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SUMMARY

Gas separation using polymer membranes promises to dramatically
drive down the energy, carbon, andwater intensity of traditional ther-
mally driven separation, but developing the membrane materials is
challenging. Here, we demonstrate a graph machine learning (ML)
strategy to guide the experimental discovery of synthesizable poly-
mer membranes with performances simultaneously exceeding the
empirical upper bounds in multiple industrially important gas-separa-
tion tasks. Two predicted candidates are synthesized and experimen-
tally validated to perform beyond the upper bounds for multiple gas
pairs (O2/N2, H2/CH4, and H2/N2). Notably, the O2/N2 separation
selectivity is 1.6–6.7 times higher than that of existing polymer mem-
branes. The molecular origin of the high performance is revealed by
combining the inherent interpretability of our ML model, experi-
mental characterization, and molecule-level simulation. Our study
presents a unique explainable ML-experiment combination to tackle
challenging energy material design problems in general, and the
discovered polymers are beneficial for industrial gas separation.

INTRODUCTION

The creation of novel membrane materials with tailored properties holds the key to
providing low-energy solutions to many of the separation-related challenges facing
humanity in health, energy, and sustainability. Membrane-based separation tech-
nologies promise to dramatically drive down the energy, carbon, and water intensity
of many traditional thermally driven separation processes.1 Among different separa-
tion applications, gas separations are central to many technological innovations and
advancements in clean energy industries (e.g., H2 purification and air separation)
and climate-change remediation (e.g., carbon capture). Membranes take advantage
of material selectivity rather than thermal energy to perform separations,2–5 with fast
and selective transport being their crucial attributes. High selectivity yields high
product purity and low operation costs, while high permeability reduces membrane
area and capital and energy costs.2,3,5 Polymer membranes are of particular interest
given their unique advantages, such as lower cost and greater adaptivity. However,
polymer membranes are frequently challenged by a tradeoff between permeability
and selectivity, which is known as the ‘‘upper bound’’ line in a plot of selectivity
versus permeability6–8 for different gas pairs (e.g., Figure 1A).

To transcend this ‘‘upper bound,’’ novel strategies, such as polymers of intrinsic
microporosity (PIM),9–12 thermally rearranged polymers,12–16 and doping,17–20

have been explored, but they are still far away from large-scale production. State-
of-the-art gas-separation polymer membranes are mainly based on polyimides but
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most of their properties are below the upper bound, as are those of commercial
polymer membranes (Figure 1A). Despite the advancement of theoretical and
modeling tools,21–26 developing a new polymer that has high gas-separation perfor-
mance for target gas pairs is still very time consuming.

Data-driven approaches leveraging machine learning (ML) algorithms promise to help
scan large chemical spaces efficiently to identify promising candidates. As early as
1994, Wessling et al.27 proposed an infrared-spectrum-based deep neural network
to study the permeability of CO2. More recently, Zhu et al.28 used a hierarchical finger-
print and trainedGaussian process regression (GPR)models based on 315 polymers for
major industrial gases. However, the training data have very few points above the ‘‘up-
per bound’’ and, therefore, GPR predictions are hardly above it either. Barnett et al.29

utilized the daylight-like fingerprint and trainedGPRmodels basedon the experimental
data of six gases with !400–700 data for each gas. Using the GPR models, they
screened a larger database, identified two promising polymers, and successfully

A D C

B

Figure 1. Gas-separation performance upper bound, and the GREA-SGIR method for designing polymers above this upper bound

(A) Plot showing the 2008 upper-bound correlation for O2/N2 separation using the labeled training data, where all the polyimides in the training data are

colored blue, the rest of the training data are colored orange, and three representative commercial polymers in the gas-separation industry (Matrimid,

CA-2.45, and PSF) are colored gray.

(B) Flow diagram of GREA. The small training data are first represented and augmented by GREA through rationale-environment separation and/or

environment-based augmentation.

(C) The imbalanced training data are further balanced by the SGIR algorithm through two-step balancing, confident prediction balancing, and label-

anchored mixup balancing utilizing the large unlabeled polymer structure dataset. After the model is trained, screening on the unlabeled dataset is

carried out to identify promising candidates for various gas-separation tasks.

(D) Experimental synthesis and testing are then conducted to validate the prediction results. Rationale interpretations from GREA and MD simulations

are performed to gain chemical insights from the predicted results.
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synthesized them. However, the fingerprinting method used to represent polymers
made the prediction result unexplainable, and the two identified polymers were only
targeted for one separation task (CO2/CH4). Yang et al.30 combined molecular dy-
namics (MD) simulations and supervised ML to identify promising polymer candidates
and were able to explain their prediction using SHAP (Shapley additive explanations).31

While many polymers were predicted to have above-the-upper-bound performance,
no experimental validation was carried out. Therefore, using ML to design polymers
with performance above the gas-separation upper bounds remains a daunting chal-
lenge due to the overall limited data availability (small data), extreme data scarcity
above the upper bound (imbalanced data), difficulty in explaining the results (model
interpretability), and the need for experimental validation.

In this work, we first employ a unique explainable data-augmentation graph neural
network (GNN), namely graph rationalization enhanced by environment-based aug-
mentations (GREA; Figure 1B), to tackle the small data problem. The polymer graph
is first divided into two parts, the rationale subgraph and the environment subgraph.
The GREA method can highlight the essential features in the polymer graph repre-
sentation through the rationale subgraph so that small data can effectively train the
model while minimizing overfitting and improving generalizability. Since the labeled
data are limited (500–800 per gas), a semi-supervised framework is used to leverage
the much larger unlabeled dataset, PoLyInfo.32 Semi-supervised learning has been
widely demonstrated to enhance model performance in the presence of balanced
labeled data.33,34 However, in cases of imbalanced data, applying semi-supervised
learning without considering label imbalance may lead to decreased model perfor-
mance,35 particularly for minority labels located above the upper bound in our study
(e.g., Figure 1A). To address this issue, we leverage a framework known as semi-su-
pervised graph imbalanced regression (SGIR; Figure 1C), which has proved to be
effective in reducing prediction errors within the under-represented label range
through two-step balancing.36 Using the established models, we screen the largest
polymer database, PoLyInfo,32 and identify two polymers that are predicted to
simultaneously outperform the 2008 upper bounds for three different gas pairs
(O2/N2, H2/CH4, and H2/N2), including the challenging O2/N2 separation due to
the similarity in their molecular sizes. Both polymers are synthesized and tested
experimentally (Figure 1D). It is worth highlighting that the exceptional O2/N2 selec-
tivity of one of the polymers, which was initially predicted through our model, has
been experimentally confirmed through synthesis and measurement. The resulting
selectivity value of 17.48 is particularly noteworthy, being 1.6–6.7 times higher
than that of many existing state-of-the-art polymer membranes.37 The ML predic-
tions are found to be 80% accurate in terms of whether their performance is above
the upper bound. Meanwhile, experimental characterization andMD simulations are
performed to better understand the origin of the high performance of the two poly-
mers. The learned rationale is used to interpret the ML model decision-making pro-
cess, following which the backbone rigidities are analyzed using the semi-empirical
atomistic model. Our study presents a unique self-explainable ML technique to
tackle small and imbalanced data problems frequently encountered in materials
development missions, and the resulting polymers may be used for high-perfor-
mance membranes to separate several industrially critical gas pairs.

RESULTS

ML models

The GREA model is implemented to address the data insufficiency issue in the
training dataset as well as to provide model interpretability. It is composed of three
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parts: a rationale separator, a graph encoder, and a property predictor (Figure 1B).
The rationale separator takes a polymer graph as input (see experimental proced-
ures for details of polymer representations) and then outputs a probability value
of each atom in the graph. These probabilities represent the likelihood of each
atom being classified as the rationale of the polymer. A rationale is the causal sub-
graph structure extracted for accurate and interpretable graph property predic-
tions—in other words, the key dictating the properties. In contrast, the remaining
subgraph is referred to as the environment subgraph corresponding to the non-
causal part, and the model treats it as ‘‘noise’’ when predicting properties. The envi-
ronment subgraph is necessary because it can not only provide complementary in-
formation to the rationale subgraph, making the entire polymer graph structure
chemically valid and complete, but also serve as small perturbations to the identified
rationales enabling data augmentation. The training data-augmentation feature in
GREA is realized by removing the environment subgraph from the rationale sub-
graph and/or combining it with different polymers’ environment subgraphs in the
latent space. Here, a two-layer graph isomorphism network (GIN)38 is implemented
as the rationale separator. The graph encoder also takes a polymer graph as input,
and it outputs the graph representation, which is further projected to a graph label
by the property predictor. A five-layer GIN is implemented as the graph encoder,
and a three-layer multilayer perceptron (MLP) is implemented as the property pre-
dictor. Training details are included in experimental procedures. The interested
reader is referred to Liu et al.39 and references cited therein for more detailed de-
scriptions. Two other popular GNNs used in polymer property regression, including
graph convolutional network (GCN)40 and GIN, are also trained as baselines to the
GREA model. Section 1 of the supplemental notes provides details of these models.
All models are trained using SGIR (Figure 1C; see experimental procedures for de-
tails). For simplicity, we only call these methods by the GNN part (namely, GREA,
GCN, and GIN) in the following text, omitting the SGIR part in the name.

The labeled data are mainly collected from the Membrane Society of Australasia
(MSA)41 Polymer Gas SeparationMembrane database,42 and a thorough data-clean-
ing process is performed. All homopolymers with no gas-transport property data re-
corded from the PoLyInfo database (12,769 data points) are used as unlabeled data
(see section 2 of supplemental notes for the description of the two datasets and
data-cleaning details). Five important industrial gas pairs are studied (H2/N2, H2/
CH4, O2/N2, CO2/N2, and CO2/CH4). Given the small amount of available data, all
labeled data are used for training. As shown in Figure 2, the dominant majority of
labeled data (orange points) lies below the 2008 upper bounds (ranging from
93.0% to 98.6% across the five different gas pairs), which would impair the general-
ization of the trained model to the above-the-upper-bound regime. Randomly split-
ting the labeled data for the validation set may not include data points above the up-
per bounds, potentially leading to overfitting to the below-the-upper-bound
regime. To enhance the model’s applicability in predicting candidates that can
potentially have above-the-upper-bound performance, we use data above the up-
per bound as the validation set instead of the more conventionally used random split
of the whole dataset. We make this deliberate selection of validation set to further
mitigate the model bias caused by the majority of labeled data and better meet
our design goal to discover polymer candidates above these upper bounds. All
methods run ten times independently, and the means and standard deviations of
the mean absolute error (MAE) on the validation sets are reported in Table 1. For
all gases except CO2, GREA outperforms the other two graph models. For CO2,
GREA is a close second to GCN. The realization of rationale separation and environ-
ment replacement augmentation is the key to the success of GREA. It allows the
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model to focus only on the rationale part of the input polymer graph and be robust to
the noise to maximize the performance of the downstream task, which should be
especially helpful when training with small data.

Screening the PoLyInfo database for promising candidates

The trained GREA models for different target gases are then applied to 12,769
previously synthesized polymers from the PoLyInfo database to predict their
gas-transport permeabilities. The prediction on this large repository represents a
large amount of new polymer gas-transport data that have never before been
experimentally tested, providing useful guidance on the design of high-perfor-
mance polymer membranes. Figure 2 shows the result of gas permeability-selec-
tivity predicted on polymers in the PoLyInfo database (shown in blue circles)
for the five gas-separation tasks, plotted in the format of the Robeson plot, where
the x axis log10(P) is the predicted permeability in the unit of log10barrer, and the y
axis is the calculated selectivity a derived from the ratio of permeabilities of the
gas pairs on the log10 scale. For the screened polymers, the medians from the
ensemble of ten independent models are reported. Most of the predicted perme-
ability-selectivity values still lie below the upper bounds for all the studied gas
pairs, which is consistent with the training data. However, the predicted areas
(blue) also extend beyond the training areas (orange), suggesting that GREA can
have certain extrapolatability.

Figure 2. Training and screening for polymer membrane candidates

Robeson plot visualization for five different separation tasks (A) O2/N2, (B) H2/CH4, (C) H2/N2, (D) CO2/CH4, and (E) CO2/N2, including the training data

(orange circles) and the median values of prediction results on PoLyInfo dataset (blue circles). The 2008 upper bounds for different tasks are shown as

black dashed lines. The x axis log10(P) is the predicted permeability in the unit of log10barrer, and the y axis is the predicted selectivity a on the log10

scale.
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Similar to previously published data for polymer screening,29,30 a reverse selectivity
problem in the prediction results of our ML models is observed. For example, some
polymers in the PoLyInfo database are predicted to be N2/O2 and CH4/H2 selective,
which is not physical. We attribute this problem mainly to the propagation of uncer-
tainty, whereby the prediction uncertainty on the permeability values is further prop-
agated to the calculated selectivity values. As a result, some of the polymers in our
dataset exhibit reverse selectivity. Another reason for the observed reverse selec-
tivity in prediction models is the presence of reverse selective training data. Our
analysis of the training data revealed that for H2/CH4 separation, there were 18
reverse selective training data, mainly comprising glassy polymers such as
substituted polyacetylenes,43–45 which have very high free-volume and gas-perme-
ability values. This makes it possible for smaller gas molecules to travel slower, lead-
ing to reverse selective behavior. For O2/N2 separation, six reverse selective training
data were identified, and the reverse phenomenon mostly resulted from the data in
the MSA database itself. However, since the percentage of such data is relatively
small (6/785), we do not expect any significant issues to arise from these training
data. This also applies to the cases of CO2/CH4 (4/672) and CO2/N2 (1/730), and
no reverse selective training data were present for H2/N2 separation. Moreover,
for CO2/CH4 and CO2/N2, the distinctions in condensability and reactivity between
CO2 and other light gases further add complexity to the situation and could exacer-
bate the issue of reverse selectivity prediction.

Experimental synthesis and validation

Based on the screening results, we select two high-performance candidates for
experimental validation. They are poly[(naphthalene-1,5-diamine)-alt-(biphenyl-
3,30:4,40-tetracarboxylic dianhydride)] (PoLyInfo ID: P130093) and poly[isophorone-
diamine-alt-(biphenyl-3,30,4,40-tetracarboxylic anhydride)] (PoLyInfo ID: P432352).
Their molecular structures are shown in Figure 3A. The two candidates were chosen
because their performances are predicted to be simultaneously above the upper
bounds for multiple gas pairs, especially showing exceptional O2/N2 selectivity.
Equally importantly, they are aromatic polyimides, normally the polycondensation
product when aromatic dianhydrides are reacted with diamine monomers. Both pol-
yimides exhibit conventional structural constituents, favorable processability, and
economic feasibility. This provides us with adequate confidence in their synthesiz-
ability. The two polymers are synthesized via conventional polycondensation reac-
tions (see experimental procedures for synthesis details). Their permeabilities for
the five different gases are measured, and the selectivities for the five gas pairs
are calculated (see experimental procedures for gas-permeation test details).

The experimental results (Table 2) are in reasonable agreement with the GREA
model prediction (Figures 3B–3F). Since predicting above-the-upper-bound candi-
dates is deemed an extrapolative task and the labeled training data size is relatively

Table 1. Model performance comparison for the prediction of five gas-permeability tasks

Model

Gas

N2 O2 H2 CH4 CO2

GREA 0.571 G 0.083* 0.482 G 0.090* 0.432 G 0.113* 0.588 G 0.108* 0.487 G 0.164

GCN 0.650 G 0.217 0.536 G 0.149 0.447 G 0.064 0.609 G 0.125 0.461 G 0.091*

GIN 0.797 G 0.369 0.568 G 0.081 0.495 G 0.088 0.596 G 0.109 0.568 G 0.310

Average MAE values with standard deviations on the validation dataset are shown. The best-performing

model for each task is marked with an asterisk. All MAE values are in units of log10barrer, where 1 barrer =

1 3 10"10 cm3 [STP] cm2/(cm3 s cmHg).

ll
OPEN ACCESS

6 Cell Reports Physical Science 5, 102067, July 17, 2024

Please cite this article in press as: Xu et al., Superior polymeric gas separation membrane designed by explainable graph machine learning, Cell
Reports Physical Science (2024), https://doi.org/10.1016/j.xcrp.2024.102067

Article



small, it is not surprising that the prediction uncertainty is relatively high. However, a
widely used performance gauge assessing the potential of a polymer material for
gas separations is the position of the permeability/selectivity data relative to the up-
per bounds. Therefore, we consider the accuracy of the models as if they correctly
predict the placement of the properties in the permeability-selectivity plot with
respect to the upper bounds (i.e., a binary classification with labels of ‘‘below’’ or
‘‘above’’). According to Figures 3B–3F, the GREA model achieves an accuracy of
8/10, where there are ten data points in total (two polymers and five separation
tasks), eight of which are predicted to be correctly located with respect to the upper
bounds compared with the experimental results. From only the permeability point of
view, Figure 3G shows the parity plot between the predicted permeabilities and the
experimental measurements, revealing a good correlation with R2 = 0.637. The pre-
dicted permeability order for the two candidates is H2 > CO2 > O2 > N2 > CH4,
consistent with the order of kinetic diameters of these five gases (H2 = 2.89 Å,
CO2 = 3.3 Å, O2 = 3.46 Å, N2 = 3.64 Å, and CH4 = 3.8 Å).2 This indicates that the
GREA models can capture the critical role of diffusion in the gas-permeation
process, which applies to the two candidates belonging to the polyimide class. How-
ever, it is important to note that comparing the R2 value of ten points in this study
(two polymers, five tasks) with R2 values obtained in previous works or models, where
R2 values of around 0.9 can be obtained on the randomly selected holdout test data-
sets (usually 20% of the entire dataset),28–30 is not meaningful. The sample sizes
differ significantly, making such comparisons invalid.

A

D

E F G

CB

Figure 3. Experimental validation of the two selected polymer candidates

(A) Repeat units of the selected candidates: P130093 (upper) and P432352 (lower).

(B–F) Robeson plot visualization for five different separation tasks using data from different sources, including (1) 2D box plots of the ten independent

GREA prediction results of P130093 (red) and P432352 (green) polymers (shaded rectangle box denotes the area within the first and third quantile, the

dot in the box denotes the median, and the whiskers extend from the rectangle box by 1.53 the interquartile range), (2) the experimental measurements

of the P130093 (red) and P432352 (green) polymers (inverted triangle symbols), (3) the prediction results of the P130093 (red) and P432352 (green)

polymers from Polymer Genome (square symbols), and (4) experimental results of representative commercial polymer membranes Matrimid, CA-2.45,

and PSF (light-gray symbols). The 2008 upper bounds for different tasks are shown as black dashed lines. The x axis log10(P) is the permeability in units of

log10barrer, and the y axis is the calculated selectivity a on the log10 scale.

(G) Predicted permeability using GREA vs. experimentally measured permeability of P130093 (star) and P432352 (diamond) for N2 (blue), CH4 (orange),

H2 (green), CO2 (red), and O2 (purple). Each circle is the median of ten independent prediction results, and the error bars are equal to the second or third

quantile added with 1.53 the interquartile range. The black dashed line represents parity.
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We find that using unlabeled data is important in improving the accuracy of these
extrapolative tasks. As mentioned earlier, the performance of a model herein is char-
acterized by whether the model can correctly predict above or below the upper
bounds for five different gas pairs of the two synthesized polymers. If we use
GREA trained only using labeled data (GREA-L), with no SGIR algorithm imple-
mented, the accuracy becomes 5/10 (Figure S2). While the validation error of the
GREA-L is smaller than that of the GREA (Table S1), its extrapolative predictivity is
worse. This may be attributed to the overfitting of GREA-L given the way we trained
these models using all the labeled data for training and part of them for validation.
The GREA model predictions are also more accurate than the conventional GNNs
without environmental augmentation, both trained using labeled and unlabeled
data (with SGIR) and only using labeled data (without SGIR, denoted by ‘‘-L’’): for
example, for GCN, accuracy = 5/10; for GIN, accuracy = 5/10; for GCN-L, accuracy =
5/10; and for GIN-L, accuracy = 6/10 (Figures S3–S6). This highlights the benefit of
promoting the rationale features in the model training, which is helpful especially
given the small training data. In the meantime, the GNN-based models are appar-
ently superior to non-GNN-based models regarding the validation MAE (Table S1)
as well as the prediction accuracy of the two tested polymers (random forest [RF], ac-
curacy = 4/10; GPR, accuracy = 5/10; MLP, accuracy = 6/10; see Figures S7–S9), sug-
gesting the advantage of graph representation learning over traditional molecular
fingerprints for polymer representation. Instead of hand-crafted or static fingerprint
features, graph representation learning can automatically extract the important fea-
tures through learning for different downstream tasks. The GREAmodel is much bet-
ter than GPR used in previous gas-permeability ML studies, but it is noted that the
GPR model trained in Barnett et al.29 has some of the labeled data different from
the dataset used in the present study, which we do not have access to. The model
by Kuenneth et al.46 is integrated into Polymer Genome,47 which is by far the only
permeability model that is openly accessible. We used the Polymer Genome plat-
form to predict the gas permeabilities of our experimental polymers, but the
predicted selectivity-permeability positions for the different gas pairs are far
below the upper bounds (square symbols in Figures 3B–3F), which are also far
from the actual experimental results. Similar prediction performance (Figure S10)
is also observed for the pretrained model with the best performance on the
test data (model: ‘‘DNN_BLR_fing’’; accessed through https://github.com/jsunn-y/
PolymerGasMembraneML) reported by Yang et al.,30 suggesting the efficiency
and accuracy of our proposed framework dealing with small and imbalanced data.

Performance analysis of the two polymers

For P130093, its performance is above the upper bounds of the O2/N2, H2/CH4, and
H2/N2 gas pairs, while for P432352, its performance is above the upper bounds of
the H2/CH4 and H2/N2 gas pairs. Commercial gas-separation membranes, e.g.,

Table 2. Experimental pure-gas-permeation data for the two selected candidates and three commercial polymer membranes

Polymer

Permeability coefficient (barrer) Selectivity coefficient

N2 O2 H2 CH4 CO2 O2/N2 H2/CH4 H2/N2 CO2/CH4 CO2/N2

P130093 0.025 0.437 23.1 0.017 1.548 17.48 1358.82 924.00 91.06 61.92

P432352 0.165 1.199 54.5 0.113 5.25 7.27 482.30 330.30 46.46 31.82

Matrimid 0.32 2.1 18 0.28 10 6.56 64.29 56.25 35.71 31.25

CA-2.45 0.15 0.82 12 0.15 4.8 5.47 80.00 80.00 32.00 32.00

PSF 0.25 1.4 14 0.25 5.6 5.60 56.00 56.00 22.40 22.40

The permeability coefficients of the two selected candidates weremeasured using a constant-volume variable-pressuremethod62 at 35#C, and the permeabilities

of the three commercial polymers were from Sanders et al.2 The selectivity coefficients were calculated based on Equation 2.
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Matrimid, CA-2.45, and PSF, mostly have high gas permeability and selectivity while
maintaining good physical and mechanical properties.2 As shown in Table 2 and
Figures 3B–3F, our newly identified P130093 outperforms the commercial polymers
by a large margin for O2/N2, H2/CH4, and H2/N2 gas pairs, and it also has higher se-
lectivities than commercial ones for CO2/CH4 and CO2/N2 separations. The perfor-
mance of P432352 is much better than that of commercial ones for H2/CH4 and H2/
N2 pairs, and comparable to themwith the remaining gas pairs. Among these, O2/N2

separation is well known to be difficult because of the relatively small kinetic diam-
eter difference between the oxygen molecule (kinetic diameter = 3.46 Å) and nitro-
gen molecule (3.64 Å). The fact that we found a polyimide polymer guided by the
GREA model to have O2/N2 separation performance above the upper bound itself
is of significant practical importance. It is worth noting that there are existing poly-
mers with high permeabilities above the upper bound, but almost all of them have
smaller selectivity than the P130093 polyimide (Figure S11A). These polymers are
mainly based on polymers with high free volume, which are at the laboratory
research stage, expensive, and difficult to synthesize. The synthetic accessibility
score (SAscore)48 is calculated for each of these polymers and compared with the
SAscores of P130093 and P432352 (see section 3 of supplemental notes and Fig-
ure S11B). The SAscore of P130093 is the lowest among the high-performing poly-
mers for O2/N2 separation, suggesting that the identified P130093 is the easiest to
synthesize and thus has greater potential for commercialization. The exceptional O2/
N2 selectivity of P130093 (17.48) is particularly noteworthy, being 1.6–6.7 times
higher than that of existing gas-separation polymers, including PIM-based (exhibits
ideal O2/N2 selectivity in the range of 2.6–6.8), thermally rearranged (exhibits ideal
O2/N2 selectivity in the range of 3.7–8.1), and carbon molecular sieves (CMS)-based
(exhibits ideal O2/N2 selectivity in the range of 2.8–11.1) polymermembranes.37 This
suggests the power of utilizing ML models to identify those ‘‘hidden gems’’ in the
existing polymer database that have simple structures, can be derived from
commercially available monomers, and can be processed similarly to commercially
available polymer membranes.

From GREA rationale to force-field interpretation

Between the two identified polymers, P130093 always has higher selectivity while
P432352 always has higher permeability regardless of the gas tested (Figures 3B–
3G). We combine the interpretability of the GREA model, semi-empirical analysis,
experimental measurements, and MD simulations to comprehensively understand
such differences at the molecular level. The rationale separation process in GREA not
only helps improve the model performance but provides natural interpretability to
the ML prediction, making it no longer an unexplainable ‘‘black box.’’ The rationale
separator predicts the probability of each atom in the polymer graph being classified
as the rationales, which are the causal substructures that contribute the most to the
downstream property predictions. We emphasize that GREA is self-explainable, which
is different from other post hocML interpretationmethods based on the rank of feature
importance (e.g., SHAP).Often, the explanation of the feature importance requires pre-
defined hand-crafted structural or chemical information as the input features, and some
of these predefined features are not directly interpretable and with no obvious physical
meaning.30 However, this is not a problem for the atom-level interpretability from the
rationalization of GREA. By visualizing the top 30% rationale subgraphs based on
the averaged rationale scores of ten independent runs, we gain physical insights into
the prediction and atom-level molecular features.

The rationale subgraphs are highlighted in green in the top 30% rationale plots
shown in Figure 4A. The darker the green color on the atom, the higher the rationale
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score (see also Figure S12, the top 50% rationale plot for comparison, which includes
more atoms). In general, higher attentions are on atoms along the backbone (the
shortest path between the two polymerization points, ‘‘*’’). This makes sense, since
these atoms and the bonds among the backbone determine its stiffness, which im-
pacts the local segmental motions of polymer chains that further influence the open-
ing and closing of transient free-volume elements in the polymer membranes. This
phenomenon is captured by GREA. For example, in all cases, the carbon atoms
along the backbone that connect two aromatic rings in the dianhydride group are
always identified as rationales. These atoms are involved in one of the weakest dihe-
dral angles of the whole structure, twisting the planar structure of the dianhydride
group and weakening chain packing, thus yielding a high fractional free volume
(FFV) and permeability (see the semi-empirical analysis for further discussion).
Another functional group that is highlighted by GREA is the imide ring group (the
ring having a nitrogen atom bonded to two carbonyl groups), which receives higher
attention than the aromatic rings in the dianhydride part (the comparison is more
obvious in the top 50% rationale plot; see Figure S12). This can be attributed to
the polar carbonyl groups in the imide ring, which is the key factor in the formation
of a charge-transfer complex (CTC) between the dianhydride and diamine groups.49

The CTC in polyimides is known to increase the interchain attractive forces, thus
effectively increasing the chain rigidity and enhancing the selectivity. The two poly-
mers have different diamine parts, and the model can also capture the difference.
For example, the naphthalene group in P130093 is highlighted by the aromatic car-
bon atoms along the backbone, which are directly related to the dihedral angles that
control the free rotation of naphthalene moiety around the imide linkages (e.g., C–N
bonds), whereas the cyclohexane ring structure in P432352 is mostly accentuated by

Figure 4. Interpretation of results

(A) Molecular rationale visualization for P130093 (left column) and P432352 (right column) on five permeability prediction tasks, including H2, O2, N2,

CO2, and CH4 (top to bottom). GREA estimates the probability of each node being classified as rationales. The rationale subgraphs are highlighted in

green: the darker the color, the higher the rationale score.

(B) The energy associated with the highlighted dihedral angles of P130093 and P432352. The studied dihedrals are highlighted in red on the right. The

force constant k is calculated for each energy well by fitting a quadratic function at the bottom of each well.

(C) Experimental diffusivity (left) and solubility (right). Data are represented as mean, and the error bars are equal to the standard deviations. ‘‘(*5)’’ on

the x axis means the corresponding solubility values are multiplied by 5 to make the bars look obvious in the graph. H2 is not included in the

measurement because it has a very short lag time and cannot be detected by our existing techniques.

(D) Top: pore-size distribution of the two polymers. Bottom: two snapshots show the free-volume elements (colored green) detected in the MD

simulation of the two polymers.
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the two carbon atoms with pendant groups (e.g., the methyl group). The non-planar
structure of the cyclohexane ring as well as the methyl groups adds to the steric frus-
tration between polymer chains, resulting in more free-volume elements in the sys-
tem, therefore contributing to the high permeability of P432352.

We used a semi-empirical force field to further analyze the strengths of dihedral an-
gles in the backbones identified by the GREA rationale (see experimental proced-
ures for details of semi-empirical analysis). The calculated force constants are shown
in Figure 4B, which is a measurement of the stiffness of the corresponding dihedral
angle. Dihedral angles D1 and D3 (Figure 4B), which are the identical structures con-
necting two aromatic rings in the dianhydride group in both polymers, have almost
the same shape of energy well and force constant (k1 = 0.0034, k3 = 0.0032). Given
that both polymers have the same dianhydride group, different diamine groups of
P130093 and P432352 cannot change the stiffness of this common dihedral angle
located inside the dianhydride part. For the difference between P130093 and
P432352, the strengths of dihedral angles D2, D4, and D5 are examined. Only
one dihedral angle (D2) is calculated for P130093 due to its structural symmetry,
whereas two dihedral angles (D4 and D5) are considered for P432352. The energy
constants of the two dihedral angles in P432352 (k4 = 0.0035, k5 = 0.0115) are larger
than the energy constant of the dihedral angle in P130093 (k2 = 0.0023), indicating
the higher stiffness of the backbone in P432352. Amore rigid structure often leads to
a less efficient chain packing,7 offering more free-volume elements for the diffusion
of gas molecules. This again interprets why P432352 has higher gas permeabilities.
Such backbone stiffness will influence the packing of the polymers and thus the FFV,
which is critical to the permeability and selectivity. This semi-empirical force-field
analysis also in turn proves the effectiveness of the self-explaining ability of GREA.

Gas-transport properties analysis

To further understand the high performance of the two polymers, we measured their
glass transition temperature (Tg) and calculated their FFVs, diffusivities, and solubil-
ities (see experimental procedures for measurement and calculation details). As
shown in Table 3, a high Tg of 300#C (for P432352) and a non-detectable Tg (for
P130093) imply high rigidity of the polymer backbones, which is beneficial for
sieving gases based on their sizes. Moreover, both polymers have moderate to
slightly high FFV, which corroborates their high performance. Besides, P432352
has a slightly higher FFV (16.0%) than P130093 (14.5%), which explains why
P432352 has higher gas permeabilities. From Figure 4C, we can see the tested light
gases such as O2, N2, and CH4 display size-sieving characteristics for both polymers,
evidenced by the direct proportion between their diffusivities corresponding to their
kinetic diameters. Moreover, both polymers show strong adsorption selectivity for
CO2 with high solubilities, which is a typical observation for most polyimides.

To support the experimental results, MD simulations were used to study these
two polymers and calculate their FFVs and pore-size distributions (PSDs) (see

Table 3. Experimentally measured and calculated properties (density, FFV, and Tg) and MD-

calculated FFV (denoted as FFV-MD) of the two synthesized polymers

P130093 P432352

Density (g/cm3) 1.3119 1.1652

FFV 14.5% 16.0%

Tg (#C) not detectable 300

FFV-MD 15.6% 17.7%
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experimental procedures for simulation details). The ability of our MD simulations to
correctly predict the trend of FFV is confirmed by comparing the results with the
experimental values in the literature for different polyimides50 (Figure S13 and
Table S2). As shown in Table 3, the FFVs from MD simulations show the same trend
as the experimentally calculated FFVs, where P432352 possesses a slightly higher
fraction of free volumes than P130093, resulting in higher gas permeabilities. The
PSD plot in Figure 4D also supports this finding, where the PSD of P432352 is
right-shifted relative to that of P130093, suggesting that P432352 generally has
larger pores, which contribute to higher gas permeabilities but lower selectivities
than P130093.

DISCUSSION

In this section, we further discuss several important observations for the different ML
models used. Without using unlabeled data to balance the data distribution, the
prediction performance of GREA-L against that of the baselines (GCN-L, GIN-L,
RF, GPR, and MLP) is compared in Table S1. Significant improvements in prediction
performance over all baselines and prediction tasks are observed from GREA-L.
Instead of a hand-crafted or static fingerprint feature, graph representation learning
can automatically extract the important features through learning for different down-
stream tasks. Moreover, the realization of rationale separation and environment
replacement augmentation is the key to the success of GREA-L. It allows the model
to focus only on the rationale part of the input polymer graph and be robust to the
noise to maximize the performance of the downstream task.

However, to prevent the models from overfitting on the validation set since it is also
part of the training data, unlabeled data are introduced. We examine the perfor-
mance of the GNN-based models using both the labeled and unlabeled data
(GREA, GCN, and GIN). Compared with GNN-based models trained only on the
labeled data (GREA-L, GCN-L, and GIN-L), leveraging the unlabeled data during
training iterations can undermine the model performance on the validation set,
i.e., all the GNN-based models see higher average MAE after adding the unlabeled
data (Tables 1 and S1). This can be attributed to the mitigation of overfitting on the
validation set and the gain of model generalizability at the expense of validation ac-
curacy. In addition, GREA is still the best among the models leveraging the unla-
beled data except for one case of CO2 permeability prediction, again suggesting
the improved performance from graph rationalization and environment replacement
augmentation.

It is worth noting that two model performance metrics were used to evaluate and
compare different models: the MAE on the validation set (above-the-bound training
data) and the binary classification accuracy on the two test polymers. The validation
set is used to select the best model, i.e., the GREA model, since the test accuracy is
unknown before synthesizing and experimentally measuring the polymer properties.
The test accuracy serves as a posterior verification of our method. The variations in
validation and test performance between the models, such as MLP outperforming
GCN-L in the test data (Figures S4 and S9) but underperforming in validation data
(Table S1), can be potentially attributed to the problem of overfitting. GCN-L could
potentially be more prone to overfitting than MLP, since it has a larger number of
parameters (see experimental procedures for detailed model structures).

The focus of this study is to build up efficient and effective ML models to identify
high-performance polymer membranes in the existing PoLyInfo database that are
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suitable for industrial upscaling. While there are state-of-the-art polymers that have
significantly outperformed the 2008 upper bound for gas separation, we did not use
the most recent upper-bound lines in our study, because the majority of the poly-
mers that define the latest upper-bound lines are highly complicated polymers
with ladder or semi-ladder backbone structures that involve highly complex synthe-
sis procedures.2,9,10,51 These complex polymers are not well represented in the
PoLyInfo database, which is intended to serve as a more general application data-
base for polymers. Instead, we aim to identify ‘‘hidden gems’’ in the PoLyInfo data-
base that have accessible structures, preferably can be derived from commercially
available monomers, and can be processed similarly to commercially available poly-
mer membranes. Our potential next step is to use ML techniques to design more
complicated polymer structures, such as ladder polymers, for improved gas-separa-
tion performance. Nevertheless, our discovered polymers, although much simpler
than these more complicated polymers, showed O2/N2 selectivity that is 1.6–6.7
times higher than that of existing gas-separation polymers, including ladder and
thermally rearranged polymers.37

Our study focused solely on pure gas permeability due to the extremely limited
availability of mixed-gas-permeability data. We trained our ML model using only
pure-gas-permeability data to identify promising candidates for further experi-
mental testing. The ML framework may be extended to binary permselectivities
once sufficient data become available. Additionally, various factors, such as temper-
ature, molecular weight, aging, and plasticization, can significantly affect the gas
permeabilities of polymer membranes.52–54 Incorporating these high-level physical
and chemical features along with other process-related factors intoMLmodels could
potentially enhance the accuracy of predictions. However, the absence of such data
for the candidate polymers prevents us from using these factors at the current
stage.53 Our presented model focuses on capturing the intrinsic separation perfor-
mance based only on repeated unit structural information. We make the assumption
that the molecular weight of each polymer is sufficiently high, a prerequisite for
proper film formation, and treat the temperature-dependence character of perme-
ability as part of the noise in the training data. For the two polymers identified, we
made sure that the molecular weights were sufficiently high to allow for effective
film formation via casting and conducted the permeability measurements at the
same temperature for gas permeation.

In conclusion, we have demonstrated the ability of the graph-augmentedMLmodel,
GREA, and graph-imbalancedML framework, SGIR, to guide the design of polymers
with performances simultaneously exceeding the theoretical upper bounds in sepa-
rating multiple gas pairs. The two predicted promising candidates that are experi-
mentally synthesized and tested are able to validate the ML model prediction.
The exceptional gas-separation performance of the two polymers, especially the ul-
trahigh O2/N2 selectivity of P130093, highlights the potential of utilizing ML models
to accurately identify simple-structured polymers from commercially available
monomers in the existing polymer database. The rationales in the GREA model
can shed light on the molecular-level origin of the high performance of these poly-
mers. This ML model interpretation is further supported by the experimental charac-
terization and calculation of the FFV and Tg, the semi-empirical force-field analyses
of key dihedral angles identified by GREA, and the MD calculation of FFV and PSD.
Our study presents a useful ML technique to tackle small and imbalanced data prob-
lems that may be generalized to other materials development tasks, and the devel-
oped polymers may be used for high-performance membranes to separate several
industrially important gas pairs.

ll
OPEN ACCESS

Cell Reports Physical Science 5, 102067, July 17, 2024 13

Please cite this article in press as: Xu et al., Superior polymeric gas separation membrane designed by explainable graph machine learning, Cell
Reports Physical Science (2024), https://doi.org/10.1016/j.xcrp.2024.102067

Article



EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Requests for further information and resources and materials should be directed to
and will be fulfilled by the lead contact, Tengfei Luo (tluo@nd.edu).

Materials availability
This study did not generate new unique materials.

Data and code availability
A repository containing the data and codes for reproducing this work is available at
https://github.com/Jiaxin-Xu/PolyGasPerm-GREA.

Polymer representations

One of the key challenges in polymer informatics (PI) is to choose appropriate nu-
merical descriptors for polymer structures that can serve as feature vectors for
downstream ML applications. Among the descriptors commonly used in PI are mo-
lecular fingerprints and molecular graphs. Regarding molecular fingerprints, the
two types of most widely used methods are structural keys and hashed finger-
prints. Structural keys encode the structural information of a molecule into a binary
bit vector, and each bit position corresponds to whether the molecule possesses a
predefined structural feature. A representative structural key is the MACCS key,
containing 166 substructures or fragments.55 In contrast to structural keys, hashed
fingerprints do not require a library of predefined building fragments and are
created by enumerating all the possible fragments up to a given size and convert-
ing the fragments into numerical values based on a hash function. Extended-con-
nectivity fingerprints (ECFPs)56 is the most popular hashed fingerprinting method
considering the circular atom neighborhood. Besides molecular fingerprints, a
more natural representation of organic molecules like polymers is molecular
graphs, in which atoms are represented by nodes and bonds by edges. Molecular
graphs are usually further described by three matrices: the node feature matrix, the
edge feature matrix, and the adjacency matrix. Using graphs to represent mole-
cules is advantageous because it can be directly fed into GNNs for representation
learning with rich structural information, feasible for both molecular property pre-
diction and inverse design. The molecular graph property prediction task generally
consists of two phases: a graph encoder to learn a fixed-length molecular repre-
sentation from the graph and a prediction decoder to map the learned represen-
tation to the target property. The GNN-based representation learning (encoder)
consists of three general operations: message passing, node update, and readout.
The message-passing module updates the node representations iteratively with
aggregated information from the neighborhood. After obtaining the final node
representation, the graph-level representation is computed through a readout
function. Prevalent GNN models used in molecular graph representation learning
include GCN, GIN, and so forth.

In this work, we use both molecular fingerprints and polymer graph representation
from GNNs to represent polymers. The learned latent spaces of five different tasks
(H2, CO2, O2, N2, and CH4) for the training and screening datasets in this work are
visualized using t-distributed stochastic neighbor embedding57 in a two-dimen-
sional map (Figure S14). The PoLyInfo screening dataset generally spans the feature
space of the training data of the five tasks. Details of molecular fingerprint and graph
representation of this work are as follows.

ll
OPEN ACCESS

14 Cell Reports Physical Science 5, 102067, July 17, 2024

Please cite this article in press as: Xu et al., Superior polymeric gas separation membrane designed by explainable graph machine learning, Cell
Reports Physical Science (2024), https://doi.org/10.1016/j.xcrp.2024.102067

Article

mailto:tluo@nd.edu
https://github.com/Jiaxin-Xu/PolyGasPerm-GREA


Molecular fingerprint
Both theMACCS keys and ECFPs with a radius equal to 2 (namely, ECFP4) are gener-
ated through RDKit.58 The molecular fingerprints play two roles: (1) serving as the
polymer representation input for non-GNN-based MLmodels; and (2) being concat-
enated with graph embedding in the latent space for GNN-based ML models to
enrich chemical knowledge captured by the latent space and regularize the repre-
sentation learned by the graph encoder.

Graph representation
SMILES files of polymers are converted into polymer graphs for further GNN-based
computation. RDKit58 is utilized to extract node and edge features. Nine categories
for node features are defined, namely (1) atomic number, (2) chirality, (3) degree of
the atom, (4) formal charge, (5) total number of Hs (explicit and implicit) on the atom,
(6) number of radical electrons, (7) hybridization, (8) aromaticity, and (9) is in a ring or
not. Three categories for edge features are defined, namely (1) bond type, (2) stereo
configuration, and (3) is conjugated or not. Each polymer is then treated as an undi-
rected graphG = ðX;E;AÞ, where X is the node feature matrix, E is the edge feature
matrix, and A is the adjacency matrix. Assuming there are n nodes and e edges in the
graph, and d and b are the number of features for node and edge, respectively, then
X ˛ f0;1gn3d ; E ˛ f0;1ge3b, and A˛ f0; 1gn3n. All these features are then mapped
into a continuous latent space using trainable parameters, and the representation
is optimized during the model training process.

Training of ML models

All labeled data are used for training for any of the specific gas-permeability predic-
tion tasks. The validation set is deliberately selected to be the polymers that are
above any of the five upper bounds, which helps improve the model prediction ac-
curacy in the sparsely populated target regime. The GREA model has a two-layer
GIN as the rationale separator, a five-layer GIN as the graph encoder, and a three-
layer MLP as the property predictor. It is trained with a batch size of 128, the
Adam optimizer regularized with a 0.01 weight decay, the initial learning rate set
as 0.001 with a cosine scheduler, a dropout rate of 0.5, and maximal training epochs
of 600 with early stopping. The dimension of the latent space is set as 600. The base-
line GCN and GIN models have the same architecture as the GREA model’s graph
encoder and prediction decoder. For non-GNN baselines, the RF regressor is imple-
mented using 100 estimators, with mean squared error as the split quality measure-
ment and the minimum number of samples required to split a node as 30. The GPR is
implemented with a radial basis function kernel of a length scale set as 1.0 and lower
and upper bound set as 0.01 and 100, respectively. Alpha is set as 5, which is the
value added to the diagonal of the kernel matrix during fitting to ensure a positive
definite matrix. TheMLP regressor is implemented with one hidden layer of 600 neu-
rons, a batch size of 128, the ReLU activation function, the stochastic gradient
descent optimizer, and maximal training epochs of 200 with early stopping. All
methods run ten times independently.

As mentioned in the results section, the rationale separator divides a polymer graph
into two subgraphs, a rationale subgraph and an environment (noise) subgraph. It is
important to clarify that the term ‘‘noise’’ used here does not refer to ‘‘noisy data,’’
which are data points that are irrelevant or unrepresentative of the underlying pat-
terns in the data and should be identified, removed, or minimized.59 Rather, ‘‘noise’’
is used here to describe small perturbations in the polymer structures (other exam-
ples include Gaussian noise), which is utilized by many data-augmentation methods
in ML to create new data points. The environment subgraph in GREA serves as a type
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of noise learned from the data. It fits the goal of data augmentation and can be used
to create numerous and diverse labeled training data to enrich the dataset and over-
come the problem of limited supervision.

A semi-supervised framework for graph imbalanced regression (SGIR)36 is com-
bined with GREA, GIN, and GCN to address the data insufficiency and label imbal-
ance problems. It is a self-training algorithm that is capable of gradually reducing
the model bias resulting from data imbalance by iteratively producing high-quality
training data in the rare label value region. Specifically, SGIR first defines a confi-
dence score using environmental subgraphs, selects highly confident polymers
from the predicted labels of the large unlabeled polymer dataset PoLyInfo, and re-
moves noisy unlabeled polymers. Then, in the latent representation space, it
further augments polymers in label areas that seriously lack data by a label-
anchored mixup algorithm. Details of the SGIR algorithm can be found in Liu
et al.36 After training the model for 60 epochs, we start to implement the SGIR al-
gorithm every 30 epochs. Since SGIR is not applicable to non-GNN-based models,
the RF, GPR, and MLP models are trained in a supervised manner.

All methods are implemented using Pytorch, Scikit-learn, and Pytorch Geometric on
Linux with an Intel Xeon Gold 6130 processor (16 cores @2.1 GHz), 96 GB of RAM,
and an RTX 2080Ti card (11 GB RAM). The code for our ML implementation can
be found at https://github.com/Jiaxin-Xu/PolyGasPerm-GREA.

Experimental synthesis and permeation tests
Synthesis and film casting of polymer P130093
Polymer P13009360 was synthesized by dissolving 0.8030 g (5.076 mmol) of 1,5-diami-
nonaphthalene in 4 mL of anhydrous N-methyl-2-pyrrolidone (NMP) at 80#C. This was
followed by the addition of an equimolar amount of 3,30,4,40-biphenyltetracarboxylic
dianhydride and 11 mL of anhydrous NMP to maintain 15 wt. % solid content while
the temperature was maintained until complete dissolution of both monomers. The re-
action then continued at room temperature for another 4 h to obtain a viscous polyamic
acid (PAA) solution. To complete the imidization and obtain thin films of the final poly-
imide, the PAA solution was diluted to 7.5% concentration with anhydrous NMP,
filtered with 0.45-mm Teflon filters, and cast on glass plates under an infrared lamp at
!60#C for 24 h. It was then dried at 150#C under vacuum for 12 h, soaked in methanol
for 3 h, and dried again at 150#C under vacuum for 12 h. The solvent-free PAA film was
sandwiched between two porous ceramic plates and thermally imidized in a muffle
furnace under nitrogen flow, where the temperature was ramped at 10#C per minute
to 180#C, 210#C, 250#C, 350#C, and 400#C, maintaining 15 min at each temperature
before finally cooling to room temperature at no greater than 10#C per minute. The
fully imidized structure of the solvent-free polyimide film and its corresponding PAA
were confirmed by Fourier transform infrared spectroscopy in attenuated total reflec-
tance mode (ATR-FTIR).

Synthesis and film casting of polymer P432352
Polymer P43235261 was synthesized by reacting 1.7 g (9.98 mmol) of 5-amino-1,3,3-
trimethyl cyclohexane methylamine with a stoichiometric amount of 3,30,4,40-biphe-
nyltetracarboxylic dianhydride in 42 mL of m-cresol at 11.2 wt. % concentration in a
flame-dried three-neck flask fitted with a mechanical stirrer. The monomers
were fully dissolved within 1 h at 70#C and maintained at 90#C for 3 h. The temper-
ature was then gradually raised to 200#C within 2 h before 10 mL of ortho-dichloro-
benzene was added, and a Dean-Stark trap was attached for azeotropic reflux to
complete the imidization over another 4 h at 200#C. Fiber chunks of the product
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were obtained by precipitating the viscous solution into 600 mL of stirring methanol,
which was collected via filtration and dried at 100#C for 12 h in vacuo. The obtained
polymer was confirmed by proton (1H) nuclear magnetic resonance spectroscopy
and ATR-FTIR. The thin film of the polymer was obtained by solution casting on a cir-
cular glass plate using chloroform as the casting solvent. 1.6% (w/v) of the polymer
solution was cast at room temperature under nitrogen flow for 48–72 h, enabling
slow evaporation of the solvent.

Gas-permeation tests
The pure permeabilities of the polymers for H2, CH4, N2, O2, and CO2 were
measured at 35#C using a constant-volume variable-pressure method.62 Thin films
(44–60 mm in thickness) of the polymers were mounted on aluminum duct tape
with the aid of epoxy glue and protected on the back side with filter paper. The
exposed film region was scanned with ImageJ to measure the available area for
gas permeation and then loaded into the gas cell with the sampler holder immersed
in the deionized water bath for temperature control. The entire system (upstream
and downstream sides) was degassed in vacuo for at least 12 h before introducing
ultrahigh-purity-grade gases that were maintained at 30, 50, and 80 psig until a
steady-state increase in pressure vs. time in the downstream was achieved. The
permeability for each gas was calculated using Equation 1:
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dt
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effective film area (cm2),
%
dp
dt

&

ss
and

%
dp
dt

&

leak
are the steady-state pressure increment

in downstream and the leak rate of the system (cmHg/s), respectively, T is the test
temperature (K), and R is the gas constant (0.278 cm3 cmHg/(cm3 [STP] K)). Details
of the gas-permeation test are summarized in Tables S3 and S4. The ideal selectivity
(aA=B) for two different gases A (more permeable) and B is defined as the ratio of pure

gas permeability of the two gases and is calculated as Equation 2:

aA=B =
PA

PB
: (Equation 2)

Dihedral angle analysis

Gaussian 16 is used to study the conformational flexibility of P130093 and P432352
by calculating the energy change associated with the change in the dihedral angles
of interest. The initial polymer structures consisting of two repeated units (each poly-
merization point at both ends is replaced by a hydrogen atom) are first built in Gauss-
view with energy minimization. A relaxed potential energy scan is then conducted
whereby the specific dihedral angle of interest is fixed in each scan, and other parts
of the molecule are relaxed to calculate the total energy. The semi-empirical method
(pm6) is adopted throughout the simulations.

Experimental measurement and calculation of diffusivity, solubility, density,
FFV, and Tg
The averaged-diffusion coefficient, D (cm2 s"1), was calculated using the lag-time
method. Details of calculation are summarized in Tables S3 and S4. The solubility
coefficient, S (cm3 [STP]/cm3 atm), was obtained using the relationship, S = P/D.
The Tg of the polymers is determined using the differential scanning calorimeter
Q2000 by TA Instruments with 50 mL/min nitrogen purge at 10#C/min heating
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rate during the second heating cycle (100#C–400#C). The polymer densities are ob-
tained by the buoyancy technique, which relies on Archimedes’ principle. Thin
films of the polymers are weighed in dry and wet forms using an analytical balance
(ML 204 by Mettler Toledo) fitted with a density measurement kit with deionized
water at room temperature. The FFVs are computed using Bondi’s group contribu-
tion method.26,63

MD simulation analysis of membrane pores

The procedure of calculating FFV and PSD for the two polymers using MD simula-
tions is composed of two steps: amorphous polymer structure generation and
pore-structure characterization.

Step 1: Amorphous polymer structure generation
Taking the SMILES of the polymer as an input, the initial amorphous polymer struc-
ture is generated by a Python pipeline based on PYSIMM.64 It generates a polymer
chain through polymerization, with the number of atoms per chain fixed to around
600. The chain is then replicated, and a system of six chains in total is generated
and enclosed in a simulation box. Meanwhile, the GAFF2 (General AMBER Force
Field 2)65 force-field parameters are assigned to the polymer system, and an input
script for MD simulation using the LAMMPS (large-scale atomic-molecular massively
parallel simulator)66 is generated. Periodic boundary conditions in all spatial direc-
tions are applied. The system is then optimized gradually. First, the system is simu-
lated with electrostatic interactions turned off and Lennard-Jones interactions with a
cutoff of 0.300 nm, aiming to eliminate close contact between atoms. An NVT
ensemble is applied at 100 K for 2 ps, with a time step of 0.1 fs, followed by the sys-
tem heating up from 100 K to 2,000 K in 2 ns. Next, an NPT ensemble is employed at
2,000 K and 0.1 atm for 50 ps, after which the pressure is increased from 0.1 to 500
atm in 2 ns with temperature fixed at 2,000 K. The obtained polymer system is then
directly compressed in all spatial directions so as to match the density measurement
from our experiment. After the initialization, the electrostatic interactions are turned
on and the PPPM (particle-particle-particle-mesh)-based Ewald summethod is used.
The Lennard-Jones interactions cutoff is set as 1.200 nm. To achieve a reliable amor-
phous polymer structure, an NVT ensemble is further applied at 2,000 K for 0.2 ns,
with a time step of 0.1 fs, before the system is quenched. The snapshots at 0.12,
0.14, 0.16, 0.18, and 0.2 ns of the last step are saved for later pore-structure
characterization.

Step 2: Pore-structure characterization
We use PoreBlazer67 to characterize the pore size and distribution, which is calcu-
lated based on the Hoshen-Kopelman cluster labeling algorithm. The diameter of
the probe is set to 1.25 Å, which is tuned so that it gives a magnitude of FFV similar
to that of the experimentally calculated FFV. The MD-calculated FFV and PSD are
averaged across the five different snapshots as described in step 1.
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