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Collective flow of fermionic impurities 
immersed in a Bose–Einstein condensate
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Interacting mixtures of bosons and fermions are ubiquitous in nature. 
They form the backbone of the standard model of physics, provide a 
framework for understanding quantum materials and are of technological 
importance in helium dilution refrigerators. However, the description of 
their coupled thermodynamics and collective behaviour is challenging. 
Bose–Fermi mixtures of ultracold atoms provide a platform to investigate 
their properties in a highly controllable environment, where the species 
concentration and interaction strength can be tuned at will. Here we 
characterize the collective oscillations of spin-polarized fermionic 
impurities immersed in a Bose–Einstein condensate as a function of the 
interaction strength and temperature. For strong interactions, the Fermi gas 
perfectly mimics the superfluid hydrodynamic modes of the condensate, 
from low-energy quadrupole modes to high-order Faraday excitations. With 
an increasing number of bosonic thermal excitations, the dynamics of the 
impurities cross over from the collisionless to the hydrodynamic regime, 
reminiscent of the emergence of hydrodynamics in two-dimensional 
electron fluids.

The paradigmatic example of fermions coupled to a bosonic bath is the 
motion of itinerant electrons through an ionic crystal. The coupling to 
the ionic lattice vibrations endows the electrons with a shifted energy 
and mass, as they become dressed into polarons1,2, the first instance of 
the quasiparticle concept. We also encounter Bose–Fermi mixtures as 
dilute solutions of fermionic 3He in bosonic superfluid 4He (ref. 3), in 
quark–meson models in high-energy physics4 and in two-dimensional 
electronic materials, where interactions between excitons and elec-
trons can be controlled5–7. Ultracold atomic gases provide arguably 
the purest realizations of Bose–Fermi mixtures, featuring precisely 
understood, tunable short-range interactions and a high degree of 
experimental control8–21, offering a direct comparison with theoreti-
cal models22–26. In recent years, atomic Bose–Fermi mixtures enabled 
the study of dual superfluids27–31, the onset of phase separation and 

mean-field collapse12,13,19,32,33, and the observation of strong-coupling 
Bose polarons34,35.

The general dynamics of fermions interacting with a partially 
condensed Bose gas at finite temperature are challenging to describe, 
as interactions between fermions and bosons come in two flavours. On 
the one hand, fermions can incoherently scatter with thermal bosons, 
leading to momentum-changing collisions. On the other hand, fermi-
ons also experience momentum-preserving interactions, in particular 
with the Bose–Einstein condensate (BEC), in the form of an effective 
potential22,36–39. The interplay between the two types of interaction 
dictates the dynamics of the whole system40–50. Most challenging is the 
regime for strong interactions where the non-superfluid system crosses 
over from collisionless to the collisionally hydrodynamic regime. Such 
a regime is observed in electron–phonon mixtures in the context of 
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of the mixture at varying interspecies interaction strengths. Modulat-
ing the radial trapping potential depth at frequency ω for ten cycles, 
we measure the in situ width of the clouds (Fig. 1a) The number of  
cycles N allows for spectral resolution ~ω/N, while the probe time is 
kept short compared with the mixture’s lifetime, limited by three-body 
loss. When the modulation excites a resonant mode of either species, 
the cloud’s width expands radially. Figure 1b,c depicts the bosonic  
and fermionic spectrograms for a decoupled mixture at aBF = 0. Two 

resonances are observed in the BEC at √2ωB
⟂ and 2ωB

⟂, while only one 

fermionic resonance is excited at 2ωF
y . Here, ωB

⟂ = (ωB
xω

B
y )

1/2
 is the 

bosons’ geometric mean radial trapping frequency, and ωF
y  is the 

fermions’ trap frequency along the transverse y direction, with the two 
frequencies related by ωF

y = 1.16ωB
⟂  (Supplementary Information). 

The BEC obeys superfluid hydrodynamics, which couples the two  
collisionless radial modes, giving rise to a quadrupole (out-of-phase) 
and a breathing (in-phase) resonance at √2ωB

⟂ and 2ωB
⟂, respectively66,67. 

Across all frequencies, the bosonic spectral response is well captured 
using a hydrodynamic scaling ansatz68 (Supplementary Information 
and Fig. 1c, red shaded area):

b̈i + ωB
i
(t)2bi −

ωB
i
(0)2

bi∏ jb j

= 0, (1)

where i ∈ (x, y, x) and bi is the dimensionless scaling parameter of the 
BEC’s Thomas–Fermi radius in the ith direction. The spin-polarized 
fermions are a collisionless gas69, which in a purely harmonic trap has 
its lowest parametric resonance for motion along the y axis at 2ωF

y. The 
energy and spectral width of the fermions’ spectral response is obtained 
using a fit to a phenomenological function (Fig. 1c and Supplementary 
Information). The broad fan below 2ωF

y visible in the fermionic response 
(Fig. 1b) arises from strong driving in an anharmonic trap (Supplemen-
tary Information).

Figure 2 shows a selection of the bosons’ and fermions’ spectral 
response for various interspecies coupling strengths. The resonances 
of the BEC are always well described by the hydrodynamic scaling 

high-temperature superconductivity51,52. With such strong interactions 
and with bosons partially condensed, the question arises whether the 
system indeed remains superfluid, with fermions flowing without dissi-
pation through the condensate. Also, it is unclear how thermal bosonic 
excitations alter the transport properties of fermions. In this Article, 
we thoroughly address these questions, observing collective flow of 
fermionic impurities mimicking closely the superfluid hydrodynamic 
modes of the condensate. Despite strong interspecies interactions the 
flow can be modelled as collisionless and driven by the condensate’s 
mean field. With increasing temperature, we observe a crossover to 
collision-dominated hydrodynamic flow.

Collective excitations are exquisitely sensitive probes of interpar-
ticle scattering and interactions. They have been used to demonstrate 
the superfluid hydrodynamic flow of BECs53–55 and collisional hydro-
dynamics in interacting Fermi gases56–62. Collective oscillations have 
also been measured in coupled Bose–Fermi superfluids27,28,30,31 and in 
Bose–Fermi mixtures20,21,33,63,64, revealing phenomena such as collisional 
hydrodynamics in thermal mixtures63, collisionless uncoupled dipole 
oscillations in degenerate mixtures63, and sound propagation21. Here we 
study a novel regime—the limit of a dilute gas of spin-polarized fermions 
immersed in a BEC—as relevant for the physics of Bose polarons34,35 and 
unconventional superconductors with low carrier densities65.

We probe collective excitations of 40K fermions and a 23Na BEC as 
a function of drive frequency and across a range of Bose–Fermi interac-
tions, revealing the energy and spectral width of low-lying excitations. 
The experiment starts with an ultracold near-degenerate gas of fermi-
onic ‘impurity’ atoms immersed in the BEC, both held in a 1,064 nm 
crossed optical dipole trap with near-cylindrical symmetry (Fig. 1a). 
For our coldest samples, we evaporatively cool both species to 
T ≈ 30 nK, corresponding to T/Tc ≲ 0.2 and T/TF ≈ 0.6, where Tc(F) is  
the condensate’s critical temperature (the Fermi temperature). Both 
species are in their respective hyperfine ground states. We control  
the interspecies interactions by ramping the magnetic field near  
Feshbach resonances, allowing us to continuously tune the s-wave 
scattering length, aBF. The typical peak boson density is nB = 7 × 1013 cm−3, 
and the typical impurity concentration varies between nF/nB ≈ 0.003 
and 0.02 (Methods). We characterize the low-energy radial excitations 
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Fig. 1 | Collective oscillations in a Bose–Fermi mixture. a, Illustration of a 
dilute gas of fermions (blue) immersed in a Bose–Einstein condensate (red), 
both trapped in an optical potential. In situ absorption images of the fermionic 
40K and bosonic 23Na are shown beneath. Radial collective oscillations are 
induced by periodically modulating the depth of the optical potential. b, The 
doubly integrated line densities along the transverse (y) direction of the boson 
(left) and fermion (right) clouds as a function of modulation frequency ω, at 

zero interspecies interaction (aBF = 0). c, Spectra of the uncoupled Bose–Fermi 
system, showing the boson (left, red circles) and fermion (right, blue circles) 
relative widths, reveal the superfluid hydrodynamic response of the BEC and the 
response of the non-interacting, near-degenerate gas of spin-polarized fermions. 
The solid black lines show predictions from the hydrodynamic scaling ansatz in 
equation (1) and a phenomenological Gaussian fit, respectively. All error bars 
show the standard error of the mean.
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ansatz from equation (1). The BEC spectrogram is unaffected by inter
actions with the much more dilute gas of fermionic impurities. By 
contrast, the response of the fermions shows a strong dependence on 
the interspecies coupling strength. At weak couplings, the collisionless 
mode of the fermions shifts linearly with aBF. With increasing inter
actions strengths, the fermionic response changes drastically, revealing 
two additional modes in the their spectral response that coincide  
with the BEC’s hydrodynamic superfluid modes at 2ωB

⟂ and √2ωB
⟂. All 

three modes are spectrally well resolved and show no broadening 
beyond the Fourier limit, in contrast to the broadened profiles that 
would arise from momentum-relaxing collisions (Supplementary 
Information). This is remarkable, given that the mean-free path  
for collisions changes from infinity at zero interaction strength to 
lmfp = (4πa2

BFnB)
−1 ≈ 0.6μm at the strongest measured interactions, 

much shorter than the radial system size L ≈ 10 μm. A thermal mixture 
would thus cross over from collisionless to collisionally hydrodynamic 
behaviour through an intermediate regime of strong damping.  
Here, instead, the fermions remain collisionless with the condensed 
bosons and, for the strongest interactions, even ‘copy’ the BEC’s super-
fluid collective modes, not unlike dye particles in water.

The fermion collective modes are summarized in Fig. 3. For scat-
tering lengths beyond ∣aBF∣ > 350a0 (with a0 being the Bohr radius), the 
fermions exclusively respond at the BEC’s hydrodynamic superfluid 
modes and show no signal of their own collisionless mode. For weaker 
interactions, we observe a mean-field-like shift of the fermion fre-
quency proportional to the sign of the interaction, which for repulsive 
interactions merges with the BEC’s breathing mode at 2ωB

⟂ and becomes 

spectrally indistinguishable. We note that at repulsive interactions 
above 170a0 we observe a dispersive—rather than absorptive—feature 
in the fermionic response at the BEC quadrupole mode (Fig. 2 and 
extended dataset Supplementary Information). This Fano-type behav-
iour can be understood from coherent coupling of the fermionic  
and bosonic mode70. At interactions stronger than measured here, 
~900a0, phase separation is predicted to occur22 (Supplementary 
Information).

To understand the dynamics across all interaction strengths, we 
compare various numerical models to the data. The linear dependence 
of the fermionic collisionless mode at weak interaction strengths 
qualitatively agrees with a mean-field description, considering  
the effective potential experienced by the fermions immersed in the  
Bose gas. The BEC in the Thomas–Fermi approximation takes on the 
shape of the inverted optical potential. The fermions thus experience a  
joint effective potential comprising the optical trap and the mean-field  
potential of the BEC, where attractive (repulsive) interspecies interac-
tions provide a steeper (shallower) potential that shifts the trapping  

frequencies according to ω̃2 = ωF
y

2 (1 − gBFαB

gBBαF
)  (Supplementary Infor

mation). Here, gBF = 2πℏ2aBF/mred is the Bose–Fermi coupling strength,  
mred = mFmB/(mF + mB) is the reduced mass, gBB = 4πℏ2aBB/mB is the  
Bose–Bose coupling and αB(F) is the boson (fermion) optical polarizabi
lity. Qualitatively, this mean-field model (Fig. 3, dashed red line) shares 
the trend of the measurements for small aBF, but with a different  
slope. It also fails to predict the appearance of additional modes in the 
fermionic spectral response. To capture the resonances that fermions 
inherit from the BEC’s superfluid hydrodynamic modes, the mean-field 
potential itself must properly incorporate the bosons’ response given 
by the scaling ansatz equation (1).

We therefore turn to the full dynamics of the fermions as described 
by the Boltzmann–Vlasov equation

∂f
∂t

+ dr
dt

∂f
∂r

+ dp
dt

∂f
∂p

= Icoll, (2)

where f is the fermion distribution at momentum p and position r, 
and Icoll is the collision integral. Anticipating the absence of collisions 
for fermions only interacting with the BEC, in the absence of thermal 
excitations, we set Icoll = 0. Then, to first order in gBF, we derive a scaling 
ansatz for the fermions’ width, assuming a harmonic trap and fermionic 
impurities that are deeply immersed in the BEC43,68,71:
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Fig. 2 | Evolution of Bose–Fermi collective modes across varying interaction 
strength. Illustrations depict the oscillations of the cloud’s transverse (x–y) 
cross-section. The boson quadrupole and breathing modes (shown in red) lie at 
√2ωB

⟂ and 2ωB
⟂, respectively, whereas the fermions’ transverse resonance in the 

collisionless regime lies at 2ωF
y (shown in blue). The spectra depict bosonic and 

fermionic cloud widths (circles) for varying modulation frequencies. As aBF 
increases towards either repulsive or attractive interactions, the fermion spectra 
evolve to mode lock to the BEC’s superfluid hydrodynamic modes. An extended 
dataset can be found in Supplementary Information.
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Fig. 3 | Fermionic mode frequencies versus interspecies interaction. The 
colour density plot displays the power spectra of cloud widths. The white 
markers denote the peak frequencies. The arrows on the right side indicate 
the three modes of Fig. 2. The dashed red line shows the naive mean-field 
prediction, and the grey lines are the scaling ansatz solution of the mean-field 
model equation (3). The black lines show the dominant modes of the collisionless 
Boltzmann–Vlasov solution accounting for finite system size and trap 
anharmonicity (Supplementary Information).
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c̈i + ωF
i,eff(t)

2
ci − (1 − gBFαB

gBBαF
) ωF

y (0)
2

c3
i

= 0

withωF
i,eff(t)

2 = (1 − gBFαB

gBBαF
)ωF

i
(t)2 − gBF

gBB

̈bi
bi

. (3)

Here, ci is the dimensionless scaling parameter of the width of the gas 
of fermionic impurities, with ci(t = 0) = 1. This ansatz (shown in grey 
lines) captures the fermionic response to the BEC’s superfluid mode 
on the attractive side (Supplementary Information), which can thus 
indeed be explained as the collisionless flow of fermions experienc-
ing the coherent interactions with the BEC. The simple ansatz fails for 
repulsive interactions above aBF > 100a0 where the mean-field potential 
is strong enough to repel fermions from the BEC. A full numerical simu-
lation of the collisionless Boltzmann–Vlasov equation (Supplementary 

Information)—including the temperature-dependent fermionic cloud 
size and the trap anharmonicity—is shown as the solid black line in 
Fig. 3, which accurately captures all of the observed modes across all 
interaction strengths, validating our neglect of the collisional term 
in equation (2).

Indeed, collisionless flow is expected for the impurities well below 
the bosons’ superfluid transition temperature, as fermions slower than 
the condensate’s speed of sound (~5 μm ms−1) can only dissipate energy 
through collisions with thermal bosons, which are essentially absent 
at low temperatures T/Tc ≈ 0.2. To measure the impact of collisions of 
fermions with thermal bosons, we now probe the mixture at increasing 
temperatures across the BEC phase transition. The physics is complex 
already for bosons alone, as the BEC becomes immersed in a cloud of 
thermal excitations, and the thermal cloud’s collective modes couple 
to those of the superfluid67. We employ the same protocol as before, 
using a drive that couples strongly to the BEC’s quadrupole mode  
(Supplementary Information). The relative temperature T/Tc is varied 
at a fixed scattering length aBF = −400a0 by reducing the number of 
bosons while fixing the same final temperature. The radial trap ellipti
city (Supplementary Information) allows us to distinguish the collision-
less mode of the bosons’ thermal component at 2ωB

y  from  
the superfluid breathing mode at 2ωB

⟂, as depicted in Fig. 4a. Figure 4b 
displays the change of the bosons’ and fermions’ spectral responses 
with temperature. At low temperatures, the bosons exhibit resonances 
at the BEC quadrupole (√2ωB

⟂) and breathing (2ωB
⟂) modes. At T > 0.5Tc, 

we observe an additional peak at 2ωB
y, corresponding to the intraspecies 

collisionless mode of the bosonic thermal component53,54. With  
increasing T/Tc, the bosonic response at the BEC superfluid modes is 
reduced while the response at the intraspecies collisionless mode 
grows, until above Tc only the collisionless mode persists.

The fermions can be viewed as a highly sensitive probe for the 
complex crossover of modes in the Bose gas. At the coldest tempera-
tures, they respond exclusively at the frequencies of the BEC’s hydro-
dynamic modes. Remarkably, starting at T/Tc ≈ 0.4, two additional 
modes appear in the fermionic response. The lower resonance at 2ωB

y  
coincides with the intraspecies collisionless mode of the bosonic ther-
mal component whereas the higher one at 2ωF

y coincides with the native 
collisionless mode of the fermions. Above Tc, the fermions respond 
only at their collisionless mode at 2ωF

y, and this regime is well captured 
by solving the full coupled Boltzmann equations for the mixture with 
non-vanishing Icoll (Supplementary Information and ref. 70). We note 
that, while the thermal components of the bosons and the spin- 
polarized fermions are both in the collisionless regime by themselves, 
strong interspecies interactions bring this mixture into local equili
brium63. We interpret the fermionic response at the bosonic 
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collisionless mode (0.3Tc ≲ T ≲ Tc) as an indication of the mixture’s 
crossover from the collisionless to the collisionally hydrodynamic 
regime. Above Tc, the mixture reverts to collisionless flow for both 
species due to the lowered density of bosons.

The quadrupole and breathing modes are low-lying collective 
excitations of the coupled system, but perhaps the most visually strik-
ing observation of synchronized flow is the appearance of high-order 
excitations—Faraday waves72—in the Bose–Fermi mixture. They arise 
from the parametric excitation of collective modes transverse to the 
direction of drive. In the context of atomic gases, Faraday waves have 
been observed in elongated BECs73–75 upon modulating weakly interact-
ing BECs along the radial direction, inducing striated density patterns 
along the longitudinal direction. Strikingly, when inducing Faraday 
waves in the BEC, we here observe the emergence of Faraday waves also 
on in the gas of fermions at aBF = 500a0(Fig. 5). For this, we modulated 
the radial optical potential for eight cycles at 2ωB

r . From the observed 
period of λFar = 28(7) μm in the density striation and the drive frequency 
we infer the condensate’s speed of sound c = 5.5(1.4) μm ms−1, which is 
consistent with the Bogoliubov speed of sound obtained from the 
measured chemical potential μ, c = √μ/mB = 4.9(2)μmms−1 . To our 
knowledge, this is the first observation of spatial patterns analogous 
to Faraday modes observed in a gas of fermions.

Our results demonstrate a novel regime of collective motion 
of fermions, tracing the superfluid hydrodynamic flow of a Bose 
condensate. As the temperature is increased, incoherent collisions 
between the thermal bosons and fermions cause a crossover into 
the collision-dominated hydrodynamic regime, in direct analogy  
to two-dimensional electron gases, where the electron mean-free  
path is tuned with the density and temperature. At temperatures lower 
than those achieved in this study, induced fermion–fermion inter
actions76,77 are predicted to arise within the Bose–Fermi mixture, a 
precursor of the long-sought p-wave superfluidity of fermions medi-
ated by bosons78–80.
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Methods
Here we provide further details of the collective oscillation measure-
ments. The optical potential is generated by two 1,064 nm beams 
intersecting at 90°, oriented in the zand y directions, respectively.  
The trap is approximately cylindrically symmetric with trap frequencies 
of ωB

x,y,z/2π = [103(3),94(2), 12.2(0.3)]Hz  and ωF
x,y,z/2π = [125(2), 114(2),  

15(1)] Hz  for bosons and fermions, which are prepared in their respective 
hyperfine ground states (|F = 1,mF = 1⟩ for 23Na and |F = 9/2,mF = −9/2⟩ 
for 40K). The fermions are moderately degenerate with T/TF ranging 
from 0.6 to 2, where TF is the Fermi temperature. The large variation 
stems from mean-field attraction and repulsion as well as different 
degrees of three-body inelastic loss that removes the minority fermions 
when ∣aBF∣ is large. The BEC is weakly interacting with a Bose–Bose scat-
tering length of aBB = 52a0, where a0 is the Bohr radius. Our lowest tem-
peratures are T/Tc ≲ 0.2 with respect to the BEC critical temperature Tc.

To create an interacting Bose–Fermi mixture, we ramp the mag-
netic field in between two interspecies Feshbach resonances, allowing 
continuous tuning of the interspecies s-wave scattering length, aBF. 
First, we ramp the magnetic field to the zero crossing of the scattering 
length at 80.3 G and wait for the field to stabilize for 5 ms. Then, the field 
is quenched to the final interaction strength within 10 μs, and oscilla-
tions are initiated. We take care to feed forward the programming of 
the magnetic field to compensate for slower drifts of eddy currents on 
the several-millisecond timescales. We check the field is stable during 
the oscillation perturbation sequence by independently measuring 
it using radiofrequency spectroscopy on the impurity atoms. During 
the oscillations, differential gravitational sag between the species is 
cancelled using a magnetic field gradient. To centre the two species, 
we empirically found the correct magnetic gradient by minimizing 
the lifetime of the K atoms at strong interactions with the Na atoms 
as a function of gradient value. At the best overlap point, the K atoms 
underwent the fastest inelastic three-body losses with Na atoms. The 
density overlap profiles may be found in the supplementary section  
on equilibrium line densities in Supplementary Information.

We study the collective modes versus interaction strength at a 
fixed T/TC ≈ 0.2 (Fig. 2) by applying a sinusoidal intensity perturba-
tion on the z-axis 1,064 nm trap beam with a modulation amplitude 
of 20% and a variable drive frequency. This method injects energy in 
the x and y motion of the clouds and primarily excites the transverse 
breathing mode. We study the collective modes versus temperature at 
a fixed interaction strength (set by the scattering length aBF = −400a0) 
by applying intensity modulations to both the z- and y-directional 
1,064 nm beams (Fig. 4). The modulation in each direction is 180° 
out of phase in order to better couple to the transverse quadrupole 
mode. The modulation depths are 15% for both beams. In both cases, 
the clouds are imaged after a duration lasting ten oscillation cycles. To 
minimize power broadening of the spectra and maximize the Fourier 
resolution, the modulation amplitude is minimized and the number of 
cycles is maximized within the experimental limits of signal-to-noise 
ratio and lifetime from inelastic collisions. Our chosen modulation 
depth is strong enough that the oscillations slightly deviate from linear 
response.

To study the evolution of collective modes versus temperature, 
we reduced the evaporation efficiency of the mixture by ramping the 
optical potential to its final value more quickly, leading to a similar 
absolute temperature but reduced boson number.

Fitting of the fermion spectrograms, that is, in Fig. 1, is performed 
with a phenomenological asymmetric function of the form

c(ω,pi) =
p1

f(ω,p2 ,p3 ,p4)
e−(ω−p2)

2/f(p2 ,p3 ,p4)
2

with f(ω,p2,p3,p4) = p3(1 + ep4(ω−p2))
−1
, (4)

with pi as free fitting parameters. This function reduces to a Gaussian 
in the limit p4 = 0, and only the peak location and width are used in data 
analysis. The asymmetry and downshifting of the non-interacting fer-
mion resonance from its expected frequency is due to strong driving 
of the fermions in an anharmonic trap.

In Figs. 1–4, the modulation frequencies are shown as normalized 
to the boson mean radial trap frequency, ωB

⟂, which is 2π × 98 Hz on 
average. However, long-term drifts of the trap depth over many experi-
mental repetitions necessitated a different normalization for  
each interaction strength in Figs. 2 and 3. The exact normalization  
value was determined by fitting a Gaussian to the boson spectrograms 
at frequencies near ωB

⟂, extracting the frequency of the largest  
response and assigning that as the normalization for the boson and 
fermion spectograms for that particular aBF. This procedure neces-
sarily forces the BEC breathing mode in Fig. 2 to fall at 2ωB

⟂, and falls  
to the same absolute frequency to within 2% error for all driving 
conditions.

Data availability
The data that support the plots within this paper and other findings of 
this study are available as source data files. All other data are available 
from the corresponding author upon reasonable request.
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