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Abstract

In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson
equation as p — oo in Carnot-Carathéodory spaces. In particular, introducing a
suitable notion of differentiability, extend the celebrated result of Bhattacharya et al.
(Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15-68, 1989) and we prove
that limits of such solutions solve in the sense of viscosity a hybrid first and second
order PDE involving the co-Laplacian and the Eikonal equation.
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1 Introduction

The problem of finding the best possible Lipschitz extension of a given sample of a
scalar function presents connections with many fields of mathematics and has several
real-world applications. Although issues of existence of minimizers date back to the
early 30s in the work of McShane and Whitney (see [4] and references therein for
a detailed history), the work of Aronsson [1, 2] in the mid 60s represented truly a
turning point, bringing a PDE point of view in the picture. A key novelty in Aronsson’s
approach was the notion of Absolutely Minimizing Lipschitz Extensition (AMLE): a
Lipschitz function u is an AMLE of its boundary datum on the boundary of an open
set 2 C R”" if for every subdomain V C 2 one has Lip(u, V) = Lip(u, V), where
we have set

x#y, x,yeV d(x, y)

This definition in a sense characterizes a canonical optimal Lipschitz extension for
Lipschitz boundary data, as it provides uniqueness. This notion is meaningful in every
metric space, with no additional structure needed. In the Euclidean case, uniqueness
of AMLE was established by Jensen [31]. Following in the footprints of Aronsson,
who had studied the C? case, Jensen proved that AMLE are viscosity solutions to the
infinity Laplacian equation

n
Acoll := Z ujjujuj =0, (1.1)
ij=1

along with a uniqueness theorem for such solutions. The infinity Laplacian operator
arose from the work of Aronsson though a formal argument, based on L? approx-
imation. Namely, for every p > 1 Aronsson considered C? minimizers u p of the
energy fQ |Vu|Pdx. These minimizers are p-harmonic, i.e. div(|Vu,,|p_2Vu,,) =0.
Taking the formal limit of this PDE as p — oo one obtains (1.1). Since p-harmonic
functions are not in general C2, it took several years to build a rigorous framework
for Aronsson’s asymptotic approach. This was eventually accomplished thanks to the
work of Bhattacharya, DiBenedetto and Manfredi [7, Propositions 2.1 and 2.2].

In this paper we prove an extension of [7, Propositions 2.1 and 2.2] to the
non-Euclidean setting of Carnot-Carathéodory spaces and we also extend the non-
homogenous case studied in [7].

Specifically, we are concerned with the asymptotic behavior, as p — o0, of van-
ishing trace critical points for the functionals

1
E,,(w,Q):/ —|Xw|”dx—/ fwdx,
p Q

Q

where dx is the Lebesgue measure, X w denotes the horizontal gradient associated to
a distribution X = {X1, ..., X;,;} of smooth vector fields satisfying Hormander’s finite
rank condition, that is
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dim Lie(X1, ..., Xun)(x) = n,

for every point x in a neighborhood of a bounded open set 2 C R"”, and f € L? (Q)
is a given datum. In the rest of the paper, we will denote by W)l(’p (resp. W)l(”‘g) the
horizontal Sobolev spaces (resp. trace zero Sobolev spaces) associated to the frame
X1, ..., X (see [46]) and consider Lipschtiz and Holder regularity with respect to the
associated Carnot-Carathéodory control distance dg (see Sect.?2).

More specifically we consider weak solutions u, € W)l(’p (2) to the non-
homogeneous boundary value problem

divx (|XuplP2Xu,) = —f iTlsz, (L2

up, =0 in 0€2.
In the homogenous case f = 0 we will also consider non-zero Lipschtiz boundary
values. We will denote by {u,},~1 the net of weak solutions to (1.2). As in the
Euclidean case, it is plausible to expect that its cluster point(s) u, solve an equation
analogue to (1.1) which is derived by (1.2) in the limit p — oco. A formal computation,
in the special homogeneous case f = 0, indicates that a likely candidate for such a
limit is the co-Laplacian PDE

Ax ool =0, (1.3)
where

i XiXju+X;Xiu

m
Ax ool = Z XiXjuXiuXu= 5

ij=l i,j=1

XiuXju

denotes the subelliptic co-Laplacian.
Our main result in the homogenous case f = 0 is the following

Theorem 1.1 Let g € W)l(’OO(Q), and for each p > 1 consider the weak solution u
of the boundary value problem

divx (| Xu,|P72Xu,) =0 inQ

1.4
Uu=g on Q2 (14

Every sequence {up,} of weak solutions to (1.4) admits a subsequence converging

locally uniformly on Q2 and weakly in W)l(’m(Q), for any m > 1, to a function us, €

Wy ™ () N C(Q) satisfying:

(1) [ Xutoolloo < 1 Xgllco-

(2) Uoo — g € W;(”g(Q)forany p € [1, 00).

(3) Uso — g € C%Q(Q) N Co(ﬁ)foranyoc e [0, 1).

(4) If g € Wy™(Q) N C(Q), then s € Wx™(Q) N C(Q) and uso(x) = g(x) for
any x € 0S2.
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(5) uco is a viscosity solution to (1.3).
(6) uso is an AMLE.

In the case of the Heisenberg group, this theorem is due to Bieske [9]. Infinite and
p-harmonic functions have been studied by the same author in the setting of Carnot
groups [8], Riemannian vector fields [13] and Grushin spaces [10, 12]. Theorem 1.1
can also be proved, more indirectly, by invoking results from three earlier papers
[23, 34, 49], all of which draw from the geometric significance of equation (1.3) in
the study of minimal Lipschtz extensions: in 2006, Juutinen and Shanmugalingam
[34], studied the asymptotic limits as p — 0o of p-energy minimizers in the setting
of metric measure spaces satisfying a doubling condition, a p-Poincare inequalities
and a weak Fubini property, proving that such limits are AMLE. In that paper, the
notion of viscosity solution for the infinity Laplacian was substituted with the notions
of comparison with cones and strongly Absolutely Minimizing Lipschitz Extensions
(sAMLE), which they prove to be equivalent to AMLE. In the Carnot-Carathéodory
setting the notion of SAMLE is equivalent to the notion of Absolutely Minimizing
Gradient Extension (AMGS) (see [23], i.e. a Lipschitz function u is an AMGS of
its boundary data in €2, if for every subdomain U C Q and v € W,I(’OO(U ) with
u—v e W)I(”%O(U), one has || Xu| @) < ||XV| o). In [23], Dragoni, Manfredi
and Vittone prove that Carnot-Carathéodory metrics satisfy the weak Fubini property
and that AMGS is equivalent to SAMLE. Since the latter is equivalent to AMLE, it
follows that the limits of p-energy minimizers u, as p — oo converge to a function
U Which is an AMGS. At this point one can invoke Wang’s result [49] (see also [14]
in the case of Carnot groups), where it is proved that AMGS are viscosity solutions to
(1.3). By contrast, our proof is quite direct and it mirrors the strategy in [7]. It also has
the advantage of containing several technical steps upon which the non-homogeneous
case rests. Before proceeding to the non-homogenous case, we want to note that the
properties of AMLE and comparison by cones are equivalent in every length space
[18]. In the presence of a weak Fubini property, they imply SAMLE. In the setting
of Riemannian and subriemannian manifolds the latter agrees with AMGS and so it
implies the property of being a viscosity solution to the co-Laplacian. The reverse
implication follows from the uniqueness of solutions, and is known only for Carnot
groups and Riemannian manifolds. Further connections have been studied in the setting
of doubling metric measure space that satisfy a weaker condition, the co-weak Fubini
property (see [24]).

In the general non-homogenous case f # 0, analogously to [7], one can prove that
Il Solves a hybrid first and second order PDE in the viscosity sense. Our main result
is the following

Theorem 1.2 If f € L°°(Q2) N C(R), and f > 0, then every sequence {up,} of weak
solutions to (1.2) admits a subsequence converging uniformly on 2 and weakly in
W;(""(Q), for any m > 1, to a function us, € Lip(2) N C(Q) vanishing on the
boundary. Moreover, u is a solution of

Asolioe =0 on{f > 0},

[Xusol =1 on{f > 0}, (15)

in the viscosity sense.
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In the Euclidean case, when X; = 0; and m = n, this is a celebrated result due to
Bhattacharaya, DiBenedetto and Manfredi [7]. To our knowledge, the present paper is
the first extension of the results for the non-homogeneous problem in [7] beyond the
Euclidean setting. One of the main challenges in this extension comes from the lack of
linear structure and its role in the definition of viscosity solutions. Correspondingly,
one of the key contributions of the paper is the study of differentiability, which is
carried outin Sect. 2.3. The main result of that section is Proposition 2.14, which yields
both the differentiability as well as an explicit form for the horizontal differential (X-
differential) of suitably regular functions. Although in the proof of this result we need
to assume the linear independence of the vector fields X1, ..., X,,, eventually when
we apply this proposition later in the paper we will not need to do so, thanks to an
argument reminiscent of the Rothschild-Stein lifting theorem [46]. We remark that
our notion of differential in general lacks uniqueness, and can be used in a broader
generality than other notions of horizontal differentiability that have appeared in the
sub-Riemannian literature, such as the ones proposed by Pansu [44] (for Carnot groups)
and Margulis and Mostow [40] (for equiregular sub-Riemannian structures). However,
in the presence of a Carnot group structure, our notion of differentiability agrees
with Pansu’s, whenever the X -differential commutes with the group operation and the
intrinsic dilations. Another important feature of the paper is the study of the relationship
between almost everywhere subsolutions and viscosity subsolutions to suitable first-
order PDE, which is carried out in Sect.3. Namely, exploiting the differentiability
properties discussed in Sect.2.3 and the notion of (X, N)-subgradient introduced in
[45] (cf. Sect.2.2), in Theorem 3.7 we prove that in the setting of Hérmander vector
fields any almost everywhere subsolution to a first-order PDE is a viscosity subsolution,
provided that the associated Hamiltonian is quasiconvex in the gradient argument. We
refer to [5, 48] for similar results in the Euclidean setting and in Carnot-Carathéodory
spaces respectively. This result, although fundamental in the development of the paper,
might be of independent interest.

Remark We note that the property of being a (viscosity) solution of either PDE in the
mixed problem (1.5) could be separately be expressed in the setting of metric measure
spaces: for the first order PDE see [37], while for the infinity Laplacian one could use
comparison by cones or AMLE, or (with a Fubini property hypothesis) SAMLE. One
could then pose the question whether the conclusions of Theorem 1.2 could continue
to hold in the setting of PI spaces satisfying a weak Fubini property. Unfortunately,
in our proof of the convergence for the non-homogeneous case f # 0 we use in a
crucial way the differential structure associated to the Hérmander vector fields. More
specifically, we rely on the non-divergence form formulation of (1.2), which is not
allowed in a general metric measure space, even with the additional hypotheses of
doubling and Poincaré inequality.

Remark 1t is interesting to note that in Theorem 1.1 we do not require any regularity
of the boundary of the domain. While this is sufficient to guarantee global Lipschitz
continuity of u.o, there is no parallel regularity theory for p-harmonic functions.
Indeed, even the case p = 2 is quite involved and boundary regularity may fail even
for smooth domains, in connection with their characteristic points (see [32]).
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The structure of the paper is the following: In Sect.2 we introduce the main
geometric hypotheses on the structure of the spaces we will work with, the Carnot-
Carathéodory spaces, with their control metric. We also recall some elements of
analysis and potential theory in this setting, and discuss the issue of horizontal differ-
entiability (see Sect. 2.3). Finally, we recall the notion of viscosity solutions for first
and second-order PDE and the ones of supremal functional and absolute minimizer. In
Sect. 3 we study the relationship between almost everywhere and viscosity subsolution
to first-order quasiconvex PDE, and we prove the aforementioned Theorem 3.7. Itis in
this theorem that we need the notion of X-differential and the Hérmander finite rank
condition hypothesis. The proof of the theorem is partially based on the lifting process
introduced by Rothschild and Stein in [46]. In Sect. 4 we turn our attention to the weak
solutions to the p-Poisson equation and prove that they are also viscosity solutions (see
also [9] and subsequent work of Bieske for earlier instances of this result in the setting
of the Heisenberg group and Carnot groups). In the last two sections we study the lim-
iting problems as p — oo in the homogeneous and in the non-homogeneous regimes,
proving Theorems 1.1 and 1.2. Some of our results continue to hold in a setting where
the Hormander condition does not hold, but where one still has a well-defined control
metric. The appendix provides a concrete example of a space satisfying the needed
hypotheses.

2 Preliminaries

Unless otherwise specified, we let m,n € N\{0} with m < n, we denote by Q2 a
bounded domain of R” and by A the class of all open subsets of €. Given two open
sets A and B, we write A € B whenever A € B. We let USC(Q) and LSC(2) be
respectively the sets of upper semicontinuous and lower semicontinuous functions on
Q, and we denote by Co(R2) the set of continuous functions on € which vanish on
0. For any u, v € R”, we denote by (u, v) the Euclidean scalar product, and by |v|
the induced norm. We let S be the class of all m x m symmetric matrices with real
coefficients. We denote by L" the restriction to €2 of the n-th dimensional Lebesgue
measure, and for any set E C U we write |E| := L"(E). If a < b, we denote by
AC((a, b), ©2) the set of absolutely continuous curves from (a, b) to 2. Given x € R"
and R > O we let Bg(x) :={y € R" : |x — y| < R}. Moreover, if d is a distance on
Qwelet Br(x,d) :={y € Q: d(x,y) < R}. If we have a function g € L}OC(Q) and
x € Q1is a Lebesgue point of g, when we write g(x) we always mean that

g(x) = lim g(dy.
r—0% 0)

By (

If f(x,s, p) is a regular function defined on 2 x R x R™, we denote by D, f =
(D, fs-..s Dy, f), Ds f and D), f = (D, f, ..., Dp, f) the partial gradients of f
with respect to the variables x, s and p respectively. In general we handle gradients
as row vectors.
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2.1 Carnot-Carathéodory spaces

Given a family X = (X;..., X;;) of smooth vector fields defined in an open set
Q C R”, that is

- 3
Yo= ey
i=1
with ¢;; € C*°(Q), we denote by C(x) the m x n matrix defined by

C(x) :=[cj, ,(X)] Q2.1

m

and we call it the coefficient matrix of X. Ifu € L}
X-gradient (or horizontal gradient) of u by

(2), we define the distributional

loc

(Xu, @) := —/ u divx (¢)dx forany ¢ € C2°(2, R™),
Q

where the X-divergence divy is defined by

divx (¢) :=div(¢ - C(x))

forany ¢ € C L(©2, R™). Given k > 1, we define the horizontal C')‘((Q) space by

C];((Q) ={ueC): X XjuecC) forany(iy,...,is) € {l,...,m}and

1<s <k}

Therefore, whenever we have a function u € C%(Q), we can define its horizontal
Hessian X*u € C(S2, ™) by

XiXju(x)+ X;X;u(x)

2 .
X u(x),-j = 3

forany x € Qandi = 1,...,n, j = 1,...,m. We extend the operator divx to
C;((Q, R™) by setting

divx(p) := ZX,w, + Z Zw, aac;'j"
1

j=li=1

for any ¢ = (¢1,...,0m) € C)]((Q, R™), and for a given function u € C)Z((Q) we
define the X-Laplacian of u by

Axu = divx(Xu) = ZX X u—}—ZZX BC” 2.2)

j=1 j=1li=1
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Finally, if p € [1, +00], we define the horizontal Sobolev spaces by

WhP(Q) = (u e LP(Q) : Xu € LP(Q.R™)},
W)lfy,foc(g) i={ue Ll (Q): uly e WyP(V), forallV € Q)

loc

and
[ S
Wyh(@) = CR@) "'@,
where

el 1r gy = luliLr + IIXullLe@)-
Moreover, when g € W)l(’p (2), we let
1, 1, 1,
Wyh(Q) = {u eWLP(Q):u—ge WX’S(Q)}.

The following result is proved in [26].

Proposition 2.1 (W;(’p(Q), -1l ) is a Banach space, reflexive if | < p < oo.

WP ()

In analogy with the Euclidean setting, proceeding as in the proof of [35, Theorem
10.41], it is easy to get the following Riesz-type Theorem.

Proposition 2.2 Let | < p < oo, and let (up);, € WyP(Q) and u € W' (R). The
following conditions are equivalent.

(i) up—u in Wy? ().
(ii) For 1/p’ + 1/p = 1 and for any (go, ..., gn) € (LP' ()™ it holds that

m m
lim /uh«godx—i— /X'uh'gdx =/u.g0dx+ /X-u~g-dx.
h»oo(g ]X:; Q / J Q ; Q J J

If y : [0,T] — € is an absolutely continuous curve, we say that it is horizontal

when there are measurable functions ay, ..., a, : [0, T] —> R such that
m
p() =Y ajOX;(y(t) forae.tel0,T], (2.3)
j=1

and we say that it is sub-unit whenever it is horizontal with 27‘1:1 ajz-(t) < 1 fora.e.
t € [0, T]. Moreover, we define the Carnot-Carathéodory distance on 2 by

do(x,y) :=inf{T : y : [0, T] — Q is sub-unit,y (0) = xandy (T) = y}.
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If dg is a distance on €2, then (2, dq) is called a Carnot-Carathéodory space. An
equivalent definition of the Carnot-Carathéodory distance (see [43]) is given by

1
1 2
dq(x,y) = inf { (/ |a(t)|2dt> :y 110, 1] — Qs horizontal, y(0) = x and y (1) = y
0

where a(t) = (a1(t), ..., a;, (1)) is as in (2.3).
We say that the smooth distribution X = (X7, ..., X;;,) satisfies the Hormander
condition on 2 if

dim Lie(X1y, ..., X)) (x) =n for any x € Q. 2.4)

From [29, 43] one has the following result.
Proposition 2.3 If X satisfies (2.4) on 2, then the following properties hold:

(i) (S2,dg) is a Carnot-Carathéodory space.
(ii) For any domain 2 C 2 there exists a positive constant Cg such that

— 1 ~
C5llx =yl <dalx,y) < Cglx —yI7  foranyx,y €,

where r denotes the nilpotency step of Lie(X1, ..., X;).

As asimple corollary of Proposition 2.3 we get that, under condition (2.4), the topology
induced by dg on 2 is equivalent to the Euclidean topology. Next, we recall an
approximation result based on an original argument due to Friedrichs in 1944 for
the local version, which was extended to a global result in [27, 28]. Its proof can be
carried out by means of similar techniques.

Proposition 2.4 Let X satisfy (2.4) on Q. Ifv € C}((Q), then for any open set V. € 2
theE exists a sequence (vy);, € C*° () such that vy, — u and Xvy, — Xu uniformly
onV.

The horizontal Lipschitz space is defined by

LIP(Q, dQ) ={u:Q— R: sup M < 400
xty, xyee  da(x,y)

and we say that u € Lip,,,.(€2, dg) if every point x € 2 has a neighbourhood U such
that u € Lip(U, dg). Thanks to [28, Theorem 1.3] one has

Wy o.(Q) = Lip;, (2. dg).

Therefore, in the following we will identify functions u € W)l(’ﬁ?:C(Q) with their
continuous representatives. We also recall a Poincaré-type inequality for trace zero
functions (see [17, 39] in the Carnot-Carathéodory setting and [15, Theorem 6.21] for

a version in PI spaces).
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Theorem 2.5 Let X = (X1, ..., X;) be a smooth family of Hormander vector fields in
Qo C R". Let Q € Qo be a bounded domain and let 1 < p < co. Then there exists a
constant ¢ = c¢(2, p) > 0 such that

/|u|pdx§c/ | Xul|?P dx
Q Q

foranyu € W}(’f)(Q).

Corollary 2.6 Under the same hypotheses as above, for every g € W)l(’p (K2) there
exists a constant K = K (2, p, g) > 0 such that

/lulpdfo(l—i—f |Xu|”dx>
Q Q

foranyu € W)l(g ().

2.2 Subgradient in Carnot-Carathéodory spaces

In this section we recall some properties of the so-called (X, N)-subgradient of a
functionu € W;(”?:C(Q), introduced in [45] as a generalization of the classical Clarke’s
subdifferential (cf. [19]) and defined by

ax Nu(x) := ﬁ{nli)ngo Xu(yy) @ yn — x, yp ¢ N and the limit nll)rrgo Xu(y,) exists}

for any x € 2, where N € Q is any Lebesgue-negligible set containing the non-
Lebesgue points of Xu and co denotes the closure of the convex hull. The next two
propositions, which can be found as [45, Proposition 2.4] and [45, Proposition 2.5],
describe some properties of the (X, N)-subgradient which will be useful in the sequel.

Proposition 2.7 Let u and N be as above. Then the following facts hold.

(i) dx.nu(x)is a non-empty, convex, closed and bounded subset of R™ for any x € Q.
(ii) ifu € CL(Q), then

ox, vu(x) = {Xu(x)}
for any x € Q.

Proposition 2.8 Assume that X satisfies (2.4) on Q2 and let C be the coefficient matrix
of Xasin(2.1). Letu € W)](‘(;SC(Q) andlety € AC([—8, Bl, 2) be a horizontal curve
with

y@) =Cly)’ - At) ae tel-B, Bl
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If1 < p <+4o00,and A € LP((—8, B), R™), then the function t +— u(y (t)) belongs
to WhP (=B, B), and there exists a function g € L*((—B, B), R™) such that

dwoy) )
=g AW

fora.e.t € (—B, B). Moreover
g(1) € dx, Nu(y (1))

forae.t € (—B, B).

As a consequence of Propositions 2.7 and 2.8, the following holds.

Proposition2.9 Letu € Cg( (R2). Let xo be a local maximum (minimum) point of u.
Then Xu(xo) = 0 and Xu(xp) < (=) 0.

Proof We assume that xq is a local maximum, being the other case analogous. Let y
be a smooth horizontal curve defined in a neighborhood of 0, such that y (0) = x¢ and
y(t) =C(y ()T - A(t).Fixi = 1,..., m and choose A(t) = ¢; where ¢; denotes the

i-th element in the canonical basis of R™. Let g(¢) := u(y (¢)). Then g’(0) = 0 and
g"(0) < 0. Thanks to [45, Proposition 2.6], we know that

§'(1) = Xuy (1) - A®).

Hence, thanks to the choice of A, we conclude that X;u(xg) = 0, and so Xu(xg) = 0.
To conclude, let us fix £ € R™ and let A(¢) = &£. Then, arguing as above,

§'(1) = Xu(y() - &,

which implies that

g’ =Y XiXju(y(0)&é;.
i,j=1

Evaluating the previous identity in # = 0 allows to conclude that X?u(xo) < 0. O

We conclude this section with the following well-known property, whose proof in
the smooth case goes back to [33] and which can be derived easily from Proposition 2.8.

Corollary 2.10 Assume that X satisfies (2.4) and let u € W)l(’?jc(Q). If Xu =0on 2,
then u is constant on Q2.
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2.3 Differentiability in Carnot-Carathéodory spaces

In this section we introduce a notion of differentiability for C ;( functions which is
a generalization of the one introduced in [42] to prove a Rademacher-type theorem
for Lipschitz functions on suitable families of Carnot-Carathéodory spaces. The new
notion will be crucial in the study of viscosity solutions for the asymptotic problem
(1.5). The main result of the section is Proposition 2.14, which yields the differentia-
bility and an explicit form for the differential of C ;( functions. We remark explicitly
that although in the proof of this result we need to assume the linear independence
of the vector fields X1, ..., X, later in the paper when we apply this proposition we
will not need to do so, thanks to an argument involving the Rothschild-Stein lifting
theorem (cf. [46].) We say that a function u € C(S2) is X-differentiable at x € Q if
there exists a linear mapping L, : R” — R such that

u(y) —u(x) — Ly(y — x) _
dg(x,y)—0 da(x,y)

0.

In such a case we say that dxu(x) := L, is a X-differential of u at x. In order to
guarantee the existence of a X-differential for a C )1( function, we assume that the
vector fields satisfy Hormander’s condition (2.4) and in addition we also require that

X1(x), ..., X;n(x)are linearly independent for anyx € . (LIC)

The additional hypothesis (LIC) implies that the matrix C(x)” admits a left-inverse
matrix for any x € Q.

Proposition 2.11 Assume that X satisfies (LIC). Then, if we define Cas
~ -1
Cw = (cw-cw’)  ew

for any x € Q, then C is well defined and continuous on 2. Moreover it holds that
C)-C)' = I
for any x € Q. Here I, denotes the m x m identity matrix.

Proof Let us define B(x) := C(x) - C(x)T for any x € . Thanks to (LIC) we know
that C(x) and C(x)” have maximum rank, and so by standard linear algebra we know
that B(x) is a square matrix with maximum rank. Thus B(x) is invertible and C(x) is
well defined. Moreover it holds that

. AdIB)() - C(x)
€O = B

’

and so it is continuous on 2. A trivial calculation shows that C is a left inverse of
cr. ]
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Lemma 2.12 Assume that X satisfies (2.4). Let x,y € Q and ¢ > 0. Assume that
y € AC([0,T], Q) is a sub-unit curve such that y(0) = x, y(T) = yand T <
do(x,y) + €. Then it holds that

v ([0, T]) € Bug(x,y)+e(x, dg). (2.5)

Proof Letx, y, y and ¢ as above. Assume by contradiction that there exists 7 € (0, T')
such that dg (x, ¥ (t)) > dq(x, y) + €. Then it follows that

do(x,y)+e <dq(x,y@) <t <T <dgq(x,y) +e¢,

which is a contradiction. O

Proposition 2.13 Assume that X satisfies (2.4). Let g € C;((Q) and let x € Q. Then

tim sup %‘gygx)' < 1Xg()l.

Proof Let x and g be as in the statement. Let @ € € be an open and connected
neighborhood of x, and let 8 = Cf_zl be as in Proposition 2.3. Let R > 0 be such

that Bog(x, dg) C Q. Choose now y € Br(x,dg) and 0 < ¢ < R. Then, thanks to
Proposition 2.3, it follows that

Big (x,y)+e (X, dQ) C Bgdg(x,y)+pe(X). (2.6)

Moreover, if we let M be the family of all sub-unit curves y : [0, T] —> €2 connecting
x and y and such that T < dq(x, y) + ¢, then it is clear that

do(x,y) =inf{T : y : [0, T] — Q, y € M}.

Fixnow acurve y : [0, T] — 2, y € M with horizontal derivative A. Then, thanks
to (2.6), [45, Proposition 2.6] and Lemma 2.12, it follows that

T
lg(y) =g = '/0 (Xg(y (), A(n))dr| < T Xgll 2.7)

00, Bgag (x,y)+pe (X)
Therefore, passing to the infimum over M, it follows that

1g(y) — g(x)]
S < 1X8 Wl oo, Bracirmrpe -
Q(x,y) e

The conclusion follows letting & — 0% and y — x, together with the continuity of
Xg. O

Now we state our main differentiability result.
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Proposition 2.14 Assume that X satisfies (2.4) and (LIC), let u € C)1( (RQ) and x € Q.
Then u is X -differentiable at x and

dyu(x)(z) = (Xu(x) - C(x), 2),

where C is as in Proposition 2.11 and 7 € R".

Proof Let x € Q be fixed. Define g : 2 —> Roas g(y) := u(y) — h(y), where
h(y) = (Xu(x) - C(x), y = x).

Then clearly g € C ;( (U). Moreover, by explicit computations, we get that

Xg(y) = Xu(y) — X((Xu(x) -C(x),y — x))
= Xu(y) — D((Xu(x) -C(x),y —x))-C(»)"
= Xu(y) — Xu(x) - C(x) -C(»7,

which in particular implies that
Xg(x)=0.
The conclusion then follows by invoking Proposition 2.13. O

Remark A careful look at the above proof reveals that the X-differential exists in a
general Carnot-Carathéodory space, provided that the generating vector fields satisfies
(LIC) and that the induced Carnot-Carathéodory distance is continuous with respect
to the Euclidean topology. We refer to the Appendix for some remarks.

Remark 1t is clear from the proof of Proposition 2.14 that the X-differential is non-
unique in general. Indeed, Proposition 2.14 remains true if we let

dxu(x)(z) = (Xu(x) - D(x), z),

where D(x) is any left-inverse matrix of C T (x). Since for a non-squared matrix the
left-inverse matrix is non-unique in general, the non-uniqueness of the X -differential
follows. As an instance, consider the Heisenberg group H!', i.e. the step-2 Carnot group
whose Lie algebra is generated by the vector fields

0 a a a

:——y— —_— — R

dx ot’ dy ot

It is easy to see that the matrices

5 1 1+x%> xy —y 100
C(x’y)_1+x2+y2|: xy 1—|—y2x ’ D_ 010

@ Springer



The asymptotic p-Poisson equation...

are both left-inverse matrices of

10
Cx, =] 01
—yx

Nevertheless, if in a Carnot group we require in addition that the X-differential is
H-linear, i.e. it commutes with the group operation and the intrinsic dilations, then it
is unique and it coincides with the classical Pansu differential (cf. [44, 47]). Finally,
we point out that when n = m and X (x), ..., X, (x) are linearly independent for any
x,1.e. the Riemannian case, then the X -differential is unique since g x)=( (x)T)’1 .

2.4 Embedding theorems

In this section we recall some Morrey-Campanato type embedding that we will use
later. In the setting of Hormander vector fields the results were first proved in [38], and
it was later realized that they continue to hold in the general setting of metric measure
spaces satisfying doubling property and a Poincaré inequality (cf. [30, Lemma 9.2.12]).
If @ € (0, 1), we define the Folland-Stein Holder spaces as

C%“(Q):: u:Q—R: sup M<+oo
X#£y, x,yeQ da(x, y)*
and
P () = u(w)| ]
X.loc(§2) = qu: Q& — R: 7& supeKW < o0 for any compact set K € Q¢ .
XF#Yy, X,y ’

Moreover, when E C Qandu : Q —> R we set

. |u(x) — u(u)|
lullo,w,£ == sup lu(x)| + sup ——————.
x€E x#y, x,y€E do(x, y)

From these definitions it is clear that
Ch (@) € €5, () € C(.

As usual, in order to define a notion of convergence on C%‘}‘OC(Q), we say that a
sequence (uy,);, C C%‘}‘OC(Q) converges to u € C%O]‘DC(Q) if it holds that

lim |lup, — ullo,e.x =0
h— o0
for any compact set K € . If we fix an increasing sequence (£2x)x of o(?en subsets
o

of Q such that Q; € Q41 € Qand | J;2, Q = Q, and forany u, v € Cx 10c () we
define
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o
[
o, v) == o min{L, flu —vllo.«..}-
k=1

itis easy to see that o is a translation-invariant distance on C%j‘oc (£2) which induces the
above-defined convergence in C g)(’ol‘o - (£2). Thanks to [30, 38], the following Morrey-
Campanato type embedding theorem holds.
Proposition 2.15 Assume that X satisfies (2.4). There exists Q € (1, 00), which
depends only on n, Q and X, such that the following facts hold:

0

0,1—
(i) W}{‘"(Q) - CX’ZOC" () for any p > Q, and the inclusion is continuous.
(ii) the inclusion W;(’p(Q) C C%ﬁoc(ﬂ) is compact for any p > Q and for any
Belo,1-5%).

1, 0,1-2 _
(iii) fo)(Q) CCy "(QNC() foranyp> Q.
2.5 Viscosity solutions to first and second-order PDE

Given a function F : Q x R x R™ x §™ — R, we say that F is horizontally elliptic
if

F(x,s,p,X) < F(x,s,p,Y)
whenever x € Q,5s € R, p € R" and X,Y € " withY < X (ie. X — Y is
positive semidefinite). It is clear that when F' is independent of X, i.e. it describes a
first-order differential operator, then it is automatically horizontally elliptic. Therefore
this definition is relevant only when dealing with second-order differential operators.
According to [21, 49], we start by recalling the definition of viscosity solutions to

first-order PDE. We point out that our notion of viscosity solution is a bit stronger
than the one given in [49], since we consider test functions in C § rather than in C*.

Definition 2.16 Let H : Q2 x R x R™ — R be continuous. We say thatu € U SC(£2)
is a viscosity subsolution to

Hx,ux), Xu(x)) =0 inQ (2.8)
if
H (x, u(xo), X¢(x0)) <0
for any x9 € 2 and for any ¢ € C )1( (£2) such that
u(xo) — @(x0) = u(x) — ¢(x)
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for any x in aneighborhood of xo. We say thatu € LSC(2) is a viscosity supersolution
to (2.8) if

H (x0, u(x0), X¢(x0)) = 0
for any xo € Q2 and for any ¢ € C )1( (€2) such that
u(xo) — @(xo) < u(x) — @(x)

for any x in a neighborhood of x¢. Finally we say that u is a viscosity solution to (2.8)
if it is both a viscosity subsolution and a viscosity supersolution.

Similarly, we recall the definition of viscosity solutions to second-order horizontally
elliptic partial differential equations.

Definition 2.17 Let F : @ x R x R" x §” — R be continuous and horizontally
elliptic. We say that u € USC(U) is a viscosity subsolution to the equation

F(x, wx), Xwx), X’wx)) =0 in Q (2.9)
if
F (x0, u(x0), X (x0), X*¢(x0)) <0 (2.10)
for any xo € Q and for any ¢ € C% (<) such that
u(xop) — ¢(x0) > u(x) — ¢(x) (2.11)

for any x in a neighborhood of xo. We say thatu € LSC (R2) is aviscosity supersolution
to (2.9) if

F (x0, u(x0), X9 (x0), X*¢(x0)) > 0
for any xo € 2 and for any ¢ € Ci(Q) such that
u(x0) — @(xp) < u(x) — (x)

for any x in a neighborhood of x¢. Finally we say that u is a viscosity solution to (2.9)
if it is both a viscosity subsolution and a viscosity supersolution.

Remark As usual, when dealing with viscosity solutions to partial differential equa-
tions, there are many equivalent ways to define this notion. For instance, one can
check the inequality (2.10) only in the more restrictive case when in (2.11) xq is a
strict minimum point. Moreover, one can equivalently require that

F (x0, 9(x0), X9 (x0), X?¢(x0)) <0
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for any xo € 2 and for any ¢ € C}z((Q) such that

0 =u(xo) — ¢(x0) > u(x) — ¢(x)

for any x in a neighborhood of xp. Similar equivalences hold for the other cases.
Finally, we note that thanks to Proposition 2.9, it is not difficult to show that a function
in C;( (2) (resp. C%(Q)) is a classical solution to (2.8) (resp. (2.9)) if and only if it is
a viscosity solution to (2.8) (resp. (2.9)).

2.6 Supremal functionals and absolute minimizers

In this section we recall the notion of supremal functional associated to suitable Hamil-
tonian functions, together with the related notions of absolute minimizers and absolute
minimizing Lipschitz extensions. We refer to [4, 6, 20, 49] for an extensive account of
the topic. Given a non-negative function f € C (2 x R x R™), we define its associated
supremal functional F : W)l(’oo(Q) x A —> [0, +00] by

Fu,V):=|fC,u, Xu)|pow)

forany V € A, u € W}](’OO(V), where A is the class of all open subsets of Q2. We say
that u e W;(’OO(Q) is an absolute minimizer of F if

Fw,V) < F(,V)

for any V € Q and for any v € W)l(’oo(V) with v|gy = ulsy. If f belongs to
cl x R x R™), we can define Ay : Q@ x R x R" x § — R by

Af(.X,S, P, Y) = _(Xf(xas’ p) + D.S'f(-xvsv p)p + Dpf(x’sv P) : Y) : Dpf(xvsv p)’

and we say that

Af[pl(x) == As(x, b, X, X2¢) =0 (2.12)

is the Aronsson equation associated to F'. It is easy to check that Ay is continuous
and horizontally elliptic. In the Euclidean setting it is well known ( [6, 22]) that, under
suitable assumptions on the Hamiltonian function, absolute minimizer are viscosity
solution to the Aronsson equation. The same kind of results holds in greater gen-
erality in the Carnot-Carathéodory setting ( [45, 49, 50]). In the particular case in
which f(x, u, p) = |p|?, then absolute minimizers are known as absolute minimizing
Lipschitz extensions (AMLE for short). Moreover, its associated Aronsson equation
becomes the well known infinite Laplace equation

_AX,<>0¢ = 0,

@ Springer



The asymptotic p-Poisson equation...

where the operator Ay o is defined by
Ax soW 1= Xw-X*w- Xw’. (2.13)

The notions of AMLEs and the co-Laplace equation in the Euclidean setting have been
extensively studied during the last fifty years (see for example [1-3, 31] and references
therein) and part of the theory has been extended to the setting of Carnot Groups and
Carnot-Carathéodory spaces (see [7, 11, 14, 23, 25] and references therein).

3 Viscosity and almost everywhere solutions

In this section we relate the notion of viscosity solutions to first-order partial differential
equations to solutions defined through horizontal jets, extending the results of [9] to the
Carnot-Carathéodory setting. Exploiting this relation we prove that almost everywhere
subsolutions to quasiconvex first-order partial differential equations associated to a
family of Hormander vector fields turn out to be viscosity subsolutions. The proof of
this fact is divided in two steps. First we deal with a family X of vector fields which
satisfies (2.4) and the additional condition (LIC), in order to exploit Proposition 2.14.
Then, thanks to a lifting argument a la Rothschild-Stein (cf. [46]) we extend the result
to an arbitrary family of Hormander vector fields. We begin by introducing the first-
order horizontal subjet and superjet.

Definition 3.1 Assume that X satisfies (2.4) and (LIC). If u € USC(2) and xo € €,
we define the first-order horizontal superjet of u at xo by

Xut(x0) :={p € R™ : u(x) < u(xp) + {p - C(x0), x — x0) + o(da(x, x0))
as do(x, x9) — 0}.

Ifu € LSC(2) and xg € 2, we define the first-order horizontal subjet of u at xo by

Xu~(x0) :={p € R™ : u(x) > u(xp) + {p - C(x0), x — x0) + o(da(x, x0))
as dq(x, xo) — 0}.

In the Euclidean setting, it is well known that the notion of viscosity solution given
in terms of comparison with sufficiently smooth tests functions is equivalent to the
notion involving jets. In our framework the following result still holds.

Proposition 3.2 Assume that X satisfies (2.4) and (LIC). The following facts hold.
o Assume that u € USC(R2) satisfies

H (xp, u(xo), p) <0
forany xo € Qand p € Xu™ (xg). Then u is a viscosity subsolution to (2.8).
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o Assume that u € LSC(R2) satisfies
H (x0, u(xo), p) = 0

forany xo € Q and p € Xu™ (xg). Then u is a viscosity supersolution to (2.8).

Proof Since the two statements follow from similar arguments, we prove only the first
one. Let xo € Qandletp € C )1((9) be an admissible function in the definition of
viscosity subsolution. Then, thanks to Proposition 2.14, we obtain
u(x) = u(xo) + ulx) —u(xo) < ulxo) + ¢x) — @(xo)
= u(x0) + (X9 (x0) - C(x0), ¥ — x0) + 0(dx (x, %0))-

Therefore one has X¢(x9) € Xu™ (xo). In view of the hypothesis then one has
H (xo, u(xo), X¢(x0)) <0,

concluding the proof. O

To establish our desired implication we need some technical, but still intuitive,
preliminary results, which are based on the notion of (X, N)-subgradient previously
introduced.

Proposition 3.3 Assume that X satisfies (2.4). Let u € W)l(’(;jC(Q) and assume that

xo € 2 is either a point of local minimum or a point of local maximum for u. Then
0e BX,NM(X()).

Proof We prove the statement assuming that x¢ is a minimum point, since the argument
for the other case is analogous. Assume by contradiction that O ¢ dx yu(xp). Since
dx nu(xp) is convex and compact, then by the hyperplane separation theorem there
exists a € R™ and o > 0 such that

max (p,a) < —a. 3.1
pEIx, Nu(xo)

Now we claim that there exists » > O such that
(p,a) < —«a 3.2)

for any p € dx nu(y) and for any y € B, (xp). To prove this fact we first show that
there exists » > 0 such that

(Xu(y),a) < —«a

for any y € B,(xg)\N. If it is not the case, then there is a sequence (y,), S R"\N
such that y, — xo and

(Xu(yn), a) = —a. (3.3)
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Moreover, since u € W}(’jjc(ﬂ) we can assume that up to a subsequence
3 lim Xu(y,) =: p,
n—o0

and by construction we have that p € dx nyu(xp). Therefore, recalling (3.1) and (3.3),
we conclude that

—Q S hm (X“(Yn),a> = <paa> < —q,
n—oo
which is a contradiction. Let us now define
A:={peR": (p,a) < —a},

and, for any y € B, (xp), the set
Sy = [ lim Xu(yn) @ yn = ¥, ¥n ¢ N}
n—oo

so that dx yu(y) = co(Sy). Since A is convex and closed, our claim is proved if
we show that S, C A. Let us take a sequence (), converging to y and such that
yn, ¢ N and the sequence Xu(y,) has a limit. Then up to a subsequence we have that
(¥n)n € Br(x0)\ N, and so thanks to the previous claim we conclude that

lim (Xu(y,),a) < —a.
n—>00

Hence Sy, C A, and so (3.2) is proved. Let now y : [0, 1] —> €2 be a solution to

(1) = C(y ()T -
7)) =Cly) -a G
v(0) = xo.

Then by construction y is a horizontal curve. Moreover, if we define x,, := y(%),

it follows that x,, — xp, and so up to a subsequence we can assume that (x,), <
y ([0, 8]) € B,(xp) for some § > 0 small enough. Therefore, thanks to these facts,
Proposition 2.8 and (3.2), there exists g € L°°(0, 1) such that g(r) € dx yu(y(¢)) for
ae.t €(0,1)and

1

1 n
u(xn) — u(xo) = u (7/ (;)) —u(y(0) = /0 (g(1), a)dt < —% < 0.

Therefore we conclude that u(xg) > u(x,) for any n € N, which is a contradiction
with the fact that xq is a point of local minimum. O

Proposition 3.4 Assume that X satisfies (2.4). Let u, v € W)l(”cl’sc(Q) and let N be a

negligible set which contains the non-Lebesgue points of Xu and Xv. Then
Ix,n (U —v)(x) € Iy yu(x) — dx yv(x)
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forany x € Q.

Proof Fix x € Q. Since dx yu(x)—dx, yv(x) is convex and closed, it suffices to show
that the set

[ lim X =)0 0 & N, 3w — x]

is contained in dx yu(x) — dx yv(x). Therefore let (y,), € R"\N be such that
yp — x.Since u, v € W)I(”C;ZC(Q) we can assume that, up to a subsequence, both the
limits of (Xu(y,)), and (Xv(y,)), exist. Therefore it follows that

lim X(u —v)(yp) = lim (Xu(y,) — Xv(y,)) = lim Xu(y,) — lim Xv(y).
n—00 n—00 n—00 n—00

Since the right hand side belongs to dx yu(x) — dx yv(x), the thesis follows. O

Proposition 3.5 Assume that X satisfies (2.4) and (LIC). Let xo € Q, u € W}](’oo ()

loc

and N be a negligible set which contains the non-Lebesgue points of Xu and dg (-, x¢).
Then

Xu™ (xo) U Xu™ (x0) S dx,vu(xo).
Proof Fix xg € Q and N as in the statement. We only show that Xu™(xg) <

dx Nu(xp), being the proof of the other inclusion completely analogous. Let p €
Xu™ (xp). For any n € N\{0}, we define

- 1
v (x) :=u(x) — (p-C(xp), x — x0) — ;dsz(x, X0).

Using [28] it is easy to see that v, € W;(”?SC(Q) and that v, (xg) = u(xp). Moreover,
since p € Xu™(xp), it follows that

~ 1
U (X) = v, (x0) + u(x) — u(xo) — (p - C(x0), x — x0) — ;dsz(x,XO)
1
< vp(x0) — r—ldsz(x, x0) + o(dq(x, x0))
as do(x, xg) — 0, thus

1
vy (X0) > vp(x) + ;dsz(x, x0) + o(dq(x, x0))

o(dg(x, xO))]

1
=v,(x) + ;dgz(x,xo) [1 + do(x. x0)

as dq(x, xg) — 0. Therefore xq is a point of local maximum of v, which together
with Proposition 3.3 and Proposition 3.4 gives

- 1
0 € dx, nu(xg) — dx, n({p - C(x0), - — Xx0)))(x0) — dx,N (;dsz(n XO)) (x0).
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We start by noticing that x — (p - C~(x0), x — xp) is in C1(Q) C C;((Q), and so,
thanks to Proposition 2.7, it follows that

dxxn((p - Cxo). - = x0)(x0) = | X((p - Clxo). - = x0) @) | = { - Clx) - Clxo)” | = ()

Moreover, thanks for instance to [28], we know that |X(%d9(~, x0))(x)] < % for a.e.
x € Q, and using the definition of X-subdifferential we infer

Ix,N (%dsz(',XO)> (x0) € B1(0).
Putting all together we get that
0 € dx.wu(xo) = {p} — B1(0)
for any n € N\{0}. Since ﬂ;’lozl B%(O) = {0}, we conclude that
0 € dx,nu(xo) — {p} — {0} = 9x vu(xo) — {p},

which is the thesis. O

We have developed all the tools that we need to prove the main result assuming
(LIC).

Proposition 3.6 Assume that X satisfies (2.4) and (LIC). Let H : 2 Xx R x R* — R
be a continuous function such that

{p e R™: H(x,u, p) <0} is convex (3.5)
forany x € Qandanyu € R. Letu € W}lf”?jc(ﬂ) be such that
H(x,u(x), Xu(x)) <0 3.6)

fora.e. x € Q2. Then u is a viscosity subsolution to (2.8).

Proof We already know that u € C(2). In view of Proposition 3.2 it suffices to show
that

H (xp, u(x0), p) <0
for any xo € Q and for any p € Xu™ (xq). Fix then xo € , and let N be a negligible
set which contains the non-Lebesgue points of Xu and of Xdgq (-, x¢) and the points

where (3.6) is not satisfied. Then thanks to [45, Lemma 2.7] and (3.5) we know that

Hx,u(x),p) <0 (3.7
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for any x € Q and for any p € dx nyu(x). Therefore, thanks to the choice of N, we
can apply Proposition 3.5, which combined with (3.7) allows to conclude that

H(xp,u(xp), p) <0

for any p € Xu™ (x¢). Being x arbitrary, the thesis follows. O

Exploiting the previous result and the lifting scheme in [46], we can finally drop
hypothesis (LIC) and prove the following theorem.

Theorem 3.7 Let X satisfy (2.4). Let H : Q x R x R" — R be a continuous function
such that (3.5) holds for any x € Qandu € R. Letu € W)l(’jjc(Q) be such that (3.6)
holds for a.e. x € Q. Then u is a viscosity subsolution to (2.8).

Proof As usual we can assume u € C(£2). Let xg € Q and let ¢ € C}((Q) be such
that there exists an open neighborhood U of x¢ in €2 such that

u(x) — u(xo) = ¢(x) — ¢(xo) (3-8)
for any x € U. Invoking an argument as in [46, Part II] one has that there exists an
open and connected neighborhood V C U of xg, 7 € NwithO <r <m,and § > 0

such that, setting Vs :=V x (=6,8)",t = (t1,...,t),

Xi(x, 1) = X;(x)

fori=1,...,m —r and
i 1) 1= Xi(0) + —
i(x, 1) = X;(x —
i i ali
fori =m —r+1,...,m, (where we have assumed that, up to reord_ering, the_ vector
fields X1, ..., X;u—, are linearly independent at xg), then X := (X, ..., X,;) are

linearly independent and satisfy the Hormander condition at every point (x, ) € V.
Denote by dy the Carnot-Carathéodory distance induced by X on V;. It is clear that

given v € W)l(”l (f2) and setting v(x, t) := v(x) for any (x, t) € V;s, then

loc
X0(x, 1) = Xv(x). (3.9)

Therefore it is easy to see that u € W}(C;O (Vs) and ¢ € C ;?(V(;). Moreover, (3.8)

. . oc
implies that

u(x, 1) —u(xo, 0) < ¢(x,1) — @(xo,0)

for any (x, t) € Vs, which is an open neighborhood of (xg, 0). Therefore, proceeding
as in the proof of Proposition 3.2 and using (3.8) and (3.9) we get that

Xo(xo) € Xt (xo,0), (3.10)
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where the horizontal superjet is considered with respect to the Carnot-Carathéodory
distance induced by the family X, dj on V;s. To conclude the proof, set

H(x,t,s, p):=H(x,s, p)
for any (x,7) € Vs, s € Rand p € R™. It is clear that H is continuous and that
{peR": H(x,t,u, p) <0} is convex for any (x, t) € Vs and s € R. We show that
(3.6) implies that

H (xo, to, #(x0, 9), p) <0 (3.11)

for any (xo, #p) € Vs and for any p € Xt (xg, to). This and (3.10) allow to conclude.
To prove (3.11) it suffices to notice that by (3.6) it holds that

Hx,t,i(x, 1), Xi(x, 1) = H(x, u(x), Xu(x)) <0

for a.e. (x, ) € Vs. Then (3.11) follows as in the proof of Proposition 3.6. O

4 Some properties of the p-Poisson equation

In this section we study some properties of the p-Poisson equation associated to a
family X of vector fields. From now on, unless otherwise specified, we assume that
X satisfies the Hormander condition on a domain g, with Q & €¢. The reason for
which we require the Hérmader condition to be satisfied on €2 is twofold. On the one
hand, we will need to exploit Theorem 2.5. On the other hand, at some stage we will
need to give a meaning to the Carnot-Carathéodory distance from 9€2.

Let p € (1,+00) and p’ = -£5. We say that a function u € W)I(’p(Q) is a weak
subsolution (weak supersolution) to the p-Poisson equation

—divx(|Xw/?2Xw) = f in€Q, 4.1

for a given datum f € LP/(Q), if
/ | XulP~*(Xu, Xg)dx < (>) / fodx
Q Q

for any non-negative ¢ € W;(’g(Q). Finally, u is a weak solution to the p-Poisson
equation if it is both a weak subsolution and a weak supersolution, i.e. if

/ | XulP~2(Xu, X¢)dx = f fodx 4.2)
Q Q

for any ¢ € W}(’S(Q). We begin our investigation with an existence result to the
minimization problem associated to (4.1).
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Proposition 4.1 Let p € (1,00), f € LP/(Q), g € W;(’p(Q) and let us define the
Sunctional I, : W;(’Z(Q) —> R by

Iy(u) = l/ |Xu|pdx—f fudx. “4.3)
P Ja Q

. . 1
Then there exists a unique up € WX’,Z(Q) such that

Ip(up) = mlin I, (u). “4.4)
ueWX’YZ(SZ)

Moreover, if p > 2, up is the unique weak solution to (4.1).

Proof We wish to apply the direct method of the calculus of variations. To this aim,

we notice that W P (Q) is a closed and convex subset of W "7 (Q), and so it is weakly
closed. Moreover I is strictly convex and strongly lower semicontinuous, and so it
is weakly sequentlally lower semicontinuous. Finally, thanks to Corollary (2.6) and
the Holder inequality it follows that

1 1 1
| XulPdx — | fuzmin{ =, —tull®,  —1flluler — 5
Q Q 2 2K Wy Lr 2

11 , 1
Z min ) o, > IIMII = Wttty 1o = 5 = 400

as [jul| whp = 0o Therefore I, is sequentially weakly coercive. Hence there exists
X

up € W}{Z(Q) which minimizes /. The strict convexity of I, yields the uniqueness
of such a minimizer. It is now standard calculus to observe that a function ¥ minimizes
I, if and only if it is a weak solution to (4.1). O

As in the Euclidean setting (cf. [36] for an elementary proof) the following com-
parison principle holds.

Lemma4.2 Let u,v € CO(Q) be a weak subsolution and a weak supersolution to
(4.1) respectively. Then the following facts hold:

(@) Ifu <vonod2, thenu <von Q.
(ii) It holds that

sup(u —v) < sup (u — v).
xe xei2

Moreover, if u, v are both weak solutions, it holds that
lu —vllco,@ < llu — Vlco,80-
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In the next result we study the relationships between weak and viscosity solutions
to (4.1). It is easy to see that when evaluated on CJZ((Q) functions, equation (4.1)
becomes

—Xw[P2Axw — (p = D) Xw|" " Ax.cow = f.
The associated differential operator, that is

n

m a y
F(x.£,X) = —[£]P~2 (trace(x) +3 3 g5k ) — (P2 X & — f(x),

j=1i=1 ox
is horizontally elliptic and continuous, provided that p > 4 and f is continuous.
Therefore we require in addition that p > 4 and that f € L? (2) N C(2). The proof
of the following result is inspired by [41].

Proposition4.3 Let p > 4, f € Lp/(Q) NC(2) and let u € W)l(’p(Q) NC(2) be a
weak solution to (4.1). Then u is a viscosity solution to (4.1).

Proof We only prove that u is a viscosity subsolution, being the other half of the
proof completely analogous. We already know that u € C(€2). Therefore, arguing by
contradiction, we assume that there exists xo € 2, v € C)2( (2) and R > 0 such that
Br(x0) € €,

0 =v(x0) —ulxg) <v(x) —u(x) on Br(xg) 4.5)
and
—1Xv(x0) P2 Axv(x0) — (p — 2)|Xv(x0) [P~ * Ax 00v(x0) > f(x0).

Hence, thanks to the continuity of the p-Poisson operator, the continuity of f and the
fact that v € C)Z((Q), up to choosing R small enough we can assume that

—1Xv) P2 Axv(x) — (p — 2)|Xv(x) [P Ay 0ov(x) > f(x)

for any x € Br(xp). Therefore v is a classical supersolution to the p-Poisson equation
on Bg(xp), and so it is in particular a weak supersolution. Since u € C(Bg(xp)) it is
well defined the number m := ming g, (x,) (v — u) and by (4.5) we getm > 0. Now we
notice that v —m is still a weak supersolution to the p-Poisson equationandu < v—m
on d Br (xp). Therefore, thanks to Lemma 4.2, we conclude that u < v —m on Bg(xg).
Recalling that v(xg) = u(xp) we get m < 0 which is a contradiction. Hence u is a
viscosity subsolution, and the proof is complete. O

5 Variational solutions to the co-Laplace equation

In this section we study the limiting behavior of solutions to (1.4) and we prove
Theorem 1.1.
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5.1 Existence and properties of variational solutions

Our approach follows the scheme employed in [7]. We fix a function g € W)l(’oo(Q)
and p € (4, 00). Let us denote by u, the unique weak solution to (4.1), coming from
Proposition 4.1, with boundary datum g and f = 0. Since u, — g is an admissible
test function in (4.2), it follows from Holder’s inequality that

/|Xu,,|pdx§/ |Xu,|P~ | Xgldx
Q Q

< (fQ|Xup|f’)p;I (/Q|Xg|f7)’l’,

which implies that

/|Xup|pdx§/ | Xg|Pdx. (5.1)
Q Q

Let us fix a non-decreasing sequence (my ) C (4, 0o) with limy_, 5o my = co. We are
going to show that the family (Xup) > m, is bounded in L™0(€2). Indeed, if p > mg

then using (5.1), Holder’s inequality and the fact that g € W}(’“(Q), we get

mo mo i 14 Zo 2= mo
leup| dx < | Xup 70190 7 < (IXgll&%lR1) 7 121 7 =|QllXegl%.
(5.2)

Thanks to Corollary 2.6 and (5.2), we can conclude that the family (1)) p>m, is
bounded in W;(’mo (R2). Therefore, by reflexivity, we know that there exists a subse-
quence (u p, ), and a function uy, € W;(’mo (€2) such that

Up,—Uoo i W}l(’mO(Q) as h — oo.
We call uo, a variational solution to the co-Laplace equation. Next, we prove points

(1)—(4) in Theorem 1.1.

Proof of (1)-(4) in Theorem 1.1 The proof of the weak convergence in W;(‘m (R2) for any
m € (1, co) follows repeating the same steps employed for finding u, foreachk € N
and by a standard diagonal argument. The uniform convergence follows by the previous
fact and thanks to Proposition 2.15. Let us prove (1). From the lower semicontinuity
of the L™*-norm with respect to the weak convergence, and the analogous of (5.2)
with my in place of mo we get

1
[ Xttoollm < 1€2]™ | Xglloo
for any k € N. Therefore, passing to the limit as k goes to infinity, we conclude that

I Xuoolloo < 1Xgllco-
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This, together with Corollary 2.6 and Proposition 2.15, allows to conclude that 1, €
W;(’OO(Q) N C(S2). To prove (2) we show that us, € W}(’Z"(Q) for any k € N.
Indeed, fix k € N. For any & with p, > my, there exists a sequence (gpj’) i € CX(2)
converging to u,, — g strongly in W)l(’ph (2), and so, since p;, > my, strongly in
W;(‘m" (€2). Therefore we can find a sequence (¢p,) € (ﬂl’?)? such that

1
lon — (up, — O I1my < 7 (5.3)

for any & > 0. We claim that (¢p,); converges weakly to us, — g in W)](’m" (€2). Indeed,
for any ¢ € L™k (£2), thanks to (5.3) and Holder’s inequality it follows that

‘/ onrdx —/‘(uC>o — 9Y¥dx
Q Q

s/ lon — Gy, —g>||1/f|dx+‘/<u,,,, — teo)rdx
Q Q

< llen = upy = MmNV llmz + '/Q(Mp,, — Uoo)Ydx

1
< Z”'l’”m;j + ‘/ (”ph — Uoo)Yrdx
Q

The conclusion follows letting # — oo. Reasoning in a similar way for the X-
gradients, thanks to Proposition 2.2, the claim is proved. Therefore, thanks to Mazur’s
Lemma (cf. e.g. [16, Corollary 3.9]), for each j € N there are convex combinations of
@y converging strongly to us — g in W)l(’m" (£2), that is, forany j € N there exist natu-
ral numbers M; < N and real numbers a; u;, ..., aj n;, withlimj_ oo M = +o0,

N
0<ajp<1land ZhiM, ajp = 1, such that

Nj

) 1,
¢j = Z ajhph —> Uoo — g  in WX'""(Q).
h=M;

Since each ¢; belongs to C°(L2), it follows that ue, — g € W)l(’.'gk (€2). The proof of
(3) follows from (2) and thanks to Proposition 2.15. Finally, (4) follows trivially from
3). O

The remaining part of this section is dedicated to the proof of the last two statements
in Theorem 1.1.

5.2 Variational solutions are AMLEs

In this section we show that variational solutions, as one might expect, are absolutely
minimizing Lipschtz extensions. We point out that this result has already been proved,
in greater generality, in [34]. Nevertheless we prefer to give here a short proof to keep
the paper as self-contained as possible.
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Proposition 5.1 u, is an AMLE.

Proof Let v € W}](’OO(Q) and V € Q with v|gy = uxolgv. Let (my)x and (pp)n as
above. For any /1 € N, consider the unique weak solution v, to the problem

{ —divx(|Xu|""2Xu) =0 inV 5

u="v ondV

Up to a subsequence, we can assume that (v, ), converges to a variational solution
Voo 1n the sense of Theorem 1.1. We claim that v,, = 1, on V. First of all notice
that, for & big enough and thanks to Proposition 2.15, being v € C (V), it holds that
Up,, Vp, €C (V). Moreover, observe that both u p, and v, satisfies the equation

/ [XulP2Xu - Xodx =0
\%4

for any ¢ € W)l(’fs(V). Therefore, thanks to Lemma 4.2 and Theorem 1.1, it follows
that

”uph - vp/,”oo,V =< ”uph - Uph”oo,aV =< ||”I7h —Ueolloo,av — 0

as h goes to infinity. Therefore, again thanks to Theorem 1.1, we conclude that u, =
VUso. On the other hand, arguing as in the proof of Theorem 1.1 and thanks to the
previous claim, we conclude that

[Xtcolloo,v = [XVoolloo,v = [ XVloo,v-

The previous equation yields at once that

2 2
X uool“Nloo,v = 1 X V] lloo, v,

and the thesis follows. O

5.3 Variational solutions are oo-harmonic

To complete the study of variational solutions, we conclude by showing that they are
viscosity solutions to the co-Laplace equations. We point out that we cannot exploit
Proposition 5.1, together with the results in [45, 49, 50], to conclude that ., being an
AMLE, is co-harmonic. Indeed, as mentioned before, our notion of viscosity solution
is stronger than the one introduced in the aforementioned papers. Therefore we need
to give a direct proof which exploits again the approximation scheme employed for
obtaining uec.

Proposition 5.2 u; is a viscosity solution to the co-Laplace equation

— Ax oclloo =0 on Q. (5.5)
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Proof We only show that u is a viscosity subsolution to (5.5), being the other half
of the proof analogous. To this aim, let xo € 2, v € C%(Q) and R > 0 be such that
U — VU has a strict maximum at xo in Br(xo) € Q. If Xv(xg) = 0, by (2.13) the
thesis is trivial. So we can assume that |Xv(xo)| > 0. Let u;, := u,, be a sequence
which allows to define u.,. We can assume without loss of generality that p;, > Q
for any & € N, where Q is as in Proposition 2.15. Then it follows that u; € C Q).
Moreover, thanks to Theorem 1.1 we can assume that uj converges to us, uniformly
on Bg(xg). Let now x;, be a maximum point of #;, — v on B§ (x0). We claim that xp,
has a subsequence, still denoted by x;,, which converges to xp. If it is not the case,
assume without loss of generality that x, — x| # xo, for some x| € Bg(xp). Then it
follows that

up(xp) — v(xp) = up(xo) — v(xo),
and so, passing to the limit and thanks to uniform convergence, we get that

Uoo(X1) — V(X1) = Uoo(X0) — v(x0),
which contradicts the strict maximality of xo. Hence, up to a subsequence, we assume
that x, — xo. By Proposition 4.3 we know that uj, is a viscosity solution to (4.1),
therefore

1 Xv) P2 Axv(xn) — (pr — DX o) [P Ax sov(xp) < 0.

Since | Xv(xp)| > 0, then for /& big enough we have that | Xv(x;,)| > 0. Therefore we
can divide both sides by (p, — 2)|Xv(xp)|P" —4 and get that

IXv0m) P Axv ()
ph—2

— Ax,00v(xp) = 0.

Passing to the limit as 4 — oo, the proof is complete. O

6 Variational solutions arising from the non-homogeneous problem

In this section we prove Theorem 1.2 and study the limiting behavior of weak solutions
to the p-Poisson equation as p — oo with anon-negative datum f € L*°(Q)NC 0(Q).
In analogy with the previous section we introduce the notion of variational solutions
U o as suitable limits of the sequence (u ) ,. Moreover, we show that u is the solution
of a constrained extremal problem which can be understood as the limiting problem
arising from (4.4). Finally, we study the limiting partial differential equation satisfied
by 1. In particular we show that u, is a viscosity supersolution to the co-Laplace
equation and a viscosity subsolution to the Eikonal equation. Unlike the homogeneous
case, U 18 not in general co-harmonic. Nevertheless, it satisfies in the viscosity sense
the system (1.5).
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6.1 Existence and properties of variational solutions
We follow the approach of [7]. From now on we fix f € L°(£2) and we denote by
u, € W}(”S(Q) the unique solution to (4.1) with f > 0 and p > 4. Let us denote

by I the variational functional that we get taking the (formal) limit as p — 400 in
(4.3), namely

Iso(p) = —/wadx

with ¢ € W;(’OO(Q) N Co(R). Clearly, I, does not admit a minimum in W;(’OO(Q) N
Co(R2). Nevertheless, in analogy with the Euclidean setting, we are going to show that
imposing the extra condition || X¢||«,@ = 1 is enough to find a solution.

Theorem 6.1 There exists uoo € W;(‘OO(Q) N Co(RQ) such that

Too(ttoo) < Io(@) 6.1)

forany ¢ € W}(’OO(Q) N Co(RQ) such that | X¢lloo,@ = 1. Moreover, it holds that
0 < Uoo(x) < dg,(x,92) Vx € Q, (6.2)

where dg,(x, 02) = infyeyq do, (x, ¥).

Before proving the theorem we construct the candidate solutions u o, in analogy with
the previous section, as suitable limits of subsequences of (up),. To this aim, let us
define the real number E, by

E,=E,(Q, f) :=/ | Xup|Pdx.
Q

By (4.2) and the Holder inequality we have

= ’
U Fodd| <E) (/ |X¢|P)
Q Q

for each ¢ € W)I(”G(Q). Therefore it holds that

dx P
max (%) <Ep, (6.3)
peWyh©@.020 \ (fq 1X¢lP)
where by possibly changing ¢ into —¢ we have assumed that
/ fedx >0.
Q
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Testing (4.2) with ¢ = u, we get

Ep:/ |Xup|pdx=/ fupdx. (6.4)
Q Q

From this we have

_r_ p

E, = (fsz |X”P|p)ﬁ _ ( Jo fup )pl < max (fﬂfwdx )Pl
’ ( )"

(Ja |Xup|‘”)”17] Jo | Xupl? ewph@.020 \ (/g |X‘/’|p)1/p
(6.5)

which together with (6.3) gives

P

E,= max (M) . )

1
pewih@.020 \ (f [Xel?)"?

that is the anisotropic analogous of the so-called Thompson principle (cf. [7]). Using
equation (6.4) we have

Epzf(v,Xup)dx,
Q

where V € L%(Q, R™) is any vector valued function satisfying — divx(V) = f.
By the Holder inequality
P
£, < [ V17
Q

with equality if V = [Xu,|? 2Xu p- Therefore the Thompson principle is equivalent
to the Dirichlet principle given by

_r_

E, =min{/ V[P Tdx Ve LT (Q,R™), —divk(V)=f in D’(SZ)}.
Q
(6.6)

p=1
Lemma 6.2 The function p — (|Q|_1Ep) »~ is monotonically decreasing as p —
+o00.

q

Proof Let1 < g < p.Forall Vin Lo (2, R™) such that — divx(V) = f in D'(RQ)
we have

1 el 1 - ijl 1 e
(1217 Ep) » = (1 [Vir-tdx = (1€ [V]a-Tdx
Q Q

g—1
q
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Then we have

g—1

—1 q q —1
(1QI'E,) T < inf (|9|“f |V|Tfldx) <(QE)T,
VeLd/@—D(Q,Rm), divx(V)=—f Q

where the last inequality follows by (6.6). O

By Lemma 6.2 we get that {E,}, converges and we set Eoo = limp— 4 E . Fix
m > 1, by the Holder inequality we have

m

/ | Xu,|" < </ |Xup|1’)p Q" =EJQI'"7 forallp>m. (6.7)
Q Q

Let us fix a non-decreasing sequence (mg)r < (4, 400) with limg_ oo my = +00.
By (6.7) and Eoo = lim_, 4 Ep, the family (u) p>m, is bounded in W)l(”'g" () for
each k € N. Therefore, by reflexivity, there exists a subsequence (u p, ), and a function
Uoo € W)l(”'g" (2) such that

. 1,m
Up,—Uoe iN WX’Ok(SZ)

as h goes to infinity for each k € N. We call us, a variational solution. It is now
possible to repeat the same arguments of the previous section to see that u ,, —~u in

W)l(’p () for any p > 4. Moreover by (6.7) we conclude

1
E 7
Xttoolloo < lim ( ”)1 =1 (6.8)

p=too \ Q]
Therefore us, € W)l(’OO(Q). Moreover, by Proposition 2.15 we know that uy, €

W)l(’OO(Q) N Co(L). Finally, again by Proposition 2.15 we conclude that u o —> Uoo
uniformly on Q.

Proof of Theorem 6.1 Let us consider a variational solution u«, relative to sequences
(my)r and (pp)p. For sake of simplicity, we denote pj by p and we yrite p — 00
meaning that i — oo. We already know that u, € W)l(’oo(Q) N Co(2). Therefore,

if we extend uso to be zero outside €2, then clearly uq, € W)I(’OO(QO). Hence (cf.
[28])_it follows that u, € Lip;,.(R0, dg,). Since 2 € o, we conclude that u, €
Lip(£2, dg,). By (6.8) we get

lttoo (X) — oo (Y| = dy(x, y)

foreach x, y € Q. Taking the infimum for y € 92 and recalling that u,(y) = 0, we
obtain

oo (X)| < dgy(x, 9€2).
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On one hand, by (6.3) it follows that for ¢ € WJI(’OO(Q) N Co(RQ), ¢ # 0 fixed we
have

(Jo 1 Xelrdx)'? ="

and letting p — 400

Jo f pdx
2t < Fo. 6.9
IXelloo = 7 ©9)

On the other hand, recalling (6.4) and by the weak convergence, we have

Eoo:/ Flioo dx. (6.10)
Q

Combining (6.8), (6.9) and (6.10) we get that || Xuso|looc = 1 and that

/quoodxz/;zﬂpdx

for any ¢ € W)l(’oo(Q) N Co(R) such that | X¢| s = 1. This concludes the proof. O

To conclude this section, in analogy with [7], we show that when f > 0 variationals
solutions are unique and coincide with the Carnot-Carathéodory distance from the
boundary of 2. Before we need a technical lemma.

Lemma 6.3 The distance function x +— dg,(x,dS2) belongs to W)l(’oo(Q) N
Co(Q). In particular, dg, (-, 02) belongs to W;(”Z(Q) for all p > 1. Moreover,
[ Xdgy (-, 02)]lec = 1.

Proof 1t is well known that dg, (-, 902) € Lip(£2, dg,) and that || Xdgq, (-, 02)|lcc = 1
(cf. [28]). Since Lip(R2, dg,) € Lip(R2, dg) and Lip(2, dg) < WJI(’OO(Q) (cf. [28]),
we conclude that dg, (-, 982) € W}(’OO(Q). Moreover, dg, (-, d€2) is continuous and
do,(x, 02) = 0 forx € 9€2, thus dg, (x, 92) € Co(£2). Finally, in order to prove that
d(x, 0R2) belongs to W)](’,g (£2) we argue as in [16, Theorem 9.17]. O
Proposition 6.4 Assume that f > 0 in Q. Then there exists a unique variational
solution ux.. Moreover, every sequence (up,); S (up), converges to ux, strongly in
W)l(’m () for any m > 1. Finally, it holds that

Uoo(x) = dg,(x,dR), Vx e Q.

Proof Let us be as in Theorem 6.1, relative to sequences (my)r and (pp)n. By
Lemma 6.3, dg, (-, 9€2) is a suitable test function in (6.1), and so

/ F o) dx = / F(0)day (x, 99) dx,
Q Q
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which together with f > 0 in Q gives uo(x) > dg,(x, 92) for all x in Q. This
inequality and (6.2) imply that us, = dg,(-, 9€2). Fix now a sequence (up,); <
(up)p and m > 1. Since every subsequence of (u,); has a subsequence that weakly
converges to dq, (-, €20) in W)l(’m (€2), then the (up,); weakly converges to uy =
d(x,0%) in W)l(’fgo(fz). In particular we gain that (up,;); converges to dg, (-, 9€2) in
C%a(ﬁ) fora =1~ Q/mg and (Xu,,); converges weakly in L™ to Xdgq,(-, 3€2).
The rest of the proof follows exactly as in the proof of [7, Part II, Proposition 2.1]. O

Corollary 6.5 Let 21 be a domain such that Q € Q1 C Qo. Then
dg, (-, 9Q) = dg,(-, Q) on Q.

6.2 The limiting partial differential equation

In this final section, in analogy with [7], we want to understand which is the lim-
iting partial differential equation that variational solutions have to satisfy. As in the
Euclidean setting we show that the limiting equations depend on the fact that we are
in the support of f or not. Indeed we show that a variational solution is co-harmonic
outside the support of f and that it satisfies the Eikonal equation inside the support of
f. We begin our proof with the following result.

Proposition 6.6 1 is a viscosity supersolution to the Eikonal equation
[Xuso| =1 in {f > 0}.

Proof We begin by showing that it suffices to consider tests functions in Cﬁ(Q).
Indeed, let xop € {f > O} and v € C}((Q) such that u~, — v has a strict minimum at
xo in a ball Bg(xg) € {f > 0}. Thanks to Proposition 2.4, there exists a sequence
(vp)p € C%(Q) such that v, — v and Xv;, — Xv uniformly on Bg(xg). Let now x;,
be a minimum point of #, — v, on B R (x0). Arguing as in the proof of Proposition 5.2,

up to a subsequence we can assume that x;, — xo. Therefore, passing to the limit in
[Xvp(xp)| = 1,
thanks to uniform convergence we get that
1 Xv(xo)] = 1.
Hence we can work with tests functions in Ci(Q). Letxg € {f >0},v e Cf( (2)
and R > 0 be such that us, — v has a strict minimum at xo in Bg(xg) € {f > 0}.
If up := up, is a sequence which allows to define 1o, then we can assume that u,

converges to iy, uniformly on Bg(xp). Let now x;, be a minimum point of u, — v
on B (xp). Arguing as above we can assume that, up to a subsequence, x;, — xo.
2

Let us assume without loss of generality that p;, > Q for any & € N, where Q is
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as in Proposition 2.15. Then it follows that u;, € C°(R). Therefore we can apply
Proposition 4.3 and obtain that uy, is a viscosity solution to (4.1), i.e.

I XvGen) P2 Axv(xn) + (pr — DI X o) P4 Xv(x) - X2v(g) - Xven) T < — f ),
(6.11)

and recalling that x, € {f > 0}, we also get | Xv(x)| > O for any 4 € N. Assume by
contradiction that | Xv(xg)| < 1, then there exists § > 0 such that [ Xv(xg)| <1 —2§
and without loss of generality we can also assume that |Xv(x;)| < 1 — § for any
h € N. Consequently,

0 < lim (py — 2)|Xv(xp)|” ™ < lim (pp —2)(1 = )P4 =0. (6.12)
h—o0 h— o0

Dividing (6.11) by (pr, — 2)|Xv(xp)|P" —4and using (6.12) we conclude
Xv(xo) - X2v(x0) - Xv(xg)T = —00

which contradicts v € C f( (2). O

Exploiting the previous result we can prove that variational solutions are oo-
superharmonic on the entire domain.

Proposition 6.7 u, is a viscosity supersolution to the co-Laplace equation
—Ax.colloo =0 on Q.

Proof Letxy € Q,v € Cf( (2) and R > 0 be such that #, — v has a strict minimum at
xo in Br(xp). Assume without loss of generality that | Xv(xg)| # 0. We argue exactly
as in the previous proof to get that

f(x0)

—Xv(x0) - X*v(x0) - Xv(x0)" > = .
limp— 00 (P — 2)| X v (xp)|Pr—4

If f(x0) = O the thesis is trivial. If instead xg € {f > 0}, we know by the previous
proposition that limj_, oo (pr, — 2)| X v(xp)|Ph~* = 400, and so the thesis follows. O

Since the notion of viscosity solution is of local nature then proceeding exactly as
in the proof of Proposition 5.2 the following result holds.

Proposition 6.8 1 is a viscosity subsolution to the co-Laplace equation
—Ax.oolice =0 on  {f >0},
To conclude our investigation we show that u, is a viscosity subsolution to the

Eikonal equation on 2. For doing this we invoke Theorem 3.7, together with the fact
that, thanks to (6.8), || Xttso|lco < 1.
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Proposition 6.9 u, is a viscosity subsolution to the Eikonal equation
[ Xuool =1 on Q.

We summarize our results as follows.

Theorem 6.10 Let u, be a variational solution. Then the following facts hold.

(i) uo is a viscosity supersolution to the co-Laplace equation on 2.
(ii) uoo is a viscosity solution to the co-Laplace equation on { f > O}C.
(iii) uoo is a viscosity subsolution to the Eikonal equation on <.
(iv) ueo is a viscosity solution to the Eikonal equation on {f > 0}.
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Appendix

As already pointed out, Proposition 2.14 can still be proved assuming

(D1) (2,dgq) is a Carnot-Carathéodory space,
(D2) dgq is continuous with respect to the Euclidean topology,
(LIC) The vectors X1(x), ..., X, (x) are linearly independent for any x € Q2

instead of (LIC) and (2.4). The previous set of conditions embraces many relevant
families of vector fields, such as for instance Carnot Groups. However, when consid-
ering the two sets of hypotheses given by the Hormander condition and (D1), (D2),
(LIC), one can show that neither of the two implies the other. Indeed, from one hand it
is well known that the Grushin plane, i.e. R? equipped with the Carnot-Carathéodory
distance generated by the vector fields

a d
X=— Y=x—,
ax ay

satisfies the Hormander condition, while X and Y are clearly linearly dependent in
{(0,y) | y € R}. On the other hand, there are examples of (even smooth) families
of vector fields satisfying (D1), (D2), (LIC) which does not satisfies the Hormander
condition. Let us consider the two linearly independent vector fields X, Y defined on
R3 by

X 0 Y a n ()8
= — = — _x—’
ox dy ¢ 9z

where ¢(x) := ¥ (x) + ¥ (—x) and ¥ : R — R is defined by

V(x) = {e_)lc ifx >0

0 otherwise.
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Since ¢®(0) = 0 for any k € N, it is easy to see that
(X, [...[X.Y]..10,y,2) = [Y,[...,[X,Y]...](0,y,2) =0

for any y, z € R so X, Y do not satisfy the Héormander condition in {(0, y,z) | y, z €
R}.

It is not difficult to show that they induce a Carnot-Carathéodory distance d on R3,
and that the identity map

Id: (R, d,) — (R, d)

is continuous. Indeed, let A = (x,y,z) and B = (x1, y1,21) in R3. We construct
a horizontal curve joining them whose horizontal length tends to zero as A tends
to B in the Euclidean topology. First, notice that moving along the X direction the
induced Carnot-Carathéodory distance is comparable with the Euclidean one. Hence,
without loss of generality, we can assume that x = x; = 0. Moreover, since ¥ = %
on {x = 0}, then moving along the Y direction inside {x = 0} the induced Carnot-
Carathéodory distance is comparable with the Euclidean one. Hence we assume that
y1 = y. The last step is to join (0, y, z) and (0, y, z1). We assume, without loss of

generality, that z; > z. Let us set

1
T log(Vz1 —2)

then § — 0T as z; — z. Let us define the curves y1, ..., y4 : [0, 1] — R3 by

yi(t) = (0, y,2) +1(5,0,0),
()= 06,y,2)+t <0, Z;_Z,m —z),

Z—12
@(3)

ya(t) = <8, y+ ,Z1) +1(=6,0,0)

and

71 — 2 Z—121
= 07 N 09—10
7 ( TS “)H( ) )

it is easy to see that they are horizontal and that they connect (0, y, z) and (0, y, z1).
Moreover, a quick computation shows that

21—z 2
40 0 28 = -
(©.5.2). 0.y, 20) =20+ = = e e

As the right hand side tends to zero as z; — z, the conclusion follows.

V<l —Z.
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