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We study the manifold n-widths of Sobolev and Besov spaces with 
error measured in the Lp-norm. The manifold widths measure how 
efficiently these spaces can be approximated by continuous non-
linear parametric methods. Existing upper and lower bounds only 
match when the smoothness index q satisfies q ≤ p or 1 ≤ p ≤ 2. 
We close this gap, obtaining sharp bounds for all 1 ≤ p, q ≤ ∞ for 
which a compact embedding holds. In the process, we determine 
the exact value of the manifold widths of finite dimensional ℓM

q -
balls in the ℓp-norm when p ≤ q. Although this result is not 
new, we provide a new proof and apply it to lower bounding the 
manifold widths of Sobolev and Besov spaces. Our results show 
that the Bernstein widths, which are typically used to lower bound 
the manifold widths, decay asymptotically faster than the manifold 
widths in many cases.

© 2024 Elsevier Inc. All rights are reserved, including those for 
text and data mining, AI training, and similar technologies.

1. Introduction

Due in part to the practical success of deep neural networks [14], non-linear methods of approx-
imation have gained in importance in recent years. In this work, we consider limitations on general 
non-linear methods of approximation which use a finite number of parameters. Specifically, given 
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a Banach space X and a compact set K ⊂ X , we consider the manifold n-widths introduced in [4], 
defined by

δn(K )X := inf
an,Mn

sup
f ∈K

∥ f − Mn(an( f ))∥X ,

where the infimum is taken over all pairs of continuous maps an : K →Rn and Mn :Rn → X . We can 
think of the map an as being an encoding map and the map Mn as being a decoding map.

As remarked in [4], if the continuity assumption is dropped, this notion becomes vacuous since 
using a space-filling curve any set K in a separable Banach space X can be ‘parameterized’ by a 
single real number. The manifold widths δn control the best possible rates of approximation using 
general parametric methods with n parameters, if we additionally require that both the parameter 
selection and parameterization maps are continuous.

The problem we study in this work is the determination of the manifold widths δn(K )X where K
is the unit ball of a Besov or Sobolev space and the error is measured in L p . Let us begin by recalling 
the definitions of Besov and Sobolev spaces.

Let # ⊂ Rd be a bounded domain, which we take to be the unit cube # = [0, 1]d for simplicity. 
We remark that our results can be transferred to more general domains, with appropriately modified 
constants, in a standard manner.

We write Lp(#) for the set of functions for which the Lp -norm on #, defined by

∥ f ∥L p(#) =

⎛

⎝
∫

#

| f (x)|pdx

⎞

⎠
1/p

< ∞,

is finite. When p = ∞, the L∞-norm is defined by ∥ f ∥L∞(#) = ess supx∈# | f (x)|.
Given an integer s ≥ 1 and 1 ≤ q ≤ ∞, we define the Sobolev space W s(Lq(#)) to be the set of 

f ∈ Lq(#) which have weak derivatives of order s in Lq(#) with norm given by

∥ f ∥W s(Lq(#)) := ∥ f ∥Lq(#) + ∥ f (s)∥Lq(#),

where f (s) denotes the (tensor of) weak derivatives of order s (see [10], Chapter 5, for details).
Besov spaces, which are conveniently defined in terms of moduli of smoothness, provide a well-

known generalization of Sobolev spaces to non-integer smoothness s. For a function f ∈ Lq(#) and 
an integer k ≥ 1, we define its k-th order modulus of smoothness by

ωk( f , t)q = sup
|h|≤t

∥%k
h f ∥Lq(#kh),

where the supremum is over h ∈Rd and the k-th order finite differences %k
h are defined by

%k
h f (x) =

k∑

j=0

(−1) j
(

k
j

)
f (x + jh).

Here the Lq norm is taken over the set #kh := {x ∈ #, x + kh ∈ #} to guarantee that all terms of the 
relevant finite differences are contained in #. We remark that when k = 1 and q = ∞, the modulus 
of smoothness reduces to the well-known modulus of continuity.

Given parameters s > 0, 1 ≤ r, q ≤ ∞, we define the Besov norm Bs
r(Lq(#)) by

∥ f ∥Bs
r (Lq(#)) := ∥ f ∥Lq(#) + | f |Bs

r(Lq(#)),

with Besov semi-norm given by

| f |Bs
r (Lq(#)) :=

⎛

⎝
∞∫

0

ωk( f , t)r
q

tsr+1 dt

⎞

⎠
1/r

(1.1)
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when r < ∞, and by

| f |Bs∞(Lq(#)) := sup
t>0

t−sωk( f , t)q,

when r = ∞. Here the index k of the modulus of smoothness must satisfy k > s, and all such choices 
of k give equivalent norms. We denote by Bs

r(Lq(#)) the Besov space of functions f ∈ Lq(#) whose 
Bs

r(Lq(#))-norms are finite. Besov spaces play a central role in approximation theory, signal process-
ing, and applied mathematics, and the space Bs

r(Lq(#)) can be thought of as a space of functions with 
s derivatives in Lq (with the index r providing a finer gradation of these spaces). For more detailed 
information on Besov spaces, we refer to [6–8,22]. We also remark that the commonly used fractional 
Sobolev spaces [9] correspond to Besov spaces with q = r.

Consider the classes

F s
q := { f ∈ W s(Lq(#)), ∥ f ∥W s(Lq(#)) ≤ 1} and

Bs
r,q := { f ∈ Bs

r(Lq(#)), ∥ f ∥Bs
r (Lq(#)) ≤ 1},

which are the unit balls of the corresponding Sobolev and Besov spaces, respectively. We wish to 
determine (asymptotically) the manifold widths δn(F s

q)Lp(#) and δn(Bs
r,q)Lp(#) for different values of 

s, r, q, p.
In order for this problem to make sense, we need F s

q or Bs
r,q to be a compact subset of Lp(#). It 

is well-known that this is equivalent to the Sobolev embedding condition

1
q

− 1
p

<
s
d

(1.2)

for bounded domains # (see [10], Chapter 5, for instance).
To put this problem into perspective, let us discuss other classical notions of width and how they 

relate to the manifold widths. We will only scratch the surface of this subject here and refer to [16], 
Chapters 13 and 14, [18], and [20], Chapter 3 for a more detailed presentation of this material.

Essentially, by putting different restrictions on the encoding map an and the decoding maps Mn , 
we obtain different widths, which measure the complexity of the set K in different ways. For example, 
consider the Kolmogorov widths [13], which are typically defined as

dn(K )X := inf
Vn

dX (K , Vn),

where the infimum is taken over all linear subspaces Vn ⊂ X of dimension at most n, and

dX (K , Vn) = sup
f ∈K

inf
fn∈Vn

∥ f − fn∥X

denotes the distance of K to Vn . The Kolmogorov widths correspond to restricting the decoding map 
Mn to be linear with no restrictions on the encoding map an .

The Gelfand widths are defined by

dn(K )X := inf
Vn

sup{∥ f ∥X , f ∈ K ∩ Vn},

where the infimum is taken over all co-dimension n subspaces Vn . For convex centrally symmetric 
sets K , these correspond to restricting the encoding map an to be linear with no restriction on the 
decoding map Mn .

Finally, the linear widths, defined by

dL
n(K )X := inf

Tn
sup
f ∈K

∥ f − T f ∥X ,

where the infimum is taken over all rank n operators T : X → X , correspond to restricting both an
and Mn to be linear. We remark that there are numerous other non-linear widths which have recently 
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been introduced and which fit into this framework, such as the stable manifold widths [3] and the 
Lipschitz widths [17]. These new notions of non-linear widths enforce conditions stronger than just 
continuity which are arguably more relevant to practical applications.

Another important and closely related notion of width, which cannot be put into the same frame-
work based upon restricting the encoding and decoding maps an and Mn , are the Bernstein widths 
[21], defined by

bn(K )X = sup
Vn

inf
f ∈Vn∩K c

∥ f ∥X .

Here the supremum is over all subspaces Vn ⊂ X of dimension n + 1. The Bernstein widths measure 
the size of the largest ball completely contained in an (n + 1)-dimensional section of K . The impor-
tance of the Bernstein widths stems partially from the fact that they provide a lower bound on the 
Gelfand widths, linear widths, Kolmogorov widths and manifold widths via the Borsuk-Ulam theorem 
[2] (see [4] and [16], Chapter 13).

Finally, let us mention that the manifold widths are closely related to the Aleksandrov widths 
defined via n-dimensional cell complexes (see [20], Chapter 3 and [5,19]). Indeed, as a consequence of 
the Pontryagin-Nöbeling principle (see [1], Chapter 4, Theorem 1.9) it can be shown that the manifold 
widths and Aleksandrov widths are equivalent up to possibly shifting the index n by a factor of 2 (see 
Lemma 2.2 in [5]).

In the following, we consider widths of the compact sets F s
q and Bs

r,q , consisting of the unit balls 
of Sobolev and Besov spaces which compactly embed in Lp(#).

The asymptotic rate of decay of the Kolmogorov, Gelfand, linear, and Bernstein widths of these sets 
are known. These are results of a rather deep theory developed during the past century. We refer to 
[16], Chapters 13 and 14, and [18], Chapter 7, and the references contained in both of these books 
for the theory giving the Kolmogorov, Gelfand, and linear n-widths of Sobolev and Besov spaces. The 
determination of the Bernstein widths can be found in [20], Chapter 3 and the references therein (see 
also [11,15]). Since we will use them later, let us recall that the Bernstein widths are given by

bn(F s
q)L p(#) ! bn(Bs

r,q)L p(#) !

⎧
⎪⎨

⎪⎩

n−s/d p ≥ q or 1 ≤ p ≤ q ≤ 2
n−s/d+1/q−1/2 1 ≤ p ≤ 2 ≤ q ≤ ∞
n−s/d+1/q−1/p 2 ≤ p ≤ q ≤ ∞,

(1.3)

whenever the compact embedding condition (1.2) holds.
In contrast, the manifold widths δn have not been determined for the Sobolev and Besov balls F s

q
and Bs

r,q with respect to the Lp -norm in all cases for which the compact embedding (1.2) holds.
This problem, which quantifies the limits of continuous non-linear approximation for classical 

smoothness spaces, was first considered in [19] for the closely related Aleksandrov widths in place of 
the manifold widths. There the Sobolev unit ball F s

q for integer s ≥ 1 in one-dimension is considered, 
and it is shown that Aleksandrov widths decay like n−s (with upper and lower bounds matching up 
to a constant).

The case of general Besov spaces (and manifold widths instead of Aleksandrov widths) was first 
considered in [4]. There it is shown using spline approximation that in one dimension we have the 
upper bound

δn(Bs
r,q)L p(#) ≤ Cn−s

for integral s and all s, r, q and p for which (1.2) holds (and the analogous result for the Sobolev 
ball F s

q ). In [5] this upper bound was extended to all dimensions d and smoothness s > 0, i.e. it was 
shown that

δn(Bs
r,q)L p(#) ≤ Cn−s/d (1.4)

as long as (1.2) holds (here the constants C are independent of n but depend upon the parameters 
s, r, p, q).
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Concerning lower bounds, in [4] it is shown that if q ≤ p or if 1 ≤ p ≤ q ≤ 2, then the upper bound 
in (1.4) is sharp, i.e. that in this case we have the bound

δn(Bs
r,q)L p(#) ≥ Cn−s/d (1.5)

for another (potentially different) constant C . The tool used to prove lower bounds on the manifold 
widths are the Bernstein widths. In particular, utilizing the Borsuk-Ulam theorem [2] one can show 
that (see [4], Theorem 3.1)

bn(K )X ≤ δn(K )X (1.6)

for any compact set K ⊂ X . Applying the known asymptotics of the Bernstein widths (1.3), we obtain 
(1.5) when either q ≤ p or 1 ≤ p ≤ q ≤ 2.

However, in the case p < q and q > 2 the Bernstein widths decay faster than the upper bound (1.4)
and this method fails to give a sharp result. We remark that the metric entropy also cannot be used 
to give lower bounds since, as noted in [3], the manifold widths do not obey a Carl’s inequality which 
would relate them to the entropy. The goal of this work is to extend the lower bound (1.5) to this 
case and thus to show that the bound (1.4) is always sharp. This completes the determination of the 
asymptotic decay of the manifold widths of Sobolev and Besov spaces in all cases. Since the Bernstein 
widths and metric entropy fail to give a sharp lower bound, this requires new tools.

In order to bridge this gap, we introduce a new notion of width, which we call the sphere embed-
ding widths, defined by

sn(K )X := sup
c:Sn→K

inf
z∈Sn

∥c(z)∥X . (1.7)

Here Sn denotes the n-dimensional unit sphere

Sn = {x ∈ Rn+1, ∥x∥ = 1},
and the supremum above is over all continuous and odd (i.e. c(−x) = −c(x)) functions c : Sn → K . 
The sphere embedding widths more precisely capture the obstruction imposed by the Borsuk-Ulam 
theorem and in Proposition 1 in Section 3 we show that

sn(K )X ≤ δn(K )X ,

analogous to (1.6). However, the sphere embedding widths can decay slower than the Bernstein 
widths. In particular, for the classes Bs

r,q ⊂ Lp(#) we show in the proof of Theorem 2 that

sn(Bs
r,q)L p(#) ≥ Cn−s/d

for all s > 0, 1 ≤ r, p, q ≤ ∞ for which the Sobolev embedding condition (1.2) holds. This extends the 
lower bound (1.5) to all 1 ≤ p, q ≤ ∞.

The key ingredient in the proof is a lower bound on the sphere embedding widths of unit ℓM
q -balls 

with respect to the ℓp-norm. Indeed, writing

K M
q :=

{

x ∈RM ,

M∑

i=1

|xi |q ≤ 1

}

(1.8)

for the unit ball in ℓM
q , we prove in Proposition 2 that

sn(K M
q )ℓp ≥ (M − n)1/p−1/q

for n < M . This enables us to determine the precise value of the manifold widths of unit ℓM
q -balls 

with respect to the ℓp-norm in the regime p ≤ q. In particular, we show in Theorem 1 that

δn(K M
q )p = (M − n)1/p−1/q

5
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whenever p ≤ q. This result was first proved in [12], and although it is not new, we provide a new 
proof using the sphere embedding widths. We remark that combined with the results in [4,5] and 
[20], Chapter 3, which determine the manifold widths (and Aleksandrov widths) of ℓM

q -balls with 
respect to the ℓp-norm in the regime p ≥ q, this gives the manifold widths of finite dimensional 
ℓq-balls.

2. Sharp bounds on the manifold widths of ℓM
q -balls

In this Section, we precisely determine the manifold widths of the ℓM
q unit ball with respect to the 

ℓp-norm in the regime p ≤ q. These are given by the following Theorem, first proved in [12].

Theorem 1 (Main result in [12]). Let 1 ≤ n < M be integers, 0 < p ≤ q ≤ ∞ and let K M
q denote the ℓM

q unit 
ball as in (1.8). Then the manifold widths δn satisfy

δn(K M
q )p = (M − n)1/p−1/q.

Although this result is not new, we give a new proof using the sphere embedding widths (1.7), 
which is based on fundamentally different ideas than the argument in [12]. We believe that our 
method of proof using the sphere embedding widths may have potential applications to other related 
problems.

Theorem 1 consists of two parts, an upper bound and a lower bound. The upper bound is simple 
and is obtained by letting the encoding map an take the first n-coordinates of x ∈ RM , and the de-
coding map Mn be the inclusion of Rn into RM which sets the last M − n coordinates to 0. Then for 
any x ∈RM , we easily see that

x − Mn(an(x)) = P M−n(x),

where P M−n is the projection which sets the first n coordinates of x to 0. We thus see that

δn(K M
q )p ≤ sup

x∈RM

(∑M
i=n+1 |xi|p

)1/p

(∑M
i=1 |xi |q

)1/q . (2.1)

Since p ≤ q, Hölder’s inequality implies that

M∑

i=n+1

|xi |p ≤

⎛

⎝
M∑

i=n+1

|xi |q
⎞

⎠
p/q

(M − n)1−p/q

Taking p-th roots and plugging this into (2.1) gives

δn(K M
q )p ≤ (M − n)1/p−1/q. (2.2)

Here we must make the obvious modifications if q = ∞. The lower bound in Theorem 1 is more 
subtle and we prove this using the sphere embedding widths sn defined in (1.7). We first show using 
the Borsuk-Ulam Theorem that the sphere embedding widths lower bound the manifold widths.

Proposition 1. For any compact K ⊂ X we have the bound

sn(K )X ≤ δn(K )X

Proof. This follows essentially the same argument as the proof of Theorem 3.1 in [4] using the 
Borsuk-Ulam Theorem [2].

Let c : Sn → K be a continuous odd map from the n-dimensional sphere Sn into K , and an : K →
Rn an arbitrary continuous map. Then the composition an ◦ c is a continuous map Sn → Rn so by 

6
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the Borsuk-Ulam theorem there is a point z ∈ Sn such that an(c(z)) = an(c(−z)). Let f ∗ = c(z) ∈ K . 
Since c is odd we have − f ∗ = c(−z), and thus an( f ∗) = an(− f ∗). Then for any reconstruction map 
Mn :Rn → K , we have

sup
f ∈K

∥ f − Mn(an( f ))∥X ≥ max
{
∥ f ∗ − Mn(an( f ∗))∥X ,∥ f ∗ + Mn(an( f ∗))∥X

}

≥ ∥ f ∗∥X ≥ inf
z∈Sn

∥c(z)∥X .

Since Mn, an and c are arbitrary we get sn(K )X ≤ δn(K )X as desired. !

Next, we lower bound the sphere embedding widths for the ℓN
q -unit ball with respect to the ℓp -

norm. This is the main new technical result of the paper.

Proposition 2. Let 1 ≤ n < M be integers, 0 < p ≤ q ≤ ∞ and let K M
q denote the ℓM

q unit ball as in (1.8). Then 
the sphere embedding widths satisfy

sn(K M
q )p ≥ (M − n)1/p−1/q

Combining this with Proposition 1 and the upper bound (2.2) proves Theorem 1.
The proof of Proposition 2 depends upon the following elementary Lemma.

Lemma 1. Let 1 ≤ N ≤ M be integers. There exists an N-dimensional subspace V N ⊂ RM such that for any 
0 ̸= x ∈ V N we have

|{i : xi = 0}| < N.

In other words, a non-zero vector x ∈ V N cannot vanish in N coordinates.

Proof. Indeed, a randomly chosen subspace of RM has this property with probability 1. To see this, 
consider the M × N matrix A whose columns are a basis for V N . If every N × N minor of A is 
non-singular, then V N has the desired property. Indeed, let x ∈ V N which means that

x =
N∑

i=1

cia
i, (2.3)

where ai are the columns of the matrix A and ci are coefficients. For any set S ⊂ {1, ..., M} of N
coordinates, we then have

c = A−1
S xS ,

where c denotes the vector of coefficients in (2.3), A S denotes the N × N minor of A corresponding 
to S (which is non-singular by assumption), and xS denotes the vector x restricted to the coordinates 
in S . Thus, if x vanishes in the coordinates S , then c = 0 so x = 0.

For example, taking the span of the columns of a Gaussian random matrix of size M × N gives 
such a subspace with probability 1, since with probability 1 each N × N minor of this matrix is 
non-singular. !

Proof of Proposition 2. We use Lemma 1 to construct a continuous antipodal map c : Sn → K M
q such 

that

∥c(z)∥ℓp ≥ (M − n)1/p−1/q

for all z ∈ Sn . Choose a subspace Vn+1 ⊂ RM of dimension n + 1 which satisfies the conditions of 
Lemma 1 with N = n + 1, i.e. such that any 0 ̸= x ∈ Vn+1 can vanish in at most n coordinates. Let 
a1, ..., an+1 ∈RM be an orthonormal basis for this space and consider the map P : Sn →RM given by

7
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P (z) =
n+1∑

i=1

ziai,

which simply parameterizes the sphere in the space Vn+1. Let

0 ≤ π(1)(z) ≤ π(2)(z) ≤ · · · ≤ π(M)(z)

be a non-decreasing rearrangement of the magnitudes of the coordinates of P (z), and observe that 
each π(i) is a continuous function of z.

By construction, π(n+1)(z) > 0 for all z ∈ Sd and since the sphere is compact, we get

ε := inf
z∈Sd

π(n+1)(z) > 0.

Define the continuous function

tε(x) =

⎧
⎪⎨

⎪⎩

−1 x ≤ −ε

x/ε −ε ≤ x ≤ ε

1 x ≥ ε,

and define a map P̃ by applying tε coordinate-wise to P (z), i.e. we define

P̃ (z)i = tε(P (z)i).

Finally, we define the map c(z) by normalizing P̃ (z) in the ℓq-norm, i.e. we set

c(z) = P̃ (z)

∥ P̃ (z)∥ℓq

.

Obviously, by construction we have that c(z) ∈ K M
q .

Now let z ∈ Sd . From the definition of ε, we see that for every z ∈ Sn at most n coordinates of P (z)
have magnitude smaller than ε. Hence, upon applying tε , this implies that at least M − n coordinates 
of P̃ (z) are ±1. Letting x1, ..., xn denote the remaining coordinates, we see that

∥c(z)∥ℓp = ∥ P̃ (z)∥ℓp

∥ P̃ (z)∥ℓq

= [(M − n) + ∑n
i=1 |xi |p]1/p

[(M − n) + ∑n
i=1 |xi |q]1/q

= (M − n)1/p−1/q [1 + ∑n
i=1 yp

i ]1/p

[1 + ∑n
i=1 yq

i ]1/q
,

(2.4)

where we have set

yi = |xi |
(M − n)1/q ≥ 0.

For any non-negative yi it is obviously true that

[1 +
n∑

i=1

yp
i ]1/p ≥ [1 +

n∑

i=1

yq
i ]1/q, (2.5)

since p ≤ q and this inequality is equivalent ∥x∥ℓp ≥ ∥x∥ℓq for any x ∈ Rn+1. Here we must again 
make the obvious modifications when q = ∞. Combining (2.5) with (2.4) we see that

∥c(z)∥ℓp ≥ (M − n)1/p−1/q

for all z ∈ Sd . !

8



J.W. Siegel Journal of Complexity 85 (2024) 101884

3. Lower bounds on manifold widths of Sobolev and Besov spaces

In this Section, we utilize Propositions 1 and 2 to obtain the following lower bound on the man-
ifold widths of Sobolev and Besov unit balls, which matches the upper bounds proved in [4,5] in all 
cases.

Theorem 2. Let # = [0, 1]d be the unit cube and 1 ≤ p, q, r ≤ ∞. For n ≥ 1, the manifold widths of the unit 
ball Bs

r,q of the Besov space Bs
r(Lq(#)) satisfy

δn(Bs
r,q)L p(#) ≥ Cn−s/d

for a constant C := C(s, d, p, q) independent of n.

We remark that although we only consider Besov spaces, a completely analogous (and even sim-
pler) proof applies to the unit balls of the Sobolev spaces as well.

Proof. It suffices to consider the case p ≤ q and r = 1. We will use Proposition 2 to prove that

sn(Bs
1,q)L p(#) ≥ Cn−s/d.

Utilizing Proposition 1 then implies the result.
Fix a non-zero C∞ function ψ supported on the unit cube [0, 1]d . Divide the cube into M = md

sub-cubes #i where

2n ≤ M ≤ Cn.

Let xi for i = 1, ..., M denote the bottom corner of the i-th sub-cube and define

ψi(x) = ψ(m(x − xi)).

Consider the map ) :RM → Lp given by

)(a) =
M∑

i=1

aiψi .

We note that a change of variables implies the following identity relating the moduli of smoothness 
of ψi and ψ ,

ωk(ψi, t/m)q = m−d/qωk(ψ, t)q.

Utilizing the sub-additivity of the modulus of smoothness (see [8]), we get

ωk()(a), t/m)
q
q ≤ C

M∑

i=1

aq
i ωk(ψi, t/m)

q
q = Cm−dωk(ψ, t)q

q

M∑

i=1

aq
i

where C is a constant depending upon k and q. Taking q-th roots and integrating with respect to t
using the definition (1.1), we obtain the bound

∥)(a)∥Bs
1(Lq(#)) ≤ Cm−d/q+s∥ψ∥Bs

1(Lq(#))∥a∥ℓq ≤ Cm−d/q+s∥a∥ℓq . (3.1)

We also easily calculate that

∥)(a)∥L p(#) = m−d/p∥ψ∥L p(#)∥a∥ℓp = Cm−d/p. (3.2)

Here the obvious modifications need to be made if q = ∞.
Composing the map c from Proposition 2 with ) and rescaling by Cm−d/q+s gives a map c̃ : Sd →

Bs
1,q by (3.1). Moreover, by (3.2) we have

9
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c̃(z) ≥ Cmd/q−d/p−s(M − n)1/p−1/q,

for all z ∈ Sd . Using that md = M and 2n ≤ M ≤ Cn finally gives

c̃(z) ≥ Cn−s

for all z ∈ Sd as desired. !
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