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Abstract

In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson

equation as p → +∞ in Carnot-Carathéodory spaces. In particular, introducing a

suitable notion of differentiability, extend the celebrated result of Bhattacharya et al.

(Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove

that limits of such solutions solve in the sense of viscosity a hybrid first and second

order PDE involving the ∞-Laplacian and the Eikonal equation.
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1 Introduction

The problem of finding the best possible Lipschitz extension of a given sample of a

scalar function presents connections with many fields of mathematics and has several

real-world applications. Although issues of existence of minimizers date back to the

early 30s in the work of McShane and Whitney (see [4] and references therein for

a detailed history), the work of Aronsson [1, 2] in the mid 60s represented truly a

turning point, bringing a PDE point of view in the picture. A key novelty in Aronsson’s

approach was the notion of Absolutely Minimizing Lipschitz Extensition (AMLE): a

Lipschitz function u is an AMLE of its boundary datum on the boundary of an open

set � ⊂ R
n if for every subdomain V ⊂ � one has Lip(u, V ) = Lip(u, ∂V ), where

we have set

Lip(u, V ) = sup
x �=y, x,y∈V

u(x) − u(y)

d(x, y)
.

This definition in a sense characterizes a canonical optimal Lipschitz extension for

Lipschitz boundary data, as it provides uniqueness. This notion is meaningful in every

metric space, with no additional structure needed. In the Euclidean case, uniqueness

of AMLE was established by Jensen [31]. Following in the footprints of Aronsson,

who had studied the C2 case, Jensen proved that AMLE are viscosity solutions to the

infinity Laplacian equation

�∞u :=
n
∑

i, j=1

ui j ui u j = 0, (1.1)

along with a uniqueness theorem for such solutions. The infinity Laplacian operator

arose from the work of Aronsson though a formal argument, based on L p approx-

imation. Namely, for every p > 1 Aronsson considered C2 minimizers u p of the

energy
∫

�
|∇u|pdx . These minimizers are p-harmonic, i.e. div(|∇u p|p−2∇u p) = 0.

Taking the formal limit of this PDE as p → ∞ one obtains (1.1). Since p-harmonic

functions are not in general C2, it took several years to build a rigorous framework

for Aronsson’s asymptotic approach. This was eventually accomplished thanks to the

work of Bhattacharya, DiBenedetto and Manfredi [7, Propositions 2.1 and 2.2].

In this paper we prove an extension of [7, Propositions 2.1 and 2.2] to the

non-Euclidean setting of Carnot-Carathéodory spaces and we also extend the non-

homogenous case studied in [7].

Specifically, we are concerned with the asymptotic behavior, as p → ∞, of van-

ishing trace critical points for the functionals

E p(w,�) =
∫

�

1

p
|Xw|pdx −

∫

�

f wdx,

where dx is the Lebesgue measure, Xw denotes the horizontal gradient associated to

a distribution X = {X1, ..., Xm} of smooth vector fields satisfying Hörmander’s finite

rank condition, that is
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The asymptotic p-Poisson equation...

dim Lie(X1, ..., Xm)(x) = n,

for every point x in a neighborhood of a bounded open set � ⊂ R
n , and f ∈ L p′

(�)

is a given datum. In the rest of the paper, we will denote by W
1,p
X (resp. W

1,p
X ,0) the

horizontal Sobolev spaces (resp. trace zero Sobolev spaces) associated to the frame

X1, ..., Xm (see [46]) and consider Lipschtiz and Hölder regularity with respect to the

associated Carnot-Carathéodory control distance d� (see Sect. 2).

More specifically we consider weak solutions u p ∈ W
1,p

X (�) to the non-

homogeneous boundary value problem

{

divX(|Xu p|p−2 Xu p) = − f in �,

u p = 0 in ∂�.
(1.2)

In the homogenous case f = 0 we will also consider non-zero Lipschtiz boundary

values. We will denote by {u p}p>1 the net of weak solutions to (1.2). As in the

Euclidean case, it is plausible to expect that its cluster point(s) u∞ solve an equation

analogue to (1.1) which is derived by (1.2) in the limit p → ∞. A formal computation,

in the special homogeneous case f = 0, indicates that a likely candidate for such a

limit is the ∞-Laplacian PDE

�X ,∞u∞ = 0, (1.3)

where

�X ,∞u =
m
∑

i, j=1

X i X j u X i u X j u =
m
∑

i, j=1

X i X j u + X j X i u

2
X i u X j u

denotes the subelliptic ∞-Laplacian.

Our main result in the homogenous case f = 0 is the following

Theorem 1.1 Let g ∈ W
1,∞
X (�), and for each p > 1 consider the weak solution u p

of the boundary value problem

{

divX(|Xu p|p−2 Xu p) = 0 in �

u = g on ∂�
(1.4)

Every sequence {u pk
} of weak solutions to (1.4) admits a subsequence converging

locally uniformly on � and weakly in W
1,m
X (�), for any m > 1, to a function u∞ ∈

W
1,∞
X (�) ∩ C(�) satisfying:

(1) ‖Xu∞‖∞ ≤ ‖Xg‖∞.

(2) u∞ − g ∈ W
1,p
X ,0(�) for any p ∈ [1,∞).

(3) u∞ − g ∈ C
0,α
X (�) ∩ C0(�) for any α ∈ [0, 1).

(4) If g ∈ W
1,∞
X (�) ∩ C(�), then u∞ ∈ W

1,∞
X (�) ∩ C(�) and u∞(x) = g(x) for

any x ∈ ∂�.
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(5) u∞ is a viscosity solution to (1.3).

(6) u∞ is an AMLE.

In the case of the Heisenberg group, this theorem is due to Bieske [9]. Infinite and

p-harmonic functions have been studied by the same author in the setting of Carnot

groups [8], Riemannian vector fields [13] and Grushin spaces [10, 12]. Theorem 1.1

can also be proved, more indirectly, by invoking results from three earlier papers

[23, 34, 49], all of which draw from the geometric significance of equation (1.3) in

the study of minimal Lipschtz extensions: in 2006, Juutinen and Shanmugalingam

[34], studied the asymptotic limits as p → ∞ of p-energy minimizers in the setting

of metric measure spaces satisfying a doubling condition, a p-Poincarè inequalities

and a weak Fubini property, proving that such limits are AMLE. In that paper, the

notion of viscosity solution for the infinity Laplacian was substituted with the notions

of comparison with cones and strongly Absolutely Minimizing Lipschitz Extensions

(sAMLE), which they prove to be equivalent to AMLE. In the Carnot-Carathéodory

setting the notion of sAMLE is equivalent to the notion of Absolutely Minimizing

Gradient Extension (AMGS) (see [23], i.e. a Lipschitz function u is an AMGS of

its boundary data in �, if for every subdomain U ⊂ � and v ∈ W
1,∞
X (U ) with

u − v ∈ W
1,∞
X ,0 (U ), one has ‖Xu‖L∞(U ) ≤ ‖Xv‖L∞(U ). In [23], Dragoni, Manfredi

and Vittone prove that Carnot-Carathéodory metrics satisfy the weak Fubini property

and that AMGS is equivalent to sAMLE. Since the latter is equivalent to AMLE, it

follows that the limits of p-energy minimizers u p as p → ∞ converge to a function

u∞ which is an AMGS. At this point one can invoke Wang’s result [49] (see also [14]

in the case of Carnot groups), where it is proved that AMGS are viscosity solutions to

(1.3). By contrast, our proof is quite direct and it mirrors the strategy in [7]. It also has

the advantage of containing several technical steps upon which the non-homogeneous

case rests. Before proceeding to the non-homogenous case, we want to note that the

properties of AMLE and comparison by cones are equivalent in every length space

[18]. In the presence of a weak Fubini property, they imply sAMLE. In the setting

of Riemannian and subriemannian manifolds the latter agrees with AMGS and so it

implies the property of being a viscosity solution to the ∞-Laplacian. The reverse

implication follows from the uniqueness of solutions, and is known only for Carnot

groups and Riemannian manifolds. Further connections have been studied in the setting

of doubling metric measure space that satisfy a weaker condition, the ∞-weak Fubini

property (see [24]).

In the general non-homogenous case f �= 0, analogously to [7], one can prove that

u∞ solves a hybrid first and second order PDE in the viscosity sense. Our main result

is the following

Theorem 1.2 If f ∈ L∞(�) ∩ C(�), and f ≥ 0, then every sequence {u pk
} of weak

solutions to (1.2) admits a subsequence converging uniformly on �̄ and weakly in

W
1,m
X (�), for any m > 1, to a function u∞ ∈ Lip(�) ∩ C(�̄) vanishing on the

boundary. Moreover, u∞ is a solution of
{

�∞u∞ = 0 on { f > 0}c
,

|Xu∞| = 1 on { f > 0},
(1.5)

in the viscosity sense.
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In the Euclidean case, when X i = ∂i and m = n, this is a celebrated result due to

Bhattacharaya, DiBenedetto and Manfredi [7]. To our knowledge, the present paper is

the first extension of the results for the non-homogeneous problem in [7] beyond the

Euclidean setting. One of the main challenges in this extension comes from the lack of

linear structure and its role in the definition of viscosity solutions. Correspondingly,

one of the key contributions of the paper is the study of differentiability, which is

carried out in Sect. 2.3. The main result of that section is Proposition 2.14, which yields

both the differentiability as well as an explicit form for the horizontal differential (X -

differential) of suitably regular functions. Although in the proof of this result we need

to assume the linear independence of the vector fields X1, ..., Xm , eventually when

we apply this proposition later in the paper we will not need to do so, thanks to an

argument reminiscent of the Rothschild-Stein lifting theorem [46]. We remark that

our notion of differential in general lacks uniqueness, and can be used in a broader

generality than other notions of horizontal differentiability that have appeared in the

sub-Riemannian literature, such as the ones proposed by Pansu [44] (for Carnot groups)

and Margulis and Mostow [40] (for equiregular sub-Riemannian structures). However,

in the presence of a Carnot group structure, our notion of differentiability agrees

with Pansu’s, whenever the X -differential commutes with the group operation and the

intrinsic dilations. Another important feature of the paper is the study of the relationship

between almost everywhere subsolutions and viscosity subsolutions to suitable first-

order PDE, which is carried out in Sect. 3. Namely, exploiting the differentiability

properties discussed in Sect. 2.3 and the notion of (X , N )-subgradient introduced in

[45] (cf. Sect. 2.2), in Theorem 3.7 we prove that in the setting of Hörmander vector

fields any almost everywhere subsolution to a first-order PDE is a viscosity subsolution,

provided that the associated Hamiltonian is quasiconvex in the gradient argument. We

refer to [5, 48] for similar results in the Euclidean setting and in Carnot-Carathéodory

spaces respectively. This result, although fundamental in the development of the paper,

might be of independent interest.

Remark We note that the property of being a (viscosity) solution of either PDE in the

mixed problem (1.5) could be separately be expressed in the setting of metric measure

spaces: for the first order PDE see [37], while for the infinity Laplacian one could use

comparison by cones or AMLE, or (with a Fubini property hypothesis) sAMLE. One

could then pose the question whether the conclusions of Theorem 1.2 could continue

to hold in the setting of PI spaces satisfying a weak Fubini property. Unfortunately,

in our proof of the convergence for the non-homogeneous case f �= 0 we use in a

crucial way the differential structure associated to the Hörmander vector fields. More

specifically, we rely on the non-divergence form formulation of (1.2), which is not

allowed in a general metric measure space, even with the additional hypotheses of

doubling and Poincaré inequality.

Remark It is interesting to note that in Theorem 1.1 we do not require any regularity

of the boundary of the domain. While this is sufficient to guarantee global Lipschitz

continuity of u∞, there is no parallel regularity theory for p-harmonic functions.

Indeed, even the case p = 2 is quite involved and boundary regularity may fail even

for smooth domains, in connection with their characteristic points (see [32]).
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The structure of the paper is the following: In Sect. 2 we introduce the main

geometric hypotheses on the structure of the spaces we will work with, the Carnot-

Carathéodory spaces, with their control metric. We also recall some elements of

analysis and potential theory in this setting, and discuss the issue of horizontal differ-

entiability (see Sect. 2.3). Finally, we recall the notion of viscosity solutions for first

and second-order PDE and the ones of supremal functional and absolute minimizer. In

Sect. 3 we study the relationship between almost everywhere and viscosity subsolution

to first-order quasiconvex PDE, and we prove the aforementioned Theorem 3.7. It is in

this theorem that we need the notion of X -differential and the Hörmander finite rank

condition hypothesis. The proof of the theorem is partially based on the lifting process

introduced by Rothschild and Stein in [46]. In Sect. 4 we turn our attention to the weak

solutions to the p-Poisson equation and prove that they are also viscosity solutions (see

also [9] and subsequent work of Bieske for earlier instances of this result in the setting

of the Heisenberg group and Carnot groups). In the last two sections we study the lim-

iting problems as p → ∞ in the homogeneous and in the non-homogeneous regimes,

proving Theorems 1.1 and 1.2. Some of our results continue to hold in a setting where

the Hörmander condition does not hold, but where one still has a well-defined control

metric. The appendix provides a concrete example of a space satisfying the needed

hypotheses.

2 Preliminaries

Unless otherwise specified, we let m, n ∈ N\{0} with m ≤ n, we denote by � a

bounded domain of R
n and by A the class of all open subsets of �. Given two open

sets A and B, we write A � B whenever A ⊆ B. We let U SC(�) and L SC(�) be

respectively the sets of upper semicontinuous and lower semicontinuous functions on

�, and we denote by C0(�) the set of continuous functions on � which vanish on

∂�. For any u, v ∈ R
n , we denote by 〈u, v〉 the Euclidean scalar product, and by |v|

the induced norm. We let Sm be the class of all m × m symmetric matrices with real

coefficients. We denote by Ln the restriction to � of the n-th dimensional Lebesgue

measure, and for any set E ⊆ U we write |E | := Ln(E). If a < b, we denote by

AC((a, b),�) the set of absolutely continuous curves from (a, b) to �. Given x ∈ R
n

and R > 0 we let BR(x) := {y ∈ R
n : |x − y| < R}. Moreover, if d is a distance on

� we let BR(x, d) := {y ∈ � : d(x, y) < R}. If we have a function g ∈ L1
loc(�) and

x ∈ � is a Lebesgue point of g, when we write g(x) we always mean that

g(x) = lim
r→0+

∫

Br (0)

g(y)dy.

If f (x, s, p) is a regular function defined on � × R × R
m , we denote by Dx f =

(Dx1 f , . . . , Dxn f ), Ds f and Dp f = (Dp1 f , . . . , Dpm f ) the partial gradients of f

with respect to the variables x, s and p respectively. In general we handle gradients

as row vectors.
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2.1 Carnot-Carathéodory spaces

Given a family X = (X1 . . . , Xm) of smooth vector fields defined in an open set

� ⊆ R
n , that is

X j :=
n
∑

i=1

c j,i

∂

∂xi

with ci j ∈ C∞(�), we denote by C(x) the m × n matrix defined by

C(x) :=
[

c j,i (x)
]

i=1,...,n
j=1,...,m

(2.1)

and we call it the coefficient matrix of X . If u ∈ L1
loc(�), we define the distributional

X -gradient (or horizontal gradient) of u by

〈Xu, ϕ〉 := −
∫

�

u divX(ϕ)dx for any ϕ ∈ C∞
c (�, R

m),

where the X -divergence divX is defined by

divX(ϕ) := div(ϕ · C(x))

for any ϕ ∈ C1(�, R
m). Given k ≥ 1, we define the horizontal Ck

X (�) space by

Ck
X (�) := {u ∈ C(�) : X i1 · · · X is u ∈ C(�) for any(i1, . . . , is) ∈ {1, . . . , m}sand

1 ≤ s ≤ k}.

Therefore, whenever we have a function u ∈ C2
X (�), we can define its horizontal

Hessian X2u ∈ C(�, Sm) by

X2u(x)i j :=
X i X j u(x) + X j X i u(x)

2

for any x ∈ � and i = 1, . . . , n, j = 1, . . . , m. We extend the operator divX to

C1
X (�, R

m) by setting

divX(ϕ) :=
m
∑

j=1

X jϕ j +
m
∑

j=1

n
∑

i=1

ϕ j

∂c j,i

∂xi

for any ϕ = (ϕ1, . . . , ϕm) ∈ C1
X (�, R

m), and for a given function u ∈ C2
X (�) we

define the X -Laplacian of u by

�X u := divX(Xu) =
m
∑

j=1

X j X j u +
m
∑

j=1

n
∑

i=1

X j u
∂c j,i

∂xi

. (2.2)
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Finally, if p ∈ [1,+∞], we define the horizontal Sobolev spaces by

W
1,p
X (�) := {u ∈ L p(�) : Xu ∈ L p(�, R

m)},
W

1,p
X ,loc(�) := {u ∈ L

p
loc(�) : u|V ∈ W

1,p
X (V ), for all V � �}

and

W
1,p
X ,0(�) := C∞

c (�)
‖·‖

W
1,p
X

(�) ,

where

‖u‖
W

1,p
X (�)

:= ‖u‖L p(�) + ‖Xu‖L p(�).

Moreover, when g ∈ W
1,p

X (�), we let

W
1,p
X ,g(�) :=

{

u ∈ W
1,p
X (�) : u − g ∈ W

1,p
X ,0(�)

}

.

The following result is proved in [26].

Proposition 2.1 (W
1,p

X (�), ‖ · ‖
W

1,p
X (�)

) is a Banach space, reflexive if 1 < p < ∞.

In analogy with the Euclidean setting, proceeding as in the proof of [35, Theorem

10.41], it is easy to get the following Riesz-type Theorem.

Proposition 2.2 Let 1 ≤ p < ∞, and let (uh)h ⊆ W
1,p

X (�) and u ∈ W
1,p

X (�). The

following conditions are equivalent.

(i) uh⇀u in W
1,p
X (�).

(ii) For 1/p′ + 1/p = 1 and for any (g0, . . . , gm) ∈ (L p′
(�))m+1 it holds that

lim
h→∞

⎛

⎝

∫

�

uh · g0 dx +
m
∑

j=1

∫

�

X j uh · g j dx

⎞

⎠ =
∫

�

u · g0 dx +
m
∑

j=1

∫

�

X j u · g j dx .

If γ : [0, T ] −→ � is an absolutely continuous curve, we say that it is horizontal

when there are measurable functions a1, . . . , am : [0, T ] −→ R such that

γ̇ (t) =
m
∑

j=1

a j (t)X j (γ (t)) for a.e. t ∈ [0, T ], (2.3)

and we say that it is sub-unit whenever it is horizontal with
∑m

j=1 a2
j (t) ≤ 1 for a.e.

t ∈ [0, T ]. Moreover, we define the Carnot-Carathéodory distance on � by

d�(x, y) := inf{T : γ : [0, T ] −→ � is sub-unit,γ (0) = xandγ (T ) = y}.
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If d� is a distance on �, then (�, d�) is called a Carnot-Carathéodory space. An

equivalent definition of the Carnot-Carathéodory distance (see [43]) is given by

d�(x, y) = inf

⎧

⎨

⎩

(∫ 1

0

|a(t)|2dt

)

1
2

: γ : [0, 1] −→ � is horizontal, γ (0) = x and γ (1) = y

⎫

⎬

⎭

,

where a(t) = (a1(t), . . . , am(t)) is as in (2.3).

We say that the smooth distribution X = (X1, ..., Xm) satisfies the Hörmander

condition on � if

dim Lie(X1, ..., Xm)(x) = n for any x ∈ �. (2.4)

From [29, 43] one has the following result.

Proposition 2.3 If X satisfies (2.4) on �, then the following properties hold:

(i) (�, d�) is a Carnot-Carathéodory space.

(ii) For any domain �̃ ⊆ � there exists a positive constant C�̃ such that

C−1

�̃
|x − y| ≤ d�(x, y) ≤ C�̃|x − y|

1
r for any x, y ∈ �̃,

where r denotes the nilpotency step of Lie(X1, . . . , Xm).

As a simple corollary of Proposition 2.3 we get that, under condition (2.4), the topology

induced by d� on � is equivalent to the Euclidean topology. Next, we recall an

approximation result based on an original argument due to Friedrichs in 1944 for

the local version, which was extended to a global result in [27, 28]. Its proof can be

carried out by means of similar techniques.

Proposition 2.4 Let X satisfy (2.4) on �. If v ∈ C1
X (�), then for any open set V � �

there exists a sequence (vh)h ∈ C∞(�) such that vh → u and Xvh → Xu uniformly

on V .

The horizontal Lipschitz space is defined by

Lip(�, d�) :=
{

u : � −→ R : sup
x �=y, x,y∈�

|u(x) − u(y)|
d�(x, y)

< +∞
}

and we say that u ∈ Liploc(�, d�) if every point x ∈ � has a neighbourhood U such

that u ∈ Lip(U , d�). Thanks to [28, Theorem 1.3] one has

W
1,∞
X ,loc(�) = Liploc(�, d�).

Therefore, in the following we will identify functions u ∈ W
1,∞
X ,loc(�) with their

continuous representatives. We also recall a Poincaré-type inequality for trace zero

functions (see [17, 39] in the Carnot-Carathéodory setting and [15, Theorem 6.21] for

a version in PI spaces).
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Theorem 2.5 Let X = (X1, ..., Xm) be a smooth family of Hörmander vector fields in

�0 ⊆ R
n . Let � � �0 be a bounded domain and let 1 ≤ p < ∞. Then there exists a

constant c = c(�, p) > 0 such that

∫

�

|u|p dx ≤ c

∫

�

|Xu|p dx

for any u ∈ W
1,p
X ,0(�).

Corollary 2.6 Under the same hypotheses as above, for every g ∈ W
1,p

X (�) there

exists a constant K = K (�, p, g) > 0 such that

∫

�

|u|p dx ≤ K

(

1 +
∫

�

|Xu|p dx

)

for any u ∈ W
1,p
X ,g(�).

2.2 Subgradient in Carnot-Carathéodory spaces

In this section we recall some properties of the so-called (X , N )-subgradient of a

function u ∈ W
1,∞
X ,loc(�), introduced in [45] as a generalization of the classical Clarke’s

subdifferential (cf. [19]) and defined by

∂X ,N u(x) := co{ lim
n→∞

Xu(yn) : yn → x, yn /∈ N and the limit lim
n→∞

Xu(yn) exists}

for any x ∈ �, where N ⊆ � is any Lebesgue-negligible set containing the non-

Lebesgue points of Xu and co denotes the closure of the convex hull. The next two

propositions, which can be found as [45, Proposition 2.4] and [45, Proposition 2.5],

describe some properties of the (X , N )-subgradient which will be useful in the sequel.

Proposition 2.7 Let u and N be as above. Then the following facts hold.

(i) ∂X ,N u(x) is a non-empty, convex, closed and bounded subset of R
m for any x ∈ �.

(ii) if u ∈ C1
X (�), then

∂X ,N u(x) = {Xu(x)}

for any x ∈ �.

Proposition 2.8 Assume that X satisfies (2.4) on � and let C be the coefficient matrix

of X as in (2.1). Let u ∈ W
1,∞
X ,loc(�) and let γ ∈ AC([−β, β],�) be a horizontal curve

with

γ̇ (t) = C(γ (t))T · A(t) a.e. t ∈ [−β, β].
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If 1 ≤ p ≤ +∞, and A ∈ L p((−β, β), R
m), then the function t �→ u(γ (t)) belongs

to W 1,p(−β, β), and there exists a function g ∈ L∞((−β, β), R
m) such that

d(u ◦ γ )(t)

dt
= g(t) · A(t)

for a.e. t ∈ (−β, β). Moreover

g(t) ∈ ∂X ,N u(γ (t))

for a.e. t ∈ (−β, β).

As a consequence of Propositions 2.7 and 2.8, the following holds.

Proposition 2.9 Let u ∈ C2
X (�). Let x0 be a local maximum (minimum) point of u.

Then Xu(x0) = 0 and X2u(x0) ≤ (≥) 0.

Proof We assume that x0 is a local maximum, being the other case analogous. Let γ

be a smooth horizontal curve defined in a neighborhood of 0, such that γ (0) = x0 and

γ̇ (t) = C(γ (t))T · A(t). Fix i = 1, . . . , m and choose A(t) = ei where ei denotes the

i-th element in the canonical basis of R
m . Let g(t) := u(γ (t)). Then g′(0) = 0 and

g′′(0) ≤ 0. Thanks to [45, Proposition 2.6], we know that

g′(t) = Xu(γ (t)) · A(t).

Hence, thanks to the choice of A, we conclude that X i u(x0) = 0, and so Xu(x0) = 0.

To conclude, let us fix ξ ∈ R
m and let A(t) = ξ . Then, arguing as above,

g′(t) = Xu(γ (t)) · ξ,

which implies that

g′′(t) =
m
∑

i, j=1

X i X j u(γ (t))ξiξ j .

Evaluating the previous identity in t = 0 allows to conclude that X2u(x0) ≤ 0. ��

We conclude this section with the following well-known property, whose proof in

the smooth case goes back to [33] and which can be derived easily from Proposition 2.8.

Corollary 2.10 Assume that X satisfies (2.4) and let u ∈ W
1,∞
X ,loc(�). If Xu = 0 on �,

then u is constant on �.
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2.3 Differentiability in Carnot-Carathéodory spaces

In this section we introduce a notion of differentiability for C1
X functions which is

a generalization of the one introduced in [42] to prove a Rademacher-type theorem

for Lipschitz functions on suitable families of Carnot-Carathéodory spaces. The new

notion will be crucial in the study of viscosity solutions for the asymptotic problem

(1.5). The main result of the section is Proposition 2.14, which yields the differentia-

bility and an explicit form for the differential of C1
X functions. We remark explicitly

that although in the proof of this result we need to assume the linear independence

of the vector fields X1, ..., Xm , later in the paper when we apply this proposition we

will not need to do so, thanks to an argument involving the Rothschild-Stein lifting

theorem (cf. [46].) We say that a function u ∈ C(�) is X -differentiable at x ∈ � if

there exists a linear mapping Lx : R
n −→ R such that

lim
d�(x,y)→0

u(y) − u(x) − Lx (y − x)

d�(x, y)
= 0.

In such a case we say that dX u(x) := Lx is a X -differential of u at x. In order to

guarantee the existence of a X -differential for a C1
X function, we assume that the

vector fields satisfy Hörmander’s condition (2.4) and in addition we also require that

X1(x), . . . , Xm(x)are linearly independent for anyx ∈ �. (LIC)

The additional hypothesis (LIC) implies that the matrix C(x)T admits a left-inverse

matrix for any x ∈ �.

Proposition 2.11 Assume that X satisfies (LIC). Then, if we define C̃ as

C̃(x) :=
(

C(x) · C(x)T
)−1

· C(x)

for any x ∈ �, then C̃ is well defined and continuous on �. Moreover it holds that

C̃(x) · C(x)T = Im

for any x ∈ �. Here Im denotes the m × m identity matrix.

Proof Let us define B(x) := C(x) · C(x)T for any x ∈ �. Thanks to (LIC) we know

that C(x) and C(x)T have maximum rank, and so by standard linear algebra we know

that B(x) is a square matrix with maximum rank. Thus B(x) is invertible and C̃(x) is

well defined. Moreover it holds that

C̃(x) :=
Adj(B)(x) · C(x)

det(B(x))
,

and so it is continuous on �. A trivial calculation shows that C̃ is a left inverse of

CT . ��
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Lemma 2.12 Assume that X satisfies (2.4). Let x, y ∈ � and ε > 0. Assume that

γ ∈ AC([0, T ],�) is a sub-unit curve such that γ (0) = x, γ (T ) = y and T <

d�(x, y) + ε. Then it holds that

γ ([0, T ]) ⊆ Bd�(x,y)+ε(x, d�). (2.5)

Proof Let x, y, γ and ε as above. Assume by contradiction that there exists t ∈ (0, T )

such that d�(x, γ (t)) ≥ d�(x, y) + ε. Then it follows that

d�(x, y) + ε ≤ d�(x, γ (t)) ≤ t < T < d�(x, y) + ε,

which is a contradiction. ��

Proposition 2.13 Assume that X satisfies (2.4). Let g ∈ C1
X (�) and let x ∈ �. Then

lim sup
y→x

|g(y) − g(x)|
d�(x, y)

≤ |Xg(x)|.

Proof Let x and g be as in the statement. Let �̃ � � be an open and connected

neighborhood of x , and let β = C−1

�̃
be as in Proposition 2.3. Let R > 0 be such

that B2R(x, d�) ⊆ �̃. Choose now y ∈ BR(x, d�) and 0 < ε ≤ R. Then, thanks to

Proposition 2.3, it follows that

Bd�(x,y)+ε(x, d�) ⊆ Bβd�(x,y)+βε(x). (2.6)

Moreover, if we let M be the family of all sub-unit curves γ : [0, T ] −→ � connecting

x and y and such that T < d�(x, y) + ε, then it is clear that

d�(x, y) = inf{T : γ : [0, T ] −→ �, γ ∈ M}.

Fix now a curve γ : [0, T ] −→ �, γ ∈ M with horizontal derivative A. Then, thanks

to (2.6), [45, Proposition 2.6] and Lemma 2.12, it follows that

|g(y) − g(x)| =
∣

∣

∣

∣

∫ T

0

〈Xg(γ (t)), A(t)〉dt

∣

∣

∣

∣

≤ T ‖Xg‖∞,Bβd�(x,y)+βε(x) (2.7)

Therefore, passing to the infimum over M , it follows that

|g(y) − g(x)|
d�(x, y)

≤ ‖Xg‖∞,Bβd�(x,y)+βε(x).

The conclusion follows letting ε → 0+ and y → x , together with the continuity of

Xg. ��

Now we state our main differentiability result.
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Proposition 2.14 Assume that X satisfies (2.4) and (LIC), let u ∈ C1
X (�) and x ∈ �.

Then u is X-differentiable at x and

dX u(x)(z) = 〈Xu(x) · C̃(x), z〉,

where C̃ is as in Proposition 2.11 and z ∈ R
n .

Proof Let x ∈ � be fixed. Define g : � −→ R as g(y) := u(y) − h(y), where

h(y) = 〈Xu(x) · C̃(x), y − x〉.

Then clearly g ∈ C1
X (U ). Moreover, by explicit computations, we get that

Xg(y) = Xu(y) − X(〈Xu(x) · C̃(x), y − x〉)
= Xu(y) − D(〈Xu(x) · C̃(x), y − x〉) · C(y)T

= Xu(y) − Xu(x) · C̃(x) · C(y)T ,

which in particular implies that

Xg(x) = 0.

The conclusion then follows by invoking Proposition 2.13. ��

Remark A careful look at the above proof reveals that the X -differential exists in a

general Carnot-Carathéodory space, provided that the generating vector fields satisfies

(LIC) and that the induced Carnot-Carathéodory distance is continuous with respect

to the Euclidean topology. We refer to the Appendix for some remarks.

Remark It is clear from the proof of Proposition 2.14 that the X -differential is non-

unique in general. Indeed, Proposition 2.14 remains true if we let

dX u(x)(z) = 〈Xu(x) · D(x), z〉,

where D(x) is any left-inverse matrix of CT (x). Since for a non-squared matrix the

left-inverse matrix is non-unique in general, the non-uniqueness of the X -differential

follows. As an instance, consider the Heisenberg group H
1, i.e. the step-2 Carnot group

whose Lie algebra is generated by the vector fields

X =
∂

∂x
− y

∂

∂t
, Y =

∂

∂ y
+ x

∂

∂t
.

It is easy to see that the matrices

C̃(x, y) =
1

1 + x2 + y2

[

1 + x2 xy −y

xy 1 + y2 x

]

, D =
[

1 0 0

0 1 0

]
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are both left-inverse matrices of

C(x, y)T =

⎡

⎣

1 0

0 1

−y x

⎤

⎦

Nevertheless, if in a Carnot group we require in addition that the X -differential is

H -linear, i.e. it commutes with the group operation and the intrinsic dilations, then it

is unique and it coincides with the classical Pansu differential (cf. [44, 47]). Finally,

we point out that when n = m and X1(x), . . . , Xn(x) are linearly independent for any

x , i.e. the Riemannian case, then the X -differential is unique since C̃(x) = (C(x)T )−1.

2.4 Embedding theorems

In this section we recall some Morrey-Campanato type embedding that we will use

later. In the setting of Hörmander vector fields the results were first proved in [38], and

it was later realized that they continue to hold in the general setting of metric measure

spaces satisfying doubling property and a Poincaré inequality (cf. [30, Lemma 9.2.12]).

If α ∈ (0, 1), we define the Folland-Stein Hölder spaces as

C
0,α
X (�) :=

{

u : � −→ R : sup
x �=y, x,y∈�

|u(x) − u(u)|
d�(x, y)α

< +∞
}

and

C
0,α
X ,loc(�) :=

{

u : � −→ R : sup
x �=y, x,y∈K

|u(x) − u(u)|
d�(x, y)α

< +∞ for any compact set K � �

}

.

Moreover, when E ⊆ � and u : � −→ R we set

‖u‖0,α,E := sup
x∈E

|u(x)| + sup
x �=y, x,y∈E

|u(x) − u(u)|
d�(x, y)α

.

From these definitions it is clear that

C
0,α
X (�) ⊆ C

0,α
X ,loc(�) ⊆ C(�).

As usual, in order to define a notion of convergence on C
0,α
X ,loc(�), we say that a

sequence (uh)h ⊆ C
0,α
X ,loc(�) converges to u ∈ C

0,α
X ,loc(�) if it holds that

lim
h→∞

‖uh − u‖0,α,K = 0

for any compact set K � �. If we fix an increasing sequence (�k)k of open subsets

of � such that �k � �k+1 � � and
⋃∞

k=1 �k = �, and for any u, v ∈ C
0,α
X ,loc(�) we

define
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�(u, v) :=
∞
∑

k=1

1

2k
min{1, ‖u − v‖0,α,�k

},

it is easy to see that � is a translation-invariant distance on C
0,α
X ,loc(�) which induces the

above-defined convergence in C
0,α
X ,loc(�). Thanks to [30, 38], the following Morrey-

Campanato type embedding theorem holds.

Proposition 2.15 Assume that X satisfies (2.4). There exists Q ∈ (1,∞), which

depends only on n,� and X, such that the following facts hold:

(i) W
1,p
X (�) ⊆ C

0,1− Q
p

X ,loc (�) for any p > Q, and the inclusion is continuous.

(ii) the inclusion W
1,p

X (�) ⊆ C
0,β
X ,loc(�) is compact for any p > Q and for any

β ∈ [0, 1 − Q
p
).

(iii) W
1,p

X ,0(�) ⊆ C
0,1− Q

p

X (�) ∩ C(�) for any p > Q.

2.5 Viscosity solutions to first and second-order PDE

Given a function F : � × R × R
m × Sm −→ R, we say that F is horizontally elliptic

if

F(x, s, p, X) ≤ F(x, s, p, Y )

whenever x ∈ �, s ∈ R, p ∈ R
m and X , Y ∈ Sm with Y ≤ X (i.e. X − Y is

positive semidefinite). It is clear that when F is independent of X , i.e. it describes a

first-order differential operator, then it is automatically horizontally elliptic. Therefore

this definition is relevant only when dealing with second-order differential operators.

According to [21, 49], we start by recalling the definition of viscosity solutions to

first-order PDE. We point out that our notion of viscosity solution is a bit stronger

than the one given in [49], since we consider test functions in Ck
X rather than in Ck .

Definition 2.16 Let H : �×R×R
m −→ R be continuous. We say that u ∈ U SC(�)

is a viscosity subsolution to

H(x, u(x), Xu(x)) = 0 in � (2.8)

if

H(x, u(x0), Xϕ(x0)) ≤ 0

for any x0 ∈ � and for any ϕ ∈ C1
X (�) such that

u(x0) − ϕ(x0) ≥ u(x) − ϕ(x)
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for any x in a neighborhood of x0. We say that u ∈ L SC(�) is a viscosity supersolution

to (2.8) if

H(x0, u(x0), Xϕ(x0)) ≥ 0

for any x0 ∈ � and for any ϕ ∈ C1
X (�) such that

u(x0) − ϕ(x0) ≤ u(x) − ϕ(x)

for any x in a neighborhood of x0. Finally we say that u is a viscosity solution to (2.8)

if it is both a viscosity subsolution and a viscosity supersolution.

Similarly, we recall the definition of viscosity solutions to second-order horizontally

elliptic partial differential equations.

Definition 2.17 Let F : � × R × R
n × Sm −→ R be continuous and horizontally

elliptic. We say that u ∈ U SC(U ) is a viscosity subsolution to the equation

F(x, w(x), Xw(x), X2w(x)) = 0 in � (2.9)

if

F(x0, u(x0), Xϕ(x0), X2ϕ(x0)) ≤ 0 (2.10)

for any x0 ∈ � and for any ϕ ∈ C2
X (�) such that

u(x0) − ϕ(x0) ≥ u(x) − ϕ(x) (2.11)

for any x in a neighborhood of x0. We say that u ∈ L SC(�) is a viscosity supersolution

to (2.9) if

F(x0, u(x0), Xϕ(x0), X2ϕ(x0)) ≥ 0

for any x0 ∈ � and for any ϕ ∈ C2
X (�) such that

u(x0) − ϕ(x0) ≤ u(x) − ϕ(x)

for any x in a neighborhood of x0. Finally we say that u is a viscosity solution to (2.9)

if it is both a viscosity subsolution and a viscosity supersolution.

Remark As usual, when dealing with viscosity solutions to partial differential equa-

tions, there are many equivalent ways to define this notion. For instance, one can

check the inequality (2.10) only in the more restrictive case when in (2.11) x0 is a

strict minimum point. Moreover, one can equivalently require that

F(x0, ϕ(x0), Xϕ(x0), X2ϕ(x0)) ≤ 0
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for any x0 ∈ � and for any φ ∈ C2
X (�) such that

0 = u(x0) − ϕ(x0) > u(x) − ϕ(x)

for any x in a neighborhood of x0. Similar equivalences hold for the other cases.

Finally, we note that thanks to Proposition 2.9, it is not difficult to show that a function

in C1
X (�) (resp. C2

X (�)) is a classical solution to (2.8) (resp. (2.9)) if and only if it is

a viscosity solution to (2.8) (resp. (2.9)).

2.6 Supremal functionals and absolute minimizers

In this section we recall the notion of supremal functional associated to suitable Hamil-

tonian functions, together with the related notions of absolute minimizers and absolute

minimizing Lipschitz extensions. We refer to [4, 6, 20, 49] for an extensive account of

the topic. Given a non-negative function f ∈ C(�×R×R
m), we define its associated

supremal functional F : W
1,∞
X (�) × A −→ [0,+∞] by

F(u, V ) := ‖ f (x, u, Xu)‖L∞(V )

for any V ∈ A, u ∈ W
1,∞
X (V ), where A is the class of all open subsets of �. We say

that u ∈ W
1,∞
X (�) is an absolute minimizer of F if

F(u, V ) ≤ F(v, V )

for any V � � and for any v ∈ W
1,∞
X (V ) with v|∂V = u|∂V . If f belongs to

C1(� × R × R
m), we can define A f : � × R × R

m × Sm −→ R by

A f (x, s, p, Y ) := −(X f (x, s, p) + Ds f (x, s, p)p + Dp f (x, s, p) · Y ) · Dp f (x, s, p),

and we say that

A f [φ](x) := A f (x, φ, Xφ, X2φ) = 0 (2.12)

is the Aronsson equation associated to F . It is easy to check that A f is continuous

and horizontally elliptic. In the Euclidean setting it is well known ( [6, 22]) that, under

suitable assumptions on the Hamiltonian function, absolute minimizer are viscosity

solution to the Aronsson equation. The same kind of results holds in greater gen-

erality in the Carnot-Carathéodory setting ( [45, 49, 50]). In the particular case in

which f (x, u, p) = |p|2, then absolute minimizers are known as absolute minimizing

Lipschitz extensions (AMLE for short). Moreover, its associated Aronsson equation

becomes the well known infinite Laplace equation

−�X ,∞φ = 0,
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where the operator �X ,∞ is defined by

�X ,∞w := Xw · X2w · XwT . (2.13)

The notions of AMLEs and the ∞-Laplace equation in the Euclidean setting have been

extensively studied during the last fifty years (see for example [1–3, 31] and references

therein) and part of the theory has been extended to the setting of Carnot Groups and

Carnot-Carathéodory spaces (see [7, 11, 14, 23, 25] and references therein).

3 Viscosity and almost everywhere solutions

In this section we relate the notion of viscosity solutions to first-order partial differential

equations to solutions defined through horizontal jets, extending the results of [9] to the

Carnot-Carathéodory setting. Exploiting this relation we prove that almost everywhere

subsolutions to quasiconvex first-order partial differential equations associated to a

family of Hörmander vector fields turn out to be viscosity subsolutions. The proof of

this fact is divided in two steps. First we deal with a family X of vector fields which

satisfies (2.4) and the additional condition (LIC), in order to exploit Proposition 2.14.

Then, thanks to a lifting argument à la Rothschild-Stein (cf. [46]) we extend the result

to an arbitrary family of Hörmander vector fields. We begin by introducing the first-

order horizontal subjet and superjet.

Definition 3.1 Assume that X satisfies (2.4) and (LIC). If u ∈ U SC(�) and x0 ∈ �,

we define the first-order horizontal superjet of u at x0 by

Xu+(x0) := {p ∈ R
m : u(x) ≤ u(x0) + 〈p · C̃(x0), x − x0〉 + o(d�(x, x0))

as d�(x, x0) → 0}.

If u ∈ L SC(�) and x0 ∈ �, we define the first-order horizontal subjet of u at x0 by

Xu−(x0) := {p ∈ R
m : u(x) ≥ u(x0) + 〈p · C̃(x0), x − x0〉 + o(d�(x, x0))

as d�(x, x0) → 0}.

In the Euclidean setting, it is well known that the notion of viscosity solution given

in terms of comparison with sufficiently smooth tests functions is equivalent to the

notion involving jets. In our framework the following result still holds.

Proposition 3.2 Assume that X satisfies (2.4) and (LIC). The following facts hold.

• Assume that u ∈ U SC(�) satisfies

H(x0, u(x0), p) ≤ 0

for any x0 ∈ � and p ∈ Xu+(x0). Then u is a viscosity subsolution to (2.8).
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• Assume that u ∈ L SC(�) satisfies

H(x0, u(x0), p) ≥ 0

for any x0 ∈ � and p ∈ Xu−(x0). Then u is a viscosity supersolution to (2.8).

Proof Since the two statements follow from similar arguments, we prove only the first

one. Let x0 ∈ � and let ϕ ∈ C1
X (�) be an admissible function in the definition of

viscosity subsolution. Then, thanks to Proposition 2.14, we obtain

u(x) = u(x0) + u(x) − u(x0) ≤ u(x0) + ϕ(x) − ϕ(x0)

= u(x0) + 〈Xϕ(x0) · C̃(x0), x − x0〉 + o(dX (x, x0)).

Therefore one has Xϕ(x0) ∈ Xu+(x0). In view of the hypothesis then one has

H(x0, u(x0), Xϕ(x0)) ≤ 0,

concluding the proof. ��

To establish our desired implication we need some technical, but still intuitive,

preliminary results, which are based on the notion of (X , N )-subgradient previously

introduced.

Proposition 3.3 Assume that X satisfies (2.4). Let u ∈ W
1,∞
X ,loc(�) and assume that

x0 ∈ � is either a point of local minimum or a point of local maximum for u. Then

0 ∈ ∂X ,N u(x0).

Proof We prove the statement assuming that x0 is a minimum point, since the argument

for the other case is analogous. Assume by contradiction that 0 /∈ ∂X ,N u(x0). Since

∂X ,N u(x0) is convex and compact, then by the hyperplane separation theorem there

exists a ∈ R
m and α > 0 such that

max
p∈∂X ,N u(x0)

〈p, a〉 < −α. (3.1)

Now we claim that there exists r > 0 such that

〈p, a〉 ≤ −α (3.2)

for any p ∈ ∂X ,N u(y) and for any y ∈ Br (x0). To prove this fact we first show that

there exists r > 0 such that

〈Xu(y), a〉 < −α

for any y ∈ Br (x0)\N . If it is not the case, then there is a sequence (yn)n ⊆ R
n\N

such that yn → x0 and

〈Xu(yn), a〉 ≥ −α. (3.3)
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Moreover, since u ∈ W
1,∞
X ,loc(�) we can assume that up to a subsequence

∃ lim
n→∞

Xu(yn) =: p,

and by construction we have that p ∈ ∂X ,N u(x0). Therefore, recalling (3.1) and (3.3),

we conclude that

−α ≤ lim
n→∞

〈Xu(yn), a〉 = 〈p, a〉 < −α,

which is a contradiction. Let us now define

A := {p ∈ R
m : 〈p, a〉 ≤ −α},

and, for any y ∈ Br (x0), the set

Sy :=
{

lim
n→∞

Xu(yn) : yn → y, yn /∈ N
}

so that ∂X ,N u(y) = co(Sy). Since A is convex and closed, our claim is proved if

we show that Sy ⊆ A. Let us take a sequence (yn)n converging to y and such that

yn /∈ N and the sequence Xu(yn) has a limit. Then up to a subsequence we have that

(yn)n ⊆ Br (x0)\N , and so thanks to the previous claim we conclude that

lim
n→∞

〈Xu(yn), a〉 ≤ −α.

Hence Sy ⊆ A, and so (3.2) is proved. Let now γ : [0, 1] −→ � be a solution to

{

γ̇ (t) = C(γ (t))T · a

γ (0) = x0.
(3.4)

Then by construction γ is a horizontal curve. Moreover, if we define xn := γ ( 1
n
),

it follows that xn → x0, and so up to a subsequence we can assume that (xn)n ⊆
γ ([0, δ]) ⊆ Br (x0) for some δ > 0 small enough. Therefore, thanks to these facts,

Proposition 2.8 and (3.2), there exists g ∈ L∞(0, 1) such that g(t) ∈ ∂X ,N u(γ (t)) for

a.e. t ∈ (0, 1) and

u(xn) − u(x0) = u

(

γ

(

1

n

))

− u(γ (0)) =
∫ 1

n

0

〈g(t), a〉dt ≤ −
α

n
< 0.

Therefore we conclude that u(x0) > u(xn) for any n ∈ N, which is a contradiction

with the fact that x0 is a point of local minimum. ��

Proposition 3.4 Assume that X satisfies (2.4). Let u, v ∈ W
1,∞
X ,loc(�) and let N be a

negligible set which contains the non-Lebesgue points of Xu and Xv. Then

∂X ,N (u − v)(x) ⊆ ∂X ,N u(x) − ∂X ,N v(x)
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for any x ∈ �.

Proof Fix x ∈ �. Since ∂X ,N u(x)−∂X ,N v(x) is convex and closed, it suffices to show

that the set

{

lim
n→∞

X(u − v)(yn) : yn /∈ N , yn → x
}

is contained in ∂X ,N u(x) − ∂X ,N v(x). Therefore let (yn)n ⊆ R
n\N be such that

yn → x . Since u, v ∈ W
1,∞
X ,loc(�) we can assume that, up to a subsequence, both the

limits of (Xu(yn))n and (Xv(yn))n exist. Therefore it follows that

lim
n→∞

X(u − v)(yn) = lim
n→∞

(Xu(yn) − Xv(yn)) = lim
n→∞

Xu(yn) − lim
n→∞

Xv(yn).

Since the right hand side belongs to ∂X ,N u(x) − ∂X ,N v(x), the thesis follows. ��

Proposition 3.5 Assume that X satisfies (2.4) and (LIC). Let x0 ∈ �, u ∈ W
1,∞
X ,loc(�)

and N be a negligible set which contains the non-Lebesgue points of Xu and d�(·, x0).

Then

Xu+(x0) ∪ Xu−(x0) ⊆ ∂X ,N u(x0).

Proof Fix x0 ∈ � and N as in the statement. We only show that Xu+(x0) ⊆
∂X ,N u(x0), being the proof of the other inclusion completely analogous. Let p ∈
Xu+(x0). For any n ∈ N\{0}, we define

vn(x) := u(x) − 〈p · C̃(x0), x − x0〉 −
1

n
d�(x, x0).

Using [28] it is easy to see that vn ∈ W
1,∞
X ,loc(�) and that vn(x0) = u(x0). Moreover,

since p ∈ Xu+(x0), it follows that

vn(x) = vn(x0) + u(x) − u(x0) − 〈p · C̃(x0), x − x0〉 −
1

n
d�(x, x0)

≤ vn(x0) −
1

n
d�(x, x0) + o(d�(x, x0))

as d�(x, x0) → 0, thus

vn(x0) ≥ vn(x) +
1

n
d�(x, x0) + o(d�(x, x0))

= vn(x) +
1

n
d�(x, x0)

[

1 +
o(d�(x, x0))

d�(x, x0)

]

as d�(x, x0) → 0. Therefore x0 is a point of local maximum of vn which together

with Proposition 3.3 and Proposition 3.4 gives

0 ∈ ∂X ,N u(x0) − ∂X ,N (〈p · C̃(x0), · − x0〉))(x0) − ∂X ,N

(

1

n
d�(·, x0)

)

(x0).
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We start by noticing that x �→ 〈p · C̃(x0), x − x0〉 is in C1(�) ⊆ C1
X (�), and so,

thanks to Proposition 2.7, it follows that

∂X ,N (〈p · C̃(x0), · − x0〉)(x0) =
{

X(〈p · C̃(x0), · − x0〉)(x0)
}

=
{

p · C̃(x0) · C(x0)
T
}

= {p}.

Moreover, thanks for instance to [28], we know that |X( 1
n

d�(·, x0))(x)| ≤ 1
n

for a.e.

x ∈ �, and using the definition of X -subdifferential we infer

∂X ,N

(

1

n
d�(·, x0)

)

(x0) ⊆ B 1
n
(0).

Putting all together we get that

0 ∈ ∂X ,N u(x0) − {p} − B 1
n
(0)

for any n ∈ N\{0}. Since
⋂∞

n=1 B 1
n
(0) = {0}, we conclude that

0 ∈ ∂X ,N u(x0) − {p} − {0} = ∂X ,N u(x0) − {p},

which is the thesis. ��

We have developed all the tools that we need to prove the main result assuming

(LIC).

Proposition 3.6 Assume that X satisfies (2.4) and (LIC). Let H : � × R × R
n −→ R

be a continuous function such that

{p ∈ R
m : H(x, u, p) ≤ 0} is convex (3.5)

for any x ∈ � and any u ∈ R. Let u ∈ W
1,∞
X ,loc(�) be such that

H(x, u(x), Xu(x)) ≤ 0 (3.6)

for a.e. x ∈ �. Then u is a viscosity subsolution to (2.8).

Proof We already know that u ∈ C(�). In view of Proposition 3.2 it suffices to show

that

H(x0, u(x0), p) ≤ 0

for any x0 ∈ � and for any p ∈ Xu+(x0). Fix then x0 ∈ �, and let N be a negligible

set which contains the non-Lebesgue points of Xu and of Xd�(·, x0) and the points

where (3.6) is not satisfied. Then thanks to [45, Lemma 2.7] and (3.5) we know that

H(x, u(x), p) ≤ 0 (3.7)
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for any x ∈ � and for any p ∈ ∂X ,N u(x). Therefore, thanks to the choice of N , we

can apply Proposition 3.5, which combined with (3.7) allows to conclude that

H(x0, u(x0), p) ≤ 0

for any p ∈ Xu+(x0). Being x0 arbitrary, the thesis follows. ��

Exploiting the previous result and the lifting scheme in [46], we can finally drop

hypothesis (LIC) and prove the following theorem.

Theorem 3.7 Let X satisfy (2.4). Let H : �×R×R
n −→ R be a continuous function

such that (3.5) holds for any x ∈ � and u ∈ R. Let u ∈ W
1,∞
X ,loc(�) be such that (3.6)

holds for a.e. x ∈ �. Then u is a viscosity subsolution to (2.8).

Proof As usual we can assume u ∈ C(�). Let x0 ∈ � and let ϕ ∈ C1
X (�) be such

that there exists an open neighborhood U of x0 in � such that

u(x) − u(x0) ≤ ϕ(x) − ϕ(x0) (3.8)

for any x ∈ U . Invoking an argument as in [46, Part II] one has that there exists an

open and connected neighborhood V ⊆ U of x0, r ∈ N with 0 ≤ r < m, and δ > 0

such that, setting Vδ := V × (−δ, δ)r , t = (t1, . . . , tr ),

X̄ i (x, t) := X i (x)

for i = 1, . . . , m − r and

X̄ i (x, t) := X i (x) +
∂

∂ti

for i = m − r + 1, . . . , m, (where we have assumed that, up to reordering, the vector

fields X1, . . . , Xm−r are linearly independent at x0), then X̄ := (X̄1, . . . , X̄m) are

linearly independent and satisfy the Hörmander condition at every point (x, t) ∈ Vδ .

Denote by dX̄ the Carnot-Carathéodory distance induced by X̄ on Vδ . It is clear that

given v ∈ W
1,1
X ,loc(�) and setting v̄(x, t) := v(x) for any (x, t) ∈ Vδ , then

X̄ v̄(x, t) = Xv(x). (3.9)

Therefore it is easy to see that ū ∈ W
1,∞
X̄ ,loc

(Vδ) and ϕ̄ ∈ C1
X̄
(Vδ). Moreover, (3.8)

implies that

ū(x, t) − ū(x0, 0) ≤ ϕ̄(x, t) − ϕ̄(x0, 0)

for any (x, t) ∈ Vδ , which is an open neighborhood of (x0, 0). Therefore, proceeding

as in the proof of Proposition 3.2 and using (3.8) and (3.9) we get that

Xϕ(x0) ∈ X̄ ū+(x0, 0), (3.10)
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where the horizontal superjet is considered with respect to the Carnot-Carathéodory

distance induced by the family X̄ , dX̄ on Vδ . To conclude the proof, set

H̄(x, t, s, p) := H(x, s, p)

for any (x, t) ∈ Vδ , s ∈ R and p ∈ R
m . It is clear that H̄ is continuous and that

{p ∈ R
m : H̄(x, t, u, p) ≤ 0} is convex for any (x, t) ∈ Vδ and s ∈ R. We show that

(3.6) implies that

H̄(x0, t0, ū(x0, t0), p) ≤ 0 (3.11)

for any (x0, t0) ∈ Vδ and for any p ∈ X̄ ū+(x0, t0). This and (3.10) allow to conclude.

To prove (3.11) it suffices to notice that by (3.6) it holds that

H̄(x, t, ū(x, t), X̄ ū(x, t)) = H(x, u(x), Xu(x)) ≤ 0

for a.e. (x, t) ∈ Vδ . Then (3.11) follows as in the proof of Proposition 3.6. ��

4 Some properties of the p-Poisson equation

In this section we study some properties of the p-Poisson equation associated to a

family X of vector fields. From now on, unless otherwise specified, we assume that

X satisfies the Hörmander condition on a domain �0, with � � �0. The reason for

which we require the Hörmader condition to be satisfied on �0 is twofold. On the one

hand, we will need to exploit Theorem 2.5. On the other hand, at some stage we will

need to give a meaning to the Carnot-Carathéodory distance from ∂�.

Let p ∈ (1,+∞) and p′ = p
p−1

. We say that a function u ∈ W
1,p
X (�) is a weak

subsolution (weak supersolution) to the p-Poisson equation

− divX(|Xw|p−2 Xw) = f in �, (4.1)

for a given datum f ∈ L p′
(�), if

∫

�

|Xu|p−2〈Xu, Xϕ〉 dx ≤ (≥)

∫

�

f ϕdx

for any non-negative ϕ ∈ W
1,p
X ,0(�). Finally, u is a weak solution to the p-Poisson

equation if it is both a weak subsolution and a weak supersolution, i.e. if

∫

�

|Xu|p−2〈Xu, Xϕ〉 dx =
∫

�

f ϕdx (4.2)

for any ϕ ∈ W
1,p
X ,0(�). We begin our investigation with an existence result to the

minimization problem associated to (4.1).
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Proposition 4.1 Let p ∈ (1,∞), f ∈ L p′
(�), g ∈ W

1,p
X (�) and let us define the

functional Ip : W
1,p
X ,g(�) −→ R by

Ip(u) :=
1

p

∫

�

|Xu|pdx −
∫

�

f u dx . (4.3)

Then there exists a unique u p ∈ W
1,p
X ,g(�) such that

Ip(u p) = min
u∈W

1,p
X ,g(�)

Ip(u). (4.4)

Moreover, if p ≥ 2, u p is the unique weak solution to (4.1).

Proof We wish to apply the direct method of the calculus of variations. To this aim,

we notice that W
1,p

X ,g(�) is a closed and convex subset of W
1,p

X (�), and so it is weakly

closed. Moreover, Ip is strictly convex and strongly lower semicontinuous, and so it

is weakly sequentially lower semicontinuous. Finally, thanks to Corollary (2.6) and

the Hölder inequality it follows that

∫

�

|Xu|pdx −
∫

�

f u ≥ min

{

1

2
,

1

2K

}

‖u‖p

W
1,p
X

− ‖ f ‖
L p′ ‖u‖L p −

1

2

≥ min

{

1

2
,

1

2K

}

‖u‖p

W
1,p
X

− ‖ f ‖
L p′ ‖u‖

W
1,p
X

−
1

2
→ +∞

as ‖u‖
W

1,p
X

→ +∞. Therefore Ip is sequentially weakly coercive. Hence there exists

u p ∈ W
1,p
X ,g(�) which minimizes Ip. The strict convexity of Ip yields the uniqueness

of such a minimizer. It is now standard calculus to observe that a function u minimizes

Ip if and only if it is a weak solution to (4.1). ��

As in the Euclidean setting (cf. [36] for an elementary proof) the following com-

parison principle holds.

Lemma 4.2 Let u, v ∈ C0(�) be a weak subsolution and a weak supersolution to

(4.1) respectively. Then the following facts hold:

(i) If u ≤ v on ∂�, then u ≤ v on �.

(i i) It holds that

sup
x∈�

(u − v) ≤ sup
x∈∂�

(u − v).

Moreover, if u, v are both weak solutions, it holds that

‖u − v‖∞,� ≤ ‖u − v‖∞,∂�.
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In the next result we study the relationships between weak and viscosity solutions

to (4.1). It is easy to see that when evaluated on C2
X (�) functions, equation (4.1)

becomes

−|Xw|p−2�Xw − (p − 2)|Xw|p−4�X ,∞w = f .

The associated differential operator, that is

F(x, ξ, X) = −|ξ |p−2

⎛

⎝trace(X) +
m
∑

j=1

n
∑

i=1

ξ j

∂c j,i

∂xi

⎞

⎠− (p − 2)|ξ |p−4ξ · X · ξ T − f (x),

is horizontally elliptic and continuous, provided that p ≥ 4 and f is continuous.

Therefore we require in addition that p ≥ 4 and that f ∈ L p′
(�) ∩ C(�). The proof

of the following result is inspired by [41].

Proposition 4.3 Let p ≥ 4, f ∈ L p′
(�) ∩ C(�) and let u ∈ W

1,p

X (�) ∩ C(�) be a

weak solution to (4.1). Then u is a viscosity solution to (4.1).

Proof We only prove that u is a viscosity subsolution, being the other half of the

proof completely analogous. We already know that u ∈ C(�). Therefore, arguing by

contradiction, we assume that there exists x0 ∈ �, v ∈ C2
X (�) and R > 0 such that

BR(x0) � �,

0 = v(x0) − u(x0) < v(x) − u(x) on BR(x0) (4.5)

and

−|Xv(x0)|p−2�Xv(x0) − (p − 2)|Xv(x0)|p−4�X ,∞v(x0) > f (x0).

Hence, thanks to the continuity of the p-Poisson operator, the continuity of f and the

fact that v ∈ C2
X (�), up to choosing R small enough we can assume that

−|Xv(x)|p−2�Xv(x) − (p − 2)|Xv(x)|p−4�X ,∞v(x) ≥ f (x)

for any x ∈ BR(x0). Therefore v is a classical supersolution to the p-Poisson equation

on BR(x0), and so it is in particular a weak supersolution. Since u ∈ C(BR(x0)) it is

well defined the number m := min∂ BR(x0)(v − u) and by (4.5) we get m > 0. Now we

notice that v−m is still a weak supersolution to the p-Poisson equation and u ≤ v−m

on ∂ BR(x0). Therefore, thanks to Lemma 4.2, we conclude that u ≤ v−m on BR(x0).

Recalling that v(x0) = u(x0) we get m ≤ 0 which is a contradiction. Hence u is a

viscosity subsolution, and the proof is complete. ��

5 Variational solutions to the∞-Laplace equation

In this section we study the limiting behavior of solutions to (1.4) and we prove

Theorem 1.1.
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5.1 Existence and properties of variational solutions

Our approach follows the scheme employed in [7]. We fix a function g ∈ W
1,∞
X (�)

and p ∈ (4,∞). Let us denote by u p the unique weak solution to (4.1), coming from

Proposition 4.1, with boundary datum g and f = 0. Since u p − g is an admissible

test function in (4.2), it follows from Hölder’s inequality that

∫

�

|Xu p|pdx ≤
∫

�

|Xu p|p−1|Xg|dx

≤
(∫

�

|Xu p|p

)

p−1
p
(∫

�

|Xg|p

)
1
p

,

which implies that

∫

�

|Xu p|pdx ≤
∫

�

|Xg|pdx . (5.1)

Let us fix a non-decreasing sequence (mk)k ⊆ (4,∞) with limk→∞ mk = ∞. We are

going to show that the family (Xu p)p>m0 is bounded in Lm0(�). Indeed, if p > m0

then using (5.1), Hölder’s inequality and the fact that g ∈ W
1,∞
X (�), we get

∫

�

|Xu p|m0 dx ≤ ‖Xu p‖m0
p |�|

p−m0
p ≤

(

‖Xg‖p
∞|�|

)

m0
p |�|

p−m0
p = |�|‖Xg‖m0

∞ .

(5.2)

Thanks to Corollary 2.6 and (5.2), we can conclude that the family (u p)p>m0 is

bounded in W
1,m0

X (�). Therefore, by reflexivity, we know that there exists a subse-

quence (u ph
)h and a function u∞ ∈ W

1,m0

X (�) such that

u ph
⇀u∞ in W

1,m0

X (�) as h → ∞.

We call u∞ a variational solution to the ∞-Laplace equation. Next, we prove points

(1)–(4) in Theorem 1.1.

Proof of (1)–(4) in Theorem 1.1 The proof of the weak convergence in W
1,m
X (�) for any

m ∈ (1,∞) follows repeating the same steps employed for finding u∞ for each k ∈ N

and by a standard diagonal argument. The uniform convergence follows by the previous

fact and thanks to Proposition 2.15. Let us prove (1). From the lower semicontinuity

of the Lmk -norm with respect to the weak convergence, and the analogous of (5.2)

with mk in place of m0 we get

‖Xu∞‖mk
≤ |�|

1
mk ‖Xg‖∞

for any k ∈ N. Therefore, passing to the limit as k goes to infinity, we conclude that

‖Xu∞‖∞ ≤ ‖Xg‖∞.
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This, together with Corollary 2.6 and Proposition 2.15, allows to conclude that u∞ ∈
W

1,∞
X (�) ∩ C(�). To prove (2) we show that u∞ ∈ W

1,mk

X ,g (�) for any k ∈ N.

Indeed, fix k ∈ N. For any h with ph > mk , there exists a sequence (ϕh
j ) j ⊆ C∞

c (�)

converging to u ph
− g strongly in W

1,ph

X (�), and so, since ph > mk , strongly in

W
1,mk

X (�). Therefore we can find a sequence (ϕh) ⊆ (ϕh
j )

h
j such that

‖ϕh − (u ph
− g)‖1,mk

<
1

h
(5.3)

for any h > 0. We claim that (ϕh)h converges weakly to u∞ −g in W
1,mk

X (�). Indeed,

for any ψ ∈ Lm∗
k (�), thanks to (5.3) and Hölder’s inequality it follows that

∣

∣

∣

∣

∫

�

ϕhψdx −
∫

�

(u∞ − g)ψdx

∣

∣

∣

∣

≤
∫

�

|ϕh − (u ph
− g)||ψ |dx +

∣

∣

∣

∣

∫

�

(u ph
− u∞)ψdx

∣

∣

∣

∣

≤ ‖ϕh − (u ph
− g)‖mk

‖ψ‖m∗
k
+
∣

∣

∣

∣

∫

�

(u ph
− u∞)ψdx

∣

∣

∣

∣

≤
1

h
‖ψ‖m∗

k
+
∣

∣

∣

∣

∫

�

(u ph
− u∞)ψdx

∣

∣

∣

∣

.

The conclusion follows letting h → ∞. Reasoning in a similar way for the X -

gradients, thanks to Proposition 2.2, the claim is proved. Therefore, thanks to Mazur’s

Lemma (cf. e.g. [16, Corollary 3.9]), for each j ∈ N there are convex combinations of

ϕh converging strongly to u∞ − g in W
1,mk

X (�), that is, for any j ∈ N there exist natu-

ral numbers M j < N j and real numbers a j,M j
, . . . , a j,N j

, with lim j→∞ M j = +∞,

0 ≤ a j,h ≤ 1 and
∑N j

h=M j
a j,h = 1, such that

φ j :=
N j
∑

h=M j

a j,hϕh −→ u∞ − g in W
1,mk

X (�).

Since each φ j belongs to C∞
c (�), it follows that u∞ − g ∈ W

1,mk

X ,0 (�). The proof of

(3) follows from (2) and thanks to Proposition 2.15. Finally, (4) follows trivially from

(3). ��

The remaining part of this section is dedicated to the proof of the last two statements

in Theorem 1.1.

5.2 Variational solutions are AMLEs

In this section we show that variational solutions, as one might expect, are absolutely

minimizing Lipschtz extensions. We point out that this result has already been proved,

in greater generality, in [34]. Nevertheless we prefer to give here a short proof to keep

the paper as self-contained as possible.
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Proposition 5.1 u∞ is an AMLE.

Proof Let v ∈ W
1,∞
X (�) and V � � with v|∂V = u∞|∂V . Let (mk)k and (ph)h as

above. For any h ∈ N, consider the unique weak solution vp to the problem

{

− divX(|Xu|ph−2 Xu) = 0 in V

u = v on ∂V
(5.4)

Up to a subsequence, we can assume that (vph
)h converges to a variational solution

v∞ in the sense of Theorem 1.1. We claim that v∞ = u∞ on V . First of all notice

that, for h big enough and thanks to Proposition 2.15, being v ∈ C(V ), it holds that

u ph
, vph

∈ C(V ). Moreover, observe that both u ph
and vph

satisfies the equation

∫

V

|Xu|p−2 Xu · Xϕdx = 0

for any ϕ ∈ W
1,p
X ,0(V ). Therefore, thanks to Lemma 4.2 and Theorem 1.1, it follows

that

‖u ph
− vph

‖∞,V ≤ ‖u ph
− vph

‖∞,∂V ≤ ‖u ph
− u∞‖∞,∂V → 0

as h goes to infinity. Therefore, again thanks to Theorem 1.1, we conclude that u∞ =
v∞. On the other hand, arguing as in the proof of Theorem 1.1 and thanks to the

previous claim, we conclude that

‖Xu∞‖∞,V = ‖Xv∞‖∞,V ≤ ‖Xv‖∞,V .

The previous equation yields at once that

‖|Xu∞|2‖∞,V ≤ ‖|Xv|2‖∞,V ,

and the thesis follows. ��

5.3 Variational solutions are∞-harmonic

To complete the study of variational solutions, we conclude by showing that they are

viscosity solutions to the ∞-Laplace equations. We point out that we cannot exploit

Proposition 5.1, together with the results in [45, 49, 50], to conclude that u∞, being an

AMLE, is ∞-harmonic. Indeed, as mentioned before, our notion of viscosity solution

is stronger than the one introduced in the aforementioned papers. Therefore we need

to give a direct proof which exploits again the approximation scheme employed for

obtaining u∞.

Proposition 5.2 u∞ is a viscosity solution to the ∞-Laplace equation

− �X ,∞u∞ = 0 on �. (5.5)
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Proof We only show that u∞ is a viscosity subsolution to (5.5), being the other half

of the proof analogous. To this aim, let x0 ∈ �, v ∈ C2
X (�) and R > 0 be such that

u∞ − v has a strict maximum at x0 in BR(x0) � �. If Xv(x0) = 0, by (2.13) the

thesis is trivial. So we can assume that |Xv(x0)| > 0. Let uh := u ph
be a sequence

which allows to define u∞. We can assume without loss of generality that ph > Q

for any h ∈ N, where Q is as in Proposition 2.15. Then it follows that uh ∈ C0(�).

Moreover, thanks to Theorem 1.1 we can assume that uh converges to u∞ uniformly

on BR(x0). Let now xh be a maximum point of uh − v on B R
2
(x0). We claim that xh

has a subsequence, still denoted by xh , which converges to x0. If it is not the case,

assume without loss of generality that xh → x1 �= x0, for some x1 ∈ BR(x0). Then it

follows that

uh(xh) − v(xh) ≥ uh(x0) − v(x0),

and so, passing to the limit and thanks to uniform convergence, we get that

u∞(x1) − v(x1) ≥ u∞(x0) − v(x0),

which contradicts the strict maximality of x0. Hence, up to a subsequence, we assume

that xh → x0. By Proposition 4.3 we know that uh is a viscosity solution to (4.1),

therefore

−|Xv(xh)|ph−2�Xv(xh) − (ph − 2)|Xv(xh)|ph−4�X ,∞v(xh) ≤ 0.

Since |Xv(x0)| > 0, then for h big enough we have that |Xv(xh)| > 0. Therefore we

can divide both sides by (ph − 2)|Xv(xh)|ph−4, and get that

−
|Xv(xh)|2�Xv(xh)

ph − 2
− �X ,∞v(xh) ≤ 0.

Passing to the limit as h → ∞, the proof is complete. ��

6 Variational solutions arising from the non-homogeneous problem

In this section we prove Theorem 1.2 and study the limiting behavior of weak solutions

to the p-Poisson equation as p → ∞ with a non-negative datum f ∈ L∞(�)∩C0(�).

In analogy with the previous section we introduce the notion of variational solutions

u∞ as suitable limits of the sequence (u p)p. Moreover, we show that u∞ is the solution

of a constrained extremal problem which can be understood as the limiting problem

arising from (4.4). Finally, we study the limiting partial differential equation satisfied

by u∞. In particular we show that u∞ is a viscosity supersolution to the ∞-Laplace

equation and a viscosity subsolution to the Eikonal equation. Unlike the homogeneous

case, u∞ is not in general ∞-harmonic. Nevertheless, it satisfies in the viscosity sense

the system (1.5).
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6.1 Existence and properties of variational solutions

We follow the approach of [7]. From now on we fix f ∈ L∞(�) and we denote by

u p ∈ W
1,p
X ,0(�) the unique solution to (4.1) with f ≥ 0 and p > 4. Let us denote

by I∞ the variational functional that we get taking the (formal) limit as p → +∞ in

(4.3), namely

I∞(ϕ) := −
∫

�

f ϕdx

with ϕ ∈ W
1,∞
X (�) ∩ C0(�). Clearly, I∞ does not admit a minimum in W

1,∞
X (�) ∩

C0(�). Nevertheless, in analogy with the Euclidean setting, we are going to show that

imposing the extra condition ‖Xϕ‖∞,� = 1 is enough to find a solution.

Theorem 6.1 There exists u∞ ∈ W
1,∞
X (�) ∩ C0(�) such that

I∞(u∞) ≤ I∞(ϕ) (6.1)

for any ϕ ∈ W
1,∞
X (�) ∩ C0(�) such that ‖Xϕ‖∞,� = 1. Moreover, it holds that

0 ≤ u∞(x) ≤ d�0(x, ∂�) ∀x ∈ �, (6.2)

where d�0(x, ∂�) = inf y∈∂� d�0(x, y).

Before proving the theorem we construct the candidate solutions u∞, in analogy with

the previous section, as suitable limits of subsequences of (u p)p. To this aim, let us

define the real number E p by

E p = E p(�, f ) :=
∫

�

|Xu p|pdx .

By (4.2) and the Hölder inequality we have

∣

∣

∣

∣

∫

�

f ϕ dx

∣

∣

∣

∣

≤ E

p−1
p

p

(∫

�

|Xϕ|p

)
1
p

for each ϕ ∈ W
1,p

X ,0(�). Therefore it holds that

max
ϕ∈W

1,p
X ,0(�),ϕ �=0

(

∫

�
f ϕ dx

(∫

�
|Xϕ|p

)1/p

)

p
p−1

≤ E p, (6.3)

where by possibly changing ϕ into −ϕ we have assumed that

∫

�

f ϕ dx ≥ 0.
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Testing (4.2) with ϕ = u p we get

E p =
∫

�

|Xu p|pdx =
∫

�

f u p dx . (6.4)

From this we have

E p =
(∫

�
|Xu p|p

)

p
p−1

(∫

�
|Xu p|p

)
1

p−1

=
(

∫

�
f u p

(∫

�
|Xu p|p

)1/p

)

p
p−1

≤ max
ϕ∈W

1,p
X ,0(�),ϕ �=0

(

∫

�
f ϕdx

(∫

�
|Xϕ|p

)1/p

)

p
p−1

(6.5)

which together with (6.3) gives

E p = max
ϕ∈W

1,p
X ,0(�),ϕ �=0

(

∫

�
f ϕdx

(∫

�
|Xϕ|p

)1/p

)

p
p−1

,

that is the anisotropic analogous of the so-called Thompson principle (cf. [7]). Using

equation (6.4) we have

E p =
∫

�

〈V , Xu p〉 dx,

where V ∈ L
p

p−1 (�, R
m) is any vector valued function satisfying − divX(V ) = f .

By the Hölder inequality

E p ≤
∫

�

|V |
p

p−1

with equality if V = |Xu p|p−2 Xu p. Therefore the Thompson principle is equivalent

to the Dirichlet principle given by

E p = min

{∫

�

|V |
p

p−1 dx V ∈ L
p

p−1 (�, R
m), − divX(V ) = f in D

′(�)

}

.

(6.6)

Lemma 6.2 The function p → (|�|−1 E p)
p−1

p is monotonically decreasing as p →
+∞.

Proof Let 1 < q < p. For all V in L
q

q−1 (�, R
m) such that − divX(V ) = f in D′(�)

we have

(|�|−1 E p)
p−1

p ≤
(

|�|−1

∫

�

|V |
p

p−1 dx

)

p−1
p

≤
(

|�|−1

∫

�

|V |
q

q−1 dx

)

q−1
q

.
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Then we have

(|�|−1 E p)
p−1

p ≤ inf
V ∈Lq/(q−1)(�,Rm ),divX(V )=− f

(

|�|−1

∫

�

|V |
q

q−1 dx

)

q−1
q

≤ (|�|−1 Eq)
q−1

q ,

where the last inequality follows by (6.6). ��

By Lemma 6.2 we get that {E p}p converges and we set E∞ = lim p→+∞ E p. Fix

m > 1, by the Hölder inequality we have

∫

�

|Xu p|m ≤
(∫

�

|Xu p|p

)
m
p

|�|1− m
p = E

m
p

p |�|1− m
p for all p > m. (6.7)

Let us fix a non-decreasing sequence (mk)k ⊆ (4,+∞) with limk→∞ mk = +∞.

By (6.7) and E∞ = lim p→+∞ E p, the family (u p)p>mk
is bounded in W

1,mk

X ,0 (�) for

each k ∈ N. Therefore, by reflexivity, there exists a subsequence (u ph
)h and a function

u∞ ∈ W
1,mk

X ,0 (�) such that

u ph
⇀u∞ in W

1,mk

X ,0 (�)

as h goes to infinity for each k ∈ N. We call u∞ a variational solution. It is now

possible to repeat the same arguments of the previous section to see that u ph
⇀u∞ in

W
1,p
X (�) for any p > 4. Moreover by (6.7) we conclude

‖Xu∞‖∞ ≤ lim
p→+∞

(

E p

|�|

)
1
p

= 1. (6.8)

Therefore u∞ ∈ W
1,∞
X (�). Moreover, by Proposition 2.15 we know that u∞ ∈

W
1,∞
X (�) ∩ C0(�). Finally, again by Proposition 2.15 we conclude that u ph

→ u∞
uniformly on �.

Proof of Theorem 6.1 Let us consider a variational solution u∞, relative to sequences

(mk)k and (ph)h . For sake of simplicity, we denote ph by p and we write p → ∞
meaning that h → ∞. We already know that u∞ ∈ W

1,∞
X (�) ∩ C0(�). Therefore,

if we extend u∞ to be zero outside �, then clearly u∞ ∈ W
1,∞
X (�0). Hence (cf.

[28]) it follows that u∞ ∈ Liploc(�0, d�0). Since � � �0, we conclude that u∞ ∈
Lip(�, d�0). By (6.8) we get

|u∞(x) − u∞(y)| ≤ d�0(x, y)

for each x, y ∈ �. Taking the infimum for y ∈ ∂� and recalling that u∞(y) = 0, we

obtain

|u∞(x)| ≤ d�0(x, ∂�).
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On one hand, by (6.3) it follows that for ϕ ∈ W
1,∞
X (�) ∩ C0(�), ϕ �= 0 fixed we

have

∫

�
f ϕ dx

(∫

�
|Xϕ|p dx

)1/p
≤ E

p−1
p

p

and letting p → +∞
∫

�
f ϕdx

‖Xϕ‖∞
≤ E∞. (6.9)

On the other hand, recalling (6.4) and by the weak convergence, we have

E∞ =
∫

�

f u∞ dx . (6.10)

Combining (6.8), (6.9) and (6.10) we get that ‖Xu∞‖∞ = 1 and that

∫

�

f u∞ dx ≥
∫

�

f ϕ dx

for any ϕ ∈ W
1,∞
X (�) ∩ C0(�) such that ‖Xϕ‖∞ = 1. This concludes the proof. ��

To conclude this section, in analogy with [7], we show that when f > 0 variationals

solutions are unique and coincide with the Carnot-Carathéodory distance from the

boundary of �. Before we need a technical lemma.

Lemma 6.3 The distance function x �→ d�0(x, ∂�) belongs to W
1,∞
X (�) ∩

C0(�). In particular, d�0(·, ∂�) belongs to W
1,p
X ,0(�) for all p ≥ 1. Moreover,

‖Xd�0(·, ∂�)‖∞ = 1.

Proof It is well known that d�0(·, ∂�) ∈ Lip(�, d�0) and that ‖Xd�0(·, ∂�)‖∞ = 1

(cf. [28]). Since Lip(�, d�0) ⊆ Lip(�, d�) and Lip(�, d�) ⊆ W
1,∞
X (�) (cf. [28]),

we conclude that d�0(·, ∂�) ∈ W
1,∞
X (�). Moreover, d�0(·, ∂�) is continuous and

d�0(x, ∂�) = 0 for x ∈ ∂�, thus d�0(x, ∂�) ∈ C0(�). Finally, in order to prove that

d(x, ∂�) belongs to W
1,p

X ,0(�) we argue as in [16, Theorem 9.17]. ��

Proposition 6.4 Assume that f > 0 in �. Then there exists a unique variational

solution u∞. Moreover, every sequence (u pi
)i ⊆ (u p)p converges to u∞ strongly in

W
1,m
X (�) for any m ≥ 1. Finally, it holds that

u∞(x) = d�0(x, ∂�), ∀x ∈ �.

Proof Let u∞ be as in Theorem 6.1, relative to sequences (mk)k and (ph)h . By

Lemma 6.3, d�0(·, ∂�) is a suitable test function in (6.1), and so

∫

�

f (x)u∞(x) dx ≥
∫

�

f (x)d�0(x, ∂�) dx,
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which together with f > 0 in � gives u∞(x) ≥ d�0(x, ∂�) for all x in �. This

inequality and (6.2) imply that u∞ = d�0(·, ∂�). Fix now a sequence (u pi
)i ⊆

(u p)p and m ≥ 1. Since every subsequence of (u pi
)i has a subsequence that weakly

converges to d�0(·,�0) in W
1,m
X (�), then the (u pi

)i weakly converges to u∞ =
d(x, ∂�) in W

1,m0

X ,0 (�). In particular we gain that (u pi
)i converges to d�0(·, ∂�) in

C
0,α
X (�) for α = 1 − Q/m0 and (Xu pi

)i converges weakly in Lm to Xd�0(·, ∂�).

The rest of the proof follows exactly as in the proof of [7, Part II, Proposition 2.1]. ��

Corollary 6.5 Let �1 be a domain such that � � �1 ⊆ �0. Then

d�1(·, ∂�) = d�0(·, ∂�) on �.

6.2 The limiting partial differential equation

In this final section, in analogy with [7], we want to understand which is the lim-

iting partial differential equation that variational solutions have to satisfy. As in the

Euclidean setting we show that the limiting equations depend on the fact that we are

in the support of f or not. Indeed we show that a variational solution is ∞-harmonic

outside the support of f and that it satisfies the Eikonal equation inside the support of

f . We begin our proof with the following result.

Proposition 6.6 u∞ is a viscosity supersolution to the Eikonal equation

|Xu∞| = 1 in { f > 0}.

Proof We begin by showing that it suffices to consider tests functions in C2
X (�).

Indeed, let x0 ∈ { f > 0} and v ∈ C1
X (�) such that u∞ − v has a strict minimum at

x0 in a ball BR(x0) � { f > 0}. Thanks to Proposition 2.4, there exists a sequence

(vh)h ∈ C2
X (�) such that vh → v and Xvh → Xv uniformly on BR(x0). Let now xh

be a minimum point of u∞−vh on B R
2
(x0). Arguing as in the proof of Proposition 5.2,

up to a subsequence we can assume that xh → x0. Therefore, passing to the limit in

|Xvh(xh)| ≥ 1,

thanks to uniform convergence we get that

|Xv(x0)| ≥ 1.

Hence we can work with tests functions in C2
X (�). Let x0 ∈ { f > 0}, v ∈ C2

X (�)

and R > 0 be such that u∞ − v has a strict minimum at x0 in BR(x0) � { f > 0}.
If uh := u ph

is a sequence which allows to define u∞, then we can assume that uh

converges to u∞ uniformly on BR(x0). Let now xh be a minimum point of uh − v

on B R
2
(x0). Arguing as above we can assume that, up to a subsequence, xh → x0.

Let us assume without loss of generality that ph > Q for any h ∈ N, where Q is
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as in Proposition 2.15. Then it follows that uh ∈ C0(�). Therefore we can apply

Proposition 4.3 and obtain that uh is a viscosity solution to (4.1), i.e.

|Xv(xh)|ph−2�X v(xh) + (ph − 2)|Xv(xh)|ph−4 Xv(xh) · X2v(xh) · Xv(xh)T ≤ − f (xh),

(6.11)

and recalling that xh ∈ { f > 0}, we also get |Xv(xh)| > 0 for any h ∈ N. Assume by

contradiction that |Xv(x0)| < 1, then there exists δ > 0 such that |Xv(x0)| ≤ 1 − 2δ

and without loss of generality we can also assume that |Xv(xh)| ≤ 1 − δ for any

h ∈ N. Consequently,

0 ≤ lim
h→∞

(ph − 2)|Xv(xh)|ph−4 ≤ lim
h→∞

(ph − 2)(1 − δ)ph−4 = 0. (6.12)

Dividing (6.11) by (ph − 2)|Xv(xh)|ph−4 and using (6.12) we conclude

Xv(x0) · X2v(x0) · Xv(x0)
T = −∞

which contradicts v ∈ C2
X (�). ��

Exploiting the previous result we can prove that variational solutions are ∞-

superharmonic on the entire domain.

Proposition 6.7 u∞ is a viscosity supersolution to the ∞-Laplace equation

−�X ,∞u∞ = 0 on �.

Proof Let x0 ∈ �, v ∈ C2
X (�) and R > 0 be such that u∞ −v has a strict minimum at

x0 in BR(x0). Assume without loss of generality that |Xv(x0)| �= 0. We argue exactly

as in the previous proof to get that

−Xv(x0) · X2v(x0) · Xv(x0)
T ≥

f (x0)

limh→∞(ph − 2)|Xv(xh)|ph−4
.

If f (x0) = 0 the thesis is trivial. If instead x0 ∈ { f > 0}, we know by the previous

proposition that limh→∞(ph − 2)|Xv(xh)|ph−4 = +∞, and so the thesis follows. ��

Since the notion of viscosity solution is of local nature then proceeding exactly as

in the proof of Proposition 5.2 the following result holds.

Proposition 6.8 u∞ is a viscosity subsolution to the ∞-Laplace equation

−�X ,∞u∞ = 0 on { f > 0}c
.

To conclude our investigation we show that u∞ is a viscosity subsolution to the

Eikonal equation on �. For doing this we invoke Theorem 3.7, together with the fact

that, thanks to (6.8), ‖Xu∞‖∞ ≤ 1.
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Proposition 6.9 u∞ is a viscosity subsolution to the Eikonal equation

|Xu∞| = 1 on �.

We summarize our results as follows.

Theorem 6.10 Let u∞ be a variational solution. Then the following facts hold.

(i) u∞ is a viscosity supersolution to the ∞-Laplace equation on �.

(i i) u∞ is a viscosity solution to the ∞-Laplace equation on { f > 0}c
.

(i i i) u∞ is a viscosity subsolution to the Eikonal equation on �.

(iv) u∞ is a viscosity solution to the Eikonal equation on { f > 0}.
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Appendix

As already pointed out, Proposition 2.14 can still be proved assuming

(D1) (�, d�) is a Carnot-Carathéodory space,

(D2) d� is continuous with respect to the Euclidean topology,

(LIC) The vectors X1(x), . . . , Xm(x) are linearly independent for any x ∈ �

instead of (LIC) and (2.4). The previous set of conditions embraces many relevant

families of vector fields, such as for instance Carnot Groups. However, when consid-

ering the two sets of hypotheses given by the Hörmander condition and (D1), (D2),

(LIC), one can show that neither of the two implies the other. Indeed, from one hand it

is well known that the Grushin plane, i.e. R
2 equipped with the Carnot-Carathéodory

distance generated by the vector fields

X =
∂

∂x
Y = x

∂

∂ y
,

satisfies the Hörmander condition, while X and Y are clearly linearly dependent in

{(0, y) | y ∈ R}. On the other hand, there are examples of (even smooth) families

of vector fields satisfying (D1), (D2), (LIC) which does not satisfies the Hörmander

condition. Let us consider the two linearly independent vector fields X , Y defined on

R
3 by

X =
∂

∂x
Y =

∂

∂ y
+ ϕ(x)

∂

∂z
,

where ϕ(x) := ψ(x) + ψ(−x) and ψ : R → R is defined by

ψ(x) =
{

e− 1
x if x > 0

0 otherwise.
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Since ϕ(k)(0) = 0 for any k ∈ N, it is easy to see that

[X , [. . . , [X , Y ] . . .](0, y, z) = [Y , [. . . , [X , Y ] . . .](0, y, z) = 0

for any y, z ∈ R so X , Y do not satisfy the Hörmander condition in {(0, y, z) | y, z ∈
R}.

It is not difficult to show that they induce a Carnot-Carathéodory distance d on R
3,

and that the identity map

Id : (R3, de) −→ (R3, d)

is continuous. Indeed, let A = (x, y, z) and B = (x1, y1, z1) in R
3. We construct

a horizontal curve joining them whose horizontal length tends to zero as A tends

to B in the Euclidean topology. First, notice that moving along the X direction the

induced Carnot-Carathéodory distance is comparable with the Euclidean one. Hence,

without loss of generality, we can assume that x = x1 = 0. Moreover, since Y = ∂
∂ y

on {x = 0}, then moving along the Y direction inside {x = 0} the induced Carnot-

Carathéodory distance is comparable with the Euclidean one. Hence we assume that

y1 = y. The last step is to join (0, y, z) and (0, y, z1). We assume, without loss of

generality, that z1 > z. Let us set

δ := −
1

log(
√

z1 − z)

then δ → 0+ as z1 → z. Let us define the curves γ1, . . . , γ4 : [0, 1] → R
3 by

γ1(t) = (0, y, z) + t(δ, 0, 0),

γ2(t) = (δ, y, z) + t

(

0,
z1 − z

ϕ(δ)
, z1 − z

)

,

γ3(t) =
(

δ, y +
z − z1

ϕ(δ)
, z1

)

+ t(−δ, 0, 0)

and

γ4(t) =
(

0, y +
z1 − z

ϕ(δ)
, z1

)

+ t

(

0,
z − z1

ϕ(δ)
, 0

)

it is easy to see that they are horizontal and that they connect (0, y, z) and (0, y, z1).

Moreover, a quick computation shows that

d((0, y, z), (0, y, z1)) ≤ 2δ +
z1 − z

ϕ(δ)
= −

2

log(
√

z1 − z)
+

√
z1 − z.

As the right hand side tends to zero as z1 → z, the conclusion follows.
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