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Assessing capacitance soil
moisture sensor probes’
ability to sense nitrogen,
phosphorus, and potassium
using volumetric ion content
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and Sandra M. Guzman?

tSchool of Natural Resources and Environment - Department of Agricultural and Biological
Engineering, Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United
States, 2Department of Agricultural and Biological Engineering, Indian River Research and Education
Center, University of Florida, Fort Pierce, FL, United States

Accurate and near real-time volumetric soil water and volumetric ion content (VIC)
measurements can both inform precise irrigation scheduling and aid in fertilizer
management applications in cropping systems. To assist in the monitoring of these
measurements, capacitance-based soil moisture probes are used in agricultural
best management practice (BMP) programs. However, the ability of these sensors
to detect nutrients in the soil sourced from fertilizers is not well understood. The
objective of this study was to evaluate the sensitivity of a capacitance-based soil
moisture probe in detecting Nitrogen (N), Phosphorous (P), and Potassium (K)
movement in the soil. To achieve this, a laboratory-based setup was established
using pure sand soil cores. Raw soil moisture and VIC probe readings from the
cores were contrasted across multiple N, P, and K rates. The N treatments applied
were rates of 0, 112, 168, and 224 kg/ha; for P, were 0, 3.76, and 37.6 kg/ha, and for
Kwere 0,1.02,1.53, and 2.04 kg/ha. Each nutrient was evaluated separately using a
randomized complete block design experiment with three replications for N and K,
and 5 replications for P. The impact of each nutrient rate on the sensitivity of VIC
readings was determined by evaluating differences in three points of the time
series, including the observed maximum point, inflection point, and convergence
value as well as the time of occurrence of those points over a 24-hour period.
These points were assessed at depths 5, 15, 25, 35, 45, and 55 cm. The findings of
this study highlight the capacitance-based soil moisture probes’ responsiveness to
changes in all K rates at most depths. However, its sensitivity to changes in N and P
rates is comparatively lower. The results obtained in this study can be used to
develop fertilizer management protocols that utilize K movement as the baseline
to indirectly assess N and P, while helping to inform those who currently use the
probe which nutrients the probe may be detecting. The probes’ readings could be
incorporated into decision support systems for irrigation and nutrient
management and improve control systems for precision water and
nutrient management.

KEYWORDS

nutrient sensor, electrical conductivity, volumetric ion content, soil moisture sensor,
soil moisture probe, precision nutrient management, fertilizer management, fertigation
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1 Introduction

Agricultural, urban, and industrial water resource management
continue to play a significant role in eutrophication within
freshwater systems, driven by factors such as population growth
and intensification (Lu and Tian, 2017; Wurtsbaugh et al., 2019).
It’s been shown that the management of irrigation and fertigation
has major impacts on the nutrient leachate and runoff coming from
agricultural production (Peérez-Martin and Benedito-Castillo,
2023). One approach to optimize agricultural production and
minimize the environmental impacts involves high-quality
diagnostic soil, plant, and water testing (Mylavarapu, 2010).
However, a fraction (25%) of surveyed farmers in the USA and
Australia conduct soil tests for monitoring nutrients (Lobry De
Bruyn and Andrews, 2016). Due to these factors, the need for real-
time soil nutrient monitoring is steadily increasing within
agricultural water management. Such monitoring can contribute
to the optimization of farmers’ fertilizer application rates and assist
in implementing effective nutrient management practices (Burton
et al., 2020), thus reducing agriculture’s impacts on water quality.

To promote wider adoption of nutrient monitoring techniques,
several advancements in precision agriculture have emerged to
assess plant and soil nutrient content at the field level. Optical
sensors, satellite-based remote sensing technologies, and drone-
based approaches have been gaining ground (Hunt and Daughtry,
2018; Inoue, 2020; Sishodia et al., 2020). While these technologies
are nondestructive, they are expensive and require skills and
knowledge in data processing before the farmers can effectively
use the collected data for decision-making. Currently, the use of
remote sensing technology is mainly limited to researchers (Weber
and McCann, 2015; Bramley and Ouzman, 2019). An alternative
approach for continuous field-level data acquisition involves in-
ground sensors. Capacitance soil moisture sensors (SMS) for
instance, provide real-time readings of soil water (SM),
volumetric ion content (VIC) or electrical conductivity (EC), and
soil temperature (T). These sensors provide two outputs from
dimensionless frequencies that within conjunction with one
another, give readings of volumetric water content and VIC when
separated by proprietary data model processes. (TriSCAN ©
Agronomic User Manual Version 1.2a, 2003, Adelaide, Australia).
The VIC data derived from SMS represents the dielectric constant,
which is influenced by the presence of salts from fertilizers and
irrigation water. If nutrient salts from fertilizers significantly impact
the soil osmotic potential, the sensor can detect them (Or and
Wraith, 2002). The use of SMS for optimal irrigation scheduling has
been adopted more by farmers than any other technology-based
irrigation scheduling technique in the USA (Taghvacian et al,
2020). If this most-adopted approach could also be utilized for
nutrient management, the rate of adoption could be greatly
increased. Based on the VIC-EC measuring capabilities of SMS’s
and soil moisture probes (SMP), it’s hypothesized that a similar
approach could potentially be employed for nutrient monitoring
and management, in addition to irrigation scheduling using SMS
VIC data, if relationships between nutrient movement across the
soil profile and VIC readings are established. If this connection is

Frontiers in Agronomy

10.3389/fagro.2024.1346946

successfully established, decision support systems could utilize this
already commercially-available and adopted technology to quickly
diftuse fertigation management strategies, decreasing agriculture’s
contributions to eutrophication. It is known that decision support
systems already utilize sensor outputs for the management of
irrigation and fertigation practices to reduce environmental
impacts (Zhai et al., 2020). But first, before implementation into
systems as a nutrient-sustainable management strategy, it must be
investigated which nutrients the technology could potentially
be detecting.

It’s hypothesize that in-ground SMS could be sensitive to
nutrient movement in the soil. This hypothesis arises from three
known principles. First, the nutrients’ influence on EC (Omonode
and Vyn, 2006; Mirzakhaninafchi et al., 2017; Darmawan et al.,
2023). Second, the established correlation between soil cations/
anions and EC (Friedman, 2005), and third, the sensors’ capacity to
detect soil VIC. Notably, fertilizers containing Nitrogen (N),
Phosphorous (P), and Potassium (K) are known to increase EC
(Bhatt et al., 2019). The SMS’s VIC measurements have been found
to be directly correlated to soil EC, with variation across soil types
(Biswas et al., 2007). This correlation indicates the potential of SMS
to detect the presence of N, P, and K in the soil due to fertilizer
applications, inferred from VIC data. To the best of our knowledge,
no published studies have examined the capability of these
capacitance SMS to detect N, P, and K movements individually.
In this study, laboratory-based experiments were conducted to
assess the changes caused in the VIC time series from SMS due to
the presence of N, P, and K in a pure sand media. While the SMS’s
VIC sensing capabilities make direct nutrient detection unlikely, the
ability to indirectly indicate high nutrient content in the soil holds
value for those utilizing the sensors for management or those
creating decision support systems in precision agriculture. Given
that these SMS are readily available on the market and are being
used by farmers in the USA, they could represent a feasible and
rapid solution for implementing efficient in-field nutrient
management plans. However, there is a need for them to be
investigated to fully understand which nutrients are in fact being
detected by the sensors. By harnessing real-time data, these systems
could both maintain optimal agricultural water and nutrient
management while minimizing environmental impacts from
crop production.

2 Materials and methods

2.1 Experiment location, design,
and treatments

The three N, P, and K experiments were conducted individually
at the University of Florida’s Indian River Research and Education
Center in Fort Pierce, FL, USA (27°25'33.9"N 80°24'29.4" W). The
laboratory was kept at a constant temperature of around 21°C. While
constant temperature cannot be expected in field settings, this study
was designed to minimize any variation in the time series created

from temperature variances, so the SMS signals were mostly

frontiersin.org


https://doi.org/10.3389/fagro.2024.1346946
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

Stroobosscher et al.

influenced by each nutrient. Each experiment followed similar
protocols and had a randomized complete block design where the
SMSs data collection over a 24-hour time was considered the
replication or block (Figure 1). Specifically, the N and K
experiments encompassed three distinct rates and were replicated
three times, while the P experiment tested two different rates of P and
had five replications. Sequentially, the P experiment was conducted
initially, followed by the N and K experiments. After concluding the P
experiment, it was determined that the N and K experiments would
benefit from more rates and fewer repetitions. This was determined
due to literature pointing stronger to impacts of N and K on soil EC
(Carneiro et al.,, 2017; Guo et al,, 2021) while it pointed to smaller
impacts of P on soil EC (Ding et al, 2020). As previous studies
showed weaker P impact on soil EC but still impacting, it was
determined to be beneficial to investigate 2 application rates of P
which were significantly difterent from each other with higher
numbers of repetitions to determine if P would be detectable
through the SMP. However, as previous studies successfully
registered strong EC signals from N and K in soils, it was
determined to be beneficial to further investigate how sensitive the
SMSs could be to various application rates of N and K beyond simple
detection. Despite the differences in number of repetitions and
applications between the three separate experiments, each
experiment had a randomized complete block design where the 24-
hour time was considered the replication or block. A summary of the
treatments and nutrient rates used in this study is outlined in Table 1.

The N source used was powdered urea (42-0-0), and the N rate
treatments were application rates selected based on local N fertilizer
recommendations for sweetcorn (Hochmuth and Hanlon, 1995).
The low rate indicates split application at the six-leaf stage of the

Nitrogen (kg/ha)

Block1 “ 168 112
Block 2 “ 224
Block 4 168 224 n
Rep 1 Rep 2 Rep 3
Potassium (kg/ha)

Rep1 Rep 2 Rep 3

Phosphorus (kg/ha)

3.76

Rep1l Rep 2 Rep 3 Rep 4 Rep 5

FIGURE 1
Diagram of the randomized complete block design for N, P and
K experiments.
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crop, the average rate is the preplant application rate, and the high
rate represents the total accumulated N suggested for one crop
season. For P a 1000 ppm orthophosphate standard solution was
purchased from Fisher Scientific. This solution was selected as
inorganic P is a bioavailable source of P (Thien and Myers, 1992)
often found in fertilizers (Cade-Menun et al., 2017). P rates were
determined based on soil P concentration of a local sweetcorn farm
in South Florida, USA, where the high rate represented average P
soil levels, and the low rate was one-tenth of this level. The K source
was KCl 3M solution from Fisher Scientific, with treatments
selected based on groundwater salinity concentrations. According
to Her and Vassilaros (2022), the maximum groundwater salinity
concentration reported was 9.12 dS/m along the South Florida
coastal areas. Thus, in this study, this measurement was used as a
baseline to convert K levels ranging from 5-10 dS/m reflecting
groundwater levels (Her and Vassilaros, 2022) to the kg/ha
measurements of 1.02, 1.53, 2.04 kg/ha treatments. Each nutrient
source was mixed with 500 ml reverse osmosis water, and to ensure
consistency in metrics, units were transformed to nutrient rates per
hectare of land.

2.2 Soil moisture probe and calibration

A TriSCAN Sentek drill and drop (SMP) soil moisture probe
(Sentek Drill and Drop SDI-12 Series 11, 2015) was utilized for this
experiment. The SMP is equipped with 6 individual SMSs
distributed equally down the probe. Across the SMP, sensors are
located at specific depths: 5 cm (sensor 1), 15 cm (sensor 2), 25 cm
(sensor 3), 35 cm (sensor 4), 45 cm (sensor 5), and 55 cm (sensor 6)
from the surface. Each SMS provides readings of volumetric soil
water content, soil temperature, and VIC at 15-minute intervals.
The sensors generate two frequencies. The first frequency is
converted through a normalization Equation 1 (Schelter et al,
2006).

X — Xmin
Xmax — Xmin

(1)

and calibrated to volumetric soil water content. The second
frequency is proportional to soil water content and the presence of
free ions in the soil pore water. Proprietary data modeling integrates
changes in both signals, yielding nominal VIC. These VIC readings
can also be correlated with EC (Sentek TriSCAN Agronomic User
Manual Version 1.2a, 2003, Adelaide, Australia). When the SMP is
inserted into soil, each sensor within the SMP begins transmitting
the soil water content, soil temperature, and VIC data in real-time
every 15 minutes, generating a time series that begins from the
moment of installation. This data can be observed by the user on
commercial displays developed by data providers for service.
Multiple data providers service the SMP used in this study. To
ensure uniform measurements across all sensors, the SMPs were
calibrated according to Sentek Technologies’ soil moisture sensors
calibration manual (Calibration Manual for Sentek Soil Moisture
Sensors Version 2.0, 2011). For each soil core, a single SMP was
installed as shown in Figure 2. Data from the SMPs were retrieved
via two data providers currently being used within the state of
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TABLE 1 N, P, and K rates per treatment.

Nutrient Rate (Kg/ha)

Treatment
P
Control 0 0 0
Low 112 3.76 1.02
Average 168 1.53
High 224 37.6 2.04
Replications 3 5 3

Florida: BMP Logic (https://www.bmplogic.net/) and Pessl
Instruments (http://metosusa.com/). The subsequent data analysis
was performed on the raw data extracted from each platform.

2.3 Experimental protocol

Soil cores were composed of 60 cm tall riser-pipe cylinders with
a 16 cm diameter. Each cylinder was cut through the middle
lengthwise, and fitted together with hose clamps, with the aim of
replication sampling (Figure 3). To prevent soil movement with
leachate, the lower portion of the pipes were sealed using a water-
permeable fabric mulch. The fabric mulch ground cover utilized in
this study was manufactured by Lumite, Inc (http://
www.lumiteinc.com/products/groundcover) and is comprised of a
blend of woven fabrics and UV polypropylene that allows passage of
water and nutrients at a rate of 720 L min/m2.

The cores were filled with 15 kg of silica sand and evenly
trapped along the sides in a uniform manner to prevent air gaps. To
avoid variance in compaction, cores were only proceeded to be used
if greater than 2.5 yet less than 5 cm of space was present at the top
of the core. As each core held the same mass of sand and was equal
in volume, anything outside of these parameters was determined to

Soil Moisture Probes (SMP)

Permeable mulch

FIGURE 2
Laboratory experimental setup pre-nutrient application.
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have a variance in compaction and was not used in the experiment.
SMPs were installed in the center of each core following the
manufacturer’s installation protocols (Sentek Drill and Drop SDI-
12 Series 111, 2015). Following SMP installation, the cores remained
undisturbed for 1.5 hours to allow for temperature adjustment and
soil settling. Subsequently, the 500ml solution containing either N,
P, or K was applied. The solution was evenly poured onto the core’s
surface using a custom-made strainer, ensuring uniform
distribution across the top surface. After the solution had
thoroughly passed through the strainer, the core remained
undisturbed for 24 hours.

At the end of the 24-hour period, the SMPs were carefully
positioned horizontally to prevent further seepage. The core was
then divided into six distinct 10 ¢m sections (Figure 3),
corresponding to the descending depths of sensors within the
SMP. These soil sections were compositely, air-dried for P and K
or stored in the refrigerator for N, before being sent for analysis. N
and K soil samples were sent to Water’s Agricultural Laboratory
(Camilla, GA) for extraction and analysis while P soil samples were
sent to UF IFAS Everglades Research and Education Center’s soil
lab for Mehlich III extraction and analysis.

2.4 Data analysis

The time series obtained per treatment were evaluated by
assessing three VIC points within the time series and their
comparison by ANOVA. These points attained were identified as
the maximum point (MP), inflection point (IP), and the
convergence point (CV). The MP was evaluated in two ways: the
MP value (MPv) and its time of occurrence (MPt), which together
represent the highest VIC reading given by the SMS within the SMP
at its given depth. The inflection point was also evaluated in two
ways: the IP value (IPv) and its time of occurrence (IPt), which
together represent the slope of drainage after the nutrient solution
has passed down to deeper soil layers, or the soil is under its water-
available field capacity conditions. The CV was only evaluated in
value as it is the final normalized value taken after 24 hours, making
its time of occurrence equal in each repetition. The CV represents
the ‘settling point’ of the solution. A visual representation of these
points is displayed in Figure 4. Graphs were obtained from each
repetition of each treatment; Figure 4 is a sample of the first
repetition in the K experiment presented here as a visual guide.

As the purpose of this research is to evaluate these currently
used SMP’s ability to detect nutrients in the soil, it was important
that the elements of the VIC curve analyzed were elements that
reflect the current time series management for irrigation scheduling
by farmers. the University of Florida Electronic Data Information
Source (EDIS) offers guidelines to interpret time series elements and
values to assist growers in irrigation management (Zotarelli et al,
2019). The MP value in this study is equivalent to what a grower
would identify as the irrigation event peak during an irrigation
event. IP represents the major change in the time series slope
(Phlips et al., 2021), which is similar to the practical method used by
growers to identify soil field capacity, or the ‘slope of drainage’. CV
represents the final value in the time series where there is no more
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Scm

15cm

25cm

35cm

45 cm

55 cm

FIGURE 3

Sand core and extraction of soil samples for laboratory analysis
based on the sensor depth. Horizontal colored lines represent the
location of each soil moisture sensors across the core.

downward movement of nutrients. This is the only value that can be
directly compared to the laboratory analysis as it is static.

Following the identification of the MPs, the raw time-series data
Y = ({y1,¥2 -..»¥,}) was normalized to a range of (0,1) for IP and
CV identification. IPs were detected using the changepoint
algorithm following the description from Killick and Eckley
(2014), and adapted as follows in Equations 2-4:

Let (y;.,) represent the sequence of data points from the first
(y1) to the last observation in the time series (y,) . Under the null
hypothesis (Hy), it is assumed that no changepoint exists in the time
series. Let (L,) be the maximum log-likelihood under this
hypothesis, which is defined as:

Ly = logp(yy../6) @)
A .
Potassium
o -. LA . .
Ve ‘.@ S,
: ~. o
2000 1.0 N ~ ~Saa S
f- ~ kel
l- ~ 1]
9 u = - N
> : T
4 £
o
] 2
0 10 20 30 40 50

Time 30 Minute Intervals

FIGURE 4

0.75

10.3389/fagro.2024.1346946

Here, p(-) represents the probability density function
associated with the distribution of the data, and © = [, 6] is
the maximum likelihood estimate (MLE) of the mean and standard
deviation that best fit the distribution of Y.

Under the alternative hypothesis (H,), a changepoint at (1) is
assumed to exist. Let L(7;) be the maximum log-likelihood under
this hypothesis, which is defined as:

3)

The likelihood ratio test statistic A is constructed using L, and
L(t,), and is defined as:

L(ty) = log p(y1.7,]01) +10g PW(z,11:m|62)

A=2 {mfaxL(Tl) - Lo] 4)
!

Therefore, the test is performed by selecting a threshold (c) such
that the null hypothesis is rejected if A > c. If the null hypothesis is
rejected the position 7, is estimated and considered as the
detected changepoint

Following the identification of the MP, IP, and CV values, the
one-way ANOVA followed by the post hoc Tukey test was performed
to identify differences among the treatments. By utilizing ANOVA,
MPs IPs and CVs could be compared across application rates, and
immediately determine if the MPs IPs and CVs changed in a
significant matter with the application of N, P, or K. Significant
changes in MP IP or CV would indicate the SMPSs’ sensitivity to the
presence of the nutrient, while the absence of significance would
indicate a lack of SMPs’ sensitivity to the presence of the nutrient. The
two-way ANOVA followed by post hoc Tukey was performed on the
laboratory analysis results for the N, P, and K using both treatment
and SMS depth as variables to understand the individual variable
impact and their interactions. The remaining of this study will use the
following nomenclature for clarity in the results. ‘Experiments’ will
refer to the entire set of measurements taken from either N, P, or K.
‘Applications’ will refer to the nutrient rates applied, including the

Potassium

KCI Application Rate

AN ~
m ‘A - 204kgha
~
0.50 ~A - = 153kgha
= 1.02kgha
0.25 — 0 kg/ha
0.00
0O 10 20 30 40 50

Time 30 Minute Intervals

Identification of signal dispersions in the time series from raw data (A) and normalized data (B) from the potassium trial at 5 cm depth. Circles
represent the maximum points per treatment (MP), squares represent inflection points per treatment (IP), and triangles represent the convergence

points per treatment (CV).

Frontiers in Agronomy

05

frontiersin.org


https://doi.org/10.3389/fagro.2024.1346946
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

Stroobosscher et al.

control, low, average, and high application rates. ‘Repetition’ refers to
how many times the applications were repeated. For example: The 1%
repetition of the low application in the N experiment would refer to
the time series obtained from the first time the low nitrogen nutrient
application was applied to a core.

3 Results and discussion
3.1 Maximum point

3.1.1 Value of maximum point

Among the three tested nutrients, only K has significant
differences (Table 2). The analysis of MPv differences related to K
was approached by comparing MPv across different treatments.
When comparing MPv per depth and application rate, an increase
in MPv was observed in direct correlation with each application rate
except at 15 cm depth, where the highest K application yielded a
lower MPv than the low and average applications (Figure 5). Results
from the control treatment showed that the top five SMSs displayed
similar MPv, ranging from 894-945 VIC units. However, the sixth
SMS, situated at 55 cm depth, recorded a VIC measurement of 1079
units, which is higher than the readings of the top five sensors. This
deviation might be attributed to a change in sensor sensitivity, due
to increased soil water resulting from downward water movement
within the soil core, In this context, higher water content leads to a
higher VIC reading.

The mean values displayed in Table 2 confirm that each K
application rate resulted in a higher MPv than the control, as
indicated by the Tukey letter groupings. However, while treatments
were different from the control, they did not differ from each other
in the 5-35 cm depths. There is an increase in MPv in the average
and high treatments compared to the low treatment at 45 cm, and
increases in MPv across all applications at 55 cm. A steady increase
in MPv at those depths is observed as the concentration of K
increases. Differences in VIC at the lower depths could be attributed
to soil water influence. Soil water has an influence and positive
correlation on the electrical conductivity (EC) of soils (Mojid et al.,
2007). In a study conducted by Brevik et al. (2006), to understand

10.3389/fagro.2024.1346946

the effect of soil water content changes on soil EC, it was shown that
the electrical conductivity was greatly influenced by soil water.

3.1.2 Time of maximum point occurrence

After evaluating the MPt, it was evident that, among the three
tested nutrients, only K exhibited significant differences. When
comparing MPt at each depth within individual application rates,
an increase in MPt was observed in direct correlation with each
increasing application rate. Figure 6 shows that each application rate
at each depth showed an increase in MPt compared to the control
application. While every application yielded higher MPt than the
control, the greatest application of K did not always result in the
greatest MPt reached. In Figure 6, at the 15 cm depth, the highest K
application yielded a slightly lower MPt than the average application.
Table 3 shows that the difference between these values are statistically
similar. The 5, 25, and 35 cm depths display a steady increase in MPt
consistent with the increase in K application applied.

Table 3 shows that, from 15 cm though 45 cm depth, each K
application yields a significantly higher MPt than the control.
However, the increase in MPt at 5 cm depth is only significant
for the high application rate if compared to the control.
Furthermore, at 15 cm, the high and average application MPts are
higher than the low application, showing the sensor ability to
differentiate between application rates.

In this study, the sensor VIC changes are used as an indication of
their sensitiveness to K presence and movement in the soil. As the VIC
sensor readings are potentially impacted by soil water, it is possible that
the presence of any nutrient increasing electrical conductivity has the
potential to delay the MPt. This delay of the MPt could potentially be a
method of K detection in soil media. These results are in accordance to
the findings of Thompson et al. (2007), where it was shown that ,in a
sand column experiment, the soil water content increases
approximately 2-5% with 1 dS/m increase in the EC. Peddinti et al.
(2020) used KCI to examine salinity effect on capacitance based sensor
volumetric water content readings and observed similar results where
the sensor’s sensitiveness to measuring volumetric water content is
affected by soil solution salinity.

Table 4 shows that K generally remained in the top 30 cm of the
soil core. These laboratory results were in agreement with the results

TABLE 2 ANOVA maximum point value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth

Nitrogen (Kg/ha)

Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 112 168 0] 3.76 37.6 1.02 1.53
5 921 a* 935a 919 a 906 a 993 a 952 a 989 a 916 b 2699 a 2622 a 2898 a
15 876 a 896 a 767 a 864 a 886 a 874 a 916 a 908 b 2402 a 2808 a 2303 a
25 920 a 934 a 943 a 922 a 906 a 773 a 809 a 894 b 2172 a 2256 a 2437 a
35 960 a 983 a 963 a 924 a 781 a 743 a 754 a 945 b 1922 a 2141 a 2079 a
45 953 a 841 a 873 a 951 a 778 a 877 a 982 a 921 ¢ 1580 a 1856 b 2020 b
55 1045 a 976 a 915a 828 a 816 a 756 a 661 a 1079a 1232a 1316ab 1588 b

* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments rates (p<0.05).
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FIGURE 5

Maximum Point Values (MPv) averaged per repetition in relation to
the K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth
(5-55 cm).

obtained for MPt (Table 3), as the two depths with distinction between
treatments are at 5 and 15 cm sensor depth, below the 30 cm mark. It
was observed that there was a stronger difference in MPt at the 15 cm
sensor than the 5 cm sensor, which could be attributed to K settling in
that layer. The passage of K and the settling of residual K could have
provided greater signal delay at 15 cm than at 5 cm. This phenomenon
is observed for all K application rates. After 25 cm, each treatment’s
MPt occurred at or very near the end of the 24 hours’ period. As there
was only one water application for each repetition, this delay is likely
the combined impact of water and K not reaching the depth until much
later, as well as the possible overshadowing of the soil water signal over
the lower application rates of K at those depths.

Comparing the K results with those from N, there was not a MPt
delay. This response could be attributed to the high mobility of N in
water causing lesser accumulation of it at one depth, which therefore

MPt vs KCI Application Rate

Depth
A sem

15cm

MPt

25em
@ 35cm
& 4s5cm

20 @ 55cm

1.0
KCl Application Rate

FIGURE 6

Maximum Point Time (MPt) averaged from each repetition in relation
to the K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor
depth (5-55 cm).
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resulted in no impact on the MPt. NH, " is highly soluble in water and
do not easily bind with the soil particles moving quickly through the
core. According to Casey et al. (2002) the mobility and availability of
N is increased with an increase in soil moisture. The low cation
exchange capacity (CEC) of the pure sand media used in this study
might have enhanced N mobility, particularly in the NH," form
(Matschonat and Vogt, 1996; Bigelow et al.,, 2001; Phillips, 2002).

3.2 Inflection point

3.2.1 Inflection point value

Similar to MPv and MPt, significant differences in IPv were only
present in the K experiment. When comparing IPv at each sensor
depth within application rates, an increase was observed in direct
correlation with each application (Figure 7). As is observed in
Figure 7, each application at depths 5 and 15 yielded a higher IPv
than the control application, in the general form of an upward
trend. However, 5 and 15 cm were the only depths in the
experiment that yielded an IPv across each application rate. The
25 and 35 cm depths showed an increase in IPv in the low
application, but no IPv occurred at the average or high
application. The 45 and 55 cm depths only yielded an IPv within
the control.

While Figure 7 exhibited general increasing trends in IPv across
all applications at both the 5 and 15 cm depths, Table 5 shows that
the 5 cm depth was the only depth at which IPv increased at a
significant rate as K application rate increased. At the 5 cm depth,
each application rate was different from each other in addition to
the control and display the ability for IPv to distinguish between
application rates of K applied. The absence of IPv below the 15 cm
depth could be attributed to the nature of the experimental design
in our study, where a single water/nutrient application was
performed per repetition. Although results were not significant
for N, and P application rates and depths, IPv were observed up to
the 35 cm depth for N, and across all depths for P. Future
experiments should consider longer repetitions and more
frequent watering to identify the sensitivity of sensors below 30
cm depth to nutrient availability.

3.2.2 Time of inflection point occurrence

When comparing IPt at each depth within individual K
application rates, there is a direct correlation between the
increase in IPt and each application rate at depths 5 and 15 cm
(Figure 8). At the 5 cm depth, IPt increases directly with the
increased rate of K applications. At the 15 cm depth, there is an
overall increase at application rate increases, with a slight decrease
at the highest application rate. IPts only occur at the lowest
application rates for 25 and 35 cm depths, and only occur
within the control application at the 45 and 55 cm depths.
Table 6 shows that only the SMS at the 5 cm depth shows
significant increases in IPt across the K application rates.
Similarly, each application rate had a higher IPt compared to
the control and was significantly different from each other. This
indicates IPt’s potential to detect differences in K concentration
within the soil at the 5 cm depth after 24 hours post-application.
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TABLE 3 ANOVA Maximum Point Time (MPt) means for N, P, and K treatments at each sensor depth (5-55 cm).

Seng?lc)il:r/)th Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)
Rate 112 168 0] 3.76 37.6 1.02 1.53

5 2.7 a* 23a 23a 37a 5.6a 44a 28a 3.7 a 8.7a 133 a 283 b

15 40a 63a 63a 23a 118a 15a 134a 63b 27.3 ab 40.7 a 393 a

25 11.7 a 40a 30a 4.0a 184 a 14.8 a 4a 9.7b 393a 433 a 49.0 a

35 50a 103 a 173 a 110 a 16.6 a 194 a 248 a 43Db 443 a 483 a 49.0 a

45 233 a 48.7 a 293 a 29.7 a 112 a 30a 412 a 20.0 b 49.0 a 49.0 a 49.0 a

55 47.7 a 32.7a 49.0 a 40.3 a 36.8 a 298 a 194 a 41.0 a 49.0 a 49.0 a 42.7 a

* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).

3.3 Convergence value each depth, there is a strong observable increase in CV as the
K application rate increases within the 5 to 35 cm range

Table 7 shows no significant differences in the N and P (Figure 9). Unlike the MP and IP analysis, in each of the
experiments, while K yielded results indicating its detection instances the increased application rate yielded an increased
through CV analysis. When comparing CVs across applications at ~ mean value CV down to the 35 cm depth. At the 45 and 55 cm

TABLE 4 ANOVA results from N, P, and K laboratory samples mean at various depths and rates.

Treatment Depth N (total N %) P (lb/A) K (mmhos/cm)
5 0.050 a bdl b 0.029 e
15 0.050 a bdl b 0.029 e
25 0.083 a bdl b 0.032 de
Control
35 0.073 a bdl b 0.026 e
45 0.077 a bdl b 0.029 e
55 0.060 a bdl b 0.033 cde
5 0.070 a bdl b 0.092 abcde
15 0.067 a bdl b 0.086 abcde
25 0.070 a bdl b 0.088 abcde
Low
35 0.067 a bdl b 0.080 abcde
45 0.080 a bdl b 0.098 abcde
55 0.087 a bdl b 0.055 bede
5 0.087 a 0.138 ab
15 0.050 a 0.159 a
25 0.087 a 0.155 ab
Average
35 0.103 a 0.101 abcde
45 0.080 a 0.134 abc
55 0.073 a 0.086 abcde
5 0.053 a 4.6 a 0.131 abcd
15 0.077 a 3.0 a 0.139 ab
25 0.093 a 0.4 b 0.163 a
High
35 0.063 a 0.2 b 0.092 abcde
45 0.080 a bdl b 0.125 abcde
55 0.070 a bdl b 0.107 abcde

* Within each nutrient, the means followed by the same letter are not significantly different (p<0.05). bdl represents undetectable concentrations.
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FIGURE 7
Inflection Point value (IPv) averaged per repetition in relation to the
K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm).

depths, the CV maintains high both at the control and each K
application treatment.

From the surface down to 35 cm, the statistical comparison of CV
between treatments showed that the SMP successfully distinguished
each treatment from the control (Table 7). CVs did not distinguish
between treatments however, and were only capable of detecting the
presence or absence of K. The laboratory results are consistent with
the CV findings were it was confirmed the presence of K from the soil
surface down to 35 cm. A slight contrast found in the laboratory
result was the identification that K was present down to the 40-50 cm
depths, while difference in CV were not found across treatments at
that level. Although there were not differences below the 35 cm depth,
a pooling effect may have occurred due to the movement of water to
the lower layers of the core. This might have influenced the VIC
signals due to the presence of K in the solution.

3.4 Soil nutrient laboratory results

Table 4 suggests no significant difference in N rate throughout
each sensor depth and each treatment, ranging from 0.05 - 0.103%

10.3389/fagro.2024.1346946

TN. Laboratory analysis confirmed undetectable P concentrations
for the control and low treatments. In the high treatment, P mostly
remained in the top 20 cm of the soil core, with a smaller amount
descending up to the 40 cm depth. K analysis suggests this nutrient
was mobile, up to the 60 cm depth for the average and high
treatments. Despite its mobility, mean values suggest the highest
concentrations of K were mostly found at 20 and 30 cm depth for
average and high treatments, respectively. The treatment and the
SMS depth interaction results indicated significance for P (p-value =
1.12E-11), whereas the N (p-value = 0.883) and K (p-value = 0.778)
displayed no significant interaction effects.

4 Discussion

4.1 VIC sensor values as indicators of
nutrient presence in the soil profile

K’s presence in the soil and nutrient location can be determined
by assessing MP, IP, and CV values from SMS readings. MPv was
particularly successful at differentiating between the control and
each application rate. In the topsoil layers, regardless of the
application rate applied, MPv showed higher values than the
control. IP was the most successful at distinguishing between
application rates. Each application rate at the 5 cm mark had an
increasing IPv and IPt as application rate increased. CV gave the
strongest indication of whether K was present in the cores. While
this method could not differentiate between application rates, CVs
clearly increased in the presence of K at each rate. Related studies
evaluating sensing conductance methods have found that sensor
readings can be an indirect method to assess major nutrients in the
soil (Eigenberg et al., 2002; Korsaeth, 2005).

MP measurements could be a good indicator for the
development of real-time precision nutrient management
systems. As more studies on conductance-based sensor
development are produced (Basterrechea et al., 2020; Rocher
et al., 2020), more information would be available for the
development of robust decision-support systems related to the
potential nature, concentration, or location of K within a field,
after in-field sensor calibration is completed. Progress in the
incorporation of in-field sensors for the indirect assessment of

TABLE 5 ANOVA inflection point value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth

Nitrogen (Kg/ha)

Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 112 168 (0] 3.76 37.6 1.02 153 204
5 0.22 a* 022 a 0.31a 0.26 a 0.43 a 0.57 a 0.44 a 022 ¢ 0.63 a 0.76 ab 091 b
15 0.55a 0.54 a 0.48 a 0.57 a 0.64 a 0.87 a 0.76 a 0.55a 0.86 a 1.00 a 0.96 a
25 0.82a 0.54 a 0.85a 0.73 a 0.82a 0.81 a 0.73 a 0.54 0.92
35 0.90 a 0.86 a 0.86 a 091 a 0.83 a 0.78 a 0.84 a 0.82 0.98
45 0.97 0.94 0.99 0.78 a 0.79 a 093 a 0.96
55 0.99 0.27 0.98 1.00 a 0.44 a 0.55a 1.00

* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
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IPt vs KCI Application Rate
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FIGURE 8

Inflection Point Time (IPts) averaged per repetition in relation to the
K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm).

nutrients through fertigation are underway (Avsar and Mowla,
2022) and under development. This, along with the findings from
this study, can contribute to a more practical and data-based in-
field nutrient management.

While IP does not provide immediate results and is dependent
on the CV, IP showed the best ability to distinguish between

10.3389/fagro.2024.1346946

application rates and correlate them to K rates within the soil.
MP from in-field SMPs and SMSs could be used as a real-time water
saving parameter for nutrient management as this data is available,
but underutilized. An increased or delayed MP during a fertigation
event, when nutrients are applied through irrigation, would be an
indicator of potentially increased K within the soil. This could
determine how far down into the soil the K is moving and provide
information to prevent nutrient leaching and environmental
pollution in freshwater systems (Pathan et al., 2007). After such
irrigation event occurs, as the soil begins to dry and IP and CV
points are identified, IP could be used to quantify the concentration
of K in the soil that may have been or was a risk of leaching, and CV
used to finalize the resting place of the K after the event. This
information would be useful in both identifying the movement of K
in the soils during an irrigation event, as well as identifying the final
location of K after the event. Furthermore, the nutrients in this
experiment were studied separately but understanding the
interactions between the nutrients, soil types and their combined
effect of VIC is dynamic and should be studied to provide precise
real time information to the end users.

The N and P control treatments at 55 cm have higher MPv,
MPt, IPv, and IPt (Tables 2, 3, 5, 6) than the other treatments,
potentially indicating an effect of the fertilizer presence on the
moisture movement or a water cumulation effect. This scenario was
not observed in K due to its high solubility nature compared to N
and P and using pure sand as a medium, allowing more rapid
nutrient movement (Table 4). The soil medium can influence

TABLE 6 ANOVA inflection point time means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth Nitrogen (Kg/ha)

Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 112 168 (0] 3.76 37.6 1.02 153 204
5 21.7 a* 27.0a 23a 240a 237a 243a 25a 240a 273a 303ab | 397D
15 280 297 27.7a 21.7a 258a 313a 330a 27.7a 36.7a 4452  430a
25 303a 290a 250a 257a 252a 272a 2402 37.3 415
35 270 a 30.7a 273a 260a 31.0a 2722 2902 18.7 48.0
45 38.0 36.5 355 243a 372a 473 28.7
55 49.0 22,0 49.0 40.0 315a 183a 435

* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).

TABLE 7 ANOVA convergence value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth

Nitrogen (Kg/ha)

Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 112 168 (0] 3.76 37.6 1.02 1.53
5 0.05 a* 0.08 a 0.17 a 0.08 a 022a 043 a 024a 0.00 b 0552 064a  085a
15 0382 034a 023a 025a 052a 073a 061a 020D 0.84a 097a  097a
25 0.63a 041a 0.69 a 055a 0.76 a 073 a 0.67 a 033D 090 a 099a  1.00a
35 081a 0.80 a 078 a 0.82a 083a 075 0.80 a 0.74b 099 a 1.00a  1.00a
45 094a 0.96 a 0.90 a 098 a 078 a 079 a 094 a 095a 1.00 a 1.00a  1.00a
55 097 a 0.67 a 0.99 a 0.64a 0.85a 0.80 a 071a 099 a 1.00 a 1.00a  095a

* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
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FIGURE 9

Convergence values (CVs) averaged per repetition in relation to the
K (KC) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm). A direct correlation between CVs and application rate of KCl
applied is observable.

sensor conductivity. Generally, the impacts of soil-water osmotic
potential alterations are not considered for soil-water movement
unless the solutes are in substantial amounts (Or and Wraith, 2002).
However, in this study, this might have influenced the SMS
readings. Masrie et al. (2017) developed and tested an optical
transducer sensor for the detection of N, P, and K in soil, and
found that soil characteristics in the presence of nutrients influence
the frequency wavelength for sensor detection. This study suggest
that SMSs require voltage thresholds that variates based on the
nutrient assessed. Laboratory results confirmed that P was primarily
present in the top 20 cm of the cores, yet despite statistical analysis
comparing MPv, MPt, IPv, IPt, and CVs no significant differences
were observed.

Our results-keeping in mind this study only tested one form of
each element in a pure sand soil type-suggest that the SMP
primarily detects K ions from the fertilizers applied and can be
used as part of currently available irrigation scheduling decision
support systems (DSS). Several methods of combining irrigation
sensing technology with soil moisture prediction models (Kashyap
and Kumar, 2021) and DSSs (Rinaldi and He, 2014) are available.
Any variation in the MP, IP, or CV could indicate potential K
presence in the soil. However, this signal variation could also
originate from other ions in the soil with a sufficiently strong
osmotic potential. Although the interactions between N, P, and K
when combined has yet to be explored, such interactions could
potentially enhance their VIC signals.

5 Conclusion

This study demonstrated that the SMPs” VIC readings have the
ability to detect K within the soil profile and provide an indication
of its rate and location. The statistical analysis from MP, IP, and CV
from 24-hour VIC readings has proven to be an effective method for
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K detection. While our study did not yield significant results for N
and P, mean value comparison hints at the potential for detection,
possibly through other indirect methods, or different forms of N
and P that yield strong VIC in soil. The results from this study can
serve as a foundation for implementing fertigation management
programs, focusing on water and K movement in the soil, and
indirectly managing N and P by maintaining water within
the effective root zone depth for crops. Future work should
investigate temperature differences related to in-field seasonal
patterns. Utilizing IP as a way of differentiating nutrient
concentrations showed great promise at the 10 cm depth. Overall,
integrating nutrient management strategies into existing
agricultural technologies, such as the SMPs investigated in
this study, is crucial to accelerating the adoption of precision
agriculture technology in practical applications within the
agricultural industry.
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