
179

Near-Duplicate Sequence Search at Scale for Large Language
Model Memorization Evaluation
ZHENCAN PENG, Rutgers University, USA

ZHIZHI WANG, Rutgers University, USA

DONG DENG, Rutgers University, USA

Recent studies show that large language models (LLM) unintendedly memorize part of the training data, which

brings serious privacy risks. For example, it has been shown that over 1% of tokens generated unprompted

by an LLM are part of sequences in the training data. However, current studies mainly focus on the exact

memorization behaviors. In this paper, we propose to evaluate how many generated texts have near-duplicates

(e.g., only differ by a couple of tokens out of 100) in the training corpus. A major challenge of conducting this

evaluation is the huge computation cost incurred by near-duplicate sequence searches. This is because modern

LLMs are trained on larger and larger corpora with up to 1 trillion tokens. What’s worse is that the number of

sequences in a text is quadratic to the text length. To address this issue, we develop an efficient and scalable

near-duplicate sequence search algorithm in this paper. It can find (almost) all the near-duplicate sequences of

the query sequence in a large corpus with guarantees. Specifically, the algorithm generates and groups the

min-hash values of all the sequences with at least 𝑡 tokens (as very short near-duplicates are often irrelevant

noise) in the corpus in linear time to the corpus size. We formally prove that only 2
𝑛+1
𝑡+1 − 1 min-hash values

are generated for a text with 𝑛 tokens in expectation. Thus the index time and size are reasonable. When

a query arrives, we find all the sequences sharing enough min-hash values with the query using inverted

indexes and prefix filtering. Extensive experiments on a few large real-world LLM training corpora show that

our near-duplicate sequence search algorithm is efficient and scalable.

CCS Concepts: • Information systems → Near-duplicate and plagiarism detection; • Computing
methodologies→ Natural language generation.

Additional Key Words and Phrases: Near-Duplicate Detection, Text Alignment, Large Language Model,

Language Model Memorization

ACM Reference Format:
Zhencan Peng, Zhizhi Wang, and Dong Deng. 2023. Near-Duplicate Sequence Search at Scale for Large

Language Model Memorization Evaluation. Proc. ACM Manag. Data 1, 2, Article 179 (June 2023), 19 pages.
https://doi.org/10.1145/3589324

1 Introduction
Language models learn a probability distribution over sequences of tokens (e.g., words or byte-pair

encodings [26]) and predict the next token given a sequence of previous tokens [46]. The large

neural language model (LLM) is a major breakthrough in natural language processing (NLP) in

recent years. They significantly boost the performance of numerous downstream NLP tasks, such as

machine translation [3], text summarization [54], and question answering [37]. The state-of-the-art

language models are based on Transformers [60], contain millions to billions of parameters, and

Authors’ addresses: Zhencan Peng, Rutgers University, USA, zp128@scarletmail.rutgers.edu; Zhizhi Wang, Rutgers Univer-

sity, USA, zw393@cs.rutgers.edu; Dong Deng, Rutgers University, USA, dong.deng@rutgers.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART179 $15.00

https://doi.org/10.1145/3589324

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://doi.org/10.1145/3589324
https://doi.org/10.1145/3589324

179:2 Zhencan Peng, Zhizhi Wang, and Dong Deng

are trained on large-scale text corpora with billions to trillions of tokens. For example, PaLM is a

Transformer-based LLM with 540 billion parameters and is pre-trained using a high-quality corpus

of 780 billion tokens [15], while GPT-3 has 175 billion parameters and is pre-trained using 500

billion token corpora [11]. Other prominent LLMs are ELMo [52], BERT [22], XLNet [67], T5 [50],

etc.

A few recent studies find that LLMs unintendedly memorize part of the training data [12, 13,

35, 49, 59]. For example, Lee et al. shows that over 1% of tokens generated unprompted by an

LLM are part of memorized sequences in the training data [38]. Moreover, the chance a training

sequence generated verbatim by an LLM is super-linear to the number of times it appears in the

training corpus [13, 35]. In the meanwhile, existing large-scale training corpora contain numerous

long duplicate sequences as well as sequences that are duplicated tens of thousands times [38].

Memorization is undesired as it not only degrades model generalization [13] but also leads to

unexpected privacy risks, such as membership inference attacks [12] and training data extraction

attacks [14].

However, existing work mainly focuses on the exact memorization behaviors of LLMs. In this

paper, we study near-duplicates, which are much more pervasive than exact duplicates in large-

scale training corpora. For example, it is estimated that around 30% to 45% of web contents are

near-duplicates [10, 57]. Specifically, we propose to evaluate how many texts generated by LLMs

have near-duplicate sequences in the training data. For this purpose, for each text generated by the

LLM, we find all its near-duplicate sequences in the training corpus (if there are any). We define

two sequences are near-duplicates if their Jaccard similarity is above a given threshold.

A major challenge of conducting this evaluation is how to efficiently find the near-duplicate

sequences of a query sequence in the training corpus, which entails a huge computation cost. This

is because modern LLMs are trained on larger and larger corpora (up to 1 terabyte), while the

number of sequences in a text is quadratic to the text length. As pointed out by recent studies,

finding exact duplicates in large-scale text corpora is already difficult [13], let alone near-duplicates.

To address this issue, we develop an efficient and scalable near-duplicate sequence search algorithm

based on the min-hash techniques [9]. It creates a min-hash sketch [24] for every sequence in the

training corpus offline and compares the query sequence’s sketch with the training sequences’

sketch to find the near-duplicates. We adopt the idea from a previous work [24] to aggregate the

min-hash values in a text. Moreover, we extend the previous work in the following ways. First

of all, we impose a length threshold 𝑡 and only generate min-hash values for sequences with at

least 𝑡 tokens (as very short near-sequences are often irrelevant noise). We formally prove that

on average our algorithm generates 2
𝑛+1
𝑡+1 − 1 min-hash values for a text with 𝑛 tokens in 𝑂 (𝑛)

time. Thus the index time and size are reasonable even for large-scale text corpora. Second, we

design a novel algorithm to efficiently find all the min-hash sketches that are similar to the query

sequence’s sketch. In addition, the problem definitions are slightly different. The previous work

finds near-duplicate sequences in two long texts, while this paper searches sequences in a collection

of texts that are similar to a query sequence. Furthermore, this paper focuses on large-scale datasets

that cannot fit in memory, while the previous work only considers the in-memory case. Finally, we

apply our near-duplicate sequence search algorithm to evaluate the (fuzzy) memorization behavior

of large language models.

In summary, we make the following contributions in this paper.

• We develop an efficient and scalable near-duplicate sequence search algorithm. We formally

analyze the impact of the length threshold in our algorithm and propose an efficient query

processing algorithm.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:3

• We conduct extensive experiments using real-world large-scale text corpora to evaluate our

algorithm. Experimental results show that our algorithm is efficient and scalable.

• We evaluate the (fuzzy) memorization behaviors of four GPT-2 models of various sizes using

our algorithm.

The rest of the paper is organized as follows. We briefly introduce language models in Section 2.

Section 3 defines the near-duplicate sequence search problem and presents our algorithm. We

evaluate our algorithm in Section 4 and evaluate large language model memorization in Section 5.

Section 6 reviews related work and Section 7 concludes the paper.

2 Background: Large Language Models
In general, language models learn the probability distribution of the next token given a sequence

of previous tokens. For example, given two previous tokens “hello, good”, a reasonable language
model probably assigns a higher probability to the token “morning” than to the token “SIGMOD” as
the next token of the two tokens.

Training. Given a text corpus, for each training example 𝑥1, · · · , 𝑥𝑛 (e.g., a text in the corpus),

the language model is trained to minimize the loss L = −∑𝑛
𝑖=1 log𝑝 (𝑥𝑖 |𝑥1, · · · , 𝑥𝑖−1) where

𝑝 (𝑥𝑖 |𝑥1, · · · , 𝑥𝑖−1) is the learned probability of𝑥𝑖 as the next token to the previous tokens𝑥1, · · · , 𝑥𝑖−1.
The target for this probability is 1 for this training example. Thus the optimal solution for the model

is to memorize the training sequence [14]. However, since there are a huge number of training

examples in the text corpus, the trained model usually does not memorize every sequence in the

training data.

Generation Strategies. Once trained, to generate a text, we only need to repeatedly pick the

next token based on the learned probability distribution. The users can optionally provide the

first few tokens (namely prompt) to the language model for text generation. The simplest method

to pick the next token is random sampling based on the learned probability distribution [49]. A

few alternatives are greedy search, beam search, top-𝑘 sampling [23], and top-𝑝 sampling. Greedy

search picks the token with the highest probability as the next token. Beam search picks the batch of

next tokens with the highest probability, even though the first next token may not bear the highest

probability. The top-𝑘 sampling samples only from the 𝑘 most probable next tokens as predicted

by the language model [23], while the top-𝑝 sampling samples only from the most probable next

tokens that form the 𝑝% cumulative probability.

Memorization. It has been shown large language models memorize part of their training data.

The model emits the training data verbatim when fed with appropriate prompts [13], which brings

serious privacy issues [35]. For example, it is found that about 1% of tokens generated unprompted

by a language model are part of sequences in the training corpus [38]. In this paper, we aim to

find how many texts generated by LLMs have near-duplicate sequences in the training corpus

(e.g., differ by a couple of tokens out of 100 tokens). For this purpose, we need to address the near-

duplicate sequence search problem. It finds all the near-duplicate sequences of a query sequence in

a large-scale training corpus (up to 1 terabyte).

3 Near-Duplicate Sequence Search
3.1 Problem Definition
We first define a few notations. A corpus D contains many texts. A text T consists of a series of

tokens. The total number of tokens in a text T is denoted as |T|. T[𝑖, 𝑗] is the sequence in T from its

𝑖-th token to its 𝑗-th token (included), where 1 ≤ 𝑖 ≤ 𝑗 ≤ |T|. The token can be a word, a phrase, a

byte-pair encoding (BPE) [26], etc.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

179:4 Zhencan Peng, Zhizhi Wang, and Dong Deng

Definition 1 (Near-Duplicate Seqence Search). Give a text corpusD, near-duplicate sequence
search takes a query sequence 𝑄 and a similarity threshold 𝜃 as input and outputs all the sequences
T[𝑖, 𝑗] s.t. sim(𝑄,T[𝑖, 𝑗]) ≥ 𝜃 , where 1 ≤ 𝑖 ≤ 𝑗 ≤ |T| and T ∈ D.

We focus on the Jaccard similarity sim in this paper, which is the ratio of the intersection size

(i.e., the number of common tokens) to the union size (i.e., the total number of distinct tokens) of

two sequences. However, depending on how duplicate tokens are handled, there are two kinds

of Jaccard similarities. The first one, distinct Jaccard similarity, first deduplicates two sequences
and then calculates the Jaccard similarity as usual. The second one, multi-set Jaccard similarity,
treats each occurrence of a token in a sequence as a unique token. For example, consider the two

sequences (𝐴,𝐴,𝐴, 𝐵, 𝐵) and (𝐴, 𝐵, 𝐵, 𝐵,𝐶). The distinct Jaccard similarity is 2/3, while the multi-set

Jaccard similarity is 3/7 as it treats the two sequences as (𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2) and (𝐴1, 𝐵1, 𝐵2, 𝐵3,𝐶1)
and the intersection and union sizes are 3 and 7, respectively. In this paper, we use the distinct

Jaccard similarity if not mentioned otherwise.

3.2 Min-Hash for Jaccard Similarity Estimation
We resort to the min-hash techniques [9] to address the near-duplicate sequence search problem.

In a nutshell, given a random universal hash function
1
that maps every token to a hash value, the

min-hash of a sequence is the minimum hash value of all its tokens. The distinct Jaccard similarity

of two sequences can be accurately estimated by 𝑠/𝑘 , where 𝑠 is the number of min-hash collisions

of the two sequences in 𝑘 trials using 𝑘 independent random universal hash functions. This is an

unbiased estimation with low variance [43].

To address the near-duplicate sequence search problem, we develop an algorithm to find all

the sequences in the corpus whose min-hash values collide with those of the query sequence at

least ⌈𝑘𝜃⌉ times, where 𝜃 is the user-provided similarity threshold. In addition, in practice, only

near-duplicate sequences that are long enough are interesting. For this purpose, we impose a length
threshold 𝑡 and only find near-duplicate sequences with at least 𝑡 tokens. Formally, we have the

following problem definition.

Definition 2. Give a text corpus D, a length threshold 𝑡 , and 𝑘 independent random universal
hash functions 𝑓1, · · · , 𝑓𝑘 . Near-duplicate sequence approximate search takes a query sequence 𝑄 and
a threshold 𝜃 as input and outputs all the sequences T[𝑖, 𝑗] s.t. ∑𝑘

𝑥=1 1{𝑓𝑥 (𝑄) = 𝑓𝑥 (T[𝑖, 𝑗])} ≥ ⌈𝑘𝜃⌉,
where T ∈ D and 𝑗 − 𝑖 + 1 ≥ 𝑡 .

Note here the hash function 𝑓𝑥 outputs the min-hash of its input sequence. In addition, 1{𝑏} is a
boolean function that returns 1 (or 0) when 𝑏 is true (or false). Since the variance of the Jaccard

similarity estimation is𝑂 (1/𝑘) [43], for a large enough 𝑘 , the near-duplicate sequence approximate

search guarantees to find most of the sequences in the corpus that are similar to the query sequence.

3.3 Efficient Min-Hash Generation
To find all the near-duplicate sequences, we propose to generate 𝑘 min-hash values for every

sequence (of length at least 𝑡) in the text corpus during the offline indexing phase. However, the

total number of sequences in a large-scale text corpus (e.g., consists of a few hundreds of billions

of tokens) is enormous. A recent work Allign on finding all the near-duplicate sequences in two

long texts designs an algorithm to tackle this problem [24]. In this paper, we adapt the algorithm

to work with the distinct Jaccard similarity, improve its time complexity, and formally analyze

the impact of the length threshold 𝑡 . Finally, we design an algorithm for near-duplicate sequence

approximate search based on it.

1
e.g., 𝑓 (𝑥) = 𝑎 · 𝑥 + 𝑏 mod 𝑝 where 𝑝 is a large prime [58].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:5

[1,13]-[17,17]: (10, 11)
[1,6]-[13,16]: (10, 20)

[7,13]-[14,16]: (10, 22)
[14,14]-[17,17]: (11, 22)

…
[4,4]-[5,5]: (50, 88)
[5,5]-[6,6]: (20, 88)

[9,9]-[10,10]: (80, 90)
[10,10]-[11,11]: (77, 90)

[1,2]: (30, 60)
[1,3]: (30, 60)
[1,4]: (30, 50)

…
[2,4]: (50, 60)
[2,5]: (50, 60)

…
[15,17]: (11, 44)
[16,17]: (11, 44)

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10w11w12w13w14w15w16w17

30 60 66 50 88 20 33 40 80 90 77 55 10 22 70 44 11

1st row: word position; 2nd row: word hash value;

<T, f1, 2, 9, 6> min-hash: 20

5 compact windows for t = 5: <1,13,17> <1,6,12> <1,1,5> <7,7,12> <8,8,12>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
75 30 40 25 85 60 10 45 24 97 20 72 36 76 18

text:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
25 45 11 33 46 56 15 40 48 32 12 64 65 51 35 80 30

<T, f2, 4, 10, 7> min-hash: 15

with hash
function f1

Text S:

compact windows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
37 43 44 41 53 10 38 28 49 15 55 74 47 13 28

Text T:
f2:

Text S:

< S, f1, 1, 6, 4> min-hash: 25 <S, f1, 8, 14, 11> min-hash: 20

<S, f2, 7, 13, 10> min-hash: 151 collided compact window pair

2 collided compact window pairs

Barack and I were raised with so many of the same values that you work hard for …

with hash
function f2

f1:p1

p2

p3

10: [1,13]-[13,17]
11: [1,17]-[17,17]
20: [1,6]-[6,16]
22: [7,13]-[14,16]
22: [14,14]-[14,17]
…
…
90: [9,9]-[10,10]
90: [10,10]-[10,11]

hash:

brute-force:
136 sketches

TxtAlign:
34 sketches

RangeAlign:
34 pairs of min-hash and

Fig. 1. A running example.

The ExistingWork for Text Alignment.Allign proposes an algorithm to efficiently generate the

min-hash values of all the sequences in a long text [24]. The key idea is to group nearby sequences

in a text by their min-hash values using compact windows. A compact window is a tuple ⟨T, 𝑓 , 𝑙, 𝑐, 𝑟 ⟩.
It represents all the sequences T[𝑖, 𝑗] where 𝑙 ≤ 𝑖 ≤ 𝑐 ≤ 𝑗 ≤ 𝑟 and all these sequences have the

same min-hash, which is 𝑓 (T[𝑐]). Moreover, the compact window is maximal, i.e., extending either

𝑙 or 𝑟 makes the above condition no longer hold. Clearly, by definition, the hash value of T[𝑐] is
the smallest among all the tokens in T[𝑙, 𝑟]. For simplicity, we omit the text T and hash function 𝑓

in the compact window when they are clear from the context. For example, consider the text T

with 17 tokens and their hash values derived from a random hash function 𝑓 as shown in Figure 1.

⟨1, 13, 17⟩ is a compact window. All the sequences T[𝑖, 𝑗] where 1 ≤ 𝑖 ≤ 13 ≤ 𝑗 ≤ 17 share the

same min-hash value 𝑓 (T[13]) = 10.

Allign proves there are 𝑂 (𝑛) compact windows in a text with 𝑛 tokens and these compact

windows and all the sequences in the text are surjective, i.e., each sequence is in one and only one

compact window. It develops an algorithm that generates all the𝑂 (𝑛) compact windows in the text

in 𝑂 (𝑛 log𝑛) time and 𝑂 (𝑛) space. Moreover, it extends the algorithm to deal with the multi-set

Jaccard similarity when the text contains duplicate tokens [24].

Our Min-Hash Generation. As only the min-hash values of sequences with at least 𝑡 tokens

are needed in our settings, we do not need to generate a compact window ⟨𝑙, 𝑐, 𝑟 ⟩ if its “width”
𝑟 − 𝑙 + 1 < 𝑡 . Next we present an algorithm that generates all the “valid compact windows” whose

widths are at least 𝑡 in a text with 𝑛 tokens in𝑂 (𝑛) time and space. We further prove our algorithm

generates 2
𝑛+1
𝑡+1 − 1 valid compact windows on average (i.e., in expectation) and every sequence with

at least 𝑡 tokens is in one and only one of these valid compact windows. The compact windows can

be used to accurately estimate the distinct Jaccard similarity to the query.

Our algorithm is similar to the one in Allign. It is a divide-and-conquer algorithm. Given a

sequence T[𝑙, 𝑟], it divides the sequence into two by the token T[𝑐] with the smallest token hash

value in the sequence. Then it recursively solves two sub-problems, one takes the (sub)-sequence

T[𝑙, 𝑐 − 1] as the input and the other one takes T[𝑐 + 1, 𝑟] as the input. In addition, it produces a

tuple ⟨𝑙, 𝑐, 𝑟 ⟩, which, by definition, must be a compact window. The recursion stops when the input

sequence is not long enough (more specifically, when 𝑟 − 𝑙 + 1 < 𝑡) as no valid compact window

exists in the input. Note initially the input sequence is the entire text T[1, |T|].
Note that, when there are multiple tokens with the same smallest hash value in the input sequence

(this happens when the text contains duplicate tokens), we randomly choose one to divide the

input sequence (i.e., break ties arbitrarily). The pseudo-code of the divide-and-conquer algorithm

is shown in Algorithm 2. It takes a sequence T[𝑙, 𝑟], a length threshold 𝑡 , a hash function, and a

result set Q as its input. If the input sequence is too short, the recursion stops (Line 2); otherwise,

it finds a token T[𝑐] in the input sequence with the smallest hash value, adds a compact window

⟨𝑙, 𝑐, 𝑟 ⟩ into the result set Q (Lines 3 to 4), and recursively generates the compact windows in the

two (sub)-sequences divided by T[𝑐] (Lines 5 to 6).

Example 1. For example, consider the text and its token hash values in Figure 1. Let the length

threshold be 𝑡 = 5. The algorithm first chooses T[13] to divide the text T[1, 17] to two sequences

T[1, 12] and T[14, 17] and generates a compact window ⟨1, 13, 17⟩. The second sequence is shorter

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

179:6 Zhencan Peng, Zhizhi Wang, and Dong Deng

Algorithm 1: Indexing
Input: D: a text corpus; 𝑘 : an integer; 𝑓1, 𝑓2, · · · , 𝑓𝑘 : 𝑘 independent hash functions; 𝑡 : a length

threshold.

Output: 𝑘 inverted index files of compact windows on disk.

begin1

load the text corpus D into memory;2

foreach 1 ≤ 𝑖 ≤ 𝑘 do3

foreach text T ∈ D do4

GenerateCompactWindows(1, |T|,T, 𝑓𝑖 , 𝑡,Q);5

foreach compact window ⟨𝑙, 𝑐, 𝑟 ⟩ ∈ Q do6

ℎ ← 𝑓𝑖 (T[𝑐]);7

append ⟨T, 𝑙, 𝑐, 𝑟 ⟩ to the inverted list 𝐼𝑖 [ℎ];8

write the inverted index 𝐼𝑖 to the disk as a file;9

// for large-scale corpora, load one batch of texts at a time, partition
the compact windows by 𝑖 and ℎ, and use hash aggregation to build the
inverted index files for each partition.

end10

Algorithm 2: GenerateCompactWindows(𝑙, 𝑟 ,T, 𝑓 , 𝑡,Q)
Input: 𝑙 : an integer; 𝑟 : an integer; T: a text; 𝑓 : a hash function; 𝑡 : a threshold; Q: a collection of

compact windows.

begin1

if 𝑟 − 𝑙 + 1 < 𝑡 then return;2

find a position 𝑐 ∈ [𝑙, 𝑟] s.t. ∀𝑝 ∈ [𝑙, 𝑟], 𝑓 (T[𝑐]) ≤ 𝑓 (T[𝑝]) using an advanced RMQ3

algorithm [25], break ties arbitrarily;

add a compact window ⟨𝑙, 𝑐, 𝑟 ⟩ to Q;4

GenerateCompactWindows(𝑙, 𝑐 − 1,T, 𝑓 , 𝑡,Q);5

GenerateCompactWindows(𝑐 + 1, 𝑟 ,T, 𝑓 , 𝑡,Q);6

end7

than 𝑡 and is skipped. The algorithm recursively divides the first sequence by T[6] to two sequences
T[1, 5] and T[7, 12] and generates a compact window ⟨1, 6, 12⟩. Eventually, it generates 5 “valid”
compact windows that are wide enough. The number exactly matches the expectation (as described

presently), which is 2
𝑛+1
𝑡+1 − 1 = 2

18

6
− 1 = 5.

Theorem 1. Algorithm 2 generates 2𝑛+1
𝑡+1 − 1 compact windows for a text T with 𝑛 distinct tokens

in expectation. Furthermore, every sequence in T with at least 𝑡 tokens is in one and only one of the
generated compact windows.

Proof. Let 𝑆𝑛 denote the expected number of compact windows generated by the algorithm for

a sequence of length 𝑛. Since the token hash values are random, every distinct token in the input

sequence has the same probability
1

𝑛
to be the token that divides the input sequence. Thus we have

𝑆𝑛 =

𝑛∑︁
𝑖=1

1

𝑛
(𝑆𝑖−1 + 1 + 𝑆𝑛−𝑖) = 1 + 2

𝑛

𝑛∑︁
𝑖=1

𝑆𝑖−1.

The base cases are 𝑆0 = 𝑆1 = · · · = 𝑆𝑡−1 = 0 and 𝑆𝑡 = 1. Solving the recursive formula, we have

𝑆𝑛 = 2
𝑛+1
𝑡+1 − 1.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:7

The second part of the lemma can be proved using reduction. Let 𝑐 be the first token where the

algorithm chooses to divide the text. The algorithm must generate a compact window ⟨1, 𝑐, 𝑛⟩. All
the sequences of T can be partitioned into three categories, T[𝑖1, 𝑗1] where 1 ≤ 𝑖1 ≤ 𝑗1 < 𝑐 , T[𝑖2, 𝑗2]
where 1 ≤ 𝑖2 ≤ 𝑐 ≤ 𝑗2 ≤ 𝑛, and T[𝑖3, 𝑗3] where 𝑐 < 𝑖3 ≤ 𝑗3 ≤ 𝑛. Sequences in the second category

must be represented by the generated compact window ⟨1, 𝑐, 𝑛⟩ once and only once. Moreover,

based on the reduction, all the sequences in the first (or third) category must be in one and only

one compact window generated by the algorithm when the input is T[1, 𝑐 − 1] (or T[𝑐 + 1, 𝑛]). The
base case is when the input sequence is shorter than 𝑡 , in which case, all its sub-sequences are

shorter than 𝑡 and no compact window is needed to be generated. □

Complexity Analysis. Allign uses a segment tree to find a token with the smallest hash value in

the input sequence (which is a classical range minimum query, RMQ), which takes 𝑂 (log𝑛) for
each of the 𝑂 (𝑛) recursions. However, more advanced RMQ data structures and algorithms are

available [2, 7, 25]. For example, the data structure designed in [25] can be constructed in 𝑂 (𝑛)
time and space and it answers an RMQ in O(1) time. Thus the time and space complexities of our

compact window generation algorithm can be reduced to 𝑂 (𝑛) using this data structure [25].

3.4 Indexing Compact Windows
In this section, we discuss how to index the generated compact windows. We propose to build 𝑘

inverted index files. In each inverted index 𝐼𝑖 , the compact windows ⟨T, 𝑓𝑖 , 𝑙, 𝑐, 𝑟 ⟩ sharing the same

min-hash ℎ = 𝑓𝑖 (T[𝑐]) are placed in the same inverted list 𝐼𝑖 [ℎ] ordered by the text identifiers T.

When a query sequence arrives, we first get its 𝑘 min-hash values, then retrieve the 𝑘 corresponding

inverted lists from the 𝑘 inverted indexes, and finally count the hash collisions to determine the

near-duplicate sequences.

We first consider medium-scale corpora such as OpenWebText [29] (around 31 GB after tok-

enization) that can fit in memory. Note we target at a single ordinary machine with around 64 GB

memory and length threshold 𝑡 ≥ 25. We assume each token is an integer and the number of texts

fits in a 4-byte integer. As shown in Algorithm 1, we first load the entire corpus in memory (Line 2).

For each of the 𝑘 hash functions, the algorithm first builds an inverted index in memory and then

writes it back to disk (Lines 3 to 9). This is feasible as each inverted index contains no more than

2𝑁
𝑡+1 compact windows on average, where 𝑁 is the total number of tokens in the corpus (i.e., the

dataset size, which is ∼31 GB forOpenWebText). Since each compact window ⟨T, 𝑙, 𝑐, 𝑟 ⟩ consists of 4
integers (note the hash function is the same for all the compact windows in the same inverted index

and can be ignored). The ratio of the index size to the corpus size is no more than
8

𝑡+1 on average.

Thus the size of each inverted index is much smaller than the medium-scale corpus for a reasonable

length threshold 𝑡 (e.g., 50). For large-scale corpora like C4 [49] (around 750 GB after tokenization)

and Pile [27] (around 825 GB) that cannot fit in memory, we use hash aggregation [51, 56] to build

the inverted index files. Specifically, we load a batch of texts at a time and generate their compact

windows. For each of the 𝑘 hash functions, we partition the generated compact windows such that

compact windows from the same 𝑖-th hash function and with the same min-hash value ℎ are in

the same partition. Finally, we load each partition into memory to build the inverted list 𝐼𝑖 [ℎ] and
write them back to disk to construct the inverted index. In case a partition cannot fit in memory,

we use recursive partitioning [51]. The hash aggregation entails two passes of the inverted indexes

(one read and one write).

We can also build the index in parallel. Specifically, we assign each thread a batch of texts and

a private memory space. Each thread generates compact windows for all its texts and writes the

compact windows to its private memory. Finally, the compact windows in the private memory

space are merged and flushed to disk.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

179:8 Zhencan Peng, Zhizhi Wang, and Dong Deng

Algorithm 3: NearDuplicateSearch
Input: 𝑄 : a query sequence; 𝜃 : a similarity threshold; 𝑓1, 𝑓2, · · · , 𝑓𝑘 : 𝑘 independent hash

functions.

Output: All the near-duplicate sequences of 𝑄 in the corpus.

begin1

get the 𝑘 min-hash values of 𝑄 using 𝑓1, · · · , 𝑓𝑘 ;2

load the short inverted lists 𝐼1, 𝐼2, · · · , 𝐼𝑝 into memory;3

group the compact windows by their texts;4

foreach group C of text T of size ≥ 𝛽 − (𝑘 − 𝑝) do5

𝐴 = CollisionCount(C, 𝛽 − (𝑘 − 𝑝));6

if 𝐴 is not empty then7

locate and load the compact windows of T in the 𝑘 − 𝑝 long inverted lists and add8

them to C;

𝐴′ = CollisionCount(C, 𝛽);9

foreach ([𝑥, 𝑥 ′], [𝑦,𝑦′]) in 𝐴′ do10

foreach 𝑖 ∈ [𝑥, 𝑥 ′] and 𝑗 ∈ [𝑦,𝑦′] do11

add near-duplicate sequence T[𝑖, 𝑗] to Q;12

return Q;13

end14

3.5 Query Processing
Once a query sequence𝑄 arrives, we first calculate its 𝑘 min-hash values (a.k.a., 𝑘-mins sketch [24])

and load the 𝑘 corresponding inverted lists into memory. Each of them contains a list of compact

windows ⟨T, 𝑙, 𝑐, 𝑟 ⟩, in which every sequence T[𝑖, 𝑗] where 𝑙 ≤ 𝑖 ≤ 𝑐 ≤ 𝑗 ≤ 𝑟 collides once with

the query sequence. To find all the near-duplicate sequences in a text that collide with the query

sequence enough times (i.e., at least ⌈𝑘𝜃⌉ times), we aggregate the compact windows in the 𝑘

inverted lists by their text identifiers T. For each group of compact windows, we aim to find

all the sequences T[𝑖, 𝑗] reside in at least 𝛽 = ⌈𝑘𝜃⌉ compact windows ⟨𝑙, 𝑐, 𝑟 ⟩ in the group, i.e.,

𝑙 ≤ 𝑖 ≤ 𝑐 ≤ 𝑗 ≤ 𝑟 .

For this purpose, we split each compact window ⟨𝑙, 𝑐, 𝑟 ⟩ into two parts, the left interval [𝑙, 𝑐]
and the right interval [𝑐, 𝑟]. For any subset of compact windows in the group, let [𝑥, 𝑥 ′] be the
overlap of their left intervals and [𝑦,𝑦′] be the overlap of their right intervals. Then, every sequence
T[𝑖, 𝑗] where 𝑖 ∈ [𝑥, 𝑥 ′] and 𝑗 ∈ [𝑦,𝑦′] must collide with the query sequence 𝑠 times, where 𝑠 is

the number of compact windows in the subset. If 𝑠 ≥ 𝛽 = ⌈𝑘𝜃⌉, T[𝑖, 𝑗] must be a near-duplicate

sequence of the query sequence.

Based on the above observation, we propose an algorithm CollisionCount to find all the “large

enough” subsets of compact windows whose left intervals and right intervals both have non-empty

overlaps. It processes the left intervals and right intervals separately using our IntervalScanmethod.

In a nutshell, given a collection of intervals, IntervalScan first collects the endpoints of all intervals.

Then, it sorts the endpoints in ascending order and visits them one by one. As each endpoint either

means the start (entrance) of an interval or the end (exit) of an interval, we can keep track of the

subset of intervals that already start but not end yet during visiting. Clearly, the overlap of the

subset of intervals must be non-empty. Thus we report the subset if its size is “large enough”.

The pseudo-code of IntervalScan is shown in Algorithm 5. It takes a collection of intervals X
and an integer threshold 𝛼 as input and reports all the subsets of X whose overlaps are non-empty

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:9

Algorithm 4: CollisionCount(C, 𝛼)
Input: C: a collection of compact windows from the same text; 𝛼 : a collision threshold.

Output: Interval pairs containing all the sequences contained by at least ≥ 𝛼 compact

windows.

begin1

X ← the left intervals [𝑙, 𝑐] of all compact windows in C;2

𝐴 = IntervalScan(X, 𝛼);3

foreach (C′, [𝑥, 𝑥 ′]) in A do4

Y ← the intervals [𝑐, 𝑟] of all compact windows in C
′
;5

𝐴′ = IntervalScan(Y, 𝛼);6

foreach (C′′, [𝑦,𝑦′]) in 𝐴′ do7

add the pair ([𝑥, 𝑥 ′], [𝑦,𝑦′]) to the result set 𝐴′′;8

return 𝐴′′;9

end10

Algorithm 5: IntervalScan(X, 𝛼)
Input: X: a collection of intervals; 𝛼 : a collision threshold.

Output: All subsets of X with non-empty overlap and size ≥𝛼 .
begin1

foreach interval (𝑊, [𝑥,𝑦]) in X do2

add endpoints (𝑥, 1,𝑊) and (𝑦 + 1, 0,𝑊) into 𝑒𝑝 ;3

sort the endpoints in 𝑒𝑝 in ascending order;4

foreach distinct endpoint 𝑒 in 𝑒𝑝 do5

foreach endpoint (𝑒, 𝑏,𝑊) in 𝑒𝑝 do6

if b is 1 then add𝑊 into C;7

if b is 0 then remove𝑊 from C;8

if |C| ≥ 𝛼 then9

add (C, [𝑒, 𝑛𝑒𝑥𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡)) to 𝐴;10

return 𝐴;11

end12

and whose sizes are at least 𝛼 . The algorithm first collects the two endpoints 𝑥 (means the interval

starts) and 𝑦 + 1 (means the interval exits) of every interval [𝑥,𝑦] in the input X (Lines 2 to 3).

Then, it sorts all the endpoints in ascending order and visits them in sequence (Lines 4 to 6). For

each starting endpoint, its corresponding interval is added to an array C (Line 7). For each ending

endpoint, its corresponding interval is removed from the array C (Line 8). Once a distinct endpoint

𝑥 is passed, we check the status of the array. Let the next distinct endpoint be 𝑥 ′. Then, [𝑥, 𝑥 ′) must

be part of the overlap of all the intervals in the array right now. This is because these intervals all

have started but not ended yet in [𝑥, 𝑥 ′). If there are at least 𝛼 intervals in the array, we report it,

as well as the part of their overlap [𝑥, 𝑥 ′) (Lines 9 to 10).

Lemma 1. IntervalScan generates every subset of X whose overlap is non-empty and whose size is
at least 𝛼 once and only once.

We omit the proof due to space limit. Based on the IntervalScanmethod, we can find all the “large

enough” subsets of compact windows whose left and right intervals both have non-empty overlaps.

As shown in Algorithm 4, it takes a group of compact windows from the same text T and an integer

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

179:10 Zhencan Peng, Zhizhi Wang, and Dong Deng

threshold as input. It first collects the left intervals [𝑙, 𝑐] of every compact window ⟨𝑙, 𝑐, 𝑟 ⟩ in the

group. Then, it finds all the subsets of “large enough” left intervals with non-empty overlaps using

IntervalScan. For each of the subsets, it collects the right intervals of the compact windows from

where the left intervals in the subset come. It uses IntervalScan again to find those large enough

subsets of right intervals with non-empty overlaps. Finally, it adds the pair of non-empty interval

overlaps to the result set and returns the result set finally.

Complexity Analysis. Suppose there are𝑚 compact windows in the group. The time complexity

is 𝑂 (𝑚2
log𝑚). This is because it generates at most 𝑂 (𝑚) large enough subsets of left intervals

with non-empty overlaps. For each of them, it takes 𝑂 (𝑚 log𝑚) to sort the endpoints of the right

intervals. The scan takes linear time to𝑚. Thus the total time complexity is 𝑂 (𝑚2
log𝑚). Note the

size of each compact window group is usually small. In addition, the I/O cost dominates the query

latency. Thus the time complexity of our algorithm is affordable.

Prefix Filtering to Avoid Long Inverted Lists. Although each (distinct) token has the same

chance to be the min-hash of a sequence, the lengths of their inverted lists are vastly different.

This is because, in our compact window generation algorithm (that designed specifically for the

distinct Jaccard similarity instead of the multi-set Jaccard similarity), if a token has the minimum

hash value in the input sequence, each occurrence of the token in the sequence may produce a

compact window, which is placed in the same inverted list. Thus the length of the inverted list

is proportional to the token frequency. In the meanwhile, it is well known that the word/token

frequency in natural languages follows the Zipf law [48], i.e., the frequency of the most frequent

token is twice that of the second most frequent token, three times that of the third most frequent

token, etc. Thus in each inverted index, there are a few very long inverted lists.

When a query sequence contains min-hash values with long inverted lists, it is time consuming

to read the entire inverted lists. To avoid this, we use the prefix filtering techniques [5, 6, 18, 64].

Specifically, among the 𝑘 inverted lists, we only load those whose lengths are smaller than a

threshold. Suppose there are 𝑝 of them. Then we use our CollisionCount algorithm to find all the

candidates that collide at least 𝛽 − (𝑘 − 𝑝) times. For each text T in the candidates, we locate its

compact windows in the rest long inverted lists and only load their compact windows into memory.

After that, we re-apply our CollisionCount algorithm to produce the final near-duplicate sequences.

The pseudo-code is shown in Algorithm 3.

Zone Map. To facilitate locating compact windows of a specific text in an inverted list, we create

a zone map [51] for the long inverted lists. Specifically, since the compact windows are ordered

by the text identifiers in the inverted list, we record the offset of every other 𝑠 text identifier in

the inverted list, where the step size 𝑠 is a parameter. A few works design cost-models to choose a

good cutoff of long and short inverted lists (a.k.a., prefix length) [6, 21, 61]).

Theorem 2. Algorithm 3 is sound and complete. The sequences generated by the algorithm are all
(approximate) near-duplicate to the query sequence and all (approximate) near-duplicate sequences of
the query sequence are generated by the algorithm.

Remark. In practice, it is undesired to enumerate and show all the (redundant) near-duplicate

sequences to the users. Instead, we merge the overlapping near-duplicate sequences such that all

the sequences we report are disjoint from each other.

4 Evaluating Near Duplicate Sequence Search

Datasets. We used two real-world datasets. Both of them are frequently used in large neural

language model pre-training. (1) OpenWebText is a collection of web texts highly ranked on

Reddit [29]. It is an open-source replication of the WebText dataset, which is used to train the LLM

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:11

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

25 50 100

#
 o

f
C

o
m

p
a

c
t

W
in

d
o

w
s

Length Threshold t

32K
64K

128K

(a) OpenWebText (8M texts, 𝑘 = 1)

 0

 2x10
10

 4x10
10

 6x10
10

 8x10
10

 1x10
11

 1.2x10
11

 1.4x10
11

25 50 100

#
 o

f
C

o
m

p
a

c
t

W
in

d
o

w
s

Length Threshold t

k=1
k=2
k=4

(b) Pile (825GB texts, 50K vocab.)

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

1M 2M 4M 8M

#
 o

f
C

o
m

p
a

c
t

W
in

d
o

w
s

of Texts

t=25
t=50

t=100

(c) OpenWebText (𝑘 = 1, 64K vocab.)

 0

 7x10
9

 1.4x10
10

 2.1x10
10

 2.8x10
10

 3.5x10
10

100GB 200GB 400GB 800GB

#
 o

f
C

o
m

p
a

c
t

W
in

d
o

w
s

Corpus Size

t=25
t=50

t=100

(d) Pile (𝑘 = 1, 50K vocab.)

 0

 2

 4

 6

 8

 10

25 50 100

In
d

e
x
 S

iz
e

 (
G

B
)

Length Threshold t

32K
64K

128K

(e) OpenWebText (8M texts, 𝑘 = 1)

 0

 300

 600

 900

 1200

 1500

25 50 100

In
d

e
x
 S

iz
e

 (
G

B
)

Length Threshold t

k=1
k=2
k=4

(f) Pile (825GB texts, 50K vocab.)

 0

 2

 4

 6

 8

 10

1M 2M 4M 8M

In
d

e
x
 S

iz
e

 (
G

B
)

of Texts

t=25
t=50

t=100

(g) OpenWebText (𝑘 = 1, 64K vocab.)

 0

 50

 100

 150

 200

 250

 300

 350

100GB 200GB 400GB 800GB

In
d

e
x
 S

iz
e

 (
G

B
)

Corpus Size

t=25
t=50

t=100

(h) Pile (𝑘 = 1, 50K vocab.)

 0

 20

 40

 60

 80

25 50 100

E
la

p
s
e

d
 T

im
e

 (
s
)

Length Threshold t

32K
64K

128K

(i) OpenWebText (8M texts, 𝑘 = 1)

 0

 3000

 6000

 9000

 12000

 15000

 18000

25 50 100

E
la

p
s
e

d
 T

im
e

 (
s
)

Length Threshold t

k=1
k=2
k=4

(j) Pile (825GB texts, 50K vocab.)

 0

 20

 40

 60

 80

1M 2M 4M 8M

E
la

p
s
e

d
 T

im
e

 (
s
)

of Texts

t=25
t=50

t=100

(k) OpenWebText (𝑘 = 1, 64K vocab.)

 0

 2000

 4000

 6000

 8000

 10000

100GB 200GB 400GB 800GB
E

la
p

s
e

d
 T

im
e

 (
s
)

Corpus Size

t=25
t=50

t=100

(l) Pile (𝑘 = 1, 50K vocab.)

Fig. 2. Evaluating Index Construction.

GPT-2 [49]. Note that both exact and near-duplicate texts in OpenWebText have been removed. We

downloaded the dataset from huggingface
2
. It consists of around 8 million texts and the raw size is

around 40 GB. (2) The Pile [27] is constructed from 22 diverse high-quality datasets. We downloaded

it from huggingface
3
. Its raw size is 825.18 GB. It was used to trained the LLM GPT-Neo

4
.

BPE Tokenization. For OpenWebText, we trained a BPE model with vocabulary size of 64000

using 1 million texts with maximum length 10,000. After tokenization using the BPE model, the

size of OpenWebText was 31GB (note that we used a 4-byte integer to represent a token). For Pile,

we used the GPT2Tokenizer
5
to tokenize the dataset. This BPE tokenizer’s vocabulary size is 50257.

The dataset size after tokenization was 649 GB.

Environment.We implemented our algorithm using C++ and compiled the programs using g++7.5

with -O3 optimization. All the experiments were conducted on a machine with 24 2.40GHz Intel

Xeon Gold 6212U CPU cores (48 threads with hyper-threading) and 64 GB memory and 20 TB hard

disk. The operating system is Ubuntu 18.04. We used OpenMP for parallel computation.

4.1 Evaluating Index Construction
In this section, we evaluate our compact window generation and indexing algorithms.

2
https://huggingface.co/datasets/openwebtext

3
https://huggingface.co/datasets/the_pile

4
https://huggingface.co/docs/transformers/model_doc/gpt_neo

5
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://huggingface.co/datasets/openwebtext
https://huggingface.co/datasets/the_pile
https://huggingface.co/docs/transformers/model_doc/gpt_neo
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

179:12 Zhencan Peng, Zhizhi Wang, and Dong Deng

Number of Compact Windows Generated: We first evaluate the number of compact windows

generated under various length thresholds 𝑡 , numbers of hash functions 𝑘 , vocabulary sizes, and

dataset sizes 𝑛. As shown in Figures 2(a)-2(b), when we increased the length threshold 𝑡 , the

numbers of compact windows generated linearly decreased. For example, for 𝑡 = 25, 50, and 100,

the numbers of compact windows generated were around 620 million, 330 million, and 180 million

for 𝑘 = 1, 32K vocabulary size, and 8 million OpenWebText texts. This is because the number of

compact windows generated in expectation is 2
𝑛+1
𝑡+1 − 1, which is inversely proportionally to the

length threshold 𝑡 . In addition, for the same length threshold, a larger vocabulary size resulted

in a bit fewer compact windows. This is because the number of tokens 𝑛 in a text after encoding

using a larger vocabulary was usually a little smaller, while the number of compact windows is

proportional to 𝑛. Furthermore, the number of compact windows generated grew linearly with the

number of hash functions 𝑘 . Moreover, as shown in Figures 2(c)-2(d), when we increased the corpus

size, the number of compact windows generated grew linearly. For example, for 1M (million), 2M,

4M, and 8M OpenWebText texts, with fixed 𝑘 = 1, vocabulary size 64K, and 𝑡 = 100, the numbers of

compact windows generated were respectively 23 million, 46 million, 92 million, and 183 million.

This is consistent with our theoretical analysis.

Index Size. Next we evaluate the index sizes. Figures 2(e)-2(h) show the results. The index size

was proportional to the number of compact windows and showed the same trends as the number

of compact windows. As we can see, each inverted index was only around 2 GB when 𝑡 = 100 on

OpenWebText, while the dataset size after tokenization was around 31 GB. For Pile, each inverted

index was around 100 GB when 𝑡 = 100, while the raw dataset size was 825 GB. Although 𝑘 inverted

indexes were constructed in total, the index size was reasonable compared to the dataset size.

Index Time. We report the index time in Figures 2(i)-2(l). The index time consists of the compact

window generation time (the lower bars in the figures) and the disk I/O cost (the upper bars in the

figures). As we can see, the index time was also linear to the dataset size and the number of hash

functions, while inversely linear to the length threshold.

4.2 EvaluatingQuery Processing
In this section, we evaluate our query processing algorithm. We downloaded a collection of texts

generated by GPT-2 released by OpenAI (the creator of GPT-2)
6
and randomly chose a few texts as

the query sequences for OpenWebText. For Pile, we first generated a few texts using the GPT-Neo-

1.3B model without prompt. Then we slide a fixed-width window of 64 tokens over the generated

texts as the query sequences. We first vary the number of hash functions 𝑘 and the similarity

threshold 𝜃 and report the query latency and the number of near-duplicates found. Note the query

latency consists of two parts, the IO cost for loading inverted indexes (lower bars in the figures)

and the CPU computation cost (upper bars in the figures). In addition, all the experimental results

were averaged over 100 random queries. Figures 3(a), 3(b), 3(e), and 3(f) show the results. As we

can see from the figures, when the similarity threshold decreased, the query latency significantly

increased. Furthermore, query latency was dominated by the IO cost when the similarity threshold

was low. This is because prefix filtering did not filter all the sequences. A few texts need to access

their zone maps and long inverted lists, which incurred significant IO cost. There was no clear

trend between the number of hash functions and the query latency. This is because for different 𝑘 ,

the filtering power of prefix filter differs. Furthermore, no exact duplicates (i.e., when the similarity

threshold 𝜃 = 1) were found for the 100 random query sequences, while for 𝜃 = 0.7, on average 13

near-duplicate sequences were found in OpenWebText.

6
https://github.com/openai/gpt-2-output-dataset

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://github.com/openai/gpt-2-output-dataset

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:13

10
-2

10
-1

10
0

10
1

10
2

10
3

16 32 64

E
la

p
s
e

d
 T

im
e

 (
s
)

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(a) OpenWebText (8M texts, 𝑡 = 50)

 0

 5

 10

 15

16 32 64
#

 o
f

N
e

a
r-

D
u

p
lic

a
te

s
k, # of Hash Functions

θ=0.70
θ=0.85
θ=1.00

(b) OpenWebText (8M texts, 𝑡 = 50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1M 2M 4M 8M

E
la

p
s
e

d
 T

im
e

 (
s
)

of Texts

t=25
t=50

t=100

(c) OpenWebText (𝑘 = 32, 𝜃 = 0.9)

 0.1

 1

 10

 100

0.05 0.1 0.2

E
la

p
s
e

d
 T

im
e

 (
s
)

Prefix Length

32K vocab.
64K vocab.

128K vocab.

(d) OpenWebText (𝑘 = 32, 𝜃 = 0.9)

 0

 20

 40

 60

 80

 100

16 32 64

E
la

p
s
e

d
 T

im
e

 (
s
)

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(e) Pile (825 GB, 𝑡 = 50)

 0

 10

 20

 30

 40

16 32 64

#
 o

f
N

e
a

r-
D

u
p

lic
a

te
s

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(f) Pile (825 GB, 𝑡 = 50)

 0

 10

 20

 30

100GB 200GB 400GB 800GB
E

la
p

s
e

d
 T

im
e

 (
s
)

Corpus Size

t=25
t=50

t=100

(g) Pile (𝑘 = 32, 𝜃 = 0.9)

 0

 20

 40

 60

100GB 200GB 400GB 800GB

E
la

p
s
e

d
 T

im
e

 (
s
)

Corpus Size

θ=0.7
θ=0.85

θ=1.0

(h) Pile (𝑘 = 32, 𝑡 = 50)

Fig. 3. EvaluatingQuery Processing.

Next, we vary the dataset size, the similarity threshold, and the length threshold and report the

query latency. Figures 3(c), 3(g) and 3(h) show the results. As we can see, when the dataset size

increased (i.e., the number of texts in the corpus), the query latency linearly increased. This is

because the inverted index grows linearly with the dataset size, while both the IO cost and the

computation cost grow linearly with the dataset size. Moreover, for large dataset sizes, the IO cost

dominated the query latency. Furthermore, the query latency was inversely proportional to the

length threshold. This is because the large length threshold results in less number of compact

windows and shorter inverted lists. Figure 3(d) shows the query latency under various prefix lengths

from 5% most frequent tokens to 20% most frequent ones. We can see the total query latency stayed

roughly the same. However, the IO cost was proportional to the prefix length, while the CPU

computation cost was inversely proportional.

5 Evaluating Language Model Memorization

Settings. We focus on the GPT-2 [49] language models, which are Transformer-based neural

language models. Specifically, we downloaded the Mistral family pre-trained GPT-2 models
7
. It

contains 5 small (117M parameters) and 5 medium (345M parameters) GPT-2 models. These models

were trained using the OpenWebText dataset. For each model, it has many checkpoints of the

model in different training steps. In our experiments, we used the small and the medium GPT-2

models with seed 21 at training step 400,000. Furthermore, we downloaded two GPT-Neo language

models
8
. The GPT-Neo-1.3B model contains 1.3 billion parameters, while the GPT-Neo-2.7B model

has 2.7 billion parameters. These models were trained using the Pile dataset. For each of the four

language models, similar to the previous work [38], we used the top-50 sampling [37] strategy to

generate 1000 texts without prompts. The lengths of the generated texts were up to 512 tokens.

The first column in Table 1 shows a couple of example texts (snippets) generated by GPT-Neo-2.7B.

Evaluating Memorization. To evaluate the memorization behaviors in a reasonable time, given a

text T generated by the models, we used all the fixed-length sequences T[𝑖 · 𝑥 + 1, (𝑖 + 1) · 𝑥] in

7
https://github.com/stanford-crfm/mistral

8
https://huggingface.co/docs/transformers/model_doc/gpt_neo

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://github.com/stanford-crfm/mistral
https://huggingface.co/docs/transformers/model_doc/gpt_neo

179:14 Zhencan Peng, Zhizhi Wang, and Dong Deng

 0

 0.5

 1

 1.5

 2

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

Small GPT-2 117M
Medium GPT-2 345M

(a) 𝑡 = 25, 𝑥 = 32, 𝑘 = 32

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 0.9 0.8
P

e
rc

e
n

ta
g

e

Similarity Threshold θ

t=25, x=32, k=32
t=50, x=64, k=64

t=100, x=128, k=64

(b) Medium GPT-2 345M Model

 0

 2

 4

 6

 8

 10

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

GPT-Neo-1.3B
GPT-Neo-2.7B

(c) 𝑡 = 25, 𝑥 = 32, 𝑘 = 32

 0

 2

 4

 6

 8

 10

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

t=25, x=32, k=32
t=50, x=64, k=64

t=100, x=128, k=64

(d) GPT-Neo-2.7B Model

Fig. 4. Evaluating Language Model Memorization.

Table 1. Examples of generated texts (query sequences) and their near-duplicate sequences in the training

corpus Pile.

Generated Text Training Text

Copyright (C) 2016 Turi\n *\n * This program is free

software: you can redistribute it and/or modify\n * it

under the terms of the GNU General Public License

as published by\n * the Free Software Foundation, ei-

ther version 3 of the License, or\n * (at your more de-

tails.\n *\n * You should have received a copy of the

GNU General Public License\n * along with this program.

If not, see <http://www.gnu.org/licenses/>.\n */\n#ifndef

GLSUB_BINARY_H\n#define GLS

Copyright 2016 by Sehraf*\n *\n * This program is free

software: you can redistribute it and/or modify*\n * it un-

der the terms of the GNU Lesser General Public License

as *\n * published by the Free Software Foundation, ei-

ther version 3 of the *\n * License, or (at your option) any

later version. *\n * See the GNU General Public License

for\n * more details.\n *\n * You should have received a

copy of the GNU General Public License along\n * with

this program. If not, see <http://www.gnu.org/licenses/>.\n

*/\n\n#ifndef TRINITY_AREA_BOUNDARY_H\n#define

TRINITY_AREA_BOUNDARY_H\n

UNPUBLISHED\n\n UNITED STATES COURT OF AP-

PEALS\n FOR THE FOURTH CIRCUIT\n\n\n No. 09-

4269\n\n\nUNITED STATES OF AMERICA,\n\n Plaintiff -

Appellee,\n\n v.\n\nTHOMAS JOHNSON,\n\n Defendant -

Appell

UNPUBLISHED\n\nUNITED STATES COURT OF

APPEALS\nFOR THE FOURTH CIRCUIT\n\n\nNo. 11-

4269\n\n\nUNITED STATES OF AMERICA,\n\nPlaintiff

- Appellee,\n\nv.\n\nJOHN MOWAD JOHN-

SON,\n\Defendant -

the text as the query sequences where 𝑥 is the fixed query sequence length and (𝑖 + 1) · 𝑥 ≤ |T|.
Then we used our near-duplicate sequence search algorithm to find near-duplicate sequences of

the query sequences in the training corpus. Finally, we report the ratio of query sequences having

near-duplicates in the training corpus over all the evaluated query sequences. Table 1 lists a couple

of sequences generated by GPT-Neo-2.7B and their near-duplicate sequences we found in the

training dataset Pile.

We first evaluate the memorization behaviors of language models of various sizes. We set 𝑥 = 32,

𝑡 = 25, and 𝑘 = 32 and varied the similarity threshold 𝜃 . Figures 4(a) and 4(c) show the results. As

we can see, with the decrease of the similarity threshold, the percentage of generated texts having

near-duplicates in the training corpus increased. For example, there were around 2.3%, 3.3%, and

4.8% of sequences generated by GPT-Neo-1.3B having near-duplicate sequences in the training

corpus Pile when the similarity threshold were 1.0, 0.9, and 0.8. Furthermore, the GPT-Neo-2.7B

model memorized more sequences than the GPT-Neo-1.3B model. For example, when 𝜃 = 0.8,

around 7.2% and 4.8% of sequences generated by GPT-Neo-2.7B and GPT-Neo-1.3B were memorized

respectively. This is consistent with previous studies [38], which find that language models with

more parameters tend to memorize more training data. However, the small model with 117M

parameters in the Mistral GPT-2 family memorized more sequences than the medium model with

345M parameters. It may be because the model sizes were not large enough. Note the previous

work [38] used a language model with 1.5 billion parameters.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:15

We also measured the impact of the sliding window width 𝑥 (i.e., the query sequence length).

Figures 4(b) and 4(d) show the results. As we can see, the smaller sliding window usually entailed a

greater percentage of memorized sequences. This is because short sequences are more likely to

have near-duplicate sequences. The reason that sliding window width 𝑥 = 128 memorized more

percentage of generated sequences than 𝑥 = 64 for the GPT-Neo-2.7B model was because the

number of sliding windows (i.e., query sequences) of width 64 is more than twice the number of

sliding windows of width 128 (as the last 64-token sliding window in a text may not be in the last

128-token sliding window in the text).

6 Related Work
Near-Duplicate Search and Detection. Near-duplicate detection has been extensively studied

in many fields [1, 16, 17, 47, 53, 62, 65, 66]. There are various definitions of near-duplicates based

on the data model (using 𝑞-grams, tokens, or characters as the units), the metrics (weighted and

unweighted, Jaccard similarity [39], cosine similarity, overlap similarity, edit distance, Soundex

distance, etc), and the problem settings (similarity joins [19, 41], similarity search [18], approximate

extraction [40], approximate alignment [24], etc). A frequently used heuristic for near-duplicate

search is seed-and-extend [4, 8, 10, 31, 33, 36, 44, 47, 53, 55, 62]. It first finds seed matches between

the query sequence and the data sequence and then extends the seed matches as far as possible.

However, this heuristic does not have any guarantee. Moreover, it usually only works for order-

sensitive similarity metrics. For Jaccard similarity, a sequence is a set of unordered tokens. Thus it is

hard, if not impossible, to apply the heuristic. Moreover, it is suspicious if the heuristic would work

for terabyte data. The two most relevant works are Allign [24] and TxtAlign [63]. TxtAlign

focuses on text alignment, which takes two texts as input and finds all the near-duplicate sequence

pairs in the two texts. Allign focuses on partial plagiarism detection, which detects near-duplicate

sequences between a query document and every data document.

Full-Text Search and Search Engine. Full-text search and search engine support keyword

searches, which finds all the documents containing the query keywords [30, 32, 34, 42]. Fuzzy

match, regular expression, boolean operators, andwildcards can be used for keywordmatches [4, 20].

For example, AI2 maintains a full-text search service for the C4 dataset using ElasticSearch
9
[28].

Full-text search and search engine cannot handle near-duplicate sequence search, which is much

more computationally intensive.

Large Language Model Memorization Evaluation. Many studies show large, neural language

models memorize part of the training data. However, existing works mostly focus on the exact

memorization behaviors [12, 13, 35, 49, 59]. For example, it has been observed that GPT-2 memorizes

long repeated strings such as famous speeches (e.g., Gettysburg Address) [49]. However, once the

model drifts from the repeated strings (typically within 100-200 tokens), it displays widening

diversity [49]. Tirumala et al. [59] show that language models memorize the training data before

over-fitting and nouns and numbers are memorized first. McCoy et al. [45] shows language models

can memorize very long sequences with over 1000 words from the training data. Carlini et al. [14]

shows it is possible to extract training data by querying language models and demonstrate the

training data extraction attack [14] and the membership inference attack [12] on GPT-2 [49].

Lee et al. shows that over 1% of tokens generated unprompted by a language model are part of

a memorized sequence and deduplicating training data offers significant advantages (including

reducing memorization) and no observed disadvantages to language modeling [38]. Kandpal et

al. [35] shows that empirically the rate a training sequence is emitted by a language model is

superlinear to the sequence’s frequency in the training corpus. For example, on average, a sequence

9
https://c4-search.apps.allenai.org/

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://c4-search.apps.allenai.org/

179:16 Zhencan Peng, Zhizhi Wang, and Dong Deng

that appears 10 times in the training corpus is generated 1000×more often than a unique sequence in

the training corpus. At the same time, Carlini et al. [13] found that the chance language models emit

memorized training data significantly (superlinearly) grows when the model size, the sequence’s

frequency in the training corpus, or the context length increases.

7 Conclusion
In this paper, we study how many texts generated by large neural language models have near-

duplicates in the training corpus. However, as modern language models are trained on larger and

larger corpora (up to 1 terabyte) and the number of sequences in a text is quadratic to the text

length, it is a computational challenge to search near-duplicates in the large-scale text corpus. To

address this issue, we develop an efficient and scalable near-duplicate sequence search algorithm

based on the min-hash techniques. Experimental results show that our algorithm achieved high

performance and good scalability.

Acknowledgments
We thank the anonymous reviewers for their constructive comments. This material is based upon

work supported by the National Science Foundation under Grants No. 2152908 and No. 2212629.

References
[1] Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, and

Janyce Wiebe. 2016. SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation. In

SEMEVAL. The Association for Computer Linguistics, 497–511.

[2] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. 2004. Nearest Common Ancestors: A Survey and a New

Algorithm for a Distributed Environment. Theory Comput. Syst. 37, 3 (2004), 441–456. https://doi.org/10.1007/s00224-

004-1155-5

[3] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2017. Unsupervised neural machine translation.

arXiv preprint arXiv:1710.11041 (2017).
[4] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. 1999. Modern Information Retrieval. ACM Press / Addison-Wesley.

http://www.dcc.ufmg.br/irbook/

[5] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all pairs similarity search. In WWW.

131–140.

[6] Alexander Behm, Chen Li, and Michael J. Carey. 2011. Answering approximate string queries on large data sets using

external memory. In ICDE. 888–899.
[7] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin. 2005. Lowest

common ancestors in trees and directed acyclic graphs. J. Algorithms 57, 2 (2005), 75–94. https://doi.org/10.1016/j.

jalgor.2005.08.001

[8] Sergey Brin, James Davis, and Hector Garcia-Molina. 1995. Copy Detection Mechanisms for Digital Documents. In

SIGMOD. ACM Press, 398–409.

[9] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In SEQUENCES. IEEE, 21–29.
[10] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. 1997. Syntactic Clustering of the Web.

Comput. Networks 29, 8-13 (1997), 1157–1166. https://doi.org/10.1016/S0169-7552(97)00031-7

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. NIPS 33 (2020),

1877–1901.

[12] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. 2022. Membership

Inference Attacks From First Principles. In SP. IEEE, 1897–1914. https://doi.org/10.1109/SP46214.2022.9833649

[13] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan Zhang. 2022.

Quantifying Memorization Across Neural Language Models. CoRR abs/2202.07646 (2022). arXiv:2202.07646 https:

//arxiv.org/abs/2202.07646

[14] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,

Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from Large

Language Models. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021. USENIX Association,

2633–2650. https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://doi.org/10.1007/s00224-004-1155-5
https://doi.org/10.1007/s00224-004-1155-5
http://www.dcc.ufmg.br/irbook/
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/S0169-7552(97)00031-7
https://doi.org/10.1109/SP46214.2022.9833649
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:17

[15] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,

Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.

arXiv preprint arXiv:2204.02311 (2022).
[16] Abdur Chowdhury, Ophir Frieder, David Grossman, and Mary Catherine McCabe. 2002. Collection statistics for fast

duplicate document detection. ACM Transactions on Information Systems (TOIS) 20, 2 (2002), 171–191.
[17] Jack G Conrad, Xi S Guo, and Cindy P Schriber. 2003. Online duplicate document detection: signature reliability in a

dynamic retrieval environment. In CIKM. 443–452.

[18] Dong Deng, Guoliang Li, and Jianhua Feng. 2014. A pivotal prefix based filtering algorithm for string similarity search.

In SIGMOD Conference. 673–684.
[19] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. 2015. An Efficient Partition Based Method for Exact Set Similarity

Joins. Proc. VLDB Endow. 9, 4 (2015), 360–371.
[20] Dong Deng, Guoliang Li, He Wen, H. V. Jagadish, and Jianhua Feng. 2016. META: An Efficient Matching-Based Method

for Error-Tolerant Autocompletion. PVLDB 9, 10 (2016), 828–839.

[21] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap Set Similarity Joins with Theoretical Guarantees. In SIGMOD.
ACM, 905–920.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[23] Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018. Hierarchical Neural Story Generation. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers. Association for Computational Linguistics, 889–898. https://doi.org/10.18653/v1/P18-1082

[24] Weiqi Feng and Dong Deng. 2021. Allign: Aligning All-Pair Near-Duplicate Passages in Long Texts. In SIGMOD. ACM,

541–553. https://doi.org/10.1145/3448016.3457548

[25] Johannes Fischer. 2010. Optimal Succinctness for Range Minimum Queries. In LATIN 2010: Theoretical Informatics,
9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings (Lecture Notes in Computer Science),
Vol. 6034. Springer, 158–169. https://doi.org/10.1007/978-3-642-12200-2_16

[26] Philip Gage. 1994. A New Algorithm for Data Compression. C Users J. 12, 2 (feb 1994), 23–38.
[27] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish

Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2021. The Pile: An 800GB Dataset of Diverse Text for

Language Modeling. CoRR abs/2101.00027 (2021). arXiv:2101.00027 https://arxiv.org/abs/2101.00027

[28] Radu Gheorghe, Matthew Lee Hinman, and Roy Russo. 2015. Elasticsearch in action. Manning Shelter Island, NY.

[29] Aaron Gokaslan and Vanya Cohen. [n.d.]. OpenWebText Corpus.

[30] Alexander Halavais. 2017. Search engine society. John Wiley & Sons.

[31] Ossama Abdel Hamid, Behshad Behzadi, Stefan Christoph, and Monika Rauch Henzinger. 2009. Detecting the origin

of text segments efficiently. In WWW. ACM, 61–70.

[32] James R. Hamilton and Tapas K. Nayak. 2001. Microsoft SQL server full-text search. IEEE Data Eng. Bull. 24, 4 (2001),
7–10.

[33] Timothy C. Hoad and Justin Zobel. 2003. Methods for Identifying Versioned and Plagiarized Documents. J. Assoc. Inf.
Sci. Technol. 54, 3 (2003), 203–215. https://doi.org/10.1002/asi.10170

[34] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. 2009. Efficient Interactive Fuzzy Keyword Search. In WWW.

433–439.

[35] Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022. Deduplicating Training Data Mitigates Privacy Risks in Language

Models. In ICML (Proceedings of Machine Learning Research), Vol. 162. PMLR, 10697–10707. https://proceedings.mlr.

press/v162/kandpal22a.html

[36] Jong Wook Kim, K. Selçuk Candan, and Jun’ichi Tatemura. 2009. Efficient overlap and content reuse detection in blogs

and online news articles. In WWW. ACM, 81–90.

[37] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein,

Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: a benchmark for question answering research.

Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
[38] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas

Carlini. 2022. Deduplicating Training Data Makes Language Models Better. In ACL. 8424–8445.
[39] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive Datasets, 2nd Ed. Cambridge

University Press.

[40] Guoliang Li, Dong Deng, and Jianhua Feng. 2011. Faerie: efficient filtering algorithms for approximate dictionary-based

entity extraction. In SIGMOD Conference. 529–540.
[41] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN: A Partition-based Method for Similarity

Joins. PVLDB 5, 3 (2011), 253–264.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1145/3448016.3457548
https://doi.org/10.1007/978-3-642-12200-2_16
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.1002/asi.10170
https://proceedings.mlr.press/v162/kandpal22a.html
https://proceedings.mlr.press/v162/kandpal22a.html

179:18 Zhencan Peng, Zhizhi Wang, and Dong Deng

[42] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. 2011. Efficient fuzzy full-text type-ahead search. VLDB J. 20, 4
(2011), 617–640.

[43] Ping Li, Art B. Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In NIPS. 3122–3130.
[44] Udi Manber. 1994. Finding Similar Files in a Large File System. In USENIX Winter 1994 Technical Conference. USENIX

Association, 1–10.

[45] R. ThomasMcCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celikyilmaz. 2021. Howmuch do languagemodels

copy from their training data? Evaluating linguistic novelty in text generation using RAVEN. CoRR abs/2111.09509

(2021). arXiv:2111.09509 https://arxiv.org/abs/2111.09509

[46] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent neural network

based language model.. In Interspeech, Vol. 2. Makuhari, 1045–1048.

[47] Martin Potthast, Alberto Barrón-Cedeño, Andreas Eiselt, Benno Stein, and Paolo Rosso. 2010. Overview of the

2nd International Competition on Plagiarism Detection. In CLEF 2010 LABs and Workshops, Notebook Papers (CEUR
Workshop Proceedings), Vol. 1176. CEUR-WS.org.

[48] David MW Powers. 1998. Applications and explanations of Zipf’s law. In New methods in language processing and
computational natural language learning.

[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are

unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[50] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. 2019. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv e-prints
(2019). arXiv:1910.10683

[51] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. 2003. Database management systems. Vol. 3. McGraw-

Hill New York.

[52] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak, Michal

Jarkiewicz, and Lukasz Okruszek. 2021. Detecting formal thought disorder by deep contextualized word representations.

Psychiatry Research 304 (2021), 114135.

[53] Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken. 2003. Winnowing: Local Algorithms for Document

Fingerprinting. In SIGMOD. ACM, 76–85.

[54] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization with pointer-generator

networks. arXiv preprint arXiv:1704.04368 (2017).
[55] Jangwon Seo and W. Bruce Croft. 2008. Local text reuse detection. In SIGIR. ACM, 571–578.

[56] Ambuj Shatdal and Jeffrey F. Naughton. 1995. Adaptive Parallel Aggregation Algorithms. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (San Jose, California, USA) (SIGMOD ’95). Association
for Computing Machinery, New York, NY, USA, 104–114. https://doi.org/10.1145/223784.223801

[57] Narayanan Shivakumar and Hector Garcia-Molina. 1998. Finding Near-Replicas of Documents and Servers on the

Web. In The World Wide Web and Databases, International Workshop WebDB’98 (Lecture Notes in Computer Science),
Vol. 1590. Springer, 204–212.

[58] Mikkel Thorup. 2013. Bottom-k and priority sampling, set similarity and subset sums with minimal independence. In

STOC. ACM, 371–380. https://doi.org/10.1145/2488608.2488655

[59] Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. 2022. Memorization Without

Overfitting: Analyzing the Training Dynamics of Large Language Models. CoRR abs/2205.10770 (2022). https:

//doi.org/10.48550/arXiv.2205.10770 arXiv:2205.10770

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. NIPS 30 (2017).
[61] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix filtering?: an adaptive framework for

similarity join and search. In SIGMOD. 85–96.
[62] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshiharu Ishikawa. 2016. Local Similarity

Search for Unstructured Text. In SIGMOD. ACM, 1991–2005.

[63] Zhizhi Wang, Chaoji Zuo, and Dong Deng. 2022. TxtAlign: Efficient Near-Duplicate Text Alignment Search via

Bottom-k Sketches for Plagiarism Detection. In SIGMOD. ACM, 1146–1159. https://doi.org/10.1145/3514221.3526178

[64] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and GuorenWang. 2011. Efficient similarity joins for near-duplicate

detection. ACM Trans. Database Syst. 36, 3 (2011), 15.
[65] Hui Yang and Jamie Callan. 2005. Near-duplicate detection for eRulemaking. In Proceedings of the 2005 national

conference on Digital government research. 78–86.
[66] Hui Yang and Jamie Callan. 2006. Near-duplicate detection by instance-level constrained clustering. In ACM SIGIR.

421–428.

[67] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized

autoregressive pretraining for language understanding. NIPS 32 (2019).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/1910.10683
https://doi.org/10.1145/223784.223801
https://doi.org/10.1145/2488608.2488655
https://doi.org/10.48550/arXiv.2205.10770
https://doi.org/10.48550/arXiv.2205.10770
https://arxiv.org/abs/2205.10770
https://doi.org/10.1145/3514221.3526178

Near-Duplicate Sequence Search at Scale for Large Language Model Memorization Evaluation 179:19

Received November 2022; revised February 2023; accepted March 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Background: Large Language Models
	3 Near-Duplicate Sequence Search
	3.1 Problem Definition
	3.2 Min-Hash for Jaccard Similarity Estimation
	3.3 Efficient Min-Hash Generation
	3.4 Indexing Compact Windows
	3.5 Query Processing

	4 Evaluating Near Duplicate Sequence Search
	4.1 Evaluating Index Construction
	4.2 Evaluating Query Processing

	5 Evaluating Language Model Memorization
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

