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Abstract—Sparsification and low-rank decomposition are two
important techniques to compress deep neural network (DNN)
models. To date, these two popular yet distinct approaches are
typically used in separate ways; while their efficient integration
for better compression performance is little explored, especially
for structured sparsification and decomposition. In this paper,
we perform systematic co-exploration on structured sparsifi-
cation and decomposition toward compact DNN models. We
first investigate and analyze several important design factors
for joint structured sparsification and decomposition, including
operational sequence, decomposition format, and optimization
procedure. Based on the observations from our analysis, we then
propose CEPD, a unified DNN compression framework that can
Co-Explore the benefits of structured sParsification and tensor
Decomposition in an efficient way. Empirical experiments demon-
strate the promising performance of our proposed solution. No-
tably, on the CIFAR-10 dataset, CEPD brings 0.72% and 0.45%
accuracy increase over the baseline ResNet-56 and MobileNetV2
models, respectively, and meanwhile, the computational costs are
reduced by 43.0% and 44.2%, respectively. On the ImageNet
dataset, our approach can enable 0.10% and 1.39% accuracy
increase over the baseline ResNet-18 and ResNet-50 models with
59.4% and 54.6% fewer parameters, respectively.

Index Terms—Model Compression, Tensor Decomposition,
Sparsification.

I. INTRODUCTION

Deep neural network (DNN) has served as the backbone
machine learning technique in many modern intelligent sys-
tems. To facilitate the low-cost deployment of DNN on
resource-constrained platforms, model compression, as a pow-
erful strategy that can efficiently reduce DNN model size,
has been extensively studied in recent years. Among various
types of model compression techniques, sparsification (a.k.a.,
pruning) and low-rank decomposition are two representative
and popular solutions [1]-[4]. As revealed by their names,
the low-rank and sparse methods aim to explore and leverage
the potential low-rankness and sparsity of the uncompressed
DNNSs, respectively.

Co-exploring Low-rankness & Sparsity: Motivation.
Considering the current prosperity of these two methods and
their very distinct structural assumptions, an interesting and
promising research topic is to explore the efficient integration
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of low-rank and sparse approaches towards a better model
compression solution. As indicated and observed by [5],
DNN models tend to exhibit both low-rankness and sparsity
simultaneously. For instance, the smooth components in the
weight filters can be represented in the low-rank space, and
meanwhile, some other important information is sparsely
scattered. Evidently, fully leveraging such co-existence of
these structure-level patterns can potentially bring a powerful
compression solution with attractive performance.

Existing Works. Unlike the current extensive research
activities on individual low-rank and sparse methods, the
investigations on integrating these two approaches in an
efficient and non-trivial way, are little explored. To date,
only very few efforts study the joint exploration of low-
rankness and sparsity for DNN model compression. As the
pioneering work in this direction, [5] develops a singular value
decomposition (SVD)-free approach to closely approximate
the original DNN model via combining sparse representation
and low-rank matrix factorization. Built on the interesting
connection between filter decomposition and filter pruning,
[6] interprets the decomposition and pruning of convolutional
filters in a unified perspective. [7] combines low-rank, sparse,
and quantized matrices into an additive framework with the
learning-compression algorithm. Most recently, [8] proposes a
collaborative compression scheme to integrate SVD into model
sparsification. By adopting a multi-step heuristic removal
strategy, this post-training approach achieves promising task
and compression performance.

Unanswered Questions. Although these prior works have
demonstrated the huge potential and attractive benefits of
jointly decomposing and pruning, the systematic investigation
of their efficient integration is still missing. To be specific,
several fundamental and critical questions, whose answers will
directly impact the integration scheme and overall compression
performance, have not been comprehensively explored yet. For
instance, because pruning and decomposition can be jointly
performed in several different ways, such as in parallel [5],
[7] or in sequence [8], which collaborative strategy is more
suitable for the target DNN compression task? Also, consider-
ing low-rankness can be exploited from different perspectives,
which type of low-rank approach should be adopted? The
matrix factorization used in [6], [8]? Or even high-order tensor
decomposition? In addition, to achieve promising compression
performance, what is the most suitable optimization objective
that the integration scheme should aim for? The approximation
error focused in [5]? The low-rankness/sparsity regularized



loss in [9]? Or some other new alternatives?

Technical Preview and Contributions. To answer these
questions and develop an efficient integrated model com-
pression solution, in this paper, we perform systematic co-
exploration on the low-rankness and sparsity of compact neural
networks. To be specific, we first review and analyze several
important design factors for the joint low-rank decomposition
and structured pruning. Based on the observations and out-
comes from our analysis, we then propose CEPD, a unified
DNN compression framework that can simultaneously capture
model low-rankness and structured sparsity in an efficient way.
Overall, the contributions of this paper are summarized as
follows:

o« We systematically investigate and analyze the critical
design knobs when co-exploring model low-rankness and
structured sparsity, including operational sequence, low-
rank format, and optimization objective. Based on our
qualitative and quantitative analysis, we propose several
recommended design options for efficient joint low-rank
tensor decomposition and structured pruning.

e We develop a unified framework that formulates the
integration of low-rank high-order tensor decomposition
and structured sparsification to an optimization problem
with low-tensor-rank and sparse constraints. We then
derive a training-aware approach to solve this challenging
non-convex high-order tensor-format problem, thereby
leading to efficient exploration of rich low-rankness and
sparsity in the model.

o We empirically evaluate our proposed solution for various
DNN models on different datasets, and the experimental
results demonstrate its promising performance.

II. RELATED WORK

Pruning. Network pruning, which explores the sparse prop-
erty, has been extensively studied for model compression.
Existing pruning methods can be performed with different
granularity. Unstructured pruning prunes weights individu-
ally based on a certain criterion [10]-[13]. It usually brings
outstanding performance but requires complicated hardware
design or a dedicated sparse matrix operation library to be
deployed in practice. Middle-level sparsity pruning exhibits a
coarser granularity compared to unstructured pruning, encom-
passing N:M sparsity and block sparsity. The NVIDIA Ampere
A100, equipped with sparse tensor cores, supports N:M (2:4)
structured fine-grained sparsity, showcasing the promising
capabilities of this intermediate level of sparsity. In N:M fine-
grained sparsity, within each group of M consecutive weights
in the network, at most N weights have non-zero values.
The work [14] introduces a Sparse-refined Straight-Through
Estimator (SR-STE) to learn the N:M sparsity from scratch.
And [15] characterizes N:M sparsity as a combinatorial prob-
lem, employing learnable scores to select the desired subsets
from CY} collections. Additionally, block sparsity represents
another direction in middle-level sparsity research, targeting
enhanced hardware utilization and higher sparsity levels as
well. [16] clusters elements of small magnitude closer by
reordering the input and output dimensions before performing

pruning at a coarser granularity. [17] proposes a 1xN pruning
pattern where consecutive N output kernels sharing the same
input channel index are grouped into one block. This block
then serves as the basic pruning granularity following an L1-
norm-based filter rearrangement. Structured pruning prunes
weights by selectively eliminating the entire convolutional
filters or feature map channels [18]-[22], achieving practical
acceleration in computational speed.

In this paper, we focus on co-exploring low rankness and
the sparsity brought by structured pruning.

Low-rank Decomposition. Low-rank decomposition is an-
other popular DNN compression approach that captures the
low-rankness of the model. Based on different interpretations
of DNNs, this method can be categorized into matrix de-
composition and tensor decomposition. Matrix decomposition
views the 4-D weight tensor as the folded matrix, and hence
it flattens the 4-D objective to 2-D format and decomposes
the reshaped matrix to the product of two small matrices [4],
[23]-[26]. However, the existing matrix decomposition-based
works suffer the loss of important spatial information incurred
by inevitable tensor flatten operations. On the other aspect,
tensor decomposition directly factorizes the 4-D weight tensor
to multiple small tensor cores without flattening operations.
Such explicit high-order processing, by its nature, can better
preserve the important spatial information and correlation
that existed in the weight tensors. To date, several tensor
decomposition techniques, such as Tucker/CP, tensor train, and
tensor ring, etc., have been used for DNN model compression
(31, [271-(33].

ADMM-based Model Compression. In recent years,
ADMM has been used in several model compression pa-
pers, including single pruning [34], [35], single low-rank
compression [25], joint quantization and pruning [36] and
additive compressing [7], [37]. Our approach focuses on
additive compression with distinct differences from [7], [37]
and other ADMM-based works. This is because the low-rank
approach used in [7], [37] is based on matrix decomposition,
which is not the best solution for compression CNNs; while
we adopt high-order tensor decomposition in our proposed
additive compression. From the perspective of the ADMM
process, the projection toward tensor decomposition is much
more complicated than the one for matrix factorization. This
is because 1) it is involved with advanced high-order tensor
operation instead of straightforward 2-D matrix computation;
and 2) tensor decomposition (e.g., TT) outputs multiple 4-D
tensor cores; while matrix factorization only generates two 2-
D matrices. Such a huge difference makes the corresponding
projection on the decomposed tensor cores significantly differ-
ent from the projection on low-rank used in [7], [37] or sparse
matrix used in [34]-[36].

Joint Pruning and Decomposition. As observed by [5],
a well-trained DNN tends to exhibit both sparsity and low-
rankness simultaneously. Motivated by this observation, some
prior efforts propose to co-explore these two complementary
properties for model compression. As the pioneering work, [5]
decomposes the weight tensors of a pre-trained DNN model
into independent low-rank and sparse parts and minimizes
the reconstruction error. Similarly, [37] focuses on optimizing



the approximation error of the original model via ADMM.
Different from this parallel scheme, [8], [38] adopt a sequential
compression strategy via performing matrix factorization on a
pruned model. In addition, [6] proposes to use the sparse/low-
rank regularization term instead of reconstruction error to en-
force the desired structural patterns. [39] proposes unstructured
sparse and low-rank attention for transformer approximation.
[7] proposes a general additive combination framework with a
learning-compression algorithm. Also, notice that all of the
existing works focus on using either SVD-based or SVD-
free matrix decomposition to exploit the low-rankness of the
DNN model. However, as analyzed in Section III of our paper,
high-order tensor decomposition is a more suitable low-rank
method for CNN compression; while this important technique
has not been explored by the existing additive compression
efforts yet. Besides, they adopt either approximation-centered
or regularization-based optimization methods. We believe such
decomposition and optimization solutions have limitations and
cannot achieve optimal performance since the task goal is to
generate a compressed model instead of a close approximation
to the original model. Different from these existing works,
our approach is built on structured pruning and tensor de-
composition with constrained formulation as the optimization
objective, demonstrating better performance.

III. CO-EXPLORING LOW-RANKNESS AND SPARSITY:
ANALYSIS

As outlined above, some prior works have reported their
exploration of joint low-rankness and sparsity. In general,
the integration of low-rank decomposition and pruning can
be specified by several important factors, including opera-
tional sequence, low-rankness format, and overall optimization
objective. The existence of such a large variety of differ-
ent factors and their combinations, by its nature, calls for
the systematic investigation of the best-suited co-exploration
scheme. Such an analysis framework, if properly developed,
can facilitate the optimal selection of various design factors
already proposed in the existing literature. More importantly,
the outcome of this systematic study will further guide and
provide better integration choices that have not been discov-
ered before.

Questions to be Answered. Next, we analyze the criti-
cal design knobs for efficient co-exploration on model low-
rankness and sparsity. To that end, three important questions
need to be answered.

Question #1: What is the more suitable operational se-
quence when jointly low-rank decomposing and pruning DNN
models?

Analysis. In general, the co-existence of model low-
rankness and sparsity can be explored in different ways (see
Figure 1. For instance, as adopted in [5], a well-trained DNN
can be closely approximated as the combination of a low-rank
component and a sparse component. In other words, the two
types of structure-level properties are imposed and leveraged
in a spatially parallel way, and we denote this strategy as
L+S, where L and S represent low-rank decomposition and
sparsification, respectively. On the other hand, the joint use
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Fig. 1. Different operational sequences for joint low-rank decomposition

and structured pruning. Here L and S represent low-rank decomposition and
sparsification, respectively.
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Fig. 2. The approximation error when compressing the weight tensor of
one layer in ResNet-20 using different operational sequences (L+S, S(L)
and L(S)). Here mean square error (MSE) is used to measure the difference
between the original uncompressed weight tensor and the reconstruction. SVD
is adopted as the low-rank decomposition method (L). It is seen that L+S can
bring a much smaller approximation error than its counterparts with the same
compression ratio (defined as the “total parameters / remaining parameters”).
More comprehensive layer-wise results of ResNet-20 and ResNet-56 on
CIFAR-10 and ResNet-50 on ImageNet are reported in Appendix.

of factorization and pruning can also be performed in a
temporally sequential way. As illustrated in Figure 1, the
original model can be first imposed with low-rankness (or
sparsity), and the size of the resulting partially compressed
model can be further reduced by the second-stage pruning
(or low-rank decomposition). Following a similar notation,
such sequential operation can be denoted as S(L) and L(S).
In practice L(S) is a preferable choice that has been adopted
in the prior works [8], [38].

Our Proposal. Among the above-described three general op-
erational schemes, we believe L+S is the more suitable choice
when considering integrating pruning and decomposition to-
gether for model compression. This is because unlike S(L) and
L(S), which ultimately still produce the compressed model
in a single representation (sparse or low-rank) space, L+S
enables the simultaneous representation of rich information
of DNN models across different subspace, and thereby better
preserving the structural characteristics and reducing the po-
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Fig. 4. Output feature maps of one layer of ResNet-20 after non-compression (Left), tensor decomposition (Middle), and matrix decomposition (Right). The
visualization shown here is based on the information of one channel. It is seen that high-order tensor decomposition makes the feature map of the

compressed layer more similar to that of the original uncompressed layer.

tential information loss. To verify our hypothesis, we examine
the approximation error incurred by three integration schemes.
As shown in Figure 2 and more detailed results of Appendix,
with the same compression ratio for the weight tensor of
one layer of a pre-trained ResNet-20 on CIFAR-10 dataset,
L+S shows lower approximation error than its counterparts.
This experimental phenomenon demonstrates that L+S scheme
indeed can capture both the low-rank and sparse characteristics
of the DNN model in an efficient way.

Question #2: What is the more suitable low-rank decom-
position approach used when co-exploring low-rankness and
sparsity?

Analysis. From the perspective of linear algebra, the low-
rankness of a DNN model can be exploited using different
ways. For an example convolutional layer, imposing the low-
rank structure can be realized by performing simple matrix
factorization or high-order tensor decomposition as Figure 3.
Specifically, [5] chooses the SVD-free method to factorize
the DNN model and obtain the low-rank component, and
[8] proposes to use SVD-based decomposition to serve as
the second-stage compression approach in its adopted L(S)
scheme. Similarly, the low-rank methods adopted in [7], [37]
are also based on 2-D matrix. Notice that though the weights
of the convolutional layer essentially form a 4-D tensor format,
the existing works exploit the low-rankness via using matrix
decomposition — the 4-D tensor needs to be first flattened to
a 2-D matrix and it is then factorized to two small matrices.

Our Proposal. We argue that the high-order tensor de-
composition, the option that has not been explored in the
integration scheme before, is the better choice than the low-
order matrix decomposition adopted in the existing works.
This is because as a reshaping-free technique that can directly
factorize the tensor-format data to multiple tensor cores, tensor
decomposition, such as Tensor Train (TT) and Tucker, can
naturally capture and preserve the important spatial informa-
tion and correlation of the original weight tensors in a more
efficient way. Therefore, less information loss is expected after
performing low-rank tensor-based compression. To verify our
hypothesis, we compare the feature maps of the compressed
convolutional layer of ResNet-20 on the CIFAR-10 dataset
using different low-rank methods. For SVD, we follow the
same way used in [8] to reshape the 4-D tensor weight to
a 2-D weight matrix. As visualized in Figure 4, compared
with the matrix decomposition-based approach with the same
compression ratio, tensor decomposition can make the output
feature map of the compressed layer much more similar
to the feature map of the original uncompressed layer. In
other words, the low-rank tensor method can provide better
preservation of the important feature information and thus it
can bring potential higher model compression performance.
More detailed quantitative comparison results for different
low-rank methods (SVD, Tucker, and TT) under different
compression ratios are reported in Appendix.

Question #3: What is the suitable optimization objective



that the joint compression should aim for?

Analysis. To efficiently realize the joint exploration of
model low-rankness and sparsity with promising compres-
sion performance, different optimization strategies have been
proposed in the existing works. For instance, [5], [37] aims
to minimize the difference between the original weight ma-
trix/tensor and the approximated reconstruction. This type of
solution essentially applies the general sparsity/low-rankness
co-exploration methods [40]—[43] in linear algebra and signal
processing fields to DNN compression. However, such matrix
recovery/estimation-oriented strategy is not the optimal solu-
tion for DNN model compression, since our task goal is to
generate a compressed model instead of a close approximation
to the original model. In addition, [4], [9] explore another
strategy that they consider global information via adding a
regularization term to the loss function. Besides, [37], [44]
also propose to explicitly add the low-rank and sparse regular-
ization terms to the overall objective function, which can guide
the training-aware procedure to enforce the desired structural
patterns.

Our Proposal. Different from the existing approximation
error-centered or regularized loss-based solutions, we propose
that the efficient co-exploration scheme should be interpreted
as the optimization procedure with low-rank and sparse con-
straints. Our rationale lies in two observations of the draw-
backs of the prior efforts. First, the approximation strategy
adopted in [5], [37] focuses on making the reconstructed
model approach the original model as close as possible.
However, since 1) the approximation error always exists; and
2) the original model is not the only choice to achieve the
desired accuracy, such a strategy inherently can only search
the low-rank and sparse components in a limited exploration
space, thereby affecting the overall performance.

Second, though adding the regularization terms into the
loss function indeed facilitates the extraction of low-rank and
sparse patterns, the effect of such a simple regularizing method
can only approximately satisfy the hard constraint, which is
still limited, especially considering the efforts of pushing for
sparsity and for low-rankness may interfere with each other,
thereby potentially causing unexpected conflicts. Instead, by
explicitly imposing the low-rank and sparse constraints on
the overall optimization problem, these two structural require-
ments can be simultaneously satisfied with the proper use of
optimization technique (to be discussed in Section IV). To
be specific, we report the learning curve in Section VI to
show that our proposed constrained optimization strategy can
successfully impose the desired low-rankness and sparsity onto
the DNN models efficiently. We also provide a quantitative
comparison in Section V to show the better performance of the
proposed method over approximation-centered and regularized
loss-based solutions.

Summary of Our Analysis. @ Performing joint low-rank
decomposition and structured pruning in a spatially parallel
way (L+S) is the preferred operational sequence. ® High-
order tensor decomposition is the more suitable choice for
the low-rank approach used in the integrated compression
scheme. ® Imposing low-rankness and sparsity as the direct
hard constraints on the loss optimization should be adopted to

better satisfy the desired structural requirement.

IV. CO-EXPLORING LOW-RANKNESS AND SPARSITY: OUR
METHOD

Problem Formulation. Recall that the analysis in Section
IIT brings three important observations/proposals: using L+S
operational sequence, choosing high-order tensor decomposi-
tion, and directly imposing hard constraints. Built on such
three fundamental principles, we are now ready to formulate
the integration of pruning and tensor decomposition to a
unified optimization problem. To be specific, given an uncom-
pressed DNN model with weight tensor W € ROXIXEXK
of each layer, our goal is to find another compact model
with weight tensors £ + &, which consists of low-rank
component £ € ROXI*EXK and structured sparse component
8 € RO'XI"<KxK for each layer, to minimize the following
loss function:

min f(£,8), st. (L) <v0,71, " Yy ¢(S) <k, (1)
LS —

Low-tensor-rank constraint ~ Sparse constraint

where f(-) is the loss over the entire training dataset, 7(-)
calculates the rank of a tensor, ¢(-) is the number of unpruned
filters, and 79,71, ,7q4 and « are the desired tensor ranks
and the number of remaining filters for £ and S, respectively.
Without loss of generality, we choose tensor train (TT) decom-
position as the component low-rank method and ¢; norm as
the criterion to prune a filter in our framework. Here d is the
number of decomposed tensor cores with TT decomposition.
Method. Directly optimizing problem 1 is challenging be-
cause of the co-existence of the non-differentiable r(-) and c(-)
as well as its inherent high-order tensor format. To efficiently
solve this problem, we propose to leverage the alternating
direction optimization method to split these two constraints.
To be specific, after introducing two auxiliary variables £ and
S that represent the desired low-TT-rankness and structured
sparsity in the optimization process, problem 1 can be then
rewritten as:
min_ f(£,8), st. L=L,E=8, ()
L. 8,LeP,SEQ
where P = {Lr(L) < 71, -+ ,7vq} is the set of all
tensors that satisfy the low-tensor-rank constraint, and Q =
{8]e(8) < K} is the set of all tensors that satisfy the struc-
tured sparse constraint. Then, we further relax the hard con-
straints to the corresponding augmented Lagrangian form and
now we only need to optimize the following new constraint-
free min-max problem:

by ~
min_ max f(£,8)+ (£ - L+U||F+
£,5,Cep,Seq UV 2

(3)
IS = 8+ V& — U7 — [IVIF),

where U and V are the dual multipliers associated to £ and
S, respectively, and A is the penalty parameters. To solve this
minmax problem, we can split it into three separate parts, and
independently optimize them in an iterative way.



Update £ and S with SGD. The first independent optimiza-
tion objective can be formulated as:

. A - -
win S(£,8)+ 501£ - E+Ul+ (S -8+ VIE). @

Since there are no hard constraints on the target variables
L and S, standard DNN optimizer (e.g., stochastic gradient
descent (SGD)) can be directly applied with learning rate «
as:

L L—aVef(L,8S)+NL—-L+U)], ()
S+ 8—aVsf(L,8)+AS-8+V). (©6)
Update L with TT Decomposition. To update the introduced

L, the optimization objective is:

A
min -
Lep 2

£ —C+Ul3. 7

Because L is strictly constrained to stay in the low-tensor-rank
set P, the desired update can be performed using an analytical
solution via TT-rank truncation, i.e.

L« truncp (£ + U). (8)

To realize the truncating operation, we first define a tem-
porary tensor 7 = L£ + U and reshape it as a new tensor
% c dIR(KXK)X(O] ><~Il)><~~~><(Od><Id) with O = HZ:l O,
I =1]I)_; Ix. Then T can be decomposed to d + 1 TT-cores
as:

T((kla kQ)a(Ohil)a ) (Odvid))) =
Co(kla kQ)C1(:,01,7;1, :) o 'Cd(:7 Od7id7 :)a

where Cy € REXK ¢, € RRi-1x0ixIixR; 5 =1 ... d In
this TT-format, the dimensions of TT-ranks in TT-cores are
truncated to the desired target, i.e., C’j =C;(1:v_1,551:
«;). After that we use the truncated TT-cores to recover the
original tensor via:

(€))

~/

T (K1, k2),(0i,01),- -+ 5 (04,1a))) =

(10)
C(](kh kQ)c/l(:7 Olvilv :) o CZ{(; Od, ida )

And finally T / is reshaped to the original shape of L to serve
as the updated L. R

Update S with Projection. For updating S, the third opti-
mization objective is:

A N
min =[8-S+ V|%.

SeQ 2

Y

Similar to the low-tensor-rank Z the sparse-constrained g’ can
also be analytically updated as

S — projo(S + V), (12)

where proj(-) is the projection that removes filters with
the smallest ¢; values. We utilize the ¢; norm here as an
approximation solution of its analytical solution, ¢5 norm,
in order to save the computational cost in the optimization
process. The projection is to ensure that the updated S can
satisfy the structured sparse constraint.

Update Multipliers ¢4, V. Upon updating L and S, the dual
multipliers U and V are updated as:

U+U+L-L, V<V+S-8.

13)

Notice that after the iterative update finishes, the low-rank
component £ is explicitly decomposed to TT-cores {C}?=o,
and the entire compressed model consisting of TT-cores and
sparse part S is finally fine-tuned with standard SGD. The
overall CEPD algorithm is summarized in Algorithm 1.

Algorithm 1 The overall CEPD algorithm

Input: Pre-trained weight tensor VW, target TT-ranks {7]- }?:0’
sparse target r, training epochs 7.
Output: TT-cores {C}?:O, sparse component S.
1: Initialize L, 2,8,3 with W,
2: Initialize U := 0,V :=0
3: fort=1to T do
4:  Update U,V using Eq. 13;
5. Update £ and S using Eq. 5 and Eq. 6;
6
7
8
9

/[ Update £ using TT-truncation
L + truncp (L +U);
/[ Update S using projection
i S projo(S+V);
0: end for
11: Decompose £ to TT-cores {C}?:O;
12: Fine-tune model with {C}¢_; and 8.

—_

V. EXPERIMENTS

Dataset and Baseline. We evaluate our proposed approach
on two image classification datasets (CIFAR-10 and Ima-
geNet). For experiments on CIFAR-10, four CNN models
(ResNet-20, ResNet-56, DenseNet-40 and MobileNetV?2) are
compressed. For experiments on ImageNet, we evaluate our
approach for ResNet-18/50 and compare it with state-of-the-
art model compression methods.

Hyperparameter. All the experiments are conducted us-
ing SGD optimizer with batch size and momentum as 128,
0.9. The weight decay is set to 0.0001 for CIFAR-10 and
0.00002 for ImageNet, respectively. The learning rates in the
optimization and fine-tuning process are set as 0.1 and 0.01,
respectively, and they gradually decrease following the cosine
scheduler. We follow [6], [21], [45] to fine-tune the models on
the CIFAR-10 datasets with 300 epochs and on the ImageNet
datasets with 200 epochs. The entire training procedure is
performed on NVIDIA-V100 GPUs with PyTorch 1.12.

Results on CIFAR-10 Dataset. Table I shows the eval-
uation results on CIFAR-10. For each baseline model, we
compare CEPD with several types of compression methods,
including decomposition-only (L: PSTRN [3], TRP [4], SVDT
[9], LREL [25], ALDS [26], CaP [46] and ENC-Inf [47] ),
pruning-only (S: DCP [48], SCOP [20], FPGM [49], HRank
[19], CHIP [21], CHEX [45], ISP [22]), first-pruning-then-
decomposition (L(S): CC [8]), and layer-wise either-pruning-
or-decomposition (S/L: Hinge [6]).

For the ResNet-20 model, our CEPD approach results in
a 0.66% accuracy increase compared to the baseline model,



TABLE I
EXPERIMENT RESULTS ON CIFAR-10. “L” DENOTES LOW-RANK DECOMPOSITION; “S” DENOTES PRUNING. IN RESNET-20, RESNET-56, AND
DENSENET-40, EXPERIMENTS ARE CONDUCTED USING TWO DIFFERENT COMPRESSION RATIOS WITH VARYING SPARSITY/RANK CONFIGURATIONS.
FEWER PARAMETERS AND FLOPS INDICATES SMALLER RANKS AND HIGHER SPARSITY ARE ASSIGNED, LEADING TO A FASTER AND MORE COMPACT

MODEL.
Compression T Decomp. Top-1 Accuracy (%) Params. FLOPs
Method Tpe Format Baseline Comp. A L (%) 1 (%)
ResNet-20
PSTRN L Tensor 91.25 90.80 -0.45 55.6 N/A
TRP L Matrix 91.74 90.50 -1.24 N/A 539
SVDT L Matrix 90.93 90.97 +0.04 N/A 54.5
LREL L Matrix 91.60 90.20 -1.40 N/A 66.7
ALDS L Matrix 91.39 90.92 -0.47 74.9 67.9
Hinge S/L Matrix 92.54 91.84 -0.70 55.5 54.5
SCOP S N/A 92.22 90.75 -1.47 56.3 55.7
FPGM S N/A 92.20 90.44 -1.76 51.0 54.0
CEPD (Ours) L+S Tensor 91.25 91.91 +0.66 56.6 56.2
CEPD (Ours) L+S Tensor 91.25 91.02 -0.23 76.4 68.1
ResNet-56
TRP L Matrix 93.14 92.77 -0.37 N/A 56.7
CaP L Matrix 93.51 93.22 -0.29 N/A 49.8
ENC-Inf L Matrix 93.10 93.00 -0.10 N/A 50.0
HRank S N/A 93.26 93.52 +0.26 16.8 29.3
HRank S N/A 93.26 93.17 -0.09 424 50.0
CcC L(S) Matrix 93.33 93.87 +0.54 36.5 424
CcC L(S) Matrix 93.33 93.64 +0.31 48.2 52.0
CEPD (Ours) L+S Tensor 93.27 93.99 +0.72 41.5 43.0
CEPD (Ours) L+S Tensor 93.27 93.70 +0.43 63.6 53.1
DenseNet-40
HRank S N/A 94.81 94.24 -0.57 36.5 40.8
HRank S N/A 94.81 93.68 -1.13 53.8 61.0
Hinge S/L Matrix 94.74 94.67 -0.07 27.5 444
CcC L(S) Matrix 94.81 94.67 -0.14 51.9 47.0
CcC L(S) Matrix 94.81 94.40 -0.41 64.4 60.4
CEPD (Ours) L+S Tensor 94.81 94.79 -0.02 52.6 50.3
CEPD (Ours) L+S Tensor 94.81 94.55 -0.26 65.3 62.1
MobilenetV2
Uniform S N/A 94.47 94.17 -0.30 23.6 26.4
DCP S N/A 94.47 94.69 +0.22 23.6 26.4
SCop S N/A 94.48 94.24 -0.24 36.1 40.3
ISP S N/A 94.53 94.85 +0.32 N/A 44.0
CEPD (Ours) L+S Tensor 94.48 94.93 +0.45 48.6 44.2

with model size and FLOPs reductions of 56.6% and 56.2%,
respectively. When employing aggressive compression, which
leads to 76.4% and 68.1% reductions in model size and
FLOPs, our solution still maintains high performance and
surpasses ALDS in terms of accuracy, given similar model
sizes and computational costs.

With respect to the DenseNet-40 model, our CEPD ap-
proach yields a 0.72% accuracy increase over the baseline
model, accompanied by 41.5% and 43.0% reductions in model
size and FLOPs, respectively. Upon implementing aggressive
compression, resulting in 63.6% and 53.1% reductions in
model size and FLOPs, our solution continues to demonstrate
high performance and achieves a 0.43% higher accuracy
than the baseline model, given comparable model sizes and
computational costs.

In the case of another DenseNet-40 model, our CEPD
approach incurs a negligible 0.02% decrease in accuracy
compared to the baseline model, while still reducing model
size and FLOPs by 52.6% and 50.3%, respectively.

For the MobileNetV2 model, our CEPD approach achieves
a 0.45% accuracy increase compared to the baseline model,
along with 48.6% and 44.2% reductions in model size and
FLOPs, respectively.

A review of the presented data reveals that the CEPD
approach consistently outperforms both structured pruning and
low-rank decomposition methods.

Results on ImageNet Dataset. Table II summarizes the
compression performance of our approach and other existing
works for ResNet-18/50 on the ImageNet dataset. In addition
to the previously mentioned works, we compare our CEPD
with three other L works, MetaP [50], FR [51], and STABLE
[33], and some S works, ABCPruner [52], Autopruner [53],
WB [54], ResRep [55], FBS [56], ISP [22]. It is seen that
our CEPD solution can bring 0.10% and 1.39% accuracy
increase for ResNet-18 and ResNet-50 over baseline models
with 59.4% and 54.6% fewer parameters, respectively. When
targeting for generating a more compact model of ResNet-50,
our approach can still achieve high performance — it only has a



TABLE 11
EXPERIMENT RESULTS ON IMAGENET. “L” DENOTES LOW-RANK DECOMPOSITION; “S” DENOTES PRUNING.

Compression T Decomp. Top-1 Accuracy (%) Top-5 Accuracy (%) Params.  FLOPs

Method pe Format Base. Comp. A Base. Comp. A 1(%) 1(%)

ResNet-18
TRP L Matrix 69.10 65.46 -3.64 88.94 86.48 -2.46 N/A 44.8
ALDS L Matrix 69.62 69.70 +0.08 89.08 89.26 +0.18 66.7 435
FR L Tensor 69.76 69.04 -0.72 N/A N/A N/A 57.9 50.5
SCOP S N/A 69.76 68.62 -1.14 89.08 88.45 -0.63 43.5 45.0
CEPD (Ours) L+S Tensor 69.76 69.86 +0.10 89.08 89.32 +0.24 59.4 51.3
ResNet-50
TRP L Matrix 75.90 74.06 -1.84 92.70 92.07 -0.63 N/A 444
SVDT L Matrix N/A N/A N/A 91.91 91.97 +0.06 N/A 30.6
MetaP S N/A 76.60 75.40 -1.20 N/A N/A N/A N/A 51.6
SCOP S N/A 76.15 75.95 -0.20 92.87 92.79 -0.08 42.8 453
CHIP S N/A 76.15 76.30 +0.15 92.87 93.02 +0.15 40.8 44.8
ISP N N/A 76.13 75.97 -0.16 92.86 92.74 -0.12 N/A 56.6
CHEX N N/A N/A 77.40 N/A N/A N/A N/A N/A 51.6
CcC L(S) Matrix 76.15 75.59 -0.56 92.87 92.64 -0.23 48.4 529
CEPD (Ours) L+S Tensor 76.13 77.52 +1.39 92.86 94.00 +1.24 54.6 53.9
TOTRP T T T T T T L~~~ Mawix 7590 7269~ 321 9270 0~ 9141 129 T TN/A T T 7565

STABLE L Tensor 76.15 74.68 -1.47 92.87 92.16 -0.71 60.2 62.1
ABCPruner N N/A 76.01 73.52 -2.49 92.96 91.51 -1.45 56.0 56.6
Autopruner S N/A 76.15 74.76 -1.39 92.87 92.15 -0.72 N/A 51.3
WB S N/A 76.15 75.32 -0.83 92.96 92.43 -0.53 N/A 45.6
ResRep S N/A 76.15 75.97 -0.18 92.87 92.75 -0.12 N/A 56.1
HRank S N/A 76.15 71.98 -4.17 92.87 91.01 -1.86 46.0 62.1
CHIP S N/A 76.15 75.26 -0.89 92.87 92.53 -0.34 56.7 62.8
Hinge S/L Matrix 76.15 74.70 -1.45 N/A N/A N/A N/A 53.5
CcC L(S) Matrix 76.15 74.54 -1.61 92.87 92.25 -0.62 58.6 62.7
CEPD (Ours) L+S Tensor 76.13 75.82 -0.31 92.86 92.84 -0.02 63.3 62.9

Baseline
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Fig. 5. Visualization of one layer of ResNet-20 before and after performing our proposed CEPD compression. Here the low-rank and sparse components of
the compressed layer are also visualized. It is seen that the low-rank component preserves most of the weight information, and some spatial patterns

are contained in the sparse component.

TABLE III
COMPARISON WITH EXISTING ADDITIVE COMPRESSION METHODS ON
CIFAR-10.
Method Model  Type Acc. (%) Params. |
UAF VGG L+S 91.65 77.48%
CEPD (Ours) -16 92.33 78.26%
LRSD VGGNet L+S 86.17 76.09%
CEPD (Ours) -7 86.30 76.13%

0.31% accuracy drop with 63.3% model size reduction, which
outperforms the other related works.

Comparison with Other Additive Compression Methods.
Because existing L+S works ((LRSD [44] and UAF [37])
are not evaluated in the modern DNN models on large-scale
datasets (e.g., ResNet on ImageNet), we compare them with

CEPD in a separate Table III. It is seen that CEPD achieves
better performance with the same or even higher compression
ratio.

Inference Speedup. To showcase the practical effectiveness
of our proposed approach, we assess the inference acceleration
of CEPD for compressing ResNet-50 on FPGA and ASIC
platforms, with diverse FLOPs reduction scenarios applied to
ResNet-50. As illustrated in Table IV, the compressed models,
which possess both sparsity and low-rankness, manifest re-
markable gains in practical speedup. Specifically, the baseline
inference time on the FPGA platform is 172.0 ms per image.
By contrast, the compressed models generated by our method,
which preserve 66.3%, 46.1%, and 37.1% FLOPs, respectively,
demonstrate a notable practical speedup, taking 122.0 ms,
88.21 ms, and 67.72 ms per image, respectively. In contrast
to the baseline model inference time of 38.10 ms per image



on the ASIC platform, the compressed models obtained from
our proposed method, retaining 66.3%, 46.1%, and 37.1% of
FLOPs, respectively, exhibit a substantial practical speedup.
Specifically, the compressed models require only 28.26 ms,
20.88 ms, and 15.83 ms per image, respectively, to perform
inference.

TABLE IV
INFERENCE TIME (PER IMAGE) FOR THE COMPRESSED RESNET-50 VIA
USING CEPD.
FLOPs  Top-1 FPGA ASIC
Remaining Accuracy Xilinx PYNQZ1 Eyeriss

Baseline 100%  76.13% 172.0ms (1x)  38.10ms (1x)
CEPD (Ours) 66.3% 77.84% 122.0ms (1.41x) 28.26ms (1.35x)
CEPD (Ours) 46.1% 77.52% 88.21ms (1.95x) 20.88ms (1.82x)
CEPD (Ours) 37.1% 75.82% 67.72ms (2.54x) 15.83ms (2.41x)

VI. IN-DEPTH ANALYSIS & ABLATION STUDY

Simultaneously Obtaining Low-rankness and Sparsity.
Figure 6 shows the loss curves during the model optimization
procedure. Notice that here besides overall training loss, the
individual low-rank and sparse loss component, which directly
reflects the progress of enforcing low-rankness and sparsity,
respectively, is also explicitly reported in this figure. Low-
rank part loss: This loss component is derived from Eq. 7,
calculated as low-rank part loss = 3 |[£— L+U||. It quantifies
the deviation between the low-rank representation and the
sum of the low-rank part and dual variable. A lower value
indicates that the imposed low-rank properties are effectively
captured. Sparse loss component: Similarly, this component is
also obtained from Eq. 11, calculated as sparse part loss =
2IS — S+ V|| It measures the deviation between the sparse
representation and the sum of the sparse part and dual variable.
A lower value signifies that the imposed sparsity properties
are well captured. It is seen that our proposed approach
indeed successfully and simultaneously imposes the desired
low-tensor-rankness and sparsity with hard constraints onto
the model, and thereby ensuring that the compressed model
can fully exhibit both low-rank and sparse characteristics after
the optimization. In addition to the aforementioned low-rank
loss and sparse loss, following Eq. 4 “overall loss” includes the
cross-entropy loss (classification loss). Due to the additional
cross-entropy loss term f (L, S), the overall loss is larger than
the low-rank/sparse part of loss.

Effect of Optimization Procedure. We also study the ben-
efits of using our proposed optimization procedure described
in Algorithm 1 to solve problem 2. Here we compare our
approach with a direct method that performs TT decomposi-
tion and pruning on the uncompressed model straightforwardly
with the same TT-ranks and sparsity settings. In addition, the
same fine-tuning process that CEPD adopts is also applied in
this direct method. We measure the Top-1 accuracy with 6
different compression ratios. Figure 7 shows the comparison
results with respect to different compression ratios. It is seen
that our proposed optimization procedure brings a significant
accuracy increase.
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Fig. 6. Loss curves of a ResNet-20 trained on CIFAR-10 dataset using our
CEPD algorithm. Here the curves of the individual low-rank and sparse loss
components are also illustrated. It is seen that the low-rankness and sparsity
are indeed imposed on the model via using CEPD.
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Fig. 7. The effect of an optimization procedure for jointly TT decomposing
and pruning ResNet-20 on CIFAR10. Here CEPD and the direct method use
the same TT-rank setting and sparsity ratio. However, the direct method does
not perform optimization on the original model. Instead, it first performs TT
decomposition and then prunes the difference between the original model and
the low-rank component to obtain the sparse component. The two components
generated by this direct method will then be fine-tuned in the same way that
CEPD uses. It is seen that our proposed optimization procedure in CEPD
brings significant accuracy increase.

Visualization. Figure 5 visualizes the weight tensor of one
convolutional layer in a pre-trained ResNet-20 model before
and after performing our proposed compression approach.
Here the visualization of the low-rank and sparse components
of the compressed layer is also illustrated in this figure. It is
seen that most of the weight information is preserved in the
low-rank component, and meanwhile, the sparse component
contains some spatial pattern as well.

More results for analysis in Question #1. Table V, VI
show the layer-wise approximation errors incurred by three
operational sequences (L+S, S(L) and L(S)). Here the baseline
models include well-trained ResNet-20 on CIFAR-10 and
ResNet-50 on ImageNet, and the compression ratio is set
as 3.0 for all the layers. ”I” and ”b” in the Layer Name
denotes the stage and block, respectively. For instance, ”11b1”
denotes the layer in the first stage and the first block of the
ResNet-20 mode. The weight shape is (Input channel, Output
channel, Kernel size, and Kernel size). It is seen that L+S
scheme always brings the smallest approximation errors. For
example, in the ”12bl.convl” layer, L+S only incurs the 2.44
approximation error, which is less than that of L(S), 2.52 and
S(L), 2.74.

More results for analysis in Question #2. Table VII shows



TABLE V
APPROXIMATION ERRORS FOR DIFFERENT LAYERS OF RESNET-20 WITH
DIFFERENT OPERATIONAL SEQUENCES. THE COMPRESSION RATIO IS SET
AS 3.0 FOR ALL THE LAYERS.

Layer Name | Weight Shape éf grom;n(z]idt;on E{r(cgr)s
11bl.convl (16, 16, 3, 3) 1.95 | 2.17 1.96
11bl.conv2 (16, 16, 3, 3) 1.83 | 2.04 1.84
11b2.convl (16, 16, 3, 3) 1.78 | 2.02 1.83
11b2.conv2 (16, 16, 3, 3) 1.67 | 1.89 1.69
11b3.convl (16, 16, 3,3) | 2.25 | 2.58 2.35
11b3.conv2 (16, 16, 3, 3) 1.81 1.85 1.81
12bl.convl (16, 32,3,3) | 244 | 2.74 2.52
12bl.conv2 (32,32,3,3) | 3.04 | 3.34 3.04
12b2.convl (32,32,3,3) | 299 | 3.39 3.04
12b2.conv2 (32,32,3,3) | 270 | 295 2.71
12b3.convl (32,32,3,3) | 296 | 3.35 2.99
12b3.conv2 (32,32,3,3) | 249 | 2.78 2.50
13bl.convl (32,64,3,3) | 374 | 4.21 3.78
13bl.conv2 (64, 64,3,3) | 492 | 5.26 4.92
13b2.conv1 (64,64,3,3) | 517 | 5.63 5.23
13b2.conv2 (64, 64,3,3) | 427 | 4.76 4.27
13b3.convl (64, 64,3,3) | 479 | 521 4.80
13b3.conv2 (64,64,3,3) | 048 | 1.97 1.00

the difference (in terms of mean square error (MSE)) between
the output feature maps of the original layer and the com-
pressed one in ResNet-20 on the CIFAR-10 dataset. Here SVD
and tensor train (TT) are adopted for matrix decomposition
and tensor decomposition, respectively. Upon compressing the
”12bl.conv2” layer utilizing SVD and TT techniques with a
compression ratio of 1.91 and 2.03, respectively, the resulting
approximation errors are measured at 1540 and 10.13. It
shows that with the same or even higher compression ratio,
high-order tensor decomposition always brings a smaller ap-
proximation error than matrix decomposition.

Table VIII shows the difference between the output feature
maps of one original layer and the compressed version in
ResNet-20 on the CIFAR-10 dataset and the difference in
the final accuracy. Here SVD, Tucker, and TT are adopted
for low-rank decompositions. Upon applying compression to
the ”13bl.conv2” layer using SVD, Tucker, and TT methods
with a compression ratio of 1.98, 1.97, and 2.01, respectively,
the corresponding approximation errors are evaluated as 5.60,
4.80, and 4.16. Additionally, the resultant accuracy decreases
are determined as 3.0, 2.1, and 0.8, respectively. It is seen
that high-order tensor decomposition always brings smaller
approximation errors than the matrix decomposition and TT
always has the least impact on the final accuracy.

Compression Ratio-vs-Model Accuracy. Table IX and X
show the performance of compressed ResNet-20 on CIFAR-
10 with different compression ratios. Here two different cases,
keeping the same sparsity with changing rank values and
keeping the same ranks with changing sparsity, are evaluated
and reported.

Changing Low-rankness and Sparsity with the Same
Compression Ratio. Table XI shows the performance of com-
pressing ResNet-20 on CIFAR-10 with different configurations
of low-rankness and sparsity under the same overall compres-
sion ratio. Notice there is a fluctuation in top-1 accuracy
with increasing sparsity. This observation hints at a potential
sweet spot in the trade-off between the “low-rank part” and the

TABLE VI
APPROXIMATION ERRORS FOR DIFFERENT LAYERS OF RESNET-50 WITH
DIFFERENT OPERATIONAL SEQUENCES. THE COMPRESSION RATIO IS SET
AS 3.0 FOR ALL THE LAYERS.

Approximation Errors

Layer Name Weight Shape S S O]
11bl.convl (64, 64,1, 1) 2.62 2.74 2.65
11b1.conv2 (64, 64, 3, 3) 2.10 4.02 2.12
11bl.conv3 (256, 64, 1, 1) 1.87 3.20 1.99
11b2.convl (64, 256, 1, 1) 2.00 278 2.03
11b2.conv2 (64, 64, 3, 3) 3.03 3.91 3.04
11b2.conv3 (256, 64, 1, 1) 243 2.84 2.44
11b3.convl (64, 256, 1, 1) 1.97 2.66 2.06
11b3.conv2 (64, 64, 3, 3) 3.62 4.57 3.77
11b3.conv3 (256, 64, 1, 1) 231 2.65 231

12bl.convl (128,256, 1, 1) 337 4.53 3.58
12b1.conv2 (128, 128, 3, 3) 532 6.43 5.49
12bl.conv3 (512,128, 1, 1) 4.01 4.53 4.07
12b2.convl (128,512, 1, 1) 1.35 3.50 1.74
12b2.conv2 (128, 128, 3, 3) 2.34 5.69 2.55
12b2.conv3 (512,128, 1, 1) 2.22 3.65 224
12b3.convl (128,512, 1, 1) 3.17 4.51 335
12b3.conv2 (128, 128, 3, 3) 4.63 6.25 4.85
12b3.conv3 (512,128, 1, 1) 3.99 4.70 4.00
12b4.convl (128,512, 1, 1) 353 4.50 3.77
12b4.conv2 (128, 128, 3,
12b4.conv3 (512,128, 1
13bl.convl (256, 512, 1
13bl.conv2 (256, 256, 3

3) 5.44 6.49 5.54
1)) 3.82 4.23 3.79
) 6.38 8.20 6.83
,3) 7.66 9.51 7.93

13bl.conv3 (1024, 256, 1, 1) 7.07 8.03 7.09
13b2.convl (256, 1024, 1, 1) 3.98 5.56 435
13b2.conv2 (256, 256, 3, 3) 6.23 8.60 6.58
13b2.conv3 (1024, 256, 1, 1) 6.23 7.82 6.38
13b3.conv1 (256, 1024, 1, 1) 4.17 6.11 4.66
13b3.conv2 (256, 256, 3, 3) 6.59 8.70 6.95
13b3.conv3 (1024, 256, 1, 1) 571 6.96 5.88
13b4.conv1 (256, 1024, 1, 1) 529 6.80 5.63
13b4.conv2 (256, 256, 3, 3) 7.13 8.79 7.34
13b4.conv3 (1024, 256, 1, 1) 574 6.66 5.80
13b5.conv1 (256, 1024, 1, 1) 5.83 7.16 6.14
13b5.conv2 (256, 256, 3, 3) 7.14 8.99 7.37
13b5.conv3 (1024, 256, 1, 1) 5.69 6.87 5.76
13b6.conv1 (256, 1024, 1, 1) 6.65 7.81 6.89
13b6.conv2 (256, 256, 3, 3) 723 9.18 7.57
13b6.conv3 (1024, 256, 1, 1) 6.07 7.01 6.20
14bl.conv] (512, 1024, 1, 1) | 10.99 | 13.57 | 11.68
14bl.conv2 (512, 512, 3, 3) 11.37 | 1441 12.19
14bl.conv3 (2048, 512, 1, 1) 10.11 11.27 10.60
14b2.conv1 (512, 2048, 1, 1) 9.65 11.21 10.15
14b2.conv2 (512, 512, 3, 3) 12.10 | 1446 | 12.67
14b2.conv3 (2048, 512, 1, 1) 9.71 11.20 | 10.23
14b3.conv1 (512,2048, 1, 1) | 12,51 14.14 | 12.86
14b3.conv2 (512, 512, 3, 3) 10.30 | 12.44 | 10.83
14b3.conv3 (2048, 512, 1, 1) 8.81 9.93 9.21

TABLE VII
APPROXIMATION ERRORS FOR THE FEATURE MAPS OF DIFFERENT LAYERS
OF RESNET-20 ON CIFAR-10 DATASET WITH MATRIX DECOMPOSITION
(SVD) AND TENSOR DECOMPOSITION (TT).

. Compression Ratio | Approximation Error (MSE)

Layer Name | Weight Shape SVD T SVD T

I1bl.convl (16, 16, 3, 3) 1.59 1.59 14.16 11.96
11bl.conv2 (16, 16, 3, 3) 1.59 1.59 8.37 7.91

11b2.convl (16, 16, 3, 3) 1.79 1.85 25.35 13.79
11b2.conv2 (16, 16, 3, 3) 1.79 1.85 8.49 5.72
11b3.convl (16, 16, 3, 3) 1.79 1.85 27.20 26.61
11b3.conv2 (16, 16, 3, 3) 1.79 1.85 8.22 6.57
12bl.convl (16, 32,3,3) | 2.00 2.11 15.40 10.13
12bl.conv2 (32, 32, 3, 3) 1.91 2.03 8.81 5.17
12b2.conv1 (32, 32, 3, 3) 1.91 2.03 15.12 12.72
12b2.conv2 (32, 32, 3, 3) 1.91 2.03 4.13 2.99
12b3.conv1 (32, 32,3,3) 1.91 2.03 14.88 11.97
12b3.conv2 (32, 32, 3, 3) 1.91 2.03 3.23 2.18
13bl.convl (32,64,3,3) | 2.01 2.01 10.52 2.95
13bl.conv2 (64, 64, 3, 3) 1.98 2.01 5.14 3.85
13b2.conv1 (64, 64, 3, 3) 1.98 2.01 12.42 8.52
13b2.conv2 (64, 64, 3, 3) 1.98 2.01 2.70 2.04
13b3.conv1 (64, 64, 3, 3) 1.98 2.01 12.46 6.72
13b3.conv2 (64, 64, 3, 3) 1.98 2.01 0.21 0.16

“sparse part” where the rank and sparsity are determined by its
natural inherent structure. Specifically, first, the inherent rank
of the weight matrix itself is a primary factor. If the weights
naturally clusters into smaller dimensions, the rank will be
lower. Second, outliers in weights can significantly affect the
estimated rank and sparsity. The method considering both low-
rank and sparsity is designed to handle outliers by isolating
them into the sparse component, and the effectiveness of this



TABLE VIII
FEATURE MAP APPROXIMATION ERROR OF LAYER3.0.CONV2 IN
RESNET-20 AND THE CORRESPONDING ACCURACY DROP WITH SVD,
TUCKER, AND TT IN DIFFERENT COMPRESSION RATIO SETTINGS.

SVD Tucker TT
Compr. | Approx. Acc. Compr. | Approx. Acc. Compr. | Approx. Acc.
Ratio Error A (%) Ratio Error A (%) Ratio Error A (%)
1.47x 429 -1.06 1.48x 372 -0.43 1.5Tx 3.16 -0.31
1.98x 5.60 -3.0 1.97x 4.80 2.1 2.01x 4.16 -0.8
2.50% 6.57 -5.27 2.50x 5.41 -3.46 2.50% 5.13 -1.86
3.03x 7.35 -7.62 3.09x 6.02 -3.76 3.09x 6.06 -3.18
3.38x 7.71 -9.66 3.46x 6.42 -4.54 3.57x 6.40 -4.03
4.11x 831 -11.32 | 4.18x 6.81 -6.04 4.20x 6.94 -5.41
TABLE IX

EXPERIMENTAL RESULTS ON CIFAR-10 DATASET WITH CHANGING RANK
VALUES. HERE “RANK RATIO” REPRESENTS THE “INDIVIDUAL”
COMPRESSION RATIO SOLELY BROUGHT BY LOW-RANK DECOMPOSITION.

Top-1 Accuracy (%) Params.  Rank Sparsit
Baseline  Compressed A 1 (%) Ratio P Y
ResNet-20
91.25 92.19 +0.94 31.3 2.0x 80%
91.25 92.06 +0.81 374 2.3% 80%
91.25 92.02 +0.77 441 2.7x 80%
91.25 91.97 +0.72 51.3 3.4x 80%
91.25 91.83 +0.58 56.2 4.1x 80%
91.25 91.69 +0.44 62.0 5.4x% 80%
91.25 91.56 +0.31 67.5 7.6x 80%

separation can influence the resulting rank. Exploring how to
determine this “sweet spot” might be a promising research
direction. Fig. 8 summaries the relationship between accuracy
and varying compression ranks and sparsity levels in Table IX,
X, and XI. The trend demonstrates that reduced sparsity and
increased ranks contribute to higher accuracy in most cases.
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Fig. 8. The relationship between model accuracy and different sparsity/rank
configurations shown in Table IX, X, and XI. A box displaying more red
or blue denotes higher or lower accuracy, respectively. The trend illustrates
that, in most cases, decreasing sparsity and increasing ranks lead to higher
accuracy.

Compression Cost. We also exhibit the training cost of
ResNet-50 on the ImageNet dataset in Table XII. Given
that our method requires a training stage for decomposition
and pruning before fine-tuning, in line with regularization-
based works [57], additional computational cost is required
than one-shot pruning work [10]. Suppose the FLOPs of
the forward propagation is fr, the FLOPs of the backward
propagation would be 2fp. According to Eq. 5 and Eq.
6, our optimization method incurs about three more addi-
tion/subtraction operations on the overall parameters than the

TABLE X
EXPERIMENTAL RESULTS ON CIFAR-10 DATASET WITH CHANGING
SPARSITY. HERE “RANK RATIO” REPRESENTS THE “INDIVIDUAL”
COMPRESSION RATIO SOLELY BROUGHT BY LOW-RANK DECOMPOSITION.

Top-1 Accuracy (%) Params.  Rank Sparsit
Baseline ~ Compressed A 1 (%) Ratio P ¥
ResNet-20
91.25 92.11 +0.86 36.3 34x 65%
91.25 92.05 +0.80 41.4 3.4x 70%
91.25 92.00 +0.75 46.3 34x 75%
91.25 91.97 +0.72 51.3 3.4x 80%
91.25 91.92 +0.67 56.2 34x 85%
91.25 91.74 +0.49 61.3 3.4x 90%
91.25 91.56 +0.31 66.0 3.4x 95%
TABLE XI

EXPERIMENTAL RESULTS ON CIFAR-10 DATASET WITH THE SAME
OVERALL COMPRESSION RATIO. HERE “RANK RATIO” REPRESENTS THE
“INDIVIDUAL” COMPRESSION RATIO SOLELY BROUGHT BY LOW-RANK

DECOMPOSITION.

Top-1 Accuracy (%) Params. Rank .
Baseline ~ Compressed A 1 (%) Ratio Sparsity
ResNet-20
91.25 91.61 +0.36 55.9 10.3x 65%
91.25 91.66 +0.41 55.9 6.8x 70%
91.25 91.79 +0.54 56.0 5.1x 75%
91.25 91.83 +0.58 56.2 4.1x 80%
91.25 91.90 +0.65 55.9 34x 85%
91.25 91.91 +0.66 56.6 2.9x% 90%
91.25 91.78 +0.53 55.6 2.5% 95%

standard SGD. Therefore, the pruning FLOPs are calculated
as (3fr +3P) x Epochs x T where P is the total number of
parameters, and 7' is the number of total training samples in
one epoch. Notice that the FLOPs of calculating the multipliers
in Eq. 13 and projection functions in Eq. 8 and Eq. 12 are
ignored here since they only occur once per epoch in our
implementation, while £ and S are calculated per iteration.
Considering the number of iterations in one epoch is typically
large, the FLOPs contribution to calculating the multipliers and
projection functions is negligible. For the fine-tuning phase
FLOPs, we calculate it as 3fr x F'R, where F'R denotes
the FLOPs remaining percentage. Total cost is calculated by
integrating the pruning phase FLOPs and fine-tuning phase
FLOPs. From Table XII, our method can perform a similar
training cost on the compression stage to the regularization-
based method [57] with a higher top-1 accuracy.

On the other hand, although our method outperforms the
regularization-based approach, it falls short in speed when
compared to one-shot pruning, whose pruning phase cost is
nearly negligible. Our strength lies in performance rather than
compression cost. Balancing both compression speed and final
performance presents a promising direction for future research.

TABLE XII
TRAINING TIME FOR COMPRESSING RESNET-50 OF OUR PROPOSED
METHOD. * DENOTES THE REPRODUCTION RESULT. 7" IS THE NUMBER OF
TOTAL TRAINING SAMPLES IN ONE EPOCH.

FLOPs Top-1 Pruning Phase Fine-tuning Phase Total Total
Remaining Accuracy  Cost (B) Cost (B) Cost (B) Cost Saving
Baseline* [57] 514%  75.67% 12.3x120T 6.27x200T 2730T 1x
CEPD (Ours) 46.1% 77.52% 12.4x120T 5.66x200T 2620T 1.04x
CEPD (Ours) 37.1% 76.13% 12.4x120T 4.55%x200T 2398T 1.14x




VII. CONCLUSION

In this paper, we propose to systematically co-explore the
tensor-based low-rankness and structured sparsity for efficient
model compression. By performing a comprehensive analy-
sis of critical design factors, we propose CEPD, a unified
compression framework that can capture model low-rankness
and sparsity simultaneously and efficiently. Evaluation results
show that our proposed approach can bring significant model
size and computational cost reductions while still preserving
high model accuracy.
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