide P25, Evonik Industries, Essen, Germany), titanium isopropoxide
253 (Acros Organics, Morris Plains, NJ), diethanolamine (99%, Alfa Aesar, Ward Hill, MA), and
254 isopropanol (ACS grade, Electron Microscopy Sciences, Hatfield, PA) were used for sol-gel
255 synthesis to immobilize the TiO₂ NPs. Suwannee River NOM (Cat. No. 2R101N) was procured
256 from the International Humic Substances Society (IHSS, St. Paul, MN), and BSA (reagent grade
257 pure powder) from Sera Care Life Sciences (Milford, MA). Phenol (99.5%, unstabilized, Acros
258 Organics, Morris Plains, NJ) was used as the target compound for degradation. Phosphoric acid
259 (85%, ACS grade, Ricca Chemical, Arlington, TX), Coomassie Brilliant Blue G-250 (MP
260 Biomedicals, Santa Ana, CA) and ethanol (anhydrous USP grade, Decon labs, King of Prussia,
261 PA) were used as Bradford assay reagents. Calcium chloride (CaCl₂) (> 97 %, anhydrous, ACS
262 grade, Sigma-Aldrich, St. Louis, MO) and sodium bicarbonate (NaHCO₃) (> 99.7 %, ACS grade,
263 Sigma-Aldrich) were used to prepare a simplified MHW matrix.

264

265 ***Preparation of TiO₂ NP Coated Glass Rods***

266 Glass stirring rods (5 mm x 150 mm, Kimble Kimax, DWK Life Sciences, Millville, NJ)
267 were cleaned using Alconox soap solution and rinsed with deionized water, dried, and dip-
268 coated/calcined three times in a P25 NP-enriched sol-gel, following the protocol reported by
269 Carbonaro et al. and Balasubramanian et al.^{41,42} and described in the SI. This method was reported
270 to yield a TiO₂ composition of 78% anatase and 22% rutile,⁴² which is within the reported 95%
271 confidence interval of (76 ± 3)% anatase and (24 ± 3)% rutile reported for P25.⁴³ Carbonaro et al.
272 reported that no improvement in photocatalytic efficiency was observed past three dip-coating and

273 calcination cycles, suggesting complete coverage at this point.⁴²

274

275 ***Adsorption Isotherms of NOM, BSA, and Phenol on TiO₂ NPs***

276 Adsorption isotherms were quantitatively evaluated on suspensions of TiO₂ NPs that were
277 equilibrated overnight in various concentrations of either pure NOM or pure BSA in a MHW
278 background (0.85 mM CaCl₂ and 1.2 mM NaHCO₃, pH ≈ 8). The full methods are described in
279 the SI. In brief, adsorption was measured by a solution depletion assay by subtracting the
280 unadsorbed BSA or NOM concentrations from their initial concentrations after separating the NPs
281 by centrifugation. BSA was quantified using the Bradford assay. NOM was quantified by size
282 exclusion chromatography (SEC) using a Superdex 75 10/300 Increase SEC column (Cytiva Life
283 Sciences, Marlborough, MA) on a 1290 Infinity high performance liquid chromatography (HPLC)
284 system (binary pump and autosampler) (Agilent Technologies, Santa Clara, CA), with an Agilent
285 1260 Infinity UV-Vis diode array detector and M9-SEC online TOC detector (Suez Water
286 Technologies, Trevose, PA).⁴⁴ Adsorption isotherms were evaluated on triplicate separately-
287 prepared samples.

288 Because the aggregation state of the TiO₂ NPs in suspension varies with foulant
289 concentration and the TiO₂ NPs coated on the glass rods can also show a different aggregation
290 state or surface roughness, foulant adsorption was also evaluated directly on the TiO₂-coated stir
291 rods. The adsorption was qualitatively evaluated by visual color development, either directly for
292 NOM by its inherent yellow color or after staining the adsorbed BSA with Bradford reagent.
293 Methods are described in the SI.

294 Quantification of phenol adsorption was attempted at varying phenol concentrations (1, 2,
295 5, 10 mg L⁻¹) on 10 g L⁻¹ TiO₂ in MHW for 2 mL total volume. Samples were allowed to equilibrate

296 for 3 h on an end-over-end rotator at 25 rpm, then centrifuged at 13000 rpm (11337 g) for 15 min
297 to pellet the TiO₂ NPs (MiniSpin Plus, Eppendorf, Enfield, CT). Supernatants were filtered using
298 a 0.22 μ m PTFE filter (MicroSolv, Leland, NC) and transferred to HPLC vials to analyze phenol
299 concentrations on an Agilent 1260 Infinity II system comprising a binary pump, refrigerated
300 autosampler (4 °C) with temperature-controlled column compartment (25 °C), Agilent Zorbax
301 Eclipse Plus C₁₈ HPLC column (4.6 x 150 mm, 5 μ m) with a Phenomenex C₁₈ guard column, and
302 UV-Vis detection (methods in SI). The high TiO₂ concentration was used because phenol
303 adsorption was anticipated to be low.²³

304

305 ***Size and Electrophoretic Light Scattering Measurements***

306 The hydrodynamic sizes of the TiO₂ suspensions used in the adsorption isotherms were
307 measured by dynamic light scattering (DLS) (Zetasizer Nano ZS, Malvern Panalytical, Malvern,
308 UK). Zeta potentials were measured by electrophoretic light scattering on the Zetasizer Nano ZS
309 using a folded capillary zeta cell (DTS1070, Malvern) with automatic voltage selection (150 V),
310 using the Smoluchowski approximation to convert electrophoretic mobility to zeta potential.

311

312 ***Photocatalysis Experiments***

313 Degradation of phenol at (5, 10, 20, and 40) mg L⁻¹ was first measured using bare TiO₂-
314 coated rods (without foulants) in MHW. Irradiation was conducted on 10 mL of sample in quartz
315 vials in an annular UV reactor (Rayonet RMR-600, Southern New England Ultraviolet Co.,
316 Branford, CT) with a rotating carousel, cooling fan, eight vial positions, and eight fluorescent UV
317 lamps with wavelength centered at 350 nm (Rayonet RMR-3500A) and total irradiance of (5.0 ±
318 0.2) mW cm⁻² measured in the UVA/UVB range (UV513AB light meter, GeneralTools, New

319 York, NY). 1 mL of sample was collected at 1 h intervals from (0 to 5) h. Prior to sample collection,
320 the vial was inverted three times to homogenize. Samples were centrifuged at 13000 rpm for 15
321 min, and 0.4 mL of supernatant was transferred to an HPLC vial for phenol quantification.

322 Phenol degradation was also evaluated using TiO₂-coated rods in MHW containing pure
323 NOM or BSA at (0, 10, 25, and 100) mg L⁻¹, or their mixtures at varying concentrations: (10, 25,
324 and 100) mg L⁻¹ NOM for fixed BSA concentrations of (10 and 100) mg L⁻¹, and vice-versa. To
325 allow foulant adsorption, the TiO₂ rods were initially placed in dark (foil-wrapped) quartz vials
326 containing NOM, BSA, or the mixtures overnight at room temperature. Then, phenol was added
327 (final concentration of 5 mg L⁻¹). Photoreaction experiments were performed as described above
328 in triplicates. Dark controls were run in foil-wrapped vials for the bare TiO₂ and TiO₂ coated with
329 NOM and BSA at the highest concentrations (100 mg L⁻¹ individually or mixed).

330 Phenol concentrations were analyzed as noted for the adsorption experiments (methods in
331 SI). NOM and BSA degradation was evaluated by SEC analysis of the samples collected at (0 and
332 5) h, and BSA concentrations were measured by the Bradford assay, as noted for the adsorption
333 isotherms and described in the SI.

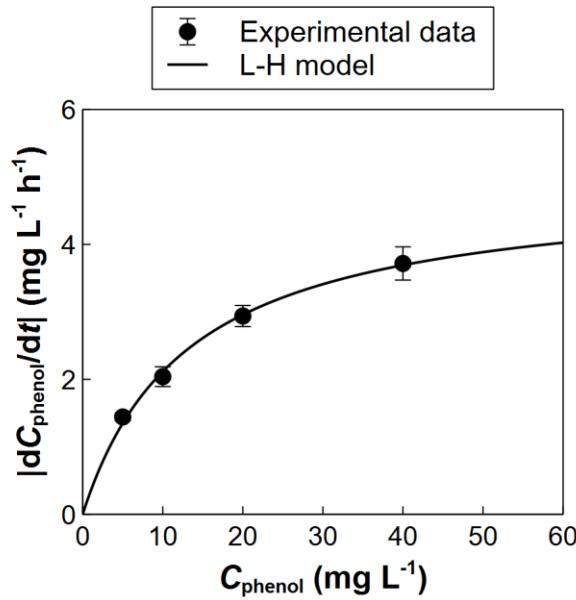
334

335 ***Inner Filter Effect and Bulk Photolysis***

336 To quantify the inner filter effect, UV-Vis absorbances were measured from (200 to 800)
337 nm for all NOM and BSA concentrations (separate and mixtures) in MHW without TiO₂ or phenol.
338 The absorbances were applied to the manufacturer's reported UV lamp spectrum (Rayonet RMR-
339 3500A, wavelength range of (300 to 400) nm) to compute the attenuated spectrum reaching the
340 surface of the TiO₂-coated stir rods, as detailed in the SI Section S2.3. The inner filter effect was
341 computed as the ratio of attenuated to unattenuated light intensity integrated across all lamp

342 wavelengths. To evaluate phenol degradation by bulk photolysis, photoreaction experiments were
343 conducted in the Rayonet photoreactor for 5 mg L⁻¹ of phenol in all foulant solutions, using
344 uncoated glass rods in place of TiO₂-coated rods to maintain the same reactor geometry.
345 Experiments were triplicated.

346


347 **Results and Discussion**

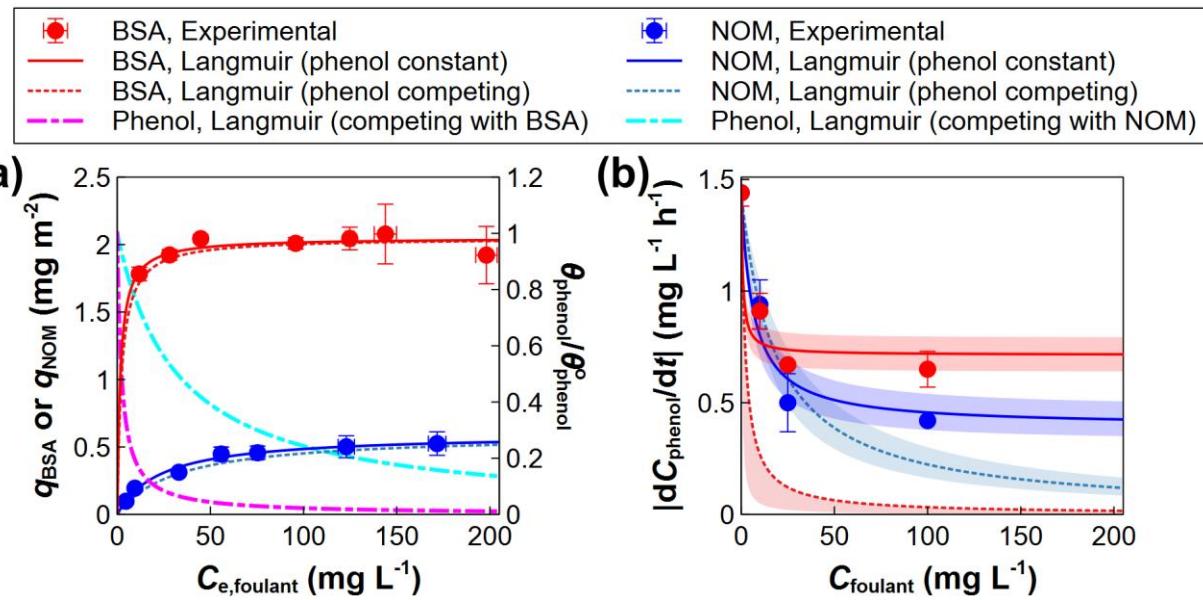
348 ***Phenol Adsorption and Photoreactivity of Bare TiO₂ in Varying Phenol Concentrations***

349 Phenol adsorption was too low to be reliably measured (i.e., < 10% depletion) even at high
350 TiO₂ concentrations (10 g L⁻¹), consistent with our previous study where phenol adsorption was
351 low whereas its degradation byproducts (catechol and hydroquinone) showed measurable
352 adsorption.²³ Because phenol is a small molecule and its maximum surface coverage is low, it was
353 hypothesized that phenol adsorption will be unaffected by the presence of the surface foulants.
354 Photoreactivity experiments with phenol only, followed by phenol with foulants, were conducted
355 to evaluate this hypothesis.

356 The photoreactivity of the TiO₂ toward phenol alone was measured over 5 h (SI Figure S1).
357 The photoreactivity model (Equation 2) is based on the initial sample conditions, so the initial
358 phenol degradation rates (computed as the loss from 0 h to 1 h of irradiation) were used to fit the
359 model (Figure 1). The fitted parameters were 4.9 mg L⁻¹ h⁻¹ for $k'_{\text{phenol}}\theta_{\text{ox}}^{\circ}$ and 0.08 L mg⁻¹ for
360 K_{phenol} , indicative of a low affinity isotherm for phenol adsorption onto the TiO₂-coated rods.

361

362


363 **Figure 1.** Measured phenol degradation rates for varying concentrations of phenol in MHW, and
 364 the best-fit Langmuir-Hinshelwood (L-H) model using Equation 2. Error bars indicate standard
 365 deviations across triplicate experiments.

366

367 ***Foulant Adsorption and Photoreactivity of TiO₂ in Individual Foulants***

368 The adsorption of pure BSA or pure NOM on TiO₂ was evaluated by batch adsorption at
 369 pH 7.8 to 8, with BSA quantified using the Bradford assay and NOM using SEC-TOC analysis
 370 (Figure S2). The adsorbed masses of each foulant were fitted using a Langmuir isotherm (Figure
 371 2a), yielding best-fit parameters for BSA and NOM of (2.1 or 0.6) mg m^{-2} , respectively, for the
 372 saturation adsorbed mass, q_{max} , and (0.6 and 0.04) L mg^{-1} for the Langmuir adsorption constant,
 373 K . The K values indicate a higher adsorption affinity of BSA than NOM, i.e. the surface is saturated
 374 at lower BSA concentrations. The q_{max} values are lower than those in our prior work in MHW at
 375 pH 7 (instead of pH 8 here), i.e., 2.6 mg m^{-2} for BSA and 0.9 mg m^{-2} for NOM.³⁶ The isoelectric
 376 point of TiO₂ is ≈ 7 ,⁴⁵ so higher electrostatic repulsion exists between the negatively-charged

377 adsorbates and negatively-charged TiO_2 surface at pH 8, consistent with lower adsorbed masses.
 378 These results suggest that at pH 8, the TiO_2 surface is not completely covered even at saturation
 379 concentrations of BSA or NOM, i.e., physical surface area remains where phenol can adsorb.
 380

381
 382 **Figure 2.** Adsorption isotherms of BSA onto 0.5 g L^{-1} TiO_2 NPs and NOM onto 1 g L^{-1} TiO_2 NPs
 383 (a), and the measured and predicted phenol degradation rates using TiO_2 -coated glass rods in the
 384 presence of separate BSA or NOM solutions (b) in MHW background (0.85 mM CaCl_2 and 1.2
 385 mM NaHCO_3 , $\text{pH} \approx 8$). Raw data used to determine phenol degradation rates are provided in Figure
 386 S5. Solid lines represent the best-fit Langmuir adsorption isotherms (a) and reaction models (b)
 387 using Equations 4 (Langmuir, phenol competing) or 5 (Langmuir, phenol constant) for individual
 388 foulants. Error bars on experimental data indicate standard deviations across triplicate
 389 experiments. Shaded regions were computed using the lower and upper bounds of the 95%
 390 confidence intervals on the fitted BSA and NOM rate constants.

391

392 The TiO_2 NPs showed a *z*-average diameter of (151 ± 4) nm for stable suspensions in 1
393 mM NaCl ($n = 8$ samples). However, the surface potential was screened in MHW, especially by
394 the divalent Ca^{2+} ions (Figure S3). Hence, large agglomerates ($> 1 \mu\text{m}$) were present despite the
395 more negative zeta potentials and improved colloidal stability conferred by NOM and BSA at high
396 concentrations (Figure S3). For the photoreaction experiments, the TiO_2 NPs were immobilized
397 onto glass rods to avoid variations in agglomeration state, which could influence the reactivity.
398 The P25-enriched sol-gel synthesis was reported to produce similar compositions to the pure P25
399 NPs used for the adsorption isotherms,⁴² but the suspended NP agglomeration and differences in
400 surface roughness or structure for the rod coatings could introduce experimental error in the
401 measured adsorbed masses. Hence, we colorimetrically evaluated the adsorption of both species
402 onto the TiO_2 -coated rods (SI Figure S4). The results qualitatively affirm the relative difference in
403 adsorption affinity (the most important parameter in the photoreactivity models): BSA showed
404 strong color after staining at both low (10 mg L^{-1}) and high (100 mg L^{-1}) foulant concentrations,
405 whereas NOM showed greater changes in color from (10 to 25 to 100) mg L^{-1} (Figure S4). For the
406 modeling equations, the surface area of the TiO_2 -coated rods ($\approx 0.18 \text{ cm}^2$ per mL of solution, not
407 accounting for surface roughness) is orders of magnitude lower than that in the adsorption
408 experiments using TiO_2 suspensions ($270 \text{ cm}^2/\text{mL}$ for BSA and $540 \text{ cm}^2/\text{mL}$ for NOM). Therefore,
409 no significant depletion of the dissolved concentration of foulant occurs in the photoreaction
410 experiments. Hence, C_i in the reactivity models was taken to be the initially added concentration
411 of BSA or NOM to compute adsorbed masses for the immobilized TiO_2 NPs.

412 The photoreactivity of the TiO_2 toward phenol (initial concentration of 5 mg L^{-1}) in the
413 presence of individual foulants was assessed by the initial phenol degradation rates (Figure 2(b)).
414 Pseudo-first-order rate constants were also fitted over the entire 5 h experiments (Figures S5 and

415 S6 for individual foulants and mixtures, respectively) and generally correlated with the initial rate
416 (Figure S7), so the rates determined by either approach would yield similar modeling results. Dark
417 controls indicated negligible loss of phenol without irradiation (data not shown). Bare TiO₂
418 showed the highest phenol degradation rate of $(1.44 \pm 0.06) \text{ mg L}^{-1} \text{ h}^{-1}$, or $(8.2 \pm 0.3) \times 10^{-4} \text{ mol}$
419 phenol per mol photons incident on the TiO₂, computed as described in SI Section S2.3, whereas
420 increasing concentrations of either foulant suppressed the reactivity (Figure S5 and Figure 2(b)),
421 which could be attributable to oxidant scavenging or light screening. All data were first modeled
422 considering oxidant scavenging only; light screening and bulk photolysis are incorporated later.

423 Individual foulant results were evaluated assuming phenol competes for the same active
424 sites as BSA and NOM (Equation 5) or constant phenol coverage (Equation 6). If all species
425 compete for adsorption sites, both foulants are predicted to strongly suppress phenol adsorption
426 (Figure 2a) because of the higher mass concentrations of both foulants relative to phenol, as well
427 as the higher adsorption affinity of BSA. In Equation 5, the phenol surface coverage can be
428 interpreted as setting a maximum reactivity relative to the bare TiO₂, with additional suppression
429 by oxidant scavenging. Fitted rate constants are presented as the best-fit value followed by the
430 95% confidence interval range on the fitted parameter in parentheses (determined using SI
431 Equation S16 following Bates and Watts.⁴⁶ The fitted rate constants were $k_{\text{BSA}} = 0 (0, 5.5)$ and
432 $k_{\text{NOM}} = 0.8 (0.2, 1.5)$. The bounds of each confidence interval were used to plot confidence bands
433 on the model fits, with the upper and lower scavenging rates corresponding to lower and higher
434 reactivity, respectively (Figure 2b). For NOM, the experimental data fall outside the 95%
435 confidence band of the model prediction at the highest NOM concentration, where increasing
436 phenol displacement is predicted. The normalized root mean square error (NRMSE) and
437 normalized bias for the best-fit model to the NOM data were 21% and -5%, respectively. For

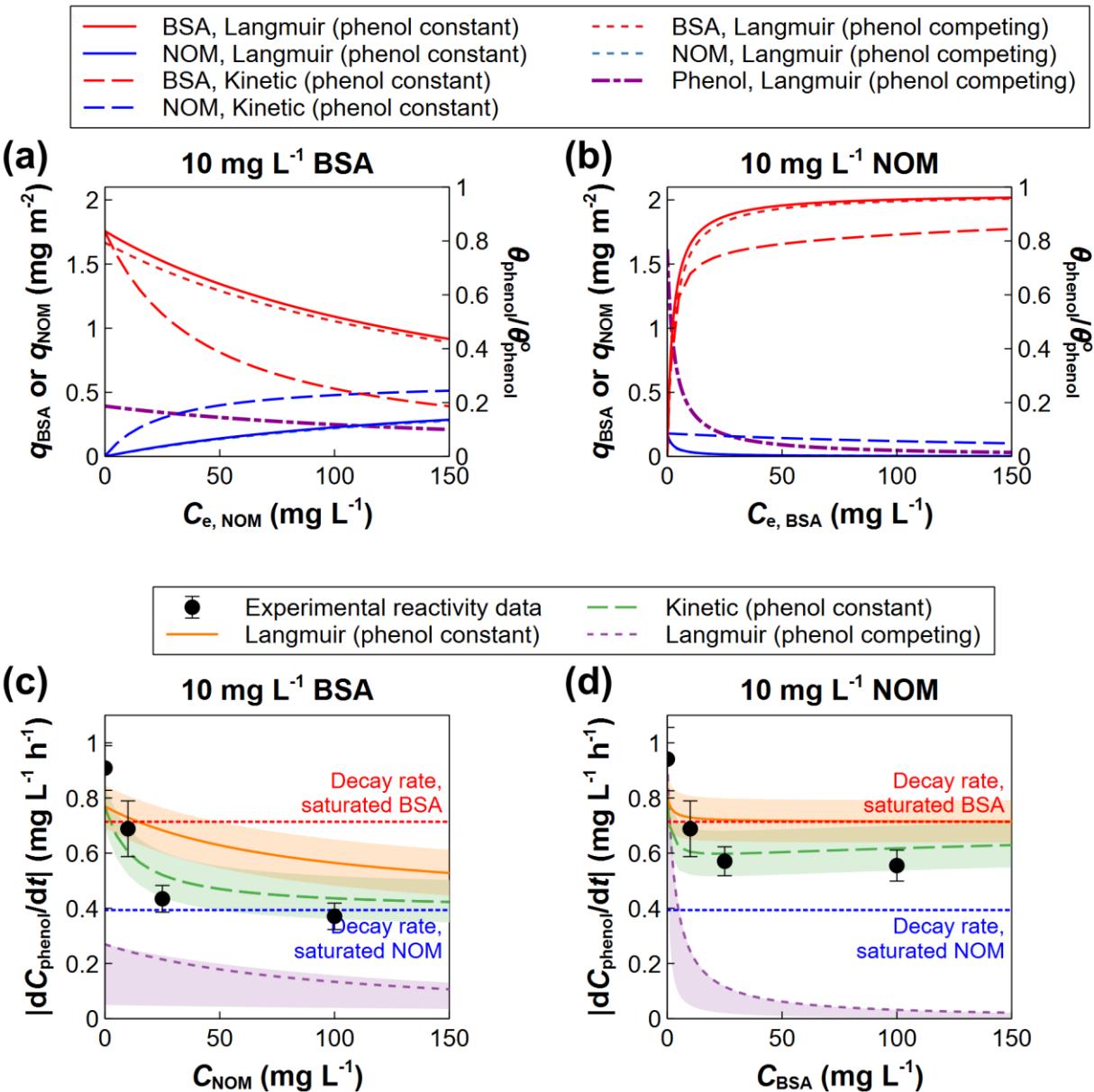
438 BSA, the experimental data at all concentrations fall outside the 95% confidence band, and the
439 best-fit rate constant is 0 because of the extensive phenol displacement predicted. The NRMSE
440 and normalized bias for the BSA data were 81% and -81%, respectively, with the negative value
441 representing underprediction of phenol decay rates.

442 On the other hand, assuming constant phenol coverage (Equation 6) yields a good fit to the
443 data (Figure 2b), with the 95% confidence bands overlapping error bars on the experimental data
444 for BSA and NOM at all concentrations. The NRMSE and bias were 17% and +0.3% for NOM,
445 and 13% and -0.03% for BSA. These results support the assumption that the foulants only
446 scavenge oxidant proportional to the foulant surface coverage, with negligible phenol
447 displacement. Indeed, the general trend in the suppression of the photoreactivity shows an inverse
448 curve shape to the BSA and NOM adsorption isotherms, i.e., the reaction rate plateaus at higher
449 NOM concentrations rather than continually decreasing, and the BSA suppression of phenol decay
450 is not overpredicted. The fitted rate constants were $k_{\text{BSA}} = 1.0$ (0.8, 1.3) and $k_{\text{NOM}} = 2.7$ (2.1, 3.5),
451 indicating a higher oxidant scavenging rate per adsorbed mass of NOM. Hence, at the higher
452 solution concentrations (25 mg L⁻¹ and 100 mg L⁻¹), NOM showed greater inhibition than BSA
453 despite its lower adsorbed mass.


454

455 ***Foulant Adsorption and Photoreactivity of TiO₂ in Foulant Mixtures***

456 The adsorbed layer compositions in the foulant mixtures were predicted using Langmuir
457 or kinetic competitive adsorption models. Cases were systematically evaluated by holding one of
458 the foulants (BSA or NOM) fixed at either a high concentration of 100 mg L⁻¹ (Figure 3) or a low
459 concentration of 10 mg L⁻¹ (Figure 4), while varying the concentration of the competing foulant
460 from (0 to 100) mg L⁻¹. For these systems, the kinetic model was validated to produce significantly


461 improved predictions of adsorbed layer compositions over the Langmuir model in our previous
462 study.³⁶ The Langmuir model predicts higher BSA adsorption in all mixtures because of its higher
463 affinity. However, in our prior study,³⁶ the kinetic model yielded lower model error than the
464 Langmuir model, i.e., lower deviation from experimental observations because the NOM diffuses
465 and hence attaches more rapidly onto the TiO₂ surface, and the NOM adsorption is not reversible
466 under the conditions studied, i.e., BSA does not displace adsorbed NOM.

467

468

469 **Figure 3.** Predicted adsorbed layer compositions (a, b) and measured and predicted phenol
 470 degradation rates (c, d) in mixtures of 100 mg L⁻¹ of BSA (a) or NOM (b) with varying
 471 concentrations of competing adsorbate, comparing Equations 5 (Langmuir, phenol competing), 6
 472 (Langmuir, phenol constant), and 9 (Kinetic, phenol constant). Error bars indicate standard
 473 deviations across triplicate experiments. Shaded regions were computed using the lower and upper
 474 bounds of the 95% confidence intervals on the fitted BSA and NOM rate constants.

475

476 **Figure 4.** Predicted adsorbed layer compositions (a, b) and measured and predicted phenol
 477 degradation rates (c, d) in mixtures of 10 mg L⁻¹ of BSA (a) or NOM (b) with varying
 478 concentrations of competing adsorbate, comparing Equations 5 (Langmuir, phenol competing), 6
 479 (Langmuir, phenol constant), and 9 (Kinetic, phenol constant). Error bars indicate standard
 480 deviations across triplicate experiments. Shaded regions were computed using the lower and upper
 481 bounds of the 95% confidence intervals on the fitted BSA and NOM rate constants.

482

483 The Langmuir model allowing phenol displacement (Equation 5) predicts extensive
484 suppression of phenol sorption in the mixtures (Figures 3(a,b) and 4(a,b)), which all contain high-
485 affinity BSA. Comparing NOM and BSA surface coverage predictions from the Langmuir and
486 kinetic adsorption models, differences are most apparent at high foulant concentrations where the
487 TiO_2 surface is nearly saturated. For example, when considering a high fixed BSA concentration
488 (100 mg L^{-1}) (Figure 3(a)), the kinetic adsorption model predicts that added NOM will outcompete
489 BSA, whereas the Langmuir model predicts only a small change in the BSA adsorbed mass (<
490 20% relative to BSA alone) as the NOM concentration increases to 100 mg L^{-1} . For a fixed NOM
491 concentration (100 mg L^{-1}) (Figure 3(b)), the kinetic model predicts a layer comprised primarily
492 of NOM even in BSA concentrations up to 100 mg L^{-1} , whereas the Langmuir model predicts that
493 BSA should dominate the layer even at low BSA concentrations, e.g. $\approx 10 \text{ mg L}^{-1}$. At lower foulant
494 concentrations where the surface is not fully saturated, differences between the two model
495 predictions are still apparent but less substantial because there is lesser competition for surface
496 sites, so BSA has opportunities to adsorb after NOM has reached the TiO_2 surface (Figure 4(a,b)).

497 The photoreactivity of the immobilized TiO_2 in the foulant mixtures is shown in Figures
498 3(c,d) and 4(c,d) and compared to model predictions using Equations 5, 6, and 9. The model
499 assuming phenol displacement (Equation 5) could not represent the experimental results for even
500 the single foulant experiments (Figure 2) and likewise fails to predict the mixed foulant results,
501 with high NRMSE (80%) and severe underprediction bias (-77%) from the apparent
502 overprediction of phenol displacement by BSA. Equations 6 and 9 comparing Langmuir versus
503 kinetic adsorption models to estimate foulant layer compositions (with constant phenol coverage)
504 are herewith compared. Limiting cases for a pure foulant layer saturated in BSA or NOM are

505 shown in red and blue, respectively. As shown in Figure 2(b), a saturated BSA layer shows lower
506 oxidant scavenging than a saturated NOM layer. Therefore, the Langmuir adsorption model
507 (favoring the less reactive BSA) consistently predicts lower scavenging, i.e., higher reactivity
508 towards phenol, than the kinetic adsorption model (favoring NOM). In high foulant concentrations
509 (Figure 3), the kinetic model better represents the overall trend in the experimental data, with
510 reactivity approaching that for the saturated NOM layer as the NOM concentration increases in
511 the presence of 100 mg L⁻¹ BSA, or remaining near the saturated NOM layer in 100 mg L⁻¹ even
512 as the BSA concentration increases to 100 mg L⁻¹. In contrast, the Langmuir model predicts NOM
513 has little impact in 100 mg L⁻¹ BSA, and that the less reactive BSA displaces NOM at 100 mg L⁻¹,
514 resulting in higher phenol degradation rates (lower scavenging). Notably, the experimental data in
515 all mixtures containing 100 mg L⁻¹ of one species fall outside the 95% confidence bands for the
516 Langmuir model. In contrast, all observed data fall within the 95% confidence bands for the kinetic
517 model predictions except 25 mg L⁻¹ NOM in 100 mg L⁻¹ BSA. The higher observed suppression
518 of reactivity in this mixture could be attributable to NOM complexation with BSA (discussed in
519 the foulant degradation measurements below), which would bring additional NOM to the TiO₂
520 surface via attachment to BSA. When both foulant concentrations are low (e.g., both 10 mg L⁻¹)
521 and the surface is undersaturated, there is lesser distinction between the two models (Figure 4).
522 However, as the competing adsorbate concentration increases to 25 mg L⁻¹ and 100 mg L⁻¹, only
523 the kinetic adsorption model predicts the observed results within the 95% confidence bands. The
524 overall NRMSE and normalized bias across all mixture samples was 45% and +42%, respectively,
525 for the Langmuir model, in contrast to 15% and +10%, respectively, for the kinetic model.

526

527 ***Screening and Bulk Photolysis***

528 In addition to oxidant scavenging, foulants in the bulk solution can influence the phenol
529 degradation rate by the inner filter or screening effect (attenuation of light reaching the TiO_2
530 surface) and bulk photolysis (reaction of phenol with photosensitized foulants). BSA showed
531 negligible screening in the wavelengths of interest and no significant influence on the bulk
532 photolysis of phenol (Figure S8 and Table S2). On the other hand, NOM produced a strong
533 screening effect: (10, 25, and 100) mg L^{-1} NOM attenuates 5%, 12%, and 40% of the light,
534 respectively. This screening would contribute to lower phenol degradation rates. However, NOM
535 also induced higher rates of bulk photolysis. The reactivity model was rearranged to compute only
536 the surface reaction contribution after adjusting the measured phenol degradation rates for
537 screening and bulk photolysis (Equation S15). After refitting the individual foulant results with
538 these corrections, NOM still shows higher oxidant scavenging than BSA, albeit with a lesser
539 degree of difference (Figure S9). The overall conclusions are the same as in Figures 3 and 4, with
540 Equation 5 (phenol competing) showing the poorest predictions, whereas Equation 9 (kinetic
541 foulant competition, phenol constant) yields more accurate predictions than Equation 6 (Langmuir
542 foulant competition, phenol constant), with only the 25 mg L^{-1} NOM in 100 mg L^{-1} BSA case
543 falling outside the 95% confidence intervals for the kinetic model prediction.

544

545 ***Foulant Degradation***

546 Degradation of the NOM and BSA was evaluated by SEC after 5 h of photoreaction
547 (Figures S10, S11, and S12). Quantitative uncertainties are discussed in SI Section S12. Both BSA
548 and NOM degradation were observed, showing reductions in their original peaks with formation
549 of low molecular weight peaks (degradation products) eluting at later times in the SEC analysis.

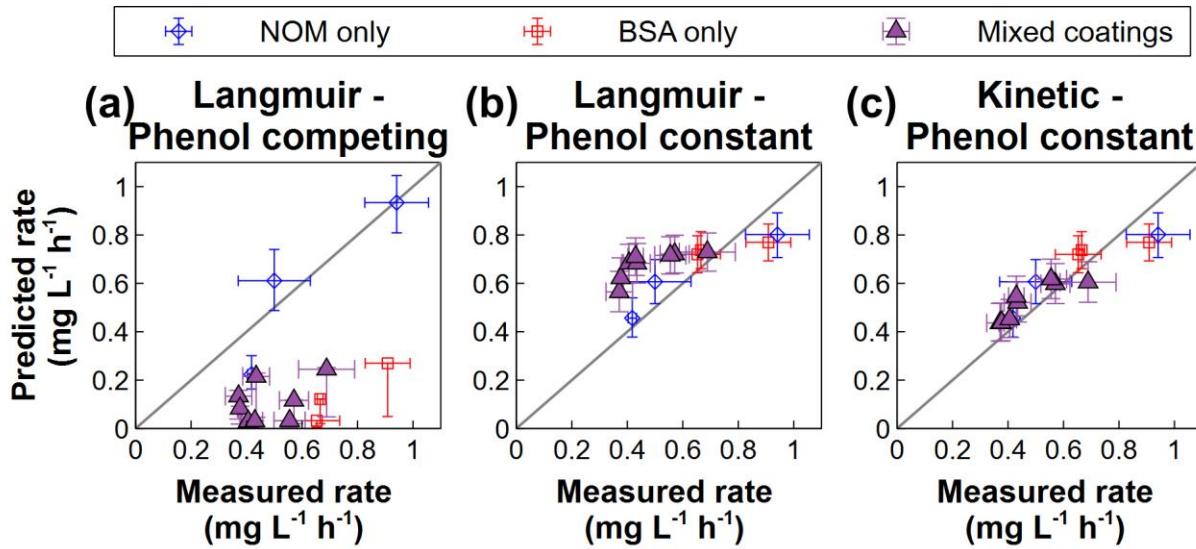
550 In general, the BSA loss and NOM degradation profile were not strongly affected by the presence
551 of each other. This outcome appears counterintuitive to the expectation that increasing competition
552 for oxidants should suppress the degradation of all species, but may suggest that reaction with
553 oxidant is not the rate-limiting step for BSA or NOM degradation. Macromolecules could show
554 kinetic limitations to adsorb or desorb from the TiO_2 surface: Equation 7 computes collision rates
555 with TiO_2 to be at least two orders of magnitude higher for phenol at 5 mg L^{-1} than BSA or NOM
556 at their highest concentrations (100 mg L^{-1}). Interestingly, a higher collision rate is also predicted
557 for BSA monomer than dimer, and greater loss of monomer than dimer was indeed observed by
558 SEC despite their identical chemical makeup. These results further emphasize the importance of
559 kinetics. Predicting BSA and NOM degradation rates may require advanced models that include
560 both adsorption irreversibility and mass transfer limitations during the reaction.

561

562 ***Model Accuracy and Implications***

563 Model errors are summarized in Table 1 and Figure 5, excluding screening and bulk
564 photolysis. In all cases, assuming Langmuir competition between all species including phenol
565 (Equation 5) yields the poorest prediction accuracy, with samples containing BSA showing
566 particularly high NRMSE ($\approx 80\%$) and heavy bias toward underpredicting phenol degradation
567 rates (normalized bias $\approx -80\%$) because of the assumed displacement of phenol by the foulants.
568 For the foulant mixtures, assuming Langmuir competition between only the foulants (Equation 6)
569 also yields poorer prediction accuracy and higher bias (NRMSE = 45%; normalized bias = +42%)
570 than the kinetic adsorption model (Equation 9) (NRMSE = 15%; normalized bias = +10%) because
571 the Langmuir model overestimates the contribution of BSA to the adsorbed layer and hence

572 underestimates the degree of oxidant scavenging. Similar conclusions were drawn after correcting
573 for screening and bulk photolysis (SI Table S3 and SI Figure S14).


574

575 **Table 1.** Summary of model errors, excluding screening and bulk photolysis corrections

Sample Set	Model	RMSE (mg L ⁻¹ h ⁻¹)	NRMSE	Bias (mg L ⁻¹ h ⁻¹)	Normalized Bias
Phenol only	Langmuir (Equation 2, Figure 1)	0.06	2%	-0.01	-0.2%
NOM only	Langmuir – Phenol competing (Equation 5, Figure 5a)	0.13	21%	-0.03	-5%
	Langmuir – Phenol constant (Equation 6, Figure 5b)	0.10	17%	0.00	0.3%
BSA only	Langmuir – Phenol competing (Equation 5, Figure 5a)	0.60	81%	-0.60	-81%
	Langmuir – Phenol constant (Equation 6, Figure 5b)	0.10	13%	0.00	-0.03%
Mixtures	Langmuir – Phenol competing (Equation 5, Figure 5a)	0.38	80%	-0.37	-77%
	Langmuir – Phenol constant (Equation 6, Figure 5b)	0.21	45%	0.20	42%
	Kinetic – Phenol constant (Equation 6, Figure 5c)	0.07	15%	0.05	10%

576

577

578

579 **Figure 5.** Summary of model predictions using Langmuir (a) or kinetic (b) competitive adsorption
 580 models to estimate surface coverages in the surface reactivity model (without accounting for
 581 screening or bulk photolysis). Error bars on measured rates represent standard deviations of
 582 triplicate measurements, and those on predicted rates were computed from the 95% confidence
 583 intervals on the fitted k_{BSA} and k_{NOM} parameters.

584

585 Fundamentally, these results demonstrate the importance of carefully considering
 586 assumptions related to competition of all species in the system (target compound and foulants)
 587 when implementing competitive reaction models for photoreactive nanomaterials. Often,
 588 Langmuirian (equilibrium) competitive adsorption is assumed without confirmatory
 589 measurements of layer composition. However, kinetic adsorption models are required to accurately
 590 predict surface reactivity when adsorption is irreversible under the time scales considered.
 591 Assumptions regarding whether the target and foulant species compete for the same or different
 592 adsorption sites, as opposed to only competing for oxidant species, must also be considered.

593 The modeling analysis in this study provided evidence that Langmuir competitive
594 adsorption is not representative of the interactions between any two or three species (phenol as the
595 target compound and NOM or BSA as foulants) to predict the photocatalytic degradation rates of
596 phenol by immobilized TiO₂ NPs in MHW. Comparing the two models assuming constant phenol
597 surface coverage, the Langmuirian predictions deviated from the kinetic predictions by 16% to
598 51%, with higher error when higher concentrations of the foulants (especially NOM) are present.
599 In a photocatalytic water treatment system, other factors such as the reactor geometry and
600 hydrodynamics will be critical to optimize.³² However, after controlling for these parameters, the
601 observed differences of up to 50% in the reactivity predictions can further translate to
602 corresponding improvements in determining material use efficiency when designing treatment or
603 remediation processes. More broadly, the degree of deviation between the prediction models will
604 also depend on the relative concentrations and scavenging rates of the various foulant constituents.

605 The kinetic adsorption model can hence be useful for photocatalytic water treatment
606 processes that require accurate predictions of reactivity.³² Kinetic adsorption models can also be
607 pivotal to elucidate the rates and mechanisms of adsorption, and thereby optimize the efficiency,
608 of a variety of other water treatment processes where irreversible adsorption could occur, including
609 heterogeneous catalytic ozonation,⁴⁷ adsorption,⁴⁸ membrane-based treatment,⁴³ and wastewater
610 treatment wetlands.⁴⁹ These models can also be applied to prioritize the most important foulant
611 species to target for removal in pretreatment operations, prior to applying advanced photocatalytic
612 treatment, or even to inform the design of photocatalyst coatings that prevent NOM fouling without
613 blocking target compound adsorption or scavenging oxidant species. Finally, this knowledge could
614 be useful to understand surface reaction processes in natural aquatic systems and model spatial or
615 temporal variability in surface photocatalysis rates based on water chemistry. Future studies should

616 further develop advanced reaction models that incorporate both adsorption irreversibility and mass
617 transfer limitations during the reaction process, as well as evaluate the generalizability of the
618 findings for phenol to other target compounds probing a variety of reaction pathways, such as
619 direct hole or electron transfer.

620

621 **Acknowledgements**

622 This material is based upon work supported by the National Science Foundation Grants No.
623 1705511 and 2125480, U.S. Department of Energy Grant No. DE-SC0023295, FMC New
624 Investigator Award, Texas Hazardous Waste Research Center Grant No. 110UHH0080H, and
625 Texas Ecolab (Braun & Gresham). We gratefully acknowledge Gokul S. Nair, Anthony S. Chen,
626 and Abdul M. Sohail for preliminary work on immobilizing TiO₂ NPs, Charisma Lattao for general
627 laboratory assistance, and three anonymous reviewers for comments leading to substantial
628 improvements in this research.

629

630 **Author Information**

631 ***Equal Contribution:*** R.A. Mathew, S. M. Louie.

632 ***Author Contributions:*** R.A. Mathew: Investigation, Formal Analysis, Data Curation,
633 Visualization, Writing – Original Draft; M. Mowla: Investigation, Visualization, Writing –
634 Original Draft; S. Shakiba: Formal Analysis; T.B. Berté: Methodology; S.M. Louie:
635 Conceptualization, Data Curation, Visualization, Writing – Original Draft, Writing – Review and
636 Editing, Funding Acquisition, Project Administration, Supervision.

637

638 **Supporting Information:** Literature review; detailed theory and methods; experimental data;
639 modeling of screening and bulk photolysis; foulant degradation.

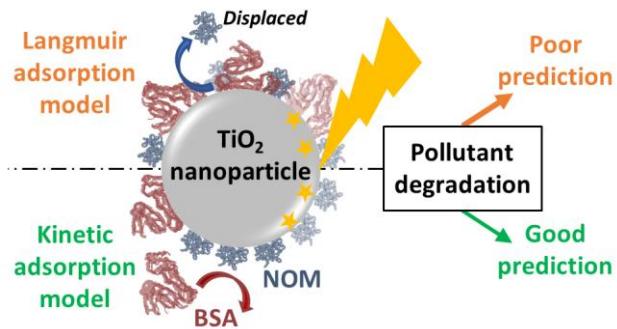
640

641 **References**

- 642 1. Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D., Emerging
643 opportunities for nanotechnology to enhance water security. *Nat. Nanotechnol.* **2018**, *13*, (8),
644 634-641.
- 645 2. Loeb, S. K.; Alvarez, P. J. J.; Brame, J. A.; Cates, E. L.; Choi, W.; Crittenden, J.;
646 Dionysiou, D. D.; Li, Q.; Li-Puma, G.; Quan, X.; Sedlak, D. L.; David Waite, T.; Westerhoff, P.;
647 Kim, J.-H., The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?
648 *Environ. Sci. Technol.* **2019**, *53*, (6), 2937-2947.
- 649 3. Suh, M.-J.; Weon, S.; Li, R.; Wang, P.; Kim, J.-H., Enhanced Pollutant Adsorption and
650 Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent. *Environ. Sci.*
651 *Technol.* **2020**, *54*, (14), 9106-9115.
- 652 4. Zhou, X.; Zhao, Y.-Y.; Kim, S.-R.; Elimelech, M.; Hu, S.; Kim, J.-H., Controlled TiO₂
653 Growth on Reverse Osmosis and Nanofiltration Membranes by Atomic Layer Deposition:
654 Mechanisms and Potential Applications. *Environ. Sci. Technol.* **2018**, *52*, (24), 14311-14320.
- 655 5. Zhang, D.; Lee, C.; Javed, H.; Yu, P.; Kim, J.-H.; Alvarez, P. J. J., Easily Recoverable,
656 Micrometer-Sized TiO₂ Hierarchical Spheres Decorated with Cyclodextrin for Enhanced
657 Photocatalytic Degradation of Organic Micropollutants. *Environ. Sci. Technol.* **2018**, *52*, (21),
658 12402-12411.

- 659 6. Lee, C.-G.; Javed, H.; Zhang, D.; Kim, J.-H.; Westerhoff, P.; Li, Q.; Alvarez, P. J. J.,
660 Porous Electrospun Fibers Embedding TiO₂ for Adsorption and Photocatalytic Degradation of
661 Water Pollutants. *Environ. Sci. Technol.* **2018**, *52*, (7), 4285-4293.
- 662 7. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop,
663 P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; Entezari, M. H.; Dionysiou, D. D., A
664 review on the visible light active titanium dioxide photocatalysts for environmental applications.
665 *Appl. Catal., B* **2012**, *125*, 331-349.
- 666 8. Westerhoff, P., Reaction: Avoid fairy dust when engineering water-purification
667 technologies. *Chem* **2023**, *9*, (6), 1342-1343.
- 668 9. Yang, X.; Rosario-Ortiz, F. L.; Lei, Y.; Pan, Y.; Lei, X.; Westerhoff, P., Multiple Roles
669 of Dissolved Organic Matter in Advanced Oxidation Processes. *Environ. Sci. Technol.* **2022**, *56*,
670 (16), 11111-11131.
- 671 10. Uyguner-Demirel, C. S.; Birben, N. C.; Bekbolet, M., Elucidation of background organic
672 matter matrix effect on photocatalytic treatment of contaminants using TiO₂: A review. *Catal.*
673 *Today* **2017**, *284*, 202-214.
- 674 11. Farner Budarz, J.; Turolla, A.; Piasecki, A. F.; Bottero, J.-Y.; Antonelli, M.; Wiesner, M.
675 R., Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO₂
676 Photocatalysis. *Langmuir* **2017**, *33*, (11), 2770-2779.
- 677 12. Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C., Recent developments in photocatalytic
678 water treatment technology: A review. *Water Res.* **2010**, *44*, (10), 2997-3027.
- 679 13. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr., Photocatalysis on TiO₂ Surfaces: Principles,
680 Mechanisms, and Selected Results. *Chem. Rev.* **1995**, *95*, (3), 735-758.

- 681 14. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.;
- 682 Bahnemann, D. W., Understanding TiO₂ Photocatalysis: Mechanisms and Materials. *Chem. Rev.*
- 683 **2014**, *114*, (19), 9919-9986.
- 684 15. Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.;
- 685 Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R., Photocatalytic degradation of organic pollutants
- 686 using TiO₂-based photocatalysts: A review. *J. Cleaner Prod.* **2020**, *268*, 121725.
- 687 16. Friedmann, D.; Mendive, C.; Bahnemann, D., TiO₂ for water treatment: Parameters
- 688 affecting the kinetics and mechanisms of photocatalysis. *Appl. Catal., B* **2010**, *99*, (3), 398-406.
- 689 17. Ren, M.; Drosos, M.; Frimmel, F. H., Inhibitory effect of NOM in photocatalysis process:
- 690 Explanation and resolution. *Chem. Eng. J.* **2018**, *334*, 968-975.
- 691 18. Brame, J.; Long, M.; Li, Q.; Alvarez, P., Inhibitory effect of natural organic matter or
- 692 other background constituents on photocatalytic advanced oxidation processes: Mechanistic
- 693 model development and validation. *Water Res.* **2015**, *84*, 362-371.
- 694 19. Awfa, D.; Ateia, M.; Fujii, M.; Yoshimura, C., Photocatalytic degradation of organic
- 695 micropollutants: Inhibition mechanisms by different fractions of natural organic matter. *Water*
- 696 *Res.* **2020**, *174*, 115643.
- 697 20. Wu, H.; Huang, L.; Rose, A.; Grassian, V. H., Impact of surface adsorbed biologically
- 698 and environmentally relevant coatings on TiO₂ nanoparticle reactivity. *Environ. Sci.: Nano* **2020**,
- 699 *7*, (12), 3783-3793.
- 700 21. Bui, H. T.; Park, H. Y.; Alvarez, P. J. J.; Lee, J.; Kim, W.; Kim, E.-J., Visible-Light
- 701 Activation of a Dissolved Organic Matter-TiO₂ Complex Mediated via Ligand-to-Metal Charge
- 702 Transfer. *Environ. Sci. Technol.* **2022**, *56*, (15), 10829-10837.


- 703 22. Long, M.; Brame, J.; Qin, F.; Bao, J.; Li, Q.; Alvarez, P. J. J., Phosphate Changes Effect
704 of Humic Acids on TiO₂ Photocatalysis: From Inhibition to Mitigation of Electron–Hole
705 Recombination. *Environ. Sci. Technol.* **2017**, *51*, (1), 514-521.
- 706 23. Mathew, R. A.; Wu, G.; Zhang, Y.; Shakiba, S.; Yao, Y.; Tsai, A.-L.; Louie, S. M.,
707 Natural organic matter adsorption conditions influence photocatalytic reaction pathways of
708 phosphate-treated titanium dioxide nanoparticles. *Environ. Sci.: Nano* **2021**, *8*, (8), 2165-2176.
- 709 24. Yuan, S.; Huang, J.; Qian, W.; Zhu, X.; Wang, S.; Jiang, X., Are Physical Sunscreens
710 Safe for Marine Life? A Study on a Coral–Zooxanthellae Symbiotic System. *Environ. Sci.*
711 *Technol.* **2023**, *57*, (42), 15846-15857.
- 712 25. Yang, S. P.; Bar-Ilan, O.; Peterson, R. E.; Heideman, W.; Hamers, R. J.; Pedersen, J. A.,
713 Influence of Humic Acid on Titanium Dioxide Nanoparticle Toxicity to Developing Zebrafish.
714 *Environ. Sci. Technol.* **2013**, *47*, (9), 4718-4725.
- 715 26. Keller, A. A., Nanomaterials in sunscreens: Potential human and ecological health
716 implications. *Int. J. Cosmet. Sci.* **2023**, *45*, (S1), 127-140.
- 717 27. Miller, R. J.; Bennett, S.; Keller, A. A.; Pease, S.; Lenihan, H. S., TiO₂ Nanoparticles
718 Are Phototoxic to Marine Phytoplankton. *PLOS ONE* **2012**, *7*, (1), e30321.
- 719 28. Loddo, V.; Roda, G. C.; Parrino, F., Chapter 7. Kinetic Aspects of Heterogeneous
720 Catalytic Versus Photocatalytic Reactions. In *Heterogeneous Photocatalysis*, Marci, G.;
721 Palmisano, L., Eds. Elsevier: 2019; pp 215-233.
- 722 29. Ohtani, B., Chapter 10 - Photocatalysis by inorganic solid materials: Revisiting its
723 definition, concepts, and experimental procedures. In *Advances in Inorganic Chemistry*, Eldik,
724 R. v.; Stochel, G., Eds. Academic Press: 2011; Vol. 63, pp 395-430.

- 725 30. Sauer, T.; Cesconeto Neto, G.; José, H. J.; Moreira, R. F. P. M., Kinetics of
726 photocatalytic degradation of reactive dyes in a TiO₂ slurry reactor. *J. Photochem. Photobiol., A*
727 **2002**, *149*, (1), 147-154.
- 728 31. Turolla, A.; Piazzoli, A.; Farner Budarz, J.; Wiesner, M. R.; Antonelli, M., Experimental
729 measurement and modelling of reactive species generation in TiO₂ nanoparticle photocatalysis.
730 *Chem. Eng. J.* **2015**, *271*, 260-268.
- 731 32. Wang, D.; Mueses, M. A.; Márquez, J. A. C.; Machuca-Martínez, F.; Grčić, I.; Peralta
732 Muniz Moreira, R.; Li Puma, G., Engineering and modeling perspectives on photocatalytic
733 reactors for water treatment. *Water Res.* **2021**, *202*, 117421.
- 734 33. Ollis, D. F., Kinetics of Liquid Phase Photocatalyzed Reactions: An Illuminating
735 Approach. *J. Phys. Chem. B* **2005**, *109*, (6), 2439-2444.
- 736 34. Emeline, A. V.; Ryabchuk, V. K.; Serpone, N., Dogmas and Misconceptions in
737 Heterogeneous Photocatalysis. Some Enlightened Reflections. *J. Phys. Chem. B* **2005**, *109*, (39),
738 18515-18521.
- 739 35. Pignatello, J. J.; Xing, B., Mechanisms of Slow Sorption of Organic Chemicals to Natural
740 Particles. *Environ. Sci. Technol.* **1996**, *30*, (1), 1-11.
- 741 36. Shakiba, S.; Hakimian, A.; Barco, L. R.; Louie, S. M., Dynamic Intermolecular
742 Interactions Control Adsorption from Mixtures of Natural Organic Matter and Protein onto
743 Titanium Dioxide Nanoparticles. *Environ. Sci. Technol.* **2018**, *52*, (24), 14158-14168.
- 744 37. Aljeddani, G. S.; Alghanmi, R. M.; Hamouda, R. A., Study on the Isotherms, Kinetics,
745 and Thermodynamics of Adsorption of Crystal Violet Dye Using Ag-NPs-Loaded Cellulose
746 Derived from Peanut-Husk Agro-Waste. In *Polymers*, 2023; Vol. 15.

- 747 38. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M., Chapter 15. Direct Photolysis.
- 748 In *Environmental Organic Chemistry*, Second ed.; Wiley: 2002; pp 611-654.
- 749 39. Wu, H.; Gonzalez-Pech, N. I.; Grassian, V. H., Displacement reactions between
- 750 environmentally and biologically relevant ligands on TiO₂ nanoparticles: insights into the aging
- 751 of nanoparticles in the environment. *Environ. Sci.: Nano* **2019**, *6*, (2), 489-504.
- 752 40. Kim, J.; Doudrick, K., Emerging investigator series: protein adsorption and
- 753 transformation on catalytic and food-grade TiO₂ nanoparticles in the presence of dissolved
- 754 organic carbon. *Environ. Sci.: Nano* **2019**, *6*, (6), 1688-1703.
- 755 41. Balasubramanian, G.; Dionysiou, D. D.; Suidan, M. T.; Subramanian, V.; Baudin, I.;
- 756 Laîné, J. M., Titania powder modified sol-gel process for photocatalytic applications. *J. Mater.*
- 757 *Sci.* **2003**, *38*, (4), 823-831.
- 758 42. Carbonaro, S.; Sugihara, M. N.; Strathmann, T. J., Continuous-flow photocatalytic
- 759 treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO₂
- 760 photocatalysts in wastewater effluent. *Appl. Catal., B* **2013**, *129*, 1-12.
- 761 43. Gao, F.; Wang, J.; Zhang, H.; Hang, M. A.; Cui, Z.; Yang, G., Interaction energy and
- 762 competitive adsorption evaluation of different NOM fractions on aged membrane surfaces. *J.*
- 763 *Membr. Sci.* **2017**, *542*, 195-207.
- 764 44. Mowla, M.; Shakiba, S.; Louie, S. M., Selective quantification of nanoplastics in
- 765 environmental matrices by asymmetric flow field-flow fractionation with total organic carbon
- 766 detection. *Chem. Commun.* **2021**, *57*, (96), 12940-12943.
- 767 45. National Institute of Standards and Technology (NIST). *Certificate of Analysis: SRM*
- 768 *1898 - Titanium dioxide nanomaterials*; Gaithersburg, MD, 2020.

- 769 46. Bates, D. M.; Watts, D. G., *Nonlinear regression analysis and its applications*. Jon Wiley
770 & Sons: New York, NY, 1988.
- 771 47. Yuan, Y.; Mortazavi, M.; Garg, S.; Ma, J.; Waite, T. D., Comparison of Performance of
772 Conventional Ozonation and Heterogeneous Catalytic Ozonation Processes in Phosphate- and
773 Bicarbonate-Buffered Solutions. *ACS EST Engg.* **2022**, 2, (2), 210-221.
- 774 48. Darmograi, G.; Prelot, B.; Geneste, A.; De Menorval, L.-C.; Zajac, J., Removal of three
775 anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-
776 exchange resin. The effect of single-component and competitive adsorption. *Colloids Surf., A*
777 **2016**, 508, 240-250.
- 778 49. Conkle, J. L.; Lattao, C.; White, J. R.; Cook, R. L., Competitive sorption and desorption
779 behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil.
780 *Chemosphere* **2010**, 80, (11), 1353-1359.
- 781
- 782

783 For Table of Contents Only

784