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Graph rationales are representative subgraph structures that best explain and support the graph neural net-
work (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during
GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level
tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on
both levels, little attention has been given to GNN rationalization and the lack of training examples makes
it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a uni-
fied data augmentation framework with two novel operations on environment subgraphs to rationalize GNN
prediction. We define the environment subgraph as the remaining subgraph after rationale identification and
separation. The framework efficiently performs rationale-environment separation in the representation space
for a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit
graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph
classification, and graph regression. Results demonstrate that our framework is effective and efficient in ra-
tionalizing and enhancing GNNs for different levels of tasks on graphs.
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1 INTRODUCTION

Graphs broadly exist in computational social science and chemistry [11, 14, 19, 47]. In social and
citation networks, nodes are the central focus, and the interactive patterns between them provide
insight into important decision-making processes. In the fields of chemoinformatics and bioinfor-
matics, molecules and polymers (macromolecules) are often represented as labeled graphs, where
atoms serve as nodes and bonds as edges [11, 12, 24]. Graph neural networks (GNN) auto-
mate feature extraction from graph data through nonlinear functions and layers that aggregate
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information from node neighborhoods. Node classification tasks leverage node representation for
categorical label predictions. For graph classification and regression, graph pooling is added to dif-
ferent layers of the GNN architecture to reduce the graph size and preserve important structural
information for final prediction [13, 17, 47]. As different fields involve different tasks on graphs, it
is crucial to train, explain, and justify GNN predictions for specific problems at different levels.

Despite the advances of various GNNSs, their predictions are not readily explainable in a manner
that is accessible and understandable to humans and thereby cannot be justified in practice. Post-
hoc methods [46] produce explanations using another model and may not fully capture the real
relationships learned in GNN models. Selective rationalization is recently developed to pinpoint
the rational features (rationales) that support a model’s predictions at the model training stage. By
selecting a small subset of input features and using them to support model predictions, decisions
from black-box neural networks become transparent and interpretable to humans. While rational-
ization is extensively studied in text data [3], their applications to GNNs remain underexplored for
both node classifications and graph property predictions.

Additionally, the limitations in terms of data size, such as the number of nodes and graphs,
would lead to overfitting and poor generalizability for GNN predictions. Therefore, the rational-
ization may fail to capture robust and causal reasons for these predictions [3]. For instance, in
semi-supervised node classification, there are often only 10 labeled nodes per class [14]. The lack
of supervision in GNNs would result in their predictions relying on unreliable features that emerge
from message passing [39] and also result in the failure of interpretability for the rationaliza-
tion of node classification. Graph property prediction tasks suffer from similar issues. Popular
benchmarks for molecular graph classification often have datasets that range from 1,000 to 10,000
graphs [42]. In polymer graph regression, the number of graphs in popular datasets is even smaller,
typically around 600 [22]. In such scenarios, it is difficult to identify correct subgraphs that provide
explanations and justification for graph property predictions.

In this work, we make the first attempt to rationalize GNN predictions for both node-level and
graph-level tasks in a unified data augmentation framework, as presented in Figure 1. For node-
level task, the prediction for node v; relies on its surrounding neighborhood within graph struc-
ture g; in graph neural networks [14, 43, 46]. We define the rationale subgraph of v;, denoted by
ggr), from a specific set of neighborhoods of v; that could determine the label of v;. The remain-
ing neighbors of v; are referred to as the environment neighbors or environment subgraph gge).
Note that nodes in the environment subgraph do not contribute to explaining or causing the label
of v;. For example, the specific topic of a paper node focusing on graph neural networks could
be determined by references talking about graph machine learning and data mining, rather than
all references, which may include loosely connected work intended for external reading of text
mining. In graph-level tasks, the scaffold substructure [24] often serves as the rationale subgraph

ggr). It plays a crucial role in determining the property y; of a complete graph g;. The remaining

environment substructure gge) is needed for other purposes such as chemical synthesis and valid-

ity [24]. In both tasks, the rationale subgraph gl@ potentially reveals the cause of the label y; from
the view of data generation. To achieve the correct identification of the rationale subgraphs, we
use a separator function f,. However, training f;., and foyn at the same time would easily fail
due to the lack of training examples. Therefore, we propose two data augmentation operations
based on the separated environment subgraphs gge). These operations efficiently expand the lim-
ited training set by simulating the generation of g; as the combination of the rationale subgraph
with the environment that perturbs the graph structure without changing the label. Once f.), sep-
arates rationales and environments, the rationales gl(.r) are first used to train the GNN as examples
augmented by environment removal. Second, diverse environments from other graphs g; within the
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Fig. 1. An overview of RGDA. The input graph-structured data example could be a node in a large graph
with surrounding neighbors or a graph in the graph dataset: (1) RGDA learns to identify rationale subgraphs
with a rationale-environment separator fsep; (2) different environment subgraphs from the same training
batch are used to replace the original environment subgraph for data augmentation; and (3) the separator
fsep and GNN predictor fgnn are jointly optimized using augmented training dataset. After training, fsep
supports explanations for fgnyn prediction with rationales.

training batch replace the original environment, thereby generating new examples: This augmen-
tation is called environment replacement, i.e., g j) = ggr) Ugj(.e). fsep is jointly optimized with fonn
such that the identified rationales are robust to various prediction environments. Augmented exam-
ples are gradually improved with optimized rationales, resulting in better GNN explanations and
predictions.

In this article, we propose a novel unified framework to Rationalize GNN predictions
with Data Augmentation (RGDA) for both node-level and graph-level tasks based on environ-
ment subgraphs. We have two key challenges in the implementation. (1) Efficiency: The explicit
rationale—environment separation and data augmentation in the structure space have high com-
plexity in graph encoding and decoding. (2) Effectiveness: Since nodes are not independent and
identically distributed (Non-IID), removing or replacing the rationale neighborhood for a given
node v; can affect the decision-making process for another node v; within a limited number of hops
from node v;. On the other side, splitting and combining molecular graphs are scientifically and
technically difficult. Therefore, RGDA performs operations in the representation space. Specifically,
a separator function is used to infer the probability of nodes being categorized into a rationale sub-
graph using a vector (with the opposite probability for the environment subgraph). For the task of
node classification, RGDA employs the vector to identify rationale subgraphs during the process
of message passing. Only rationale-specific messages are passed for the rationale subgraph repre-
sentation. For graph property prediction tasks, the GNN is used to get the node representation and
RGDA could identify the rationale and environment subgraphs in the node representation space.
After obtaining the representation vectors for both the rationale and environment subgraphs in
either task, we create new examples in which the environment is either replaced or removed with
these representation vectors. This is achieved by combining the vectors from the rationale sub-
graph with various representations from the environment subgraphs. A straightforward combi-
nation operation is sum. Besides this, we also empirically study other combination choices such
as the mean, max, and concatenation. We conduct experiments on 17 node-level and graph-level

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 86. Publication date: February 2024.



86:4 G. Liu et al.

datasets. Results demonstrate the advantages of RGDA to rationalize and improve GNN predic-
tions over other baselines from robust and invariant learning. The main contributions of this work
are summarized as follows:

e Novel interpretable GNN learning: RGDA is the first unified framework to rationalize and
improve GNN with interpretable subgraphs for both node classification and graph property
prediction;

e Novel graph data augmentation method: Two novel data augmentation operations are pro-
posed to remove/replace the environment subgraphs separated from the nodes’ neighbor-
hood graphs or graphs’ complete structures;

e Extensive experiments: On both nodes and graphs, the effectiveness and efficiency of RGDA
are validated on 17 datasets. Node-level and graph-level explanations from rationales are
also validated in case studies.

2 RELATED WORK
2.1 Graph Neural Networks

GNN such as Graph Convolutional Network (GCN) [14], Graph Isomorphism Networks
(GIN) [43], Graph Attention Networks [34], and GRAPHSAGE [10] have been developed to auto-
mate representation learning with nonlinear functions from graph data for tasks such as node
classification and graph property prediction [11, 35, 41]. However, the decision-making process
of GNNss is hard to understand and not justified [15, 25]. In this work, we focus the extracting
rationale subgraphs during GNN training to provide explanations and support GNN predictions.

Semi-suspervised Node Classification. GNNs effectively learn from Non-IID node data [14, 34, 45,
51] to address the problem of semi-supervised node classification. The information used by GNNs
for each node decision is associated with a neighborhood graph [14, 43, 46], which is implicitly
constructed during message passing [1, 29]. To improve GNN generalization, a recent study by
Wu et al. [39] proposes a method for learning domain-invariant representations by editing the
entire graph structure. However, this approach incurs significant computational cost and lacks
interpretability.

Graph Property Prediction. GNNs are broadly used for predicting the categorical or numerical
properties of molecules and polymers in drug and material discovery [11, 23, 27]. Since label-
ing of molecular graph examples typically requires specialized knowledge and expensive exper-
iments [5, 33], the number of labeled training graphs is limited. Additionally, transparent decision-
making in GNNs is crucial as it assists domain experts in accelerating the discovery of novel drugs
and materials [26]. Recent efforts to model causality into GNN representation learning [7, 18] are
not directly understandable to humans, and their performance may also be hindered by limited
supervision.

Graph Rationalization. Selective rationalization identifies the small subset of input features by
maximizing the predictive performance based only on the subset itself, called rationale. Although
it has been extensively studied in natural language processing [2, 3, 30], graph rationalization re-
mains underexplored. Very recently, a method called DIR has been proposed to identify rationale
subgraphs for graph property prediction [40]. However, its performance is mainly evaluated on
synthetic data and may not be optimal for identifying graph rationales in molecular property pre-
diction, where the available number of training graphs is significantly limited. Additionally, DIR
has high computational complexity and cannot rationalize GNN predictions on node-level tasks.
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Fig. 2. The architecture of RGDA: It performs rationale—environment separation and data augmentation for
node classification and graph property prediction in a unified framework. The representation learning of
rationale/environment subgraphs and the creation of augmented examples with environment subgraphs are
in representation space, instead of decoding every example into a graph form and running a GNN encoder
on it. This design addresses the challenge of environment replacement for Non-IID node data and molecular
graph data. It also aligns graph representation spaces and avoids high computational complexity.

2.2 Graph Data Augmentation

Graph data augmentation techniques [4, 49, 52] have improved the performance on semi-
supervised node classification, such as DROPEDGE [29], NODEAUG [38], and GAuG [51]. Besides,
many graph data augmentation techniques have been designed for graph-level tasks, aiming at cre-
ating new training examples by modifying input graph data examples. For example, GRAPHCROP
regularized GNN models for better generalization by cropping subgraphs or motifs to simulate
real-world noise of sub-structure omission [36]. M-EVOLVE presented two heuristic algorithms
including random mapping and motif-similarity mapping to generate weakly labeled data for
small datasets [53]. MH-AuG adopted the Metropolis-Hastings algorithm to create augmented
graphs from an explicit target distribution for semi-supervised learning [28]. SGIR [21] proposed
the label-anchored mixup algorithm to create examples in the latent space and to address data
imbalance issues. DCT [20] trained a diffusion model on unlabeled graph data and generated
task-specific examples incorporating label information. This represents a novel approach to
knowledge transfer through data augmentation. Meanwhile, graph contrastive learning learned
unsupervised representations of graphs using graph data augmentations to incorporate various
priors [48]. Zhu et al. [55] proposed adaptive augmentation that incorporated various priors
for topological and semantic aspects of graphs. Specifically, it designed augmentation schemes
based on node centrality measures to highlight important connective structures and corrupted
node features by adding noise to unimportant node features. A comprehensive survey of graph
data augmentation is given by Zhao et al.[49]. Our work proposes a unified data augmentation
framework for node-/graph-level tasks based on environment subgraphs.

3 PROBLEM DEFINITION

Letg = (V, &) be a graph of |V | nodes and |E| edges, where V is the set of nodesand & C VXYV is
the set of edges. For each node v € V, there is a node feature is x,, € RF with F dimensions. Given
any node-level or graph-level task, GNN first learns the representation vector of the node n € V
in graph g by iteratively aggregating representations from v’s neighbors u € N(v). Formally, the
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kth iteration (layer) of a GNN is
hy k= Uk (hy ka0 k), where
apk = My ({(ho, k-1, hu k1) , Yu € N(v)}).

Here Ug(-) and Mg(-) are message and update functions at the kth layer. h,, € R? is v’s d-
dimensional representation vector and the initial h,, ¢ is given by x,. The choice of Uy and My
are task specific. A GNN-based node classifier/graph property predictor fgnn stacks K layers of
networks with Equation (1) to get the final node representation h,, x.

(1)

Node Classification. Given a single graph g, for each node v € V on the graph, we have a
categorical label y,, € Y associated with the node. With h,, x, GNN aggregates representation
for the node v from a K-hop implicit ego-graph centered at v, as indicated by the neighborhood
graphs in Figure 1 and Figure 2. foyn predicts the node label §,, by applying a softmax function
to the last layer of node representation h,, g, which is denoted by h,, for brevity.

Graph Property Prediction. Suppose g € G is the graph from the graph space G. Graph property
prediction pairs each graph with a label y, € Yg, where Yy is the graph label space. It is cate-
gorical (classification) or numerical (regression). With GNN, fsnn generates node representation
matrix H as:

H=GNN(g) = [....hy....] ., e RV (2)

The graph representation hy is summarized from H using a readout function (e.g., sum or mean),
and fgnn takes the final graph-level prediction g, by a Multilayer perceptron (MLP):

h, = readout (H) € RY, (3)

§g = MLP(hy) € Y. (4)

Unfortunately, both node- and graph-level tasks suffer from lack of training examples. Besides,

existing advances in GNN cannot justify the prediction from fgn . In the next section, we present

a unified data augmentation framework to enhance GNN training under limited supervision and
rationalize GNN predictions with explainable subgraphs.

4 PROPOSED FRAMEWORK

For brevity, we unify the notation of y,, and y, as y and use y;/y; to indicate the label value of
the node or graph with a index number i/j. In this section, we introduce the framework RGDA to
rationalize and improve GNN predictions.

4.1 RGDA Overview

Figure 2 shows the overall training and inference architecture of RGDA. Although the implemen-
tation of the rationale-environment separation for node-level and graph-level tasks is slightly
different, RGDA achieves the unification with the same philosophy that performs (1) rationale—
environment separation with fs, in Section 4.2 and (2) rationale-environment combination for
data augmentation in the node representation space in Section 4.3. This unification comes from
the fact that both node-level and graph-level tasks rely on a computation graph to extract the final
node-level or graph-level representation for each prediction.

For node classification, the computation graph is implicitly built when we iteratively aggregate
node representation from direct neighbors at each graph neural network layer. To predict the label
of a node v, GNN aggregates information from a neighborhood graph g centered at v. In this case,
we perform the rationale—environment separation in message passing. Specifically, we separate
the passing of the rationale and environment messages to the center node v. It is achieved by
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learning a vector m that infers whether the neighbor u is the rationale neighbor of the center node
v. However, 1 — m infers whether the neighbor u is the environment neighbor.

For graph property prediction, the computation graph is the input graph g itself. We first capture
the contextualized representation of nodes with the K-layer GNN. Then we infer the rationale role
of each node with the learned vector m and the environment role with 1 — m. Consequently, the
representation of the rationale—environment subgraph is calculated by separately summarizing
the representations of nodes that play different roles.

To this end, we get the representations for the rationale and environment and could simulate
the rationale—environment combination for augmentation using a function Comb(-, -). Augmented
examples are created with gradually optimized rationale subgraphs, which also lead to better fonn
predictions.

4.2 Rationale-Environment Separation

4.2.1  Separation for Node Classification. Given anode v € V from the graph g, f;¢, in RGDA sepa-
rates v’s neighbors into two roles: the rationale that supports and explains node prediction and the
environment. A K-layer GNN implicitly constructs a K-hop neighborhood graph for node v;, and
the rationale-environment subgraph (¢9"/¢‘®)) of v can be similarly constructed by identifying the
rationale and environment neighborhoods of v, which are presented in Figure 1. RGDA incorpo-
rates the rationale—environment separation in the message passing from Equation (1). Specifically,
suppose u € V is the v’s direct neighbor and m,,,, = Pr,(u € N(v)) is the mask that indicates the
probability of the neighbor u € N(v) being classified into the rationale neighbor of v,

My, = sigmoid (MLPsep([Xv“Xu])) ) ®

where [-||-] is vector concatenation. In practice, we could build the mask vector m € R/€! for edges
and use v and u to index each element in m as the m,,,. With m,,,, the rationale representation
h(") of v’s rationale subgraph g is calculated from K layers of rational messages a”) in fgnn.
Specifically, at each layer, the rationale representation hg)k is updated by the message from the
rationale neighbors as

hg’)k = Uk (hg’)k, ag’)k) ,  where

(6)

v, u,k-1>"u,k-1°

a(rk = My ({(h(r) h" mvu) ,Vu e N(v)}) )

Here hg)o is initialized by x,, and my, is a scalar edge feature that weights the message from

hS::)k—l [9]. For the environment representation h(®) of v’s environment subgraph ¢®), we apply
1 — my, at the first layer of message passing,
hif’)l =U; (xv, al® ) , where

v,1 (7)
al) = My (o0 Xy 1 = M)V € N(0)}).

After that, the representation of the environment subgraph h'® is obtained by updating hi)l with
K-1 layers of standard message passing from Equation (1).

4.2.2  Separation for Graph Property Prediction. Given any graph g € G, fs¢p in RGDA outputs a
node-level mask vector m,, = Pr(v € V) to split g into rationale/environment subgraph. Specif-
ically, m,, indicates the probability of node v € V being classified into the rationale subgraph:

m = sigmoid(MLPep(GNNiep(9)))- (8)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 86. Publication date: February 2024.



86:8 G. Liu et al.

GNNg,, in the separator extracts contextualized node representation for rationale-environment
separation. Based on m, we have (1y —m), which indicates the probability of nodes being classified
into the environment subgraph. Besides, GNN-based graph property predictor fonn generates
node representation H with Equation (2): H = GNN(g). With m and H, the rationale subgraph and
environment subgraph can be easily separated in the latent space. Using sum pooling for readout,
we have

h" = 1], - (m x H), (9)
h® =1} - (1y — m) x H), (10)

where 15 denotes the N-size column vector with all entries as 1 and h),h(® € R? are the
representation vectors of graph ¢'") and ¢(¢), respectively.

4.3 Data Augmentations with Environment Subgraphs

Given B training graphs/nodes in the batch, the rationale-environment separator has gener-
ated the representations of rationale and environment subgraphs for each graph g; or node v;.
That is, we have {(h(lr),h(le)), (h(zr),hge)) ...,(hg),hg))}. Given any two examples with indices
i,j € {1,2,...,B}, fonn without rationalization actually combines a rationale with a single envi-
ronment to generate the (neighborhood) graph g; = Comb(g(r), g(e) ) for node or graph prediction.
Without rationalization, fgnnN may learn the spurious correlation between g( ¢ and y for accurate
but not justified prediction. Without data augmentation, rationalization suffers from the small
dataset and may fail to identify/learn a correct ggr)/hgr) to support accurate prediction. Therefore,
RGDA creates training examples by simulating possible rationale—environment combinations in
the node representation space using the combination function Comb(-, -). For each rationale repre-
sentation h(ir) ,it could be combined with any other environment representation hj.e) from the batch
without changing the label value associated with y; to directly create the representation h; j of a
new example g; ) with label y; ;) = y;.

4.3.1 Environment Removal Augmentation. Data augmentation with environment removal is a spe-
cial case of g(; ;) by combing the rationale subgraph ggr) with an empty environment subgraph.
Since the goal of RGDA is to rationalize GNN predictions by identifying the rationale subgraph,
which is considered the causal factor behind the node label or graph property, the identified ra-
tionale itself should be good for GNN predictions. Specifically, given the rationale subgraph rep-
resentation hE.r) of graph g;, we apply the softmax function on hE.r) to take prediction gf.” for the

node v; or modify Equation (4) as follows to predict ]j(.r) for the graph g;:
3" = MLP(B"). (11)

4.3.2  Environment Replacement Augmentation. Data augmentation with environment replace-
ment replaces the environment subgraph of the (neighborhood) graph g; with any other environ-
ment subgraph from a different example g;. Given that the rationale subgraph g( i
determine the label of g;, the environment subgraphs can be interpreted as natural noise on the ra-
tionale subgraphs. Hence, the replacement augmentation enhances the model’s robustness against
the noise signal brought by the environment subgraphs. For the graph property prediction task, for
each graph g;, we combine its rationale subgraph with all other B = B — 1 environment subgraphs

is considered to

g](e) j € {1,2,...,B}\ {i} in the batch. For node classification, since we often use all nodes in a

single batch, we limit the number of environment subgraphs B to a relatively small value and treat
Basa hyper-parameter. Therefore, the environment replacement data augmentation generates B
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new (neighborhood) graphs, which would be optimized during training. As we directly get repre-
sentations of the environment subgraphs, the combination function operates in the latent space
as well to directly produce the representation of the g j), e.g., hi j) = Comb(ggr), gj(.e)). Specifi-
cally, the combination function can be any pooling functions like concatenation, sum pooling, and
max pooling. Taking the element-wise sum pooling as an example, the representation h; ;) of a
combined (neighborhood) graph of rationale subgraph ggr) and environment subgraph gj(.e) can be
calculated as follows:

h(; j) = Comb (ggr),g;e)) = hg.r) + hﬁ.e). (12)
Similarly to the removal augmentation, we predict the node label with h; ;) by applying a softmax
function or predict the graph label with h(; j by modifying Equation (4) as

J(i.j) = MLP (hy; ). (13)

4.4 Optimization

During training, the type of loss function on the observed graph property (y;) and predicted labels
(gﬁ’) and 7; ;) depends on the type of the node/graph label. For example, when the node or graph
label y is categorical value in the classification task, we use the standard cross-entropy loss. When
the graph property y has real values in the graph regression task, we use the mean squared error
loss. Without loss of generality, suppose we focus on the binary classification task. Given a batch

of B training examples g;, ¢z, . ..,gp (Or v1,v2, ..., vp), the loss functions for each example with
the index i and its label y; are defined as
Lrem =yi-logg” +(1-y;) -log (1-4\"), (14)
18
Lrep =7 Z (yi - log gqi.jy + (1= i) - log(1 = G ) (15)
B £

where L, .p, is the loss for the examples created by environment removal augmentation and £, .,
is the loss for the examples created by the environment replacement augmentation.

Moreover, the following regularization term is used to control the size of the selected rationale
subgraph:

1
Lreg:N'l;\r]'m_}/a (16)

where y € [0, 1] is a hyperparamter to control the expected size of the rationale subgraph g\
N = |V| for graph property prediction and N = degree(v) for node classification. Specifically,
for graph-level tasks, we penalize the node number in the rationale when it deviates from our
expectations. For node-level tasks, we penalize the number of rationale neighbors.

We use the alternate training schema in Chang et al. [3] to train RGDA. That is, we iteratively
train fs., and fonn for a fixed number of epochs Ty, and T, cq, respectively. The loss functions
for training RGDA are

Lpred =Liemta- Lrep, (17)
Lsep =Lremta- Lrep +p- -Ereg, (18)
where £),.q in Equation (17) and L., in Equation (18) are used to train foyn and fip, respec-
tively. & and 8 are hyperparameters that control the weights of £, and £, g, respectively. During

inference, gﬁ’) is used as the final predicted node label of the input node v; or the predicted prop-
erty of input graph g;. We present the algorithm for both model training and testing with RGDA
in Alogrithm 1.
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4.5 Complexity Analysis

We focus on the time complexity analysis of RGDA with GNNs. For each training batch, we assume
there are n nodes and m edges. For graph-level tasks, we assume that there are n’ graphs. We view
them as a single graph with n nodes and disconnected components, which should not affect our
complexity analysis for GNNs. We assume the graph is sparse and thereby we could conduct sparse
matrix multiplication. For each layer of the GNN, the time complexity is O(nd® + md) [50], where
d is the dimension of the hidden representation vector. By stacking K layers of networks, the
complexity of a GNN is O(Knd* + Kmd). fsep could be implemented with an individual GNN and
thus has linear time complexity with respect to the standard GNN. The combination operation
is conducted in the representation space, resulting in a linear complexity of n? for the node-level
task and n’? for the graph-level task. Therefore, the overall time complexity of our method is
O(Knd? + Kmd + n?) on the node tasks and O(Knd? + Kmd + n’?) on graph tasks.

5 EXPERIMENTS
We conduct comprehensive experiments for RGDA to answer the following research questions:

o Effectiveness and Efficiency in Section 5.2: In comparison to state-of-the-art methods that are
specific to node classification, graph regression, and graph classification, can RGDA improve
the performance of GNN?

e Framework Analysis in Section 5.3: What components contributes to the improvement from
RGDA? Can the efficient and positive impact of data augmentation on environment sub-
graphs in the node representation space be credited for the improved model performance?

o Interpretability in Section 5.4: Are the rationale subgraphs identified by RGDA able to accu-
rately and justifiably explain the GNN prediction?

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on six node classification datasets, four polymer graph
regression datasets, and seven molecular graph classification datasets. Statistical details of 17
datasets are in Table 1. We introduce them in details as follows.

Node Classification Datasets. Six datasets include three commonly used citation networks: Cora,
CiteSeer, and PubMed from [14, 45], two amazon product networks: Photo and Computers, and
a citation network: ogbn-Arxiv. Cora, CiteSeer, and Pubmed have 7, 6, and 3 classes respectively.
Node features for these datasets are derived from the bag-of-words representation of scientific pa-
pers. The ogbn-Arxiv dataset, which has 40 classes, uses a 128-dimensional feature vector derived
from the title and abstract of each node. The amazon product networks dataset consists of nodes
representing Amazon goods, with edges indicating commonly co-purchased items. Node features
for this dataset are obtained from the bag-of-words representation of product reviews. The Photo
and Computers datasets have 8 and 10 classes respectively, indicating their product category. We
perform transductive and semi-supervised learning for node classification and follow previous
work to split the Cora, CiteSeer, PubMed, and ogbn-Arxiv [11, 14, 34]. For Photo and Computers
datasets, we randomly label 10 nodes per class for training.

Graph Property Prediction Datasets. Four graph regression datasets are from polymer graphs.
GlassTemp, MeltingTemp, PolyDensity, and O,Perm are used to predict properties of polymers
such as glass transition temperature (°C), polymer density (g/cm®), melting temperature (°C), and
oxygen permeability (Barrer). GlassTemp, MeltingTemp, and PolyDensity are collected from Poly-
Info [27]. The O,Perm is from the Membrane Society of Australasia portal, consisting of a variety
of gas permeability data [33]. However, the limited size (i.e., 595 polymers) brings great challenges
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ALGORITHM 1: RGDA

Input: Task type, the prediction model fsep(+), fonn(+), the input training/validation/testiang nodes or
graphs {v1, va,...,vB} or {91, g2, . . ., g} depending on the task type (graph-level or node-level), the
number of training epoch n_epochs, the number of epochs to optimize the separator and the predictor
(Tsep and Ty,¢q) in an alternative way.
// During Model training
for epoch from 0 to n_epochs do
Set FLAGptimizer t0 Tsep of Tprea according to the current epoch
if the task type is the node level then
Compute m = fsep(v;) with Equation (5)
Compute h(") with m and Equation (12).
Compute h(®) with 1 - m, Equations (7) and (1)
else
// For graph-level tasks
Compute m = fsep(g;) with Equation (8)
Compute h(") with m and Equation (9)
Compute h(®) with 1 — m and Equation (10)
end if
// For clarity, we can operate on matrices to avoid the following loop
fori =0toBdo
// Environment-removal augmentation
Compute _L}Er) from hE.r) with Equation (11)
// Environment-replaced augmentation
forj=0toBandj +#ido
Compute h; j) = Comb(h(ir), h;e)) with Equation (12).
Compute §; ;) from h; ;) with Equation (13)
end for
if FLAGoptimizer i8 Tsep then
Compute Lsep for the example i with Equation (18).
else
Compute L, .4 for the example i with Equation (17).
end if
end for
Backpropagation with the averaged Lsep or Lpred-
end for
// During model inference
for i = 0 to B in the validation or testing set do
Compute ?Er) = foNN(9i) or fonN(vi)

end for

Output: ﬁgr) , ggr) ey ﬁg)

to rationale identification and property prediction. Since a polymer is built from repeated units,
researchers use a single unit as a graph to predict the property. For all the polymer datasets, we
randomly split them by 60%/10%/30% for training, validation, and testing. Seven graph classifica-
tion datasets are from molecular graphs in the Open Graph Benchmark (OGBG). They were
originally collected by MoleculeNet [42] and used to predict the properties of molecules, includ-
ing (1) inhibition to HIV virus replication in ogbg-HIV, (2) toxicological properties of 617 types in
ogbg-ToxCast, (3) toxicity measurements such as nuclear receptors and stress response in ogbg-
Tox21, (4) blood-brain barrier permeability in ogbg-BBBP, (5) inhibition to human f-secretase
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Table 1. Statistics of 17 Datasets for Node Classification, Graph Regression, and Graph Classification

# Nodes Per Graph  # Edges Per Graph

Task Type Dataset # Graphs #Train # Valid # Test

(Avg./Max) (Avg./Max)

Cora 1 2,708 5,278 140 500 1,000

CiteSeer 1 3,327 4,552 120 500 1,000

. . Photo 1 7,650 238,162 80 500 1,000

Node Classification (o ters 1 13,752 491,722 100 500 1,000
PubMed 1 19,717 44,338 60 500 1,000

ogbn-Arxiv 1 169,343 1,166,243 90,941 29,799 48,603

GlassTemp 7,174 36.7 / 166 79.3 /362 4,303 718 2,153

Graph Regression MeltingTemp 3,651 26.9 /102 55.4 /212 2,189 366 1,096
PolyDensity 1,694 27.3/93 57.6 / 210 1,015 170 509

O,Perm 595 37.3/103 82.1/234 356 60 179

ogbg-HIV 41,127 25.5/ 222 54.9/502 32,901 4,113 4,113

ogbg-ToxCast 8,576 18.8 /124 38.5/268 6,860 858 858

ogbg-Tox21 7,831 18.6 / 132 38.6 / 290 6,264 783 784

Graph Classification ogbg-BBBP 2,039 24.1/132 51.9 /290 1,631 204 204
ogbg-BACE 1,513 34.1/97 73.7 / 202 1,210 151 152

ogbg-ClinTox 1,477 26.2 /136 55.8 / 286 1,181 148 148

ogbg-SIDER 1,427 33.6 /492 70.7 / 1010 1,141 143 143

The Avgerage number and maximum number of nodes or edges per graph are also presented for graph-level tasks.

1 in ogbg-BACE, (6) FDA approval status or failed clinical trial in ogbg-ClinTox, and (7) having
drug side effects of 27 system organ classes in ogbg-SIDER. For all molecule datasets, we use the
scaffold splitting procedure as OGBG adopted [11]. It attempts to separate structurally different
molecules into different subsets, which provides a more realistic estimate of model performance
in experiments [42]. Statistical details of the datasets are in Table 1.

5.1.2  Evaluation Metrics. We perform multi-class node classification and use the prediction accu-
racy as the metric. On the polymer datasets, we perform the tasks of graph regression. We use the
coefficient of determination (R?) and Root Mean Square Error (RMSE) as evaluation metrics
according to previous works [11, 22]. On the molecule datasets, we perform the tasks of graph bi-
nary classification using the Area under the ROC curve (AUC) as the metric. To evaluate model
efficiency, we use the computational time per training batch (in seconds).

5.1.3 Baseline Methods. We compare RGDA with different baselines specific for node-level and
graph-level tasks.

Node Classification: We consider two basic GNN architectures and recent methods that improve
generalization and data augmentation for GNNs. Specifically, they are as follows:

e GCN [14]: It introduces the first-order approximation of ChebNet [6] to construct the graph
convolution layer for graph learning tasks.

e GRAPHSAGE [10]: It samples a fixed number of neighbors and employs batch training to
learn the node representation on graphs.

e IRM [2]: The invariant risk minimization introduces a learning paradigm to estimate in-
variant predictors from multiple training environments. We adapt this paradigm for node
classification tasks.

e SRGNN [54]: The Shift-Robust GNNs introduce a generalized framework to address the dis-
tributional shift problem in node classification tasks. This framework aids in training the
GNNes, helping to avoid overfitting and improve generalization.

e EERM [39]: The explore-to-extrapolate risk minimization uses multiple graph struc-
ture editers as the context explorers to train the GNNs for better out-of-distribution
generalization.
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Table 2. Results on Node Classification: RGDA Consistently Achieves the Highest Accuracy (1) %

Cora CiteSeer Photo Computers PubMed ogbn-Arxiv
Standard 81.50 +£ 0.62 71.28 £0.91 88.60 +1.70 81.13+0.93 80.84 +0.21 71.60 + 0.04
IRM 81.87 +£0.32 71.87+£0.31 88.82+0.48 78.57+0.87 77.63 +0.35 71.46 + 0.34
SRGNN 79.63 +1.22  69.90 £ 0.95 89.57 + 0.38 80.50 + 0.87 78.87 + 0.75 68.00 + 0.99
£l EERM 81.03 £ 1.07 71.90 £ 0.10 89.55+0.07 80.60 +1.98 79.30 + 0.35 Out-of-Memory (>100G)
E MixUp 81.43 +0.38 71.63+0.75 88.82+0.74 80.08+0.66 79.83+0.59 71.55 + 0.06
8 EpGEDROP 81.67 £ 0.15 71.77 £ 0.50 88.30 + 0.83 80.44 + 0.78 80.40 + 0.35 71.55 + 0.16
FLAG 81.90 £ 0.96 7247 +£0.31 89.54+0.71 80.28 £0.19 80.20 = 0.44 71.57 + 0.24
RGDA (Ours) | 84.33 £ 0.41 73.02 + 0.36 89.76 + 0.39 83.32 + 0.80 82.08 + 0.50 72.88 + 0.65
Standard 80.64 + 0.93 68.96 £ 0.68 8593 +1.08 74.50+1.22 7852+ 0.39 71.66 + 0.14
IRM 79.50 + 1.13  70.10 £ 0.26 84.47 +£2.72 72.37 +£0.70 76.63 £+ 1.02 70.95 + 0.41
= SRGNN 76.67 £ 1.40 67.17 £ 0.51 86.13 £0.90 74.27 +1.42 75.53 £1.19 70.17 + 0.43
= | EERM 79.90 £ 0.87 69.83 £0.40 86.55+0.21 73.25+0.64 7557 +2.15 Out-of-Memory (>100G)
g MixUr 80.77 £ 0.85 68.77 £ 0.64 8588 +1.71 75.14+0.95 77.53 £0.93 71.52 = 0.15
é EpGeDrop 81.07 £0.85 70.30 +0.46 86.42 +1.54 75.00+2.00 78.33+0.76 71.47 + 0.14
< | FLAG 78.83 £ 0.15 70.20 £ 1.45 8576 +1.75 75.20 £1.25 78.00 + 0.40 71.59 = 0.33
RGDA (Ours) | 83.39 £ 0.69 72.64 + 0.67 88.50 = 0.85 76.44 + 1.33 82.12 £ 0.57 72.26 +£0.24

Best Mean is bold and Best Baseline is underlined. The performance of MixUp [37] and EDEGEDRoP [29] on Cora,
CiteSeer, and PubMed is different from the original report, since we follow the standard data splitting from
References [14, 45] as presented in Table 1, in which much fewer training nodes are used.

e MixUp [37]: It adapts the MixUp algorithm to create more node examples for the node
classification tasks. Specifically, the mixup operation is conducted for each layer of GNNs
after message passing.

e EDGEDROP [29]: To improve the generalization of GNNs, it conducts data augmentation
on graphs by randomly removing edges. A certain number of edges are removed at each
training epoch to create different views of neighborhood structures for nodes.

o FLAG [16]: It introduces the free large-scale adversarial augmentation algorithm on graphs.
The method perturbs node features with small adversarial noise, which is crafted by
gradient ascent.

Graph Property Prediction: We consider two standard GNN architectures: GCN [14] and GIN [43]
encoders. We also consider baselines that improve graph pooling, graph-level generalization, and
graph-level rationalization techniques.

e GIN [43]: The graph isomorphism network uses MLP to update node representation during
message passing. It is provably as powerful as the Weisfeiler-Lehman graph isomorphism
test [32] for the graph-level tasks.

e U-NeTsPooL [8]: It introduces pooling and un-pooling operations on graphs, which encode
the graph structures with a small set of nodes that can be recovered to the whole graphs.

e SELFATTNPOOL [17]: It uses the self-attention mechanism as the downsampling strategy on
graph data to consider both node features and graph structure.

e STABLEGNN [7]: The Stable GNN formulates a general GNN learning framework to avoid
spurious correlations during training. It uses differentiable graph pooling to extract sub-
graph representation and a regularizer to correct the biased training distribution with sam-

ple weights.

e OOD-GNN [18]: It trains the GNN for out-of-distribution graph-level tasks. It minimizes
the statistical dependence between relevant and irrelevant graph representations through

iterative optimization of the sample graph weights and graph encoder.
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Table 3. Results on Graph (Polymer) Regression Datasets: RGDA Consistently Achieves the Highest R? (1)
and Smallest RMSE ()

GlassTemp MeltingTemp PolyDensity O,Perm
RZT RMSE | RZT RMSE | R?7 RMSE | R?7 RMSE |
Standard 0.844 £ 0.007 44.1+1.0 | 0.708 £ 0.040 60.9 £4.0 | 0.684 £ 0.028 0.090 + 0.004 | 0.870 + 0.147 688 + 385
5 U-NEeTsPoor [8] 0.839 £ 0.005 44.9+0.7 | 0.685+0.012 63.4+1.2| 0.615+0.053 0.100 +0.007 | 0.833 £ 0.084 865 + 214
Fé SELFATTNPOOL [17] | 0.848 +0.007  43.5+ 1.0 | 0.709 +0.008 61.0 £0.9 | 0.688 +0.019  0.090 + 0.003 | 0.656 + 0.135 1251 + 266
5| STABLEGNN [7] 0.809 +0.013  48.8 1.6 | 0.635+0.033 70.0£4.5| 0.667 +£0.070 0.093 +0.009 | 0.676 + 0.127 1219 + 241
| OOD-GNN [18] 0.852 +0.006  43.0 £0.9 | 0714 +0.025 604 +2.6 | 0.676+0.010 0.092 = 0.001 | 0.921 +0.059 576 + 212
E IRM [2] 0.830 £ 0.008  46.1 = 1.1 | 0.677 £0.006 64.2 0.6 | 0.690 +0.016 0.090 + 0.002 | 0.871 £ 0.043 770 + 141
% DIR [40] 0.697 £ 0.061  61.2+6.0 | 0.380 £0.214 87.8 £ 14. | 0.656 £ 0.036  0.094 + 0.005 | 0.135 + 0.068 2028 + 80
O | DIR+REPAUG 0.800 + 0.006  56.5+3.2 | 0.520 £0.101 77.8 £8.2 | 0.671 £0.033 0.092 +0.005 | 0.915+ 0.031 626 + 115
RGDA-REPAUG 0.685 + 0.172  60.6 = 16.5 | 0.679 £0.034 64.0 £3.3 | 0.686 +0.007 0.090 +0.001 | 0.459 + 0.254 1556 + 395
RGDA (ours) 0.855 £ 0.003 42.6 £0.5 | 0.716 £ 0.016 60.2 + 1.6 | 0.717 + 0.023 0.086 + 0.003 | 0.941 + 0.018 524 +91
Standard 0.860 = 0.006  41.8 £0.9 | 0.724 £0.008 59.4 £ 0.8 | 0.653 £0.024 0.095 + 0.003 | 0.899 £ 0.075 658 + 215
..| U-NETsPooL [8] 0.852 £ 0.006  42.9+0.9 | 0.703 £0.009 61.6 £0.9 | 0.635+0.029 0.097 +0.004 | 0.868 + 0.085 753 + 250
'q'é SELFATTNPOOL [17] | 0.848 +0.003  43.5+ 0.4 | 0.726 +0.009 59.2+ 1.0 | 0.654 +0.024  0.095 + 0.003 | 0.601 +0.267 1265 + 546
% STABLEGNN (7] 0.794 +£0.007  50.8 £0.9 | 0.535+0.061 76.9+50 | 0.642+0.045 0.096 +0.006 | 0.501 + 0.266 1487 + 404
& | OOD-GNN [18] 0.862 +£0.007 41.6 1.1 | 0.721 £0.006 59.7 £ 0.6 | 0.666 + 0.025 0.093 +£0.003 | 0.917 +0.029 620 + 109
g IRM [2] 0.842 +£0.004  44.5+0.5 | 0.681 £0.008 63.8+0.8 | 0.682+0.031 0.091 +0.004 | 0.890 +0.042 709 + 146
Z | DIR [40] 0.594 +£0.070  71.0 £6.0 | 0.287 £0.121 951 7.9 | 0.617 £0.045 0.099 = 0.006 | 0.501 + 0.309 1446 + 537
© DIR+REPAUG 0.744 £ 0.029  56.4+3.2 | 0.542+0.083 76.2+7.0| 0.647 +£0.058 0.095 + 0.008 | 0.743 + 0.150 1054 + 338
RGDA-RePAUG 0.494 +£0.110  79.0 £9.3 | 0.660 £0.107 65.2+9.5 | 0.717 £ 0.022  0.086 + 0.003 | 0.400 + 0.286 1623 + 474
RGDA (ours) 0.864 +0.005 41.2+0.8 | 0.736 £0.012 58.0 + 1.2 | 0.723 + 0.030 0.085 + 0.005 | 0.930 + 0.020 569 + 86

Best Mean is bold and best baseline is underlined.

o IRM [2]: We also consider the invariant risk minimization learning paradigm on graph-level
tasks.

e DIR [40]: It is proposed by Wu et al. [40] to identify the subgraph that causes the graph-level
labels during GNN training by intervening on the predicted logits.

Particularly, to investigate the effect of environment replacement augmentation (denoted by REPAUG
as a module that may be used or not in the methods), we implement two method variants:

e DIR+REPAUG: We add environment-replaced augmentation to DIR [40] to identify rationales,
however, it has to explicitly decode and encode the rationales.

e RGDA-REPAUG: We disable the environment replacement augmentation and use only the
environment removal augmentation.

5.1.4 Implementation Details. All experiments are conducted on a Linux server with an Intel Xeon
Gold 6130 Processor (16 Cores @2.1GHz), 96 GB of RAM, and a single RTX 2080Ti card (11 GB of
RAM). Our method is implemented with Python 3.9.9 and PyTorch 1.10.1. We use sum pooling
as the default Comb(-, -) in RGDA for the experiments in Table 3 and Table 4. We set GCN and GIN
as the default encoder for node-level and graph-level framework analysis, respectively. We utilize
the virtual node trick [11] for all graph-level methods on the ogbg-HIV, ogbg-Tox21, ogbg-BBBP,
and all polymer datasets. For PolyDensity, we train and evaluate the models using the logarithm
of the property [22]. We report the mean and standard deviation of the test performance over 10
runs with different random initialization of the parameters.

5.2 Effectiveness and Efficiency of RGDA

5.2.1 Improve GNN for Node Classification. From Table 2, RGDA outperforms all other baselines
on six multi-class node classification tasks, achieving the highest accuracy on each dataset. We
have the following observations:
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Table 4. Results on Graph (Molecule) Classification Datasets: RGDA Consistently Achieves the Highest

GCN [14] as encoder

AUC (1)

ogbg-HIV  ogbg-ToxCast ogbg-Tox21 ogbg-BBBP ogbg-BACE ogbg-ClinTox ogbg-SIDER
Standard 7599 £ 1.19 6580 £0.54 77.27 £0.82 67.77 £0.93 81.21 £2.47 8847 +198  60.63 + 1.01
U-NeTsPooL 75.27 £1.04 6507 £0.86 7492+0.93 67.09+176 77.57+1.73 84.50+4.03 61.81+121
SELFATTNPoOOL | 77.33 £1.87  65.10£0.76  75.63 £0.80 66.02 +2.20 73.83 +541 8291+7.91 57.18+2.19
STABLEGNN 7218 £0.99 6520 £ 1.09 7454+ 0.59 6552+ 184 66.07£5.00 76.81+7.78 56.44+ 2.74
OOD-GNN 75.80 £ 1.76  66.13 £0.46 7673 £ 1.09 67.95+1.65 8096+ 132 88.74+143 61.33+0.95
IRM 77.02 £1.07 6599 +£0.63 76.54+0.72 6892+0.53 79.47+186 88.19+231 60.35+195
DIR 74.66 £ 0.93 59.54 +1.54 4727 £1.29 6559 +£298 67.51+£3.23 6251 +9.56 53.31+2.16

DIR+REPAUG 7494 £2.25 66.32+0.98 7437 +£0.54 6630+ 1.18 76.77 £2.26 86.06 +1.44 59.34 +1.70
RGDA-REPAUG | 73.77 £2.10  66.14 £0.48  78.08 £ 0.61 67.36 +0.77 76.55+5.29 87.08 +5.14  62.22 + 1.66
RGDA (ours) 77.94 £ 0.65 66.62 +0.41 78.22+093 69.86+175 81.91+240 89.61+150 63.16+ 151

GIN [43] as encoder

Standard 77.07 £149 6659 £0.63  76.69 £0.64 68.08 142 7998 +2.01 86.82+229 5893 +241
U-NeTsPoor 73.75£3.62 6524 +126 75.60+0.93 68.09+1.63 80.26+1.05 81.46+7.03 59.29+ 1.14
SELFATTNPOOL | 75.33 £2.47  63.51 +£1.37 75.07 £1.10 66.24 +1.67 7348 +1.94 79.12+9.95 57.02 +1.37
STABLEGNN 7218 £0.78 6485+ 0.25 7381123 66.95+1.20 7229+122 8559+224 5593172
OOD-GNN 77.99 £0.78  66.97 £0.51  76.46 £0.38 67.10 £1.88 78.00 +£2.28 84.16 +4.96  59.16 + 1.69
IRM 7817 +1.20  66.41 £0.65 7542+ 0.84 68.35+0.71 79.77 +2.08 84.85+2.15 57.78 +2.06
DIR 7533 £ 1.17  59.27+£0.97 5078 £3.13 5843 +443 61.15+£587 69.11£8.10 54.06 + 1.27

DIR+REPAUG 77.25+249  6454+0.61 7453+0.80 68.13+2.03 7590+6.42 85.61+159 5730115
RGDA-REPAUG | 77.70 £ 1.78  66.81 £0.66  76.90 + 1.17 67.37 £2.35 79.97 £3.80 8574 +4.42 59.88 + 1.69
RGDA (ours) 79.32+£092 67.50+0.67 77.23+1.19 69.70+1.28 82.37 237 87.89+3.68 60.14 + 2.04

Best Mean is bold and best baseline is underlined.

e RGDA improves the prediction accuracy of GNN across different architectures and tasks: Base-

522

line methods may improve GNN performance when the graph is relatively small, but may
not consistently achieve improvements across architectures and tasks. While FLAG [16] im-
proves standard GCN on datasets with less than 10,000 nodes, such as Cora, CiteSeer, and
Photo, it fails to do so on large-scale datasets such as Computers, PubMed, and ogbn-Arxiv.
Although Mixup improves GCN performance on Photo, it underperforms when applied to
GRrRAPHSAGE. On larger-scale datasets such as Computers, PubMeds, and ogbn-Arxiv, base-
line methods consistently underperform standard GCN and GRAPHSAGE architectures. How-
ever, even on the largest dataset ogbn-Arxiv, RGDA still achieves improvements of +1.8%
over GCN.

By simulating rationale—environment combinations with environment subgraphs, RGDA effi-
ciently and effectively improves GNN generalization: In comparison to standard GCN and
GrAPHSAGE, node-level generalization methods such as SRGNN [54] and EERM [39] show
minimal improvement due to the lack of labeled data. Besides, EERM [39] explicitly main-
tains different prediction environments through graph structure editing, this approach is
computationally inefficient and not scalable to large graphs such as ogbn-Arxiv, which has
over a million nodes. By collecting identified environment subgraphs in the representation
space, RGDA efficiently performs data augmentation in the latent space and create many
virtual training nodes to enhance GNN optimization.

Improve GNN for Graph Property Prediction. Table 3 presents the results on polymer prop-

erty regression with R? and RMSE metrics. Table 4 presents the results on molecule property
classification using AUC. Our RGDA achieves the best performance on all graph-level tasks with
observations:

e On both graph regression and classification tasks, RGDA demonstrates stable improvement:

While OOD-GNN is competitive with RGDA on regression tasks due to its elimination of
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Fig. 3. On two polymer datasets, the performance of RGDA is not sensitive to rationale size y with wide
ranges for tuning.

the statistical dependence between property-relevant and property-irrelevant graph repre-
sentations, it underperforms other baselines on graph classification tasks. In contrast, RGDA
achieves the best performance for both regression and classification tasks at the graph level,
because it further utilizes property-irrelevant environment subgraphs to enhance rationale
identification and enrich the limited labeled training data. So on datasets such as ogbg-
ClinTox, RGDA with GIN improves AUC over OOD-GNN relatively by +4.4%.

RGDA effectively uses contextual information of atom (nodes) and data augmentation to im-
prove graph-level rationalization: The existing graph-level rationalization method DIR was
evaluated on synthetic data [40] and it performs poorly on real polymer and molecule
datasets. One reason is that the intervention in DIR is designed for classification but not
suitable for regression tasks. Besides, DIR creates rationale subgraphs in the input space and
re-encodes the subgraph with in-complete contextual information and half-trained GNN
encoder. Besides, DIR suffers from a lack of labeled data to identify correct rationales. Com-
pared to it, our RGDA achieves the best by performing rationale—environment separation
in the contextual representation space and combining rationales with diverse environments
to enhance rationale identification. So on datasets such as MeltingTemp, RGDA, with GIN
produces 1.56XR? over DIR.

5.3 Framework Analysis of RGDA

5.3.1 Ablation Study on Data Augmentation. Tables 3 and 4 have presented the results of ablation
studies of DIR+RePAUG and RGDA-RepPAUG. DIR+REPAUG is a variant of baseline method DIR
by enabling environment replacement augmentations for training. RGDA—REPAUG is a variant of
our RGDA that disables the replacement augmentations and uses environment removal only for
training. Clearly, DIR+REPAUG outperforms DIR, showing positive effect of the replacement aug-
mentations. And the performance of RGDA—REPAUG is not satisfactory. Environment replacement
augmentations are effective for training graph rationalization methods.

5.3.2  Sensitivity Analysis. Without losing the generality, we conduct three series of sensitivity
analyses. First, Figure 4 shows that on four polymer datasets, the performance of RGDA in terms
of R? is insensitive to the hyperparameters a and f§ in Equation (18). Second, Figure 3 shows that
the performance is insensitive to rationale size y in Equation (16). Third, we compare the effects of
different choices of Comb(-) function that aggregates the representations of rationale and environ-
ment subgraphs. Results are in Tables 5 and 6. We find that in most cases, we could define Comb(-)
as the sum operation. Therefore, we can effectively and efficiently aggregate the rationale and the
environment subgraphs in the latent space by adding their representation vectors together.
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(a) GlassTemp (b) MeltingTemp

(c) PolyDensity (d) OzPerm

Fig. 4. On four polymer datasets, the performance of RGDA (in R?) is not sensitive to hyperparameters a
and f in Equation (18).

Table 5. Investigation of the Combination Choice: Comb(-) in RGDA on Molecule Datasets

Comb(-) in RGDA  ogbg-HIV  ogbg-ToxCast ogbg-Tox21 ogbg-BBBP  o0gbg-BACE ogbg-ClinTox ogbg-SIDER
GCN [14] as encoder

Sum Operation 77.94 £ 0.65 66.62+0.41 78.22+0.93 69.86+1.75 81.91+240 89.61+ 150 63.16 +1.51

Mean Operation 7826 £1.26 6495+ 0.68 77.07 £0.40 69.41+0.78 74.05+6.18 89.12+0.79  56.92 + 0.80

Max Operation 77.88 +£1.07 67.42+0.82 77.42+0.88 66.48 + 1.58 80.07 = 2.98  84.66 + 4.39 59.78 + 2.06

Concatenation 78.72 +£0.76 6723 +0.53  77.07 +£0.65 67.31+1.78 81.78 +1.83  87.98 +2.39 59.61 + 2.38
GIN [43] as encoder

Sum Operation 79.32 £0.92 67.50+£0.67 77.23+1.19 69.70 +£1.28 82.37 £2.37 87.89+3.68 60.14 + 2.04
Mean Operation 78.10 £ 1.17  64.66 = 0.69 7648 £ 0.85 69.38 £1.95 76.55+4.94 84.47+478 58.45+0.76
Max Operation 78.09 + 1.37  67.01+£0.70  77.25+0.38 6823 +1.76 81.06+ 1.84 86.72+1.40  59.29 £ 2.01
Concatenation 77.71 £096 6693 +1.23 7729+ 1.15 67.09+ 187 80.84+2.17 88.89+401 60.78+1.87

We could choose Sum Operation by default, because it performs best in most molecular classification tasks.

5.3.3  Node-level Analysis for Effectiveness and Efficiency. We conduct experiments with GCN [14]
to compare the effectiveness and efficiency of the separation and data augmentation performed in
the graph structure space and the node representation space. We combine the rationale with one
additional environment subgraph. We measure the test accuracy as the effectiveness metric and
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Table 6. Investigation of the Combination Choice: Comb(-) in RGDA on Polymer Datasets

GlassTemp MeltingTemp PolyDensity OzPerm

Comb(-) in RGDA R? 1T RMSE | R* 7 RMSE | R* 17 RMSE | R* 7 RMSE |
GCN [14] as encoder
Sum Operation 0.855 £ 0.003 42.6 0.5 0.716 £ 0.015 60.2 + 1.6 | 0.717 £ 0.023  0.086 + 0.004 | 0.941 + 0.018 523.6 + 91.0
Mean Operation 0.858 + 0.005 42.1+0.7 0.707 £0.021  61.1 +£2.3 | 0.739 £ 0.014 0.082 +0.002 | 0.881 +0.113  684.5 + 311.7
Max Operation 0.855 £ 0.005 42.5+0.7 | 0.705+0.016 61.4+ 1.7 | 0.722 +£0.014 0.085 + 0.002 | 0.939 + 0.050 502.2 + 194.6
Concatenation 0.854 £ 0.006 42.7+0.8 | 0.727 £0.012 59.1+1.3 | 0.732 +£0.004 0.083 +0.001 | 0.927 +£0.029 577.8 £ 119.9
GIN [43] as encoder
Sum Operation 0.864 £ 0.005 41.2+0.8 | 0.736 £0.012 58.0 + 1.3 | 0.724 + 0.030 0.085 + 0.00 | 0.930 + 0.020 569.4 + 85.6
Mean Operation 0.868 + 0.006 40.6 £0.9 | 0.733 £0.007 584 +0.7 | 0.755+0.011 0.080 = 0.002 | 0.929 + 0.033 569.2 + 121.5
Max Operation 0.858 £ 0.006 42.2+0.9 | 0.7164 £ 0.009 60.2 +1.0 | 0.740 +£0.012 0.082 + 0.002 | 0.898 + 0.049 676.6 + 161.0
Concatenation 0.858 +£0.008 42.1+1.2 0.715+0.013 60.4 + 1.3 | 0.757 £ 0.025 0.079 £ 0.004 | 0.924 + 0.014 598.6 + 59.2

training time (in seconds) as the efficiency metric from 10 runs. Results in Table 7 demonstrate that
performing rationale—environment separation and data augmentation in the representation space
leads to a significant improvement in performance compared to operating in the graph structure
space. Given that node data is Non-IID, it is challenging to perform precise replacement of envi-
ronment neighborhoods for data augmentation. Besides, operations in the representation space
reduce the training time.

5.3.4  Graph-level Analysis for Rationalization Efficiency. We first conduct analysis using the ogbg-
HIV dataset to compare the rationalization efficiency of our method with DIR. Results are pre-
sented in Figure 5. When batch size increases, in other words, when a batch has more and more
graphs, the time cost per batch of DIR increases significantly; and RGDA spends much less time
than DIR. Empirically we show that our RGDA is more efficient than DIR. This is because RGDA
does not explicitly decode or encode the subgraphs but directly creates their representations in
latent space. Figure 5(b) shows that compared to three most competitive baselines, RGDA delivers
the highest AUC by learning augmented examples, while spending comparable amount of training
time.

5.4 Case Study for Interpretability

5.4.1 Node-level Interpretability. In Figure 6, we present four cases where we use RGDA to ratio-
nalize GNN predictions for the Cora and PubMed datasets. We visualize the rationale subgraphs (in
blue) to explain and understand why the decision to the nodes (in red) is right or wrong. Nodes with
the same shape (triangle or circle) have the same label. From Figure 6, both GCN and GRAPHSAGE
rely on neighbor nodes with the same label to make correct predictions. When the neighborhood
is full of different shape nodes with different labels, node predictions from GNN may be wrong.
However, in some cases, such as Figure 6(e), when the center circle node is connected to a circle
node and a triangle node (that has a different label), RGDA may help identify the rationale sub-
graph in which most nodes share the same label and remove the message passing pathways from
the environment subgraphs.

5.4.2  Graph-level Interpretability. Given test polymer examples in the O,Perm dataset, we visu-
alize and compare the rationale subgraphs that are identified by from DIR [40] and our RGDA in
Figure 7. We have three observations. First, the rationales identified by RGDA have more coherent
structures of atom nodes than those identified by DIR. The red boxes show that quite a few edges in
the rationales by DIR are far separated. This is because DIR explicitly decodes the subgraphs by
selecting edges. Our RGDA estimates the probability of nodes being included in the rationales and
uses the contextualized representations of atoms in the input graphs to create the representations of
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Table 7. Node-level Effectiveness (Acc.) and Efficiency (Time)
Comparison of Separation/Augmentation Performed in
Representation (rep.) or Structure (struc.) Space

Space | Metric Cora CiteSeer PubMed

Rep. Acc. 83.95+ 0.67 72.24 +0.95 81.60 +0.72
Time (s) | 2.22+0.30 3.23+0.38 3.94+0.44

Struc. Acc. 66.56 + 0.88 62.82 +£1.43 73.24 £ 2.39
Time (s) | 2.93+0.45 3.84+0.51 4.44+0.45
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§ 1 = — IRM
g 0.2
E_1

0 0.0

0 200 400 600 800 1000 0 50 100 150
Batch size Training time (s)

(a) RGDA runs faster than DIR when batch size (# (b) RGDA spends comparable training time to de-
graphs) increases. liver the highest AUC.

Fig. 5. Graph-level efficiency analysis on the ogbg-HIV dataset.
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Fig. 6. Node-level interpretability: We visualize eight rationale subgraphs (neighborhoods) that justify the
correct or wrong GNN node decisions for the center red nodes. The rationale subgraphs (including nodes and
edges) are colored in blue, and the remaining subgraphs are colored in gray, representing the environments.
Nodes with the same label are shown in the same shape.

rationales. So the rationales have coherent structures of nodes. Second, the rationales from RGDA
are more interpretable and beneficial than the ones from DIR, based on domain expertise in polymer
science. Take a look at the first polymer example in Figure 7. The rationale from RGDA includes
non-aromatic rings and methyl groups. The former group allows larger free volume elements and
lower densities (i.e., enlarge microporousity) in the polymer’s repeating units, which positively
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DIR: 67.52 RGDA (ours): 42.98
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CC(C)(C1=CC2C(C=CT)C(=0)N(C2=0)C 1=CC=C(0*)C=C1)C1=CC=C2C(=C)N(C(=C)C2=C1)C1=CC=C(0C2=CC=C(C=C2)C(=0)
(C2=CC=C3C(=C2)C(C)(C)CC3(C)C2=CC=C(C=C2)C(=0)C2=CC=C(*)C=C2)C=C1

© O, Permeability: Truth: 1.83
c

DN
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Fig. 7. Graph-level interpretability: three polymers selected from the test set in Oz Perm dataset to compare
identified graph rationales by DIR [40] and our RGDA. DIR selects edges to decode rationale subgraphs.
Our RGDA estimates the probability of nodes being classified into rationales in latent space. The red boxes
indicate incoherent edges that DIR selects. The blue boxes indicate coherent node sets that contribute to
accurate predictions on oxygen permeability of polymer membrane.

contributes to the gas permeability [31, 44]. The latter group is hydrophobic and contributes to
steric frustration between polymer chains [44], inducing a positive correlation to the permeability.
However, the rationale from DIR would make property predictor overestimate the oxygen perme-
ability, because it suggests that the double-bonded oxygens, ethers, and nitrogen atoms are posi-
tively correlated with the property. However, it conflicts with observations and conclusions from
chemical experiments in previous literature [44] where researchers argue that the double-bonded
oxygens, ethers, and nitrogen atoms are negatively correlated with gas permeability. For the sec-
ond and third examples, DIR also predicts through double-bonded oxygens, ethers, and nitrogen
atoms, and it overestimates the permeability. Our RGDA realizes and employs the true relation-
ship between the functional groups and property and successfully suppresses the representations
of non-aromatic rings and methyl groups in the prediction. RGDA intrinsically discovers correct
relationships between rationale subgraphs and the property. Third, the rationales from RGDA are
commonly observed across different polymers. We expect rationales to have a universal indication
on the polymer properties. The rationales identified in the second and third examples both have
fused heterocyclic rings (at the right end of the monomers and highlighted by blue boxes).

6 CONCLUSIONS

Despite the advances made by GNN, their predictions remain difficult to justify due to the lack
of intrinsic interpretability. Our work addressed this problem with a novel data augmentation
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framework, called RGDA. It is a unified solution to train robust, accurate, and interpretable GNN
for both node-level and graph-level tasks with environment subgraph based augmented examples.
We conduct experiments on 17 datasets using three commonly used GNN models for node classifi-
cation, graph classification, and graph regression tasks. Our results demonstrate the effectiveness,
efficiency, and interpretability of the framework.
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