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Physics-Guided Long Short-Term
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Prediction in Laser Powder Bed
Fusion

Powder bed fusion (PBF) is an additive manufacturing process in which laser heat liquefies
blown powder particles on top of a powder bed, and cooling solidifies the melted powder
particles. During this process, the laser beam heat interacts with the powder causing
thermal emission and affecting the melt pool. This paper aims to predict heat emission in
PBF by harnessing the strengths of recurrent neural networks. Long short-term memory
(LSTM) networks are developed to learn from sequential data (emission readings), while
the learning is guided by process physics including laser power, laser speed, layer
number, and scanning patterns. To reduce the computational efforts on model training,
the LSTM models are integrated with a new approach for down-sampling the pyrometry
raw data and extracting useful statistical features from raw data. The structure and hyper-
parameters of the LSTM model reflect several iterations of tuning based on the training on
the pyrometer readings data. Results reveal useful knowledge on how raw pyrometer data
should be processed to work the best with LSTM, how physics features are informative in
predicting overheating, and the effectiveness of physics-guided LSTM in emission predic-
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and diagnostics

1 Introduction

Powder bed fusion (PBF) is one of the most popular techniques in
metal additive manufacturing (AM) with a variety of applications [1].
It has become a popular manufacturing technique because of many
advantages over traditional technologies: the layer-by-layer fabrica-
tion methodology, giving many freedoms on geometry design and
capability of process adjustment; less material waste during the print-
ing process; and significant reduction of printing time. Since the tech-
nology appeared in 1980s, PBF has developed different metal AM
technologies and applications; it can be generally categorized by
the power sources (laser or electronic beams) they use during printing.

Laser powder bed fusion (L-PBF) is a specific implementation of
PBF that specifically employs laser technology as the heat source
for melting and fusing powdered materials. For the L-PBF
process, also known as selective laser melting (SLM), metal
powder particles are selectively melted by a laser beam. As the
laser scans the surface of the powder bed, it follows a predefined
pattern to melt the metal powder particles, thus creating a thin
layer of the final part. Upon cooling, the melt pool solidifies,
fusing with the underlying layer to form a solid part. L-PBF with
its powerful heat sources enables a range of capabilities for
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functional printing. These capabilities include rapid fabrication or
prototyping, multimaterials, tunable material properties, and the
ability to alter the fabrication of devices on metallic materials [2].
The increasing utilization of 3D printed components in industries
such as aerospace, automotive, and medical has emphasized the
criticality of reliability for these printed parts, resulting in a surge
of interest in recent research. However, the expanding adoption of
additive manufacturing technologies, particularly for complex
geometries, introduces challenges in metrology and quality
control [3]. Ensuring the reliability and quality of L-PBF produced
parts becomes crucial in meeting industry standards and require-
ments. To bridge the gap between the capabilities of L-PBF and
the need for reliable and high-quality printed parts, researchers
attempted to enhance the L-PBF quality by understanding the
thermal behaviors and structural formation. It has been studied
that the complex geometry designs and parameters lead to the insta-
bility of the melt pool [4]. The importance of identifying process
thermal dynamics structure properties is addressed. It has been
pointed out that process parameters such as laser power and laser
speed can have impacts on the L-PBF process dynamics [5].
However, defect formation during the melting process is a signif-
icant concern in ensuring high-quality printed parts. There are
various causes for the formation, such as insufficient energy
input, localized heating and rapid cooling, and local vaporization
in the melt pool, leading to common defect types such as overheat-
ing, porosity, oxidation, cracking, balling, and residual stresses [6].
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Extensive research has been conducted on process optimization of
SLM to mitigate these defects. Harrison et al. pointed out that
laser power has significant impact on crack density [7]. Tan et al.
explored the effects of varying laser linear energy ranges on sinter-
ing formability and performance [8]. Benoit et al. used a Q-learning
approach to optimize the 3D printing process pipeline, focusing on
improving sample preparation process by policy-based action con-
trolled to improve the sample surface quality roughness [9]. They
found that insufficient laser energy will eventually lead to balling,
while molten pool’s flowability and wettability are decreased due
to the formation of incomplete melted powders. Furthermore, previ-
ous experiments indicate that powder particles melt by the laser
beam and will generate a series of phenomenon with heat trans-
ferred given different process parameters. In addition, emission gen-
erated through this process could serve as a more accurate indicator
of overheating than temperature readings, as the acquired tempera-
ture data can potentially be lower than actual temperatures [10]. In
summary, existing literature emphasizes the significance of over-
heating in SLM due to its detrimental effects on material integrity,
dimensional accuracy, desired microstructural characteristics, and
the occurrence of common defects such as porosity, oxidation,
and cracking. Further analysis of overheating is warranted to
enhance the overall quality of SLM-printed parts.

Generally, overheating is the phenomenon when the melt pool’s
temperature drastically rises. Related efforts to address overheating
in L-PBF can be divided into two categories: modeling methods and
in situ monitoring methods.

Modeling methods to address overheating in L-PBF can be
summarized in two types. Some aim to design the heating
process to improve the parts quality, while others employ simula-
tion technologies to depict the melt pool status during the heating
process under specific conditions. However, given the dynamic
properties of the printing process, none of these methods can
provide real-time analysis of thermal behavior. To address this
issue, several studies have explored in situ sensing and process
monitoring techniques for L-PBF. These include high-resolution
imaging using high-speed cameras [11], online ultrasonic mea-
surements [12], and X-ray tomography for dimensional measure-
ment and porosity analysis [13]. Particularly, pyrometers can
capture emission in the wavelength from the process laser area
[14]. Given that high-speed pyrometry can monitor melt pool
dynamics through emission and temperature, it provides an oppor-
tunity to identify inconsistent heat distribution across built layers.
Recently, advancements in sensor technology, such as the use of
pyrometers, give opportunities for developing innovative methods
for in situ monitoring and prediction in L-PBF processes. There-
fore, we aim to propose an in situ monitoring method which lever-
aged rich information in thermal emissions collected by the
pyrometers during L-PBF.

The melt pool temperature serves as a crucial indicator of the pro-
cess’s health. With in situ pyrometer measurement, adjustments to
process parameters can be made either between or within layers,
provided that data analysis is promptly completed [15]. Our study
utilizes this flexibility and further segments pyrometry data for
each printed layer into smaller sequential sections. The process
parameters are then adjusted according to the previous series of sec-
tions thermal behaviors.

To meet the demand of analyzing complex sensing data, a rising
popularity of data-driven methods is leveraged for in situ monitor-
ing. In a recent review, Razvi et al. discussed the emerging applica-
tions and research in monitoring AM processes and measuring AM
materials. Three-dimensional printed parts have become increas-
ingly commonplace, and increasingly precise, and machine learning
(ML) has been used as a tool for understanding AM processes at a
fundamental level and identify predictive recommendations to opti-
mize part quality and process design [16]. However, ML methods
lack interpretability and understanding of the underlying system.

To tackle this problem, there are increasing interests and research
efforts to integrate physics features with ML models, thereby
enhancing the data-driven models’ comprehension of physical
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properties. Scime and Beuth [17] developed a method for the clas-
sification of melt pool morphology using computer vision tech-
niques. They employed various feature extraction methods,
including bag-of-words, scale invariant feature transforms (SIFT),
and histogram of oriented gradients (HOG) on data collected
from a high-speed visible-light camera. A k-means clustering algo-
rithm was applied to identify in situ melt pool signatures. While
combining ex situ observed flaws indeed improved prediction accu-
racy, it fell short in providing real-time guidance to the printing
process. Yang et al. utilized a convolutional neural network
(CNN) to classify the melt pool size, acknowledging its impact
on overheating, but they did not quantify overheating directly
[18]. Yuan et al. designed a CNN to predict L-PBF track properties
based on in situ melt pool video data and circumventing time-
consuming ex situ measurements [19]. Ye et al. developed a classi-
fication method involving deep belief networks based on plume and
spatter image data, for the in situ monitoring of melted states [20].
However, their attempt to use the extracted features from the image
samples did not turn out well as the classification rates were even
lower than to use the original images as inputs, addressing the
importance of a proper feature extraction method. Such a method
not only improves the interpretability of the model from the
extracted features but it also bolsters model training efficiency.
Existing research underscores the importance of identifying suitable
physical features for defect detection, often employing ex situ data
such as thermographic images [21,22]. However, it has been dem-
onstrated that solely integrating physical features into ML models is
inadequate for the timely and accurate analysis of thermal emissions
in L-PBF. Recent research has been exploring physics-informed and
physics-guided ML models, which emphasize on dealing with data
from physical systems in the design and training of ML models.

While these two terms, physics-informed and physics-guided, are
often used interchangeably, they can imply slightly different con-
cepts. Physics-informed models typically refer to ML models that
integrate physical laws or principles into their structure or training
process. The goal of such models is to leverage existing knowledge
about the system to improve the performance and interpretability of
the model [23]. This can be achieved, for example, by encoding
physical laws into the model’s architecture, customized loss func-
tion, or data preprocessing steps. Physics-guided models, on the
other hand, could be seen as a more general term where the guid-
ance of physical understanding to the system through different
terms [24]. One of the physical understandings that has been
explored is the sequential nature of emission during L-PBF,
leading to a time-series ML model. For example, Mahato et al. dis-
cussed the sequential time-series nature of heat emission sensor
data, and they explored the preliminary performance based on
k-nearest neighbors (k-NN) classifications [25]. In his following
work, more comprehensive distance measures were applied to the
k-NN algorithm and improved the classification accuracy [26].
Gawade et al. built time-series regression models to predict over-
heating in L-PBF [27]. They found the impact of previous printed
layers on the subsequent layers and assessed several regression
models based on previous layer average emission. Their findings
illustrate the potential of time-series data in improving predicting
performance and understanding layer-to-layer interactions in
L-PBF. Building on this foundation, our study further explores
section-wise analysis in enhancing the early detection of defects.
Our study aims to capture the inherent time-series characteristics
from sequential pyrometer data, incorporating them as valuable fea-
tures into the model. Furthermore, we extract additional informative
features to improve the model’s interpretability and overall
performance.

Analyzing sensor data through time series can be influential in
finding potential patterns during the melting process and capture
the melt pool signatures including heat transfer rates and thermal
gradients. Representative statistical methods such as autoregressive
moving average (ARMA) and autoregressive integrated moving
average (ARIMA) are widely used to capture the dependency
between an observation and several previous time-steps. Bisheh
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Table 1

Summary of recent works related to overheating

Additional
Ref. Sensor Sensing data features Output Method Comments
[17] High-speed Melt pool morphology Flaws Label of melt Classification, k-means, BoW, Offline monitoring
camera image (false-color and observed ex  pool SIFT, HOG
coaxially transformed image  situ morphology
of the melt pool, 1024 x
1024 pixels)

[18] High-speed =~ Melt pool image (grayscale ~ Melt pool Melt pool size Classification, CNN No direct quantification

camera image, 128 x 120 pixels) size on overheating

[25,26] Pyrometer Melt pool temperature (heat N/A Porosity Classification, k&-NN Only consider time-series

emission light in the range prediction properties
of 1500-1700 nm)

[27] Pyrometer Melt pool emission N/A Predict average Regression, linear regression Did not consider
emission for next time-series properties
layer

[28] Top-view Layer-by-layer part image N/A Whether the Classification, neural network The prediction based

camera

printed object is
qualified part or
not

(NN), support vector machine
(SVM), gradient boosting
classifier (GBC), exponential
weighted moving average

solely on the visual
appearance of the printed
object can result in
significant errors

(EWMA), ARIMA

et al. proposed a layer-wise framework on the printed layer image data
that controls the quality of process. ARIMA filters were applied to
adjacent layers in removal of autocorrelation, with control charts
mechanism for monitoring of printed layer quality [28]. However,
classical time-series approaches require the stationary assumption
that the observation statistical moments do not change over time,
which could be very challenging for the disturbing phenomena in
L-PBF [29], thus making the traditional statistical method less feasible.
Montazeri et al. improved the detection accuracy on the occurrence of
material cross-contamination with the implementation of a spectral
graph theoretic approach [30]. They compared the method perfor-
mance and found that it outperformed the traditional ARMA model-
ing. Although their research objectives are not necessarily related to
overheating, these interesting works provide insights into the potential
applications of time-series properties. In line with these insights, our
paper also leverages the time-series property and uses it as feature to
the deep learning prediction model.

Deep learning methods have garnered significant attention
among researchers for analyzing complex sensing data obtained
from pyrometers, particularly in the context of data classification
and regression problems. Neural networks (NNs) have many
variant models and can be applied to different application scenarios,
effectively bridging the gap between AM processes, properties and
performance with the input data properties [31]. Data-driven
physics-informed features show adequate explainability to the NN
models. Mao et al. leveraged information from melt pool tempera-
ture fields and photodiode signals, and built correlation models
from several popular NN models [32]. In this study, we focus on
pyrometry emission data, framing the emission prediction as super-
vised learning task. In this regard, long short-term memory
(LSTM), a specific type of recurrent neural network, presents an
attractive option due to its ability to remember past information
and handle long sequences effectively [33]. Unlike ARMA and
ARIMA, LSTM does not require the data to be stationary,
making it particularly suitable for dynamic processes such as
L-PBF. Pandiyan et al. developed a CNN-LSTM model for
L-PBF process monitoring. The proposed model can analyze
signals collected by a heterogeneous sensing system consisting of
four sensors, namely back reflection, visible, infra-red, and acoustic
emissions [34]. Zhang et al. proposed an LSTM-based approach for
melt pool size prediction during L-PBF utilizing melt pool images
[23]. Shi et al. developed an LSTM-autoencoder based approach
for cyber-physical attack detection in additive manufacturing,
utilizing sensor signals collected from side channels [35]. To sum-
marize, a comprehensive comparison of the mentioned works that
are related to overheating is presented in Table 1.

Journal of Manufacturing Science and Engineering

Most research mentioned employs directly recorded temperature
data as output. Gawade et al. instead used the uniformity of emis-
sion for each printed cube layer as the regression output [27].
However, these studies typically preprocess the layer-wise observa-
tion data. While this approach substantially reduces the data
volume, it may result in the loss of information within each layer.
This can be a critical limitation of the current in situ monitoring
design, and the powerful flexibility and quick adjustment of SLM
is therefore limited. Technologically, the process parameters can
be altered even within a specific layer during printing, depending
on the specific printer capabilities [29]. Therefore, the gap exists
for more agile adjustment methods of process parameters, as com-
pared to the existing layer-by-layer monitoring methods. This paper
addresses this gap by proposing a method for section-wise in situ
monitoring in additive manufacturing.

In this paper, a physics-guided ML method is proposed that
incorporates the underlying physics of the problem across multiple
aspects, including feature engineering, data segmentation and split-
ting strategy, performance evaluation, and hyperparameter tuning.
Statistical characteristics of segmented sections are leveraged to
enhance layer-wise observations typically employed in the L-PBF
process. We give a detailed and applicable exploration into the
smaller granularity of time-series properties, using pyrometer emis-
sion data to address the overheating issue. Our study focuses on the
following objectives:

e Propose an end-to-end pipeline to address overheating issue by
enabling more granular in situ monitoring, which will eventu-
ally enable faster adjustment of process parameters.

e Use statistical features extracted from serialized section emis-
sion data as input to our predictive model, effectively trans-
forming these features into a measure of potential overheating.

e Combine physics-based features and time-series property to
enhance model explainability. A baseline LSTM model to
predict the overheating issue during L-PBF is constructed,
and an improved model with fine-tuned hyperparameters is
presented.

e Parameter tuning method is discussed to key hyperparameters,
offering insights into their influence on model performance
and providing a guide for optimal configuration.

With this approach, we offer a predictive perspective on manag-
ing overheating, and contribute to the optimization of the L-PBF
process.

Remainder of the paper is as follows. Section 2 describes the data
collecting process and the preprocessing method. Section 3 dis-
cusses the overall pipeline of the data processing on the emission
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data, LSTM models are proposed, and the hyperparameter tuning
steps are illustrated. Section 4 discusses the results from LSTM
models and compares the performance to the physics feature only
model and statistical features only models. Section 5 provides con-
cluding remarks and future directions.

2 Sensing and Data Collection

Our study uses the in situ pyrometry sensing data from the L-PBF
experiment described in Ref. [36]. The experiment used an Aconi-
tyMINI machine, equipped with a fiber laser source with a capacity
up to 400 W and a spot size of 50 um to print blocks from SS 316L
powder. The process incorporated a specific scanning strategy, a
raster scan for the interior, and a frame scan. The environment
within the build chamber was carefully controlled, maintaining an
Argon atmosphere with oxygen levels below 300 ppm and contin-
uous recirculation to remove metal vapor and condensate, ensuring
a consistent build environment. Total of 16 blocks were printed with
different laser power and laser speed combinations, as shown in
Fig. 1. Each block is 10 mm x 10 mm x 5 mm with a layer thickness
of 30 pm resulting in 166 layers in each build. The scanning strat-
egy comprised a raster scan to fill in the interior of the sample, fol-
lowed by a frame scan conducted with the same power and speed as
those of raster scans. Details of the experiment can be found in
Ref. [36].

Two pyrometers were used to record emission readings at
100 kHz. To ensure the accuracy of measurements, a calibration
value of 1310.72 bit/mm was set for the scanner and pyrometers
to cover coordinate values (x and y) in the range of —219 o 21°
bits covering a 400 X400 mm area. The pyrometers were coaxial
with the process laser measuring thermal radiation from the melt
pool. The scanner was also setup to take one measurement every
10 us, with every 10 uym of travel for a scanning speed of
1000 mm/s. These consistent setups and parameters help ensure
repeatability in the data collection process. Point-by-point readings
of thermal emissions directly at the melt pool were recorded. There
are about 300,000 emission readings from each layer, varying from
240,864 to 397,391.

3 Method

3.1 Method Overview. The proposed method consists of
several stages to incorporate the understanding learned from
physics, as illustrated in Fig. 2. This comprehensive approach
ensures that the subsequent ML model is guided by a thorough
understanding of the underlying physical process, enhancing both

1 Scanning Strategy
: eFrame scan

Other Parameters:
e Material: SS 316L
Laser diameter: 50 um
Hatch distance: 80 um

its interpretability and predictive performance. Raw emission data
are cleaned using the pipeline built by Gawade et al. [27].
Cleaned data are then segmented into smaller pieces. Features are
extracted from each segment of each layer to derive the additional
informative dimensions on top of the original input space. Lastly,
several LSTM structures are developed and compared, and their
hyperparameters are tuned to find the optimal model for the best
prediction performance. Results from different LSTM designs and
feature combinations are compared. The emission predicted by
our model can be used to track and monitor overheating issues,
enabling future opportunities for process adjustment to optimally
control the process.

3.2 Data Segmentation. During sensing, noise points are gen-
erated when the beam stops printing, but the pyrometer continues
collecting data. Noise points are first removed from the raw data
after several rounds of cleaning, including radius-based clustering,
visual inspection, manual override, and automation [27]. Cleaned
data are then aligned by rotating the coordinates 20 deg clockwise.
More details about this pipeline for data preprocessing are described
in Ref. [27]. After preprocessing, all emission readings from each
layer are organized in an array consisting of the emission reading
at (x, y) location, ordered by time.

Data segmentation is performed on the cleaned emission data to
reduce the dataset size, in an attempt to maintain a balance
between computational burden and model performance while
keeping the rich information of pyrometer data intact. Figure 3 illus-
trates the data segmentation process using one of the layers from one
of the blocks as an example. As shown in the top figure, layer / is one
of the 166 layers printed to form the block, and the rest layers were
printed on top one after another. The middle portion of Fig. 3 displays
the emission readings (about 370,000 readings) from block 1’s layer
1, in the printing order. The first section of the emission readings is
shown in the bottom left subplot of Fig. 3. Segmentation is performed
following the emission reading sequence layer by layer, with each
section of equal size (1250 readings).

After segmentation, each section is represented by the average
emission in that section, and it is mapped to a new space using
the average (x, y) coordinates of the section as its new location,
as shown in the bottom right subplot of Fig. 3. The segmentation
represents each original layer by around 300 sections in the new
space. The bottom right figure in Fig. 3 is the heatmap of the
average emission across the new space, with deeper colors indicat-
ing higher emission readings. The selection of section size is based
on the physical understanding that it is sufficiently large to capture
the spatial extent of potential localized overheating areas while
being small enough to provide section-wise descriptive information

Cube size: 10 x 10 x 5 mm

L]

L]

e Layer thickness: 30 um
L

e 0,:<300ppm

Fig. 1

011006-4 / Vol. 146, JANUARY 2024

Printing layout and parameter combinations in L-PBF experiments [36]
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Pyrometer Data Collection

Data Segmentation

Feat Extracti . .
i il Adjust laser inputs

LSTM Model

Hyperparameter Tuning

In-situ Prediction

Fig. 2 Method overview

and to effectively reduce the dimensionality of the data. The precise
choice of section size, however, is not deterministic and may need
to be adjusted based on specific print conditions, such as part geom-
etry, material properties, or machine settings, as well as the quality
of the available data. The section size of 1250 is chosen from pre-
liminary experiments. When comparing sections of size 125, the
overall training time will be 6 times slower, while the model perfor-
mance does not improve significantly. In this way, we are able to
reduce the original data scale by around 1000 times. Segmentation
facilitates finer granularity in understanding the thermal behavior
within a layer, which is particularly valuable for detecting and ana-
lyzing localized anomalies such as overheating.

3.3 Feature Extraction. We propose to use both physical fea-
tures and statistical features for the model inputs. Physical features

Block 1

Table 2 Summary of physical features

Feature Description

Laser power (W)
Laser speed (mm/s)
Energy density (J/mm?)

[120, 150, 180, 210]
[600, 800, 1000, 1200]
To ensure the sample with >99% density
Layer number 1-166 for each block
Scanning phase (deg) Periodic angles by layer
X x coordinate value in the new space
y y coordinate value in the new space

refer to the predefined manufacturing process parameters before print-
ing and the serial information generated during printing and data pro-
cessing. Process parameters are inherently part of the L-PBF process,
such as laser power, laser speed, energy density, and scanning phase.
They are considered informative as inputs. These parameters directly
influence the melt pool behavior and resultant part quality, serving as
the primary descriptors of the process conditions, correlating with
physical phenomena like energy absorption, melt pool dynamics,
and layer-wise material deposition.

Moreover, sequential information such as layer number and
section order are the features acquired in this specific dataset, and
they are highly related to the order of printing. This information
is intrinsically linked to the sequential and layer-wise nature of
L-PBF. Layer number, for example, captures the cumulative
thermal history and residual stress buildup, both of which are criti-
cal to the process outcome. We normalize the features into a
common, comparable scale. This can help to improve the model’s
performance. The physical features are listed in Table 2. The con-
verted locations of the emission records in the new spaces are
also included as key physical features.

Statistical features about each section of each layer are extracted
and listed in Table 3. Extraction is performed among all the seg-
mented sections of each layer. These features are selected according
to their ability to explain the emission distribution across a single

Layer [

AN

Pyrometer readings
in order of scanning

Emission
sequence records

Segment data across the order of records

(Aw) vorssyuy

9 wed
E =
~ .
=
2
@ ses
E -
Section 1
9 Zoom-in of section 1
g
=" 20
=
'2 800
@»n
K|
S
m 0 €00 £0 600 800 1000 1200
Records

Average-emission of the section 1 _~ '

» S~ /- %
» ~ s
20 ~ -3

X

Fig. 3 Data segmentation process
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Table 3 Summary of statistical features

Feature Description

Mean Average emission value in each section

Std Standard deviation of emission values in each section
Min Minimum emission value in each section

Max Maximum emission value in each section

ql 25th percentile of the emission values in each section
q3 75th percentile of the emission values in each section

section, which can provide section-wise descriptive information
compared to only using the average observed emission of each
layer (which was used in the regression models in Ref. [27]).
This information can provide an instructive view of the localized
thermal behavior and energy distribution. They serve as a physics-
guided method of capturing the section-wise variations and poten-
tial anomalies in the thermal process, contributing to the early detec-
tion of overheating.

3.4 LSTM Model. In order to predict emission for the next
section or next layer using information from previous sections
and/or previous layers, a model that is capable of handling sequen-
tial data is needed. Traditional modeling approaches that assume
independent and identically distributed data may not be suitable
for this type of dataset. LSTM is a popular recurrent neural
network model in the time-series domain. Figure 4 presents the
original internal architecture of LSTMs [37], which can be broken
down into several gate functions. These gates work together to
take care of the long-term dependencies between the current
layer’s status and the previous ones. It has been found that previous
layers’ emission values are correlated to the current layer’s because
of the predefined physical features and the heat transfer characteris-
tic across layers [27].

Two network structures are proposed in this paper, as shown in
Fig. 5. Design 1 has three layers: an input layer, an LSTM layer,
and an output layer. This is a standard LSTM network layout,
and it is usually considered to have a good performance in other
studies, as explained in Ref. [11]. The model is designed to make
one-step ahead predictions using the previous multiple steps of
records. The input taken at section i, z; € R"™“, contains the previous
n sections’ information, including all the d = 14 physical and statis-
tical features listed in Tables 2 and 3, and it is used to predict y;;; €
R"™, which is a vector of all s=6 statistical features in the next
section i+ 1. A sliding-window approach is used to construct
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Fig. 4 Original LSTM architecture [14]

011006-6 / Vol. 146, JANUARY 2024

Input layer

@ =

A\ \Y
o LSTM layer o8 LSTM layer

Output layer 0‘090“‘

LSTM layer

il

\Y
oo LSTM layer

I.

¥Z0z dunr /g uo Jesn Aysieniun siebiny Aq ypd-900L 10 L~ 9pL NUBW/G890S0./9001 L0/L/9¥ | APd-8jonie/@ousiosbuunioeinuew/Bio-swse: uonos|joojeybipswse;/:dpy woy pspeojumoq

Output layer

Fig. 5 Network structure for (a) design 1 and (b) design 2

training data. The amount of overlap between consecutive
windows is n — 1 as the window moves along the data sequence.

As plotted in Fig. 5(b), design 2 has two additional LSTM layers.
Between each LSTM layer, the dropout regularization method is
used to randomly ignore certain nodes during training, in consider-
ation of the overfitting effect. The second design is constructed in
comparison with the baseline model. In some practices, structures
with an increased number of LSTM layers yield good performance
among huge datasets.

3.5 Hyperparameter Tuning. Hyperparameter tuning is
important because no single parameter combination has been
found to be superior to all others for all datasets. We consider a
range of values for several selected hyperparameters to find the
optimal model. There are many existing hyperparameter optimiza-
tion methods, such as Bayesian optimization and grid search.
Given the huge amount of data and the computational burden in
this study, we follow the traditional tuning strategy [38] to tune
each hyperparameter one at a time while fixing other hyperpara-
meters. However, due to the large amount of hyperparameters and
combinations involved, the brute-force way is of low efficiency.
We therefore modify the strategy accordingly to improve tuning
efficiency. In our approach, we focus on selected hyperparameters,
and if a hyperparameter barely affects the experiment result, we stop
tuning this hyperparameter in future iterations. We adopt the widely
accepted Adam optimizer as it has been suggested by many other
practices to be an effective optimizer. Specifically, the Adam opti-
mizer has shown high tolerance to the values of the other hyperpara-
meters, thereby facilitating the tuning process. The process of
weight initialization is critical in deep learning as it influences
both training speed and final model performance. The “He initiali-
zation” approach is adopted in this study. It sets the initial random
weights of the layers in a way that helps overcome the vanishing/
exploding gradients problem. It is designed for layers that use
ReLU (or variants of ReLU) activation functions, and it aims to
maintain a controlled and normalized variance of the activations
and back-propagated gradients through the network layers [39].
This contributes to more efficient learning and better performance
of deep neural networks. Though varying initializations may yield
different local minimums post-training, using effective methods
like He initialization, alongside ample training epochs, typically
results in stable, reliable neural network performance.

The hyperparameter tuning process is summarized in Fig. 6. Con-
sidering both model performance and training efficiency, we start
by tuning the computationally expensive hyperparameters on the
relatively simple LSTM structure (design 1) and a smaller training
dataset (block 1 data only), as shown in Fig. 6(a). Specifically, we
note that the timestamp length is important due to the transitory
period of heating at the beginning of a track and the end of
the track [1], while datasets with a larger timestamp require
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(a)

Train computationally expensive hyperparameters on design 1
structure and block 1 data

Step 1.1: Tune timestamp 7 with hyperparameter 2,

‘ 7* = argmin L(A,)
T

Step 1.2: Tune hidden units hu with hyperparameter 4,

‘ hu* = argmin L(44)
hu
Step 1.3: Tune batch size bs with hyperparameter 2,

‘ bs* = argmin L(43)
bs

Complete Step 1 tuning

(b) ‘ Tt hutbs®

Train computationally efficient hyperparameters for the design 2
structure on the entire dataset, using full factorial design

Step 2: Tune loss function [f, activation function af, dropout rate dr,
and learning rate Ir with hyperparameter A3

{f*,af", dr",lr'}= argmin L(4s)

‘ {Lf,af.dr,ir}

Complete Step 2 tuning

(0)

L(-) is the loss function of the model

Ao ={t,hu = 6,bs = 32,af = ReLU,lr = 0.01,dr = 0.2,lf = RMSE |
7 € {5,10,15,20,100,150}}

Ay={t=1" hu,bs = 32,af = RelLU,lr = 0.01,dr = 0.2, If = RMSE |
hu € {4,6,10,12}}

A ={t=1"hu=hu',bs,af = ReLU,lr = 0.01,dr = 0.2,lf = RMSE |
bs € {8,16,32,64}}

Az ={r=1" hu = hu',bs = bs",af,lr,dr,If |
af € {ReLU,SelLU, PReLU}, Ir € {0.01,0.02,0.05},
dr € {0.2,0.5}, If € {(RMSE,MAE}}

Fig. 6 Flowchart of hyperparameter tuning: (a) tuning the com-
putationally expensive hyperparameters, (b) tuning the computa-
tionally efficient hyperparameters, and (c) notations

significantly longer training periods. In order to capture this charac-
teristic, we consider multiples of 5 for timestamp: find the best time-
stamp z* from 7 € {5, 10, 15, 20, 100, 150} in step 1.1. Given that
there are approximately 300 sections in one layer, the choice of
timestamps can be seen as a representation of the proportion of
areas covered, allowing for the inclusion of previous information.
Similarly, both batch size and hidden units affect model training
speed. Step 1.2 uses the 7* value and finds the best value for
hidden units, hu*, from hu € {4, 6, 10, 12}. Step 1.3 then uses 7*
with hu* to find the best value for batch size, bs*, from bs € {8,
16, 32, 64}. In this way, step 1 of the tuning process tunes the com-
putationally expensive hyperparameters one at a time using the rel-
atively simple structure of design 1 with block 1 data to help save
model training time.

After determining the optimal values for these computationally
expensive hyperparameters (z*, hu*, and bs*), we move on to
tune the computationally efficient hyperparameters in step 2, as
shown in Fig. 6(b). Since these parameters are relatively efficient,
we implement a full factorial design involving all these hyperpara-
meters and tune them using the more complicated structure of
design 2 with the entire dataset (all 16 blocks together). The full fac-
torial design involves four hyperparameters: activation function
af € {RelLU, SeLU, PReLU}, learning rate [re{0.01, 0.02,
0.05}, dropout rate dr € {0.2, 0.5}, and loss function /f€ {RMSE,
MAE}, totaling 3 x 3 x2 x2 =236 combinations.

In addition to tuning these hyperparameters in step 2, we consider
three different data splitting strategies (“fixed,” “by dataset,” and
“by layer”) for creating the train/test set split. For each strategy,
to maintain the continuity of sequence, we construct a minimum
cutting length /. as the multiples of the timestamp parameter we

Journal of Manufacturing Science and Engineering

choose, to minimize the sequential information loss during the split-
ting. The “fixed” strategy splits at the block level in a fixed 80/20
proportion for train/test set, meaning that the first 80% of data in
each block are used for training, and the last 20% in that block
are used for testing. The “by dataset” strategy adds more random-
ness to the splitting by ignoring the block information. It cuts
across the entire dataset into pieces of sequences with /. length,
and randomly picks 80% of data to form the training set, leaving
the rest to be the test set. The “by layer” strategy conducts a
similar random splitting strategy as the “by dataset” strategy, but
it cuts the sequences on each layer of each block, and then forms
the 80-20 train/test data. This will end up with a more balanced
dataset, while the advantage of randomness still stays. The data
splitting strategy also derives its basis from the physics of L-PBF.
Recognizing that the L-PBF process operates in a layer-wise
fashion and the characteristics of each layer can depend on the pre-
vious layers due to residual heat and evolving material properties,
the option to split data by layers and blocks while maintaining
their temporal sequence can preserve the inherent dependencies
and temporal patterns present within the L-PBF process data. More-
over, this strategy aligns with the practical operation of L-PBF,
where the build platform is typically sectioned into separate
blocks, each containing multiple layers. In such a context, this strat-
egy ensures that the training and test sets are representative of the
actual operational scenarios. Hence, it can serve as another key
aspect of the proposed physics-guided approach, ensuring that the
temporal and spatial dependencies inherent to L-PBF are properly
accounted for in the model training and evaluation stages. By com-
bining the two-step hyperparameter tuning process with the data
splitting strategies, we are able to achieve maximal efficiency in
the tuning process, while ensuring reasonably good model perfor-
mance on the larger dataset.

4 Results and Discussion

4.1 Comparing With Benchmark Models. To demonstrate
the effectiveness of the proposed physics-guided LSTM model,
its performance is compared with other state-of-the-art approaches,
including CNNs, one-dimensional CNNs (1DCNN), multilayer per-
ceptron (MLP), and bidirectional LSTM (Bi-LSTM). CNN, primar-
ily designed for processing grid-like data such as an image, is
known for its capacity to extract high-level features from local,
fixed-sized patches, maintaining spatial relationships between dif-
ferent parts of the data. One-dimensional CNN, a variant of CNN,
has been widely applied to sequential data due to its strength in cap-
turing temporal dependencies within local input patches. MLP, on
the other hand, is a type of artificial neural network composed of
multiple layers of nodes in a directed graph, with each layer fully
connected to the next one. Despite its simplicity, MLP has proven
effective across a range of applications. Finally, Bi-LSTM, an
extension of the traditional LSTM, operates on an input sequence
in both forward and backward directions, offering advantages in
applications where sequential information is crucial [40].

Two comparative analyses of various baseline models are con-
ducted. Considering computational time, a set of default hyperpara-
meters A.={r=10, hu=6, bs=32, af=ReLU, Ir=0.005, dr=
0.5, If | Ife {RMSE, MAE, MAPE}} is employed for each model.
The first experiment compares these model performances on
relatively simple structures with preprocessed data from block 1.
Here, the efficacy of each model in handling data of lower complex-
ity is assessed. The second experiment constructs all the models as a
three-layer structure and uses all available data for training.
Although this approach may not yield the absolute best performance
from each model, it provides a useful comparison in terms of under-
standing each model’s capability.

The performance metrics used are those typical in regression
tasks: the root mean square error (RMSE), the mean absolute
error (MAE), and the mean absolute percentage error (MAPE). In
this study, the RMSE is defined as the standard deviation of the
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prediction residuals of the section-wise average emission. MAE cal-
culates the absolute values of the prediction residuals for the
section-wise average emission, and MAPE is another metric to
measure the percentage difference of the residuals. MAE and
MAPE are good measures to help explain the model on the same
scale. Generally, the lower all these three metrics are, the better
the model performance is.

Tables 4 and 5 present the model performance from the two
experiments, along with the training time. It can be inferred that
LSTM demonstrates a competitive performance in comparison to
other state-of-the-art models in both experimental settings. In
Table 4, LSTM achieves the smallest RMSE and MAE on the train-
ing set. As for the test performance, LSTM gets the second smallest
RMSE and MAE, suggesting a commendable generalization ability
to unseen data. Moreover, the MAPE for LSTM is the smallest
in both the training and testing sets, which highlights its advantage
in terms of percentage errors. The second experimental setting
provides further evidence for the effectiveness of LSTM. Although
the RMSE and MAE of LSTM on the training set are not the
smallest, its performance on the testing set is superior, especially
in terms of MAPE, where LSTM achieves the lowest error among
all the models. This indicates LSTM’s robustness when dealing
with more complex structures and larger datasets. Bi-LSTM also
shows strong performance. In both experimental settings, Bi-
LSTM’s performance is closely competitive with that of LSTM.
However, on closer inspection, Bi-LSTM demonstrates slightly
higher error metrics on both training and testing sets across the
two experiments, suggesting that it might be slightly less efficient
in both model fitting and generalization compared to LSTM.
While Bi-LSTM’s ability to utilize information from both past
and future contexts could be beneficial in some applications, the
L-PBF process predominantly relies on the history of the manufac-
turing process to predict future states, making LSTM’s unidirec-
tional processing more suitable. A two-sample f-test on the
difference between the LSTM and Bi-LSTM models yielded a
P-value greater than 0.05, indicating that there is no statistically sig-
nificant difference in performance between the two models based on
the chosen evaluation metric. Furthermore, the result shows that
Bi-LSTM models are generally more complex and computationally
intensive due to their bidirectional nature, which could be a disad-
vantage in scenarios where computational efficiency is crucial. In
conclusion, considering its consistent and superior performance

Table 4 Performance comparison of single-layer structure
models on block 1 data

RMSE MAE MAPE
Model Train Test  Train Test Train Test Time (min)
LSTM 794 1870 232 373 0.08 0.13 2
IDCNN 9.13 1816 2.60 3.69 0.09 0.13 2
CNN 8.14 19.09 237 376 0.08 0.13 4
MLP 2042 2454 3,65 435 0.13 0.15 1
Bi-LSTM 794 1937 232 377 0.08 0.13 3

Table 5 Performance comparison of three-layer structure
models across all data

RMSE MAE MAPE
Model Train  Test Train Test Train Test Time (min)
LSTM 8.19 1149 230 275 0.08 0.10 74
IDCNN 735 1379 216 3.06 0.08 0.11 195
CNN 975 1294 253 291 0.09 0.10 194
MLP 9.68 13.18 2.64 296 0.09 0.10 18
Bi-LSTM 824 1146 231 274 0.08 0.10 125

Table 6 Summary of step 1.1 tuning on timestamp based on
design 1 model and block 1 data

RMSE MAE
Timestamp Train Test Train Test
5 3.28 17.30 1.56 3.55
10 3.39 17.35 1.59 3.55
15 3.24 17.36 1.54 3.56
20 3.68 16.59 1.64 3.51
100 11.03 15.88 2.90 3.49
150 10.20 13.61 2.66 3.23

on both simple and complex structures, LSTM is selected as the
basis for the proposed physics-guided approach in this study.

4.2 LSTM Model Performance. The same performance
metrics are considered: RMSE, MAE, and MAPE. Table 6 lists
the result from the step 1.1 tuning on timestamp z. It appears that
both RMSE and MAE test scores for timestamps 5, 10, 15, and
20 are very close, while the scores for 100 and 150 exhibit slight
improvement. However, significant computational demands are
encountered when training with a longer timestamp, and overfitting
issues persist despite the score improvements. We therefore decide
to use 7* = 10.

Table 7 lists the result from the step 1.2 tuning on hidden units
hu. It is noted that the model has the best test performance when
hu=06. Moreover, the selected values for the number of hidden
units do not seem to affect the model performance significantly,
while the computational cost increases as hu increases. Therefore,
we decide hu* = 6.

Table 8 lists the result from the step 1.3 tuning on batch size bs.
There is not much difference for the performance between different
batch sizes, but the model training time can vary significantly.
Training a model with a batch size of six requires almost four
times the time needed for training a model with a batch size of
32. It can be concluded that a larger batch size takes less time to
train. Therefore, we decide bs™ = 32.

Since hyperparameters {z* = 10, hu* = 6, bs* = 32} are deter-
mined from design 1 but to be used in the more complicated
LSTM structure of design 2, we need to confirm that these values

Table 7 Summary of step 1.2 tuning on hidden units based on
design 1 model and block 1 data

RMSE MAE
Hidden units Train Test Train Test
4 3.47 17.24 1.59 3.56
6 345 16.68 1.58 3.51
10 3.38 17.29 1.58 3.55
12 3.16 18.03 1.51 3.62

Table 8 Summary of step 1.3 tuning on batch size based on
design 1 model and block 1 data

RMSE MAE
Batch size Train Test Train Test
8 11.62 13.05 2.83 3.08
16 3.38 17.56 1.58 3.59
32 3.39 17.30 1.59 3.57
64 3.90 17.82 1.75 3.63
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Table 9 Summary of tuning on timestamp based on design 2
model and block 1 data

RMSE MAE
Timestamp Train Test Train Test
5 3.59 20.96 1.60 3.99
10 3.73 20.36 1.63 3.90
15 3.30 22.20 1.55 4.10
20 3.46 20.79 1.57 3.95
100 3.47 21.30 1.59 3.97
150 3.34 21.83 1.56 4.05

are indeed good for design 2. Take timestamp as an example.
Table 9 shows the result on design 2 training for timestamp using
block 1’s data. Despite the overfitting issue due to small dataset
(block 1 data only), we still recommend 7* =10 for step 2 to
balance training time and model performance.

Selected results from the step 2 tuning on design 2 and entire
dataset are shown in Table 10 and Fig. 7. The full factorial
design based on A3={r=10, hu=6, bs=32, af, Ir, dr, If | af€
{ReLU, SeLU, PReLU}, Ire{0.01, 0.02, 0.05}, dre{0.2, 0.5},
Ife {RMSE, MAE}} involves total 3 x 3 x2 x2 =36 combinations
with three different data splitting strategies at each combination. To
focus on the hyperparameters and data splitting strategies, Table 10
shows the results from using PReLU only. Comparing the RMSE

values shows that the overfitting issue is improved when training
on the entire dataset, and the increase of dropout rate from 0.2 to
0.5 can also significantly reduce the overfitting on the test dataset.
Training batch size does slightly affect the model performance
but given the exponentially increased training time with smaller
batch size and insignificant improvement of performance, we
prefer to use the training batch size of 32. In this way, design 2
can be trained in less than 2 h on a 12th generation i7 Intel CPU
with Nvidia RTX 3060Ti GPU desktop PC. Different data splitting
strategies have influenced the training performance, as demon-
strated in Table 10. Compared with the “fixed” splitting strategy,
the other two strategies appear to have positive impact on mitigating
overfitting.

As for the activation function af € {ReLU, SeL.U, PReLU}, it is
found that SeLU performs worse than the other two based on the
RMSE and MAE scores, whereas ReLU and PReLU perform sim-
ilarly. Figure 7 compares the RMSE and MAE scores from using
activation functions ReLU and PReLU, respectively. Out of the
36 cases, PReLU performed better than ReLLU in 19 cases, yet the
values are very close. The mean and median RMSE for PReLU
are 10.102 and 9.830, whereas the mean and median RMSE for
ReLU are 10.078 and 9.820. The mean and median MAE values
for PReLLU are 2.486 and 2.460, whereas the mean and median
MAE for ReLU are 2.488 and 2.460, respectively. Therefore, we
recommend the use of PReLU as the activation function since it out-
performs ReLU in more than half of the 36 cases.

The learning rate parameter shows a correlation with the perfor-
mance: generally, the smaller learning rates such as 0.01 and 0.02

Table 10 Summary of step 2 tuning on data splitting strategy and the computationally efficient hyperparameters based on design 2

model and entire dataset

Data RMSE MAE MAPE

Experiment splitting Training Hidden Activation Dropout Loss Learning

index strategy batch units function rate function rate Train  Test Train Test Train Test
1 By layer 32 6 PReLU 0.5 RMSE 0.01 409 907 166 237 0.06 0.08
2 By layer 32 6 PReLU 0.5 RMSE 0.02 425 869 181 229 0.06 0.08
3 By layer 32 6 PReLU 0.5 RMSE 0.05 6.44 1029 191 247 0.07 0.09
4 By layer 32 6 PReLU 0.2 RMSE 0.01 362 910 162 233 0.06 0.08
5 By layer 32 6 PReLU 0.2 RMSE 0.02 427 1021 1.63 256 0.06 0.09
6 By layer 32 6 PReLU 0.2 RMSE 0.05 6.12 934 200 235 0.07 0.08
7 By layer 32 6 PReLU 0.5 MAE 0.01 371 895 1.61 230 0.06 0.08
8 By layer 32 6 PReLU 0.5 MAE 0.02 428 899 174 228 0.06 0.08
9 By layer 32 6 PReLU 0.5 MAE 0.05 6.15 9.64 191 239 0.07 0.08
10 By layer 32 6 PReLU 0.2 MAE 0.01 372 882 167 229 0.06 0.08
11 By layer 32 6 PReLU 0.2 MAE 0.02 388 975 1.63 245 0.06 0.08
12 By layer 32 6 PReLU 0.2 MAE 0.05 6.71 10.61 195 257 0.07 0.09
13 By dataset 32 6 PReLU 0.5 RMSE 0.01 548 933 212 241 0.07 0.08
14 By dataset 32 6 PReLU 0.5 RMSE 0.02 6.14 981 192 238 0.07 0.08
15 By dataset 32 6 PReLU 0.5 RMSE 0.05 738 11.63 206 273 0.07 0.09
16 By dataset 32 6 PReLU 0.2 RMSE 0.01 542 911 192 228 0.07 0.08
17 By dataset 32 6 PReLU 0.2 RMSE 0.02 803 9.17 262 261 0.09 0.09
18 By dataset 32 6 PReLU 0.2 RMSE 0.05 6.44 1034 192 245 0.07 0.08
19 By dataset 32 6 PReLU 0.5 MAE 0.01 432 922 1.64 231 0.06 0.08
20 By dataset 32 6 PReLU 0.5 MAE 0.02 7.57 10.69 2.15 250 0.07 0.09
21 By dataset 32 6 PReLU 0.5 MAE 0.05 6.44 1028 191 243 0.07 0.08
22 By dataset 32 6 PReLU 0.2 MAE 0.01 433 985 1.60 243 0.06 0.08
23 By dataset 32 6 PReLU 0.2 MAE 0.02 6.12 898 2.09 231 0.07 0.08
24 By dataset 32 6 PReLU 0.2 MAE 0.05 535 9.62 173 234 0.06 0.08
25 Fixed 32 6 PReLU 0.5 RMSE 0.01 453 1043 194 248 0.07 0.09
26 Fixed 32 6 PReLU 0.5 RMSE 0.02 7.01 11.16 201 258 0.07 0.09
27 Fixed 32 6 PReLU 0.5 RMSE 0.05 6.80 1032 2.11 247 0.07 0.09
28 Fixed 32 6 PReLU 0.2 RMSE 0.01 690 9.67 251 260 0.09 0.09
29 Fixed 32 6 PReLU 0.2 RMSE 0.02 692 10.04 220 247 0.08 0.09
30 Fixed 32 6 PReLU 0.2 RMSE 0.05 826 979 263 264 0.09 0.09
31 Fixed 32 6 PReLU 0.5 MAE 0.01 346 11.08 151 258 0.05 0.09
32 Fixed 32 6 PReLU 0.5 MAE 0.02 7.10 1134 201 261 0.07 0.09
33 Fixed 32 6 PReLU 0.5 MAE 0.05 698 11.10 2.01 257 0.07 0.09
34 Fixed 32 6 PReLU 0.2 MAE 0.01 272 1112 140 260 0.05 0.09
35 Fixed 32 6 PReLU 0.2 MAE 0.02 6.84 10.17 2.16 247 0.07 0.09
36 Fixed 32 6 PReLU 0.2 MAE 0.05 11.38 16.14 3.02 359 0.11 0.12
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(a) RMSE Test Score Comparison
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Fig. 7 Test performance comparison between ReLU and PReLU: (a) RMSE and (b) MAE

Table 11 Model effectiveness comparison

RMSE MAE MAPE
Model Train Test Train Test Train Test
Design 1 9.03 14.89 2.46 3.15 0.10 0.12
Design 2 with statistical features only 7.78 12.42 2.13 2.82 0.07 0.10
Design 2 with physical features only 4.35 10.31 1.67 2.58 0.06 0.09
Design 2 4.25 8.69 1.81 2.29 0.06 0.08

achieve better performance than 0.05 in this experiment. We
also tried using different loss functions, as can be seen in
Table 10, for the same set of hyperparameters, but previous
studies from other papers have already shown that this is not the
key factor, and the results of our own experiment agree with
their observation.

Results from the above comparisons provide several key insights.
Values for the computationally expensive parameters were chosen
to be {r=10, hu=6, bs=32} based on a consideration of both
model performance and computational efficiency. We observed that
increasing the learning rate did not always result in better per-
formance and having a higher dropout rate helped prevent overfitting.
Our experiments demonstrated that the use of PReLU as a loss func-
tion resulted in a more stable training process compared to other
loss functions experimented with. While we found that loss function
did not have a significant impact on the model performance, we
chose RMSE for our purposes. Therefore, a set of hyperparameters
A ={r=10,hu=6,bs=32,af =PReLU, Ir=0.02,dr=0.5,lf =
RMSE} with the “by layer” data splitting strategy is selected and
recommended.

In summary, our study underscores the crucial role of thoughtful
hyperparameter selection in achieving optimal performance in
LSTM models. To further validate our results, we employed the
same set of hyperparameters to train the model in three distinct
scenarios, including design 1, design 2 with statistical features
only, and design 2 with physical features only. Our comparative
analysis of the model’s performance in these scenarios showed
that design 2, with its higher complexity structure, outperformed
design 1 on this larger dataset. As presented in Table 11, design
2 outperforms design 1 across all three given performance
metrics. Furthermore, the performance comparison based on the
partial features of the input dataset emphasized the significance
of physical features, as we explained. By combining both physical
and statistical features, we were able to significantly improve the
model’s performance. The observations from the experiment

011006-10 / Vol. 146, JANUARY 2024

highlight the significance of the interplay between model complex-
ity and the physical characteristics of the input dataset when con-
structing LSTM models.

The quantification of overheating is indeed a crucial aspect of our
work. However, it is important to note that our current model
focuses primarily on predicting the thermal characteristics within
a section, not explicitly on defining or determining an overheating
threshold. As a potential solution, we can consider integrating the
model with a threshold determination mechanism in the future.
This could be accomplished by linking the model’s predicted
thermal characteristics to an adaptively defined threshold. For
example, a control chart could be used to establish the upper
control limit (UCL). It can be effective to first determine the
initial thresholds by researcher, then refined over time using
moving technologies such as EWMA. The predicted statistical fea-
tures from the LSTM model for the next section could be treated as
a new observation. The EWMA based on this prediction and the
previous EWMAs is computed and compared with the UCL. If it
exceeds the UCL, then it is likely to overheat in the next section.
The EWMA control chart, with its definition to give more weight
to recent observation sections, is also well suited for the time-series
nature of emission observations, as well as the segmented sequence
of data.

By implementing the method, small section-wise shifts can be
continuously monitored, which enables early detection of potential
overheating situations and allows for prompt corrective actions to
process parameters.

5 Conclusion

Data from high-speed coaxial pyrometry during the laser-based
powder bed fusion process provide opportunities for in situ moni-
toring and overheating prognostics. In this paper, we develop a
physics-guided long short-term memory network to predict section-
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wise thermal characteristics in the L-PBF process, based on pro-
cess parameters and the time-series nature of emission history.
Collaborating with physics-based features improves the model’s
explainability and performance. This method offers an advantage
over traditional layer-wise approaches by providing finer granular-
ity in process monitoring. In traditional L-PBF processes, parame-
ters are usually set before the printing begins and remain constant
throughout. Analysis and adjustments typically occur on a
layer-by-layer basis, with a whole layer completed before any anal-
ysis and adjustments for the next layer are made. Adjustments to
process parameters, like laser power or speed, are then made
before printing the next layer. However, this approach has its limi-
tations as it does not allow for modifications during the printing of a
single layer. This means that if a problem arises in a specific section
of the layer, it cannot be addressed until the entire layer has been
completed. In contrast, our section-wise research divides each
layer into smaller sections, allowing for more detailed observations
during the printing process. The advantage of this section-wise
methodology is that it provides the opportunity for adjustments to
process parameters during the printing of a single layer. We
compare the prediction performance of various combinations of
hyperparameters and data splitting strategies. Results demonstrate
the feasibility and effectiveness of the proposed model.

There are several directions for future research. The implementa-
tion of real-time input adjustments to the process parameters during
the L-PBF process can be explored. Given our section-wise analysis
approach, the input adjustments could potentially enhance the print
quality and efficiency of the L-PBF process by mitigating issues like
overheating as soon as they are detected. For instance, if overheat-
ing is detected in a particular section, laser parameters could poten-
tially be adjusted in real time to mitigate the issue. The feasibility
and impact of adjusting the laser input frequency can therefore be
examined. A more detailed investigation into the thermal dynamics
during the printing process and more comprehensive integration of
physics nature to current model are therefore needed. It will also be
valuable to have an exhaustive investigation of the optimal combi-
nation of hyperparameters for the proposed model. Moreover, it will
be of great interest to resolve the trade-off between the number of
hidden layers and the computational cost, which will help achieve
satisfying prediction accuracy at a minimum cost. Importantly,
this predictive model serves as a foundation for future works
aimed at the quantification of overheating. Lastly, the proposed
model can serve as a building block to be combined with transfer
learning and encoder tools to predict emission in L-PBF for other
geometry designs or other metals.
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