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Recent studies show that large language models (LLM) unintendedly memorize part of the training data, which
brings serious privacy risks. For example, it has been shown that over 1% of tokens generated unprompted
by an LLM are part of sequences in the training data. However, current studies mainly focus on the exact
memorization behaviors. In this paper, we propose to evaluate how many generated texts have near-duplicates
(e.g., only differ by a couple of tokens out of 100) in the training corpus. A major challenge of conducting this
evaluation is the huge computation cost incurred by near-duplicate sequence searches. This is because modern
LLMs are trained on larger and larger corpora with up to 1 trillion tokens. What’s worse is that the number of
sequences in a text is quadratic to the text length. To address this issue, we develop an efficient and scalable
near-duplicate sequence search algorithm in this paper. It can find (almost) all the near-duplicate sequences of
the query sequence in a large corpus with guarantees. Specifically, the algorithm generates and groups the
min-hash values of all the sequences with at least ¢ tokens (as very short near-duplicates are often irrelevant
noise) in the corpus in linear time to the corpus size. We formally prove that only 2't‘T+11 — 1 min-hash values
are generated for a text with n tokens in expectation. Thus the index time and size are reasonable. When
a query arrives, we find all the sequences sharing enough min-hash values with the query using inverted
indexes and prefix filtering. Extensive experiments on a few large real-world LLM training corpora show that
our near-duplicate sequence search algorithm is efficient and scalable.
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1 Introduction

Language models learn a probability distribution over sequences of tokens (e.g., words or byte-pair
encodings [26]) and predict the next token given a sequence of previous tokens [46]. The large
neural language model (LLM) is a major breakthrough in natural language processing (NLP) in
recent years. They significantly boost the performance of numerous downstream NLP tasks, such as
machine translation [3], text summarization [54], and question answering [37]. The state-of-the-art
language models are based on Transformers [60], contain millions to billions of parameters, and
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are trained on large-scale text corpora with billions to trillions of tokens. For example, PaLM is a
Transformer-based LLM with 540 billion parameters and is pre-trained using a high-quality corpus
of 780 billion tokens [15], while GPT-3 has 175 billion parameters and is pre-trained using 500
billion token corpora [11]. Other prominent LLMs are ELMo [52], BERT [22], XLNet [67], T5 [50],
etc.

A few recent studies find that LLMs unintendedly memorize part of the training data [12, 13,
35, 49, 59]. For example, Lee et al. shows that over 1% of tokens generated unprompted by an
LLM are part of memorized sequences in the training data [38]. Moreover, the chance a training
sequence generated verbatim by an LLM is super-linear to the number of times it appears in the
training corpus [13, 35]. In the meanwhile, existing large-scale training corpora contain numerous
long duplicate sequences as well as sequences that are duplicated tens of thousands times [38].
Memorization is undesired as it not only degrades model generalization [13] but also leads to
unexpected privacy risks, such as membership inference attacks [12] and training data extraction
attacks [14].

However, existing work mainly focuses on the exact memorization behaviors of LLMs. In this
paper, we study near-duplicates, which are much more pervasive than exact duplicates in large-
scale training corpora. For example, it is estimated that around 30% to 45% of web contents are
near-duplicates [10, 57]. Specifically, we propose to evaluate how many texts generated by LLMs
have near-duplicate sequences in the training data. For this purpose, for each text generated by the
LLM, we find all its near-duplicate sequences in the training corpus (if there are any). We define
two sequences are near-duplicates if their Jaccard similarity is above a given threshold.

A major challenge of conducting this evaluation is how to efficiently find the near-duplicate
sequences of a query sequence in the training corpus, which entails a huge computation cost. This
is because modern LLMs are trained on larger and larger corpora (up to 1 terabyte), while the
number of sequences in a text is quadratic to the text length. As pointed out by recent studies,
finding exact duplicates in large-scale text corpora is already difficult [13], let alone near-duplicates.
To address this issue, we develop an efficient and scalable near-duplicate sequence search algorithm
based on the min-hash techniques [9]. It creates a min-hash sketch [24] for every sequence in the
training corpus offline and compares the query sequence’s sketch with the training sequences’
sketch to find the near-duplicates. We adopt the idea from a previous work [24] to aggregate the
min-hash values in a text. Moreover, we extend the previous work in the following ways. First
of all, we impose a length threshold ¢ and only generate min-hash values for sequences with at
least t tokens (as very short near-sequences are often irrelevant noise). We formally prove that
on average our algorithm generates 2251 — 1 min-hash values for a text with n tokens in O(n)
time. Thus the index time and size are reasonable even for large-scale text corpora. Second, we
design a novel algorithm to efficiently find all the min-hash sketches that are similar to the query
sequence’s sketch. In addition, the problem definitions are slightly different. The previous work
finds near-duplicate sequences in two long texts, while this paper searches sequences in a collection
of texts that are similar to a query sequence. Furthermore, this paper focuses on large-scale datasets
that cannot fit in memory, while the previous work only considers the in-memory case. Finally, we
apply our near-duplicate sequence search algorithm to evaluate the (fuzzy) memorization behavior
of large language models.

In summary, we make the following contributions in this paper.

e We develop an efficient and scalable near-duplicate sequence search algorithm. We formally
analyze the impact of the length threshold in our algorithm and propose an efficient query
processing algorithm.
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e We conduct extensive experiments using real-world large-scale text corpora to evaluate our
algorithm. Experimental results show that our algorithm is efficient and scalable.

e We evaluate the (fuzzy) memorization behaviors of four GPT-2 models of various sizes using
our algorithm.

The rest of the paper is organized as follows. We briefly introduce language models in Section 2.
Section 3 defines the near-duplicate sequence search problem and presents our algorithm. We
evaluate our algorithm in Section 4 and evaluate large language model memorization in Section 5.
Section 6 reviews related work and Section 7 concludes the paper.

2 Background: Large Language Models

In general, language models learn the probability distribution of the next token given a sequence
of previous tokens. For example, given two previous tokens “hello, good”, a reasonable language
model probably assigns a higher probability to the token “morning” than to the token “SIGMOD” as
the next token of the two tokens.

Training. Given a text corpus, for each training example xy, - - - , x, (e.g., a text in the corpus),
the language model is trained to minimize the loss £ = — Y1 logp(x;|x1,---,x;-1) where
p(xi|x1, - -+, xi—1) is the learned probability of x; as the next token to the previous tokens x;, - - - , x;_1.

The target for this probability is 1 for this training example. Thus the optimal solution for the model
is to memorize the training sequence [14]. However, since there are a huge number of training
examples in the text corpus, the trained model usually does not memorize every sequence in the
training data.

Generation Strategies. Once trained, to generate a text, we only need to repeatedly pick the
next token based on the learned probability distribution. The users can optionally provide the
first few tokens (namely prompt) to the language model for text generation. The simplest method
to pick the next token is random sampling based on the learned probability distribution [49]. A
few alternatives are greedy search, beam search, top-k sampling [23], and top-p sampling. Greedy
search picks the token with the highest probability as the next token. Beam search picks the batch of
next tokens with the highest probability, even though the first next token may not bear the highest
probability. The top-k sampling samples only from the k most probable next tokens as predicted
by the language model [23], while the top-p sampling samples only from the most probable next
tokens that form the p% cumulative probability.

Memorization. It has been shown large language models memorize part of their training data.
The model emits the training data verbatim when fed with appropriate prompts [13], which brings
serious privacy issues [35]. For example, it is found that about 1% of tokens generated unprompted
by a language model are part of sequences in the training corpus [38]. In this paper, we aim to
find how many texts generated by LLMs have near-duplicate sequences in the training corpus
(e.g., differ by a couple of tokens out of 100 tokens). For this purpose, we need to address the near-
duplicate sequence search problem. It finds all the near-duplicate sequences of a query sequence in
a large-scale training corpus (up to 1 terabyte).

3 Near-Duplicate Sequence Search
3.1 Problem Definition

We first define a few notations. A corpus D contains many texts. A text T consists of a series of
tokens. The total number of tokens in a text T is denoted as |T|. T[i, j] is the sequence in T from its
i-th token to its j-th token (included), where 1 < i < j < |T|. The token can be a word, a phrase, a
byte-pair encoding (BPE) [26], etc.
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DEFINITION 1 (NEAR-DUPLICATE SEQUENCE SEARCH). Give a text corpus D, near-duplicate sequence
search takes a query sequence Q and a similarity threshold 6 as input and outputs all the sequences
T[i, j] s.t. sim(Q, T[i, j]) = 0, where1 <i < j < |T| and T € D.

We focus on the Jaccard similarity sim in this paper, which is the ratio of the intersection size
(i.e., the number of common tokens) to the union size (i.e., the total number of distinct tokens) of
two sequences. However, depending on how duplicate tokens are handled, there are two kinds
of Jaccard similarities. The first one, distinct Jaccard similarity, first deduplicates two sequences
and then calculates the Jaccard similarity as usual. The second one, multi-set Jaccard similarity,
treats each occurrence of a token in a sequence as a unique token. For example, consider the two
sequences (A, A, A, B, B) and (A, B, B, B, C). The distinct Jaccard similarity is 2/3, while the multi-set
Jaccard similarity is 3/7 as it treats the two sequences as (A1, Az, As, By, Bz) and (Aj, By, Bz, B3, C1)
and the intersection and union sizes are 3 and 7, respectively. In this paper, we use the distinct
Jaccard similarity if not mentioned otherwise.

3.2 Min-Hash for Jaccard Similarity Estimation

We resort to the min-hash techniques [9] to address the near-duplicate sequence search problem.
In a nutshell, given a random universal hash function! that maps every token to a hash value, the
min-hash of a sequence is the minimum hash value of all its tokens. The distinct Jaccard similarity
of two sequences can be accurately estimated by s/k, where s is the number of min-hash collisions
of the two sequences in k trials using k independent random universal hash functions. This is an
unbiased estimation with low variance [43].

To address the near-duplicate sequence search problem, we develop an algorithm to find all
the sequences in the corpus whose min-hash values collide with those of the query sequence at
least [k6] times, where 0 is the user-provided similarity threshold. In addition, in practice, only
near-duplicate sequences that are long enough are interesting. For this purpose, we impose a length
threshold t and only find near-duplicate sequences with at least ¢ tokens. Formally, we have the
following problem definition.

DEFINITION 2. Give a text corpus D, a length threshold t, and k independent random universal
hash functions fi, - - -, fi. Near-duplicate sequence approximate search takes a query sequence Q and
a threshold 6 as input and outputs all the sequences T[i, j] s.t. Zﬁ:l 1{f(Q) = f(T[i, j])} = [kOT,
whereTeDandj—i+1>t.

Note here the hash function f; outputs the min-hash of its input sequence. In addition, 1{b} is a
boolean function that returns 1 (or 0) when b is true (or false). Since the variance of the Jaccard
similarity estimation is O(1/k) [43], for a large enough k, the near-duplicate sequence approximate
search guarantees to find most of the sequences in the corpus that are similar to the query sequence.

3.3 Efficient Min-Hash Generation

To find all the near-duplicate sequences, we propose to generate k min-hash values for every
sequence (of length at least ¢) in the text corpus during the offline indexing phase. However, the
total number of sequences in a large-scale text corpus (e.g., consists of a few hundreds of billions
of tokens) is enormous. A recent work ALLIGN on finding all the near-duplicate sequences in two
long texts designs an algorithm to tackle this problem [24]. In this paper, we adapt the algorithm
to work with the distinct Jaccard similarity, improve its time complexity, and formally analyze
the impact of the length threshold ¢. Finally, we design an algorithm for near-duplicate sequence
approximate search based on it.

leg, f(x) =a-x+b mod p where p is a large prime [58].
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Fig. 1. A running example.

The Existing Work for Text Alignment. ALLIGN proposes an algorithm to efficiently generate the
min-hash values of all the sequences in a long text [24]. The key idea is to group nearby sequences
in a text by their min-hash values using compact windows. A compact window is a tuple (T, f, [ c,r).
It represents all the sequences T[i, j] where ] < i < ¢ < j < r and all these sequences have the
same min-hash, which is f(T[c]). Moreover, the compact window is maximal, i.e., extending either
I or r makes the above condition no longer hold. Clearly, by definition, the hash value of T[c] is
the smallest among all the tokens in T[/, r]. For simplicity, we omit the text T and hash function f
in the compact window when they are clear from the context. For example, consider the text T
with 17 tokens and their hash values derived from a random hash function f as shown in Figure 1.
(1,13,17) is a compact window. All the sequences T[i, j] where 1 < i < 13 < j < 17 share the
same min-hash value f(T[13]) = 10.

ALLIGN proves there are O(n) compact windows in a text with n tokens and these compact
windows and all the sequences in the text are surjective, i.e., each sequence is in one and only one
compact window. It develops an algorithm that generates all the O(n) compact windows in the text
in O(nlogn) time and O(n) space. Moreover, it extends the algorithm to deal with the multi-set
Jaccard similarity when the text contains duplicate tokens [24].

Our Min-Hash Generation. As only the min-hash values of sequences with at least ¢ tokens
are needed in our settings, we do not need to generate a compact window (I, ¢, r) if its “width”
r —1+1 < t. Next we present an algorithm that generates all the “valid compact windows” whose
widths are at least ¢ in a text with n tokens in O(n) time and space. We further prove our algorithm
generates 2’;%11 —1 valid compact windows on average (i.e., in expectation) and every sequence with
at least t tokens is in one and only one of these valid compact windows. The compact windows can
be used to accurately estimate the distinct Jaccard similarity to the query.

Our algorithm is similar to the one in ALLIGN. It is a divide-and-conquer algorithm. Given a
sequence T[/, r], it divides the sequence into two by the token T[c] with the smallest token hash
value in the sequence. Then it recursively solves two sub-problems, one takes the (sub)-sequence
T[l,c — 1] as the input and the other one takes T[c + 1, r] as the input. In addition, it produces a
tuple (I, c, r), which, by definition, must be a compact window. The recursion stops when the input
sequence is not long enough (more specifically, when r — [ + 1 < t) as no valid compact window
exists in the input. Note initially the input sequence is the entire text T[1, |T|].

Note that, when there are multiple tokens with the same smallest hash value in the input sequence
(this happens when the text contains duplicate tokens), we randomly choose one to divide the
input sequence (i.e., break ties arbitrarily). The pseudo-code of the divide-and-conquer algorithm
is shown in Algorithm 2. It takes a sequence T[/, r], a length threshold ¢, a hash function, and a
result set Q as its input. If the input sequence is too short, the recursion stops (Line 2); otherwise,
it finds a token T[c] in the input sequence with the smallest hash value, adds a compact window
(I, ¢, ry into the result set Q (Lines 3 to 4), and recursively generates the compact windows in the
two (sub)-sequences divided by T[c] (Lines 5 to 6).

ExampLE 1. For example, consider the text and its token hash values in Figure 1. Let the length
threshold be t = 5. The algorithm first chooses T[13] to divide the text T[1, 17] to two sequences
T[1,12] and T[14, 17] and generates a compact window (1, 13, 17). The second sequence is shorter
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Algorithm 1: Indexing

Input: D: a text corpus; k: an integer; fi, f2,- - -, fi: k independent hash functions; t: a length

threshold.

Output: k inverted index files of compact windows on disk.
1 begin
2 load the text corpus D into memory;
3 foreach1 <i<kdo
4 foreach text T € D do
5 GeENERATECOMPACTWINDOWS(L, |T|, T, f;, t, Q);
6 foreach compact window (I,c,r) € Q do
7 h — fi(Tc]);
8 L append (T, [, ¢, r) to the inverted list ;[ h];
9 write the inverted index I; to the disk as a file;

// for large-scale corpora, load one batch of texts at a time, partition
the compact windows by i and h, and use hash aggregation to build the
inverted index files for each partition.

10 end

Algorithm 2: GenerateCompactWindows(l, r, T, f, t, Q)
Input: : an integer; r: an integer; T: a text; f: a hash function; ¢: a threshold; Q: a collection of
compact windows.
1 begin
2 if r—1+1 <t then return;
3 find a position ¢ € [, r] s.t. Vp € [Lr], f(T[c]) < f(T[p]) using an advanced RMQ
algorithm [25], break ties arbitrarily;

4 add a compact window (,c,r) to Q;

5 GENERATECOMPACTWINDOWS(L, ¢ — 1, T, f, t, Q);
6 GENERATECOMPACTWINDOWS(Cc + 1,7, T, f, t, Q);
7 end

than ¢ and is skipped. The algorithm recursively divides the first sequence by T[6] to two sequences
T[1,5] and T[7, 12] and generates a compact window (1, 6, 12). Eventually, it generates 5 “valid”
compact windows that are wide enough. The number exactly matches the expectation (as described

presently), which is 2%11 -1= 21—68 -1=5.

THEOREM 1. Algorithm 2 generates 2;‘%11 — 1 compact windows for a text T with n distinct tokens
in expectation. Furthermore, every sequence in T with at least t tokens is in one and only one of the

generated compact windows.

Proor. Let S, denote the expected number of compact windows generated by the algorithm for
a sequence of length n. Since the token hash values are random, every distinct token in the input
sequence has the same probability }1 to be the token that divides the input sequence. Thus we have

n 1 2 n
Snz - Sl‘_ +1+Sn—i =1+- Si_ .

The base cases are Sp = S; = -+ = S;—1 = 0 and S; = 1. Solving the recursive formula, we have

_ ontl
Sn—2m—l.
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The second part of the lemma can be proved using reduction. Let ¢ be the first token where the
algorithm chooses to divide the text. The algorithm must generate a compact window (1, c, n). All
the sequences of T can be partitioned into three categories, T[iy, j;] where 1 < i3 < j; < ¢, T[iy, j2]
where 1 < iy < ¢ < j, < n,and T[is, j3] where ¢ < i3 < j3 < n. Sequences in the second category
must be represented by the generated compact window (1, ¢, n) once and only once. Moreover,
based on the reduction, all the sequences in the first (or third) category must be in one and only
one compact window generated by the algorithm when the input is T[1, ¢ — 1] (or T[c + 1, n]). The
base case is when the input sequence is shorter than t, in which case, all its sub-sequences are
shorter than ¢ and no compact window is needed to be generated. O

Complexity Analysis. ALLIGN uses a segment tree to find a token with the smallest hash value in
the input sequence (which is a classical range minimum query, RMQ), which takes O(log n) for
each of the O(n) recursions. However, more advanced RMQ data structures and algorithms are
available [2, 7, 25]. For example, the data structure designed in [25] can be constructed in O(n)
time and space and it answers an RMQ in O(1) time. Thus the time and space complexities of our
compact window generation algorithm can be reduced to O(n) using this data structure [25].

3.4 Indexing Compact Windows

In this section, we discuss how to index the generated compact windows. We propose to build k
inverted index files. In each inverted index I;, the compact windows (T, f;, [, ¢, r) sharing the same
min-hash h = f;(T[c]) are placed in the same inverted list I;[h] ordered by the text identifiers T.
When a query sequence arrives, we first get its k min-hash values, then retrieve the k corresponding
inverted lists from the k inverted indexes, and finally count the hash collisions to determine the
near-duplicate sequences.

We first consider medium-scale corpora such as OpenWebText [29] (around 31 GB after tok-
enization) that can fit in memory. Note we target at a single ordinary machine with around 64 GB
memory and length threshold t > 25. We assume each token is an integer and the number of texts
fits in a 4-byte integer. As shown in Algorithm 1, we first load the entire corpus in memory (Line 2).
For each of the k hash functions, the algorithm first builds an inverted index in memory and then
writes it back to disk (Lines 3 to 9). This is feasible as each inverted index contains no more than
% compact windows on average, where N is the total number of tokens in the corpus (i.e., the
dataset size, which is ~31 GB for OpenWebText). Since each compact window (T, [, ¢, r) consists of 4
integers (note the hash function is the same for all the compact windows in the same inverted index
and can be ignored). The ratio of the index size to the corpus size is no more than % on average.
Thus the size of each inverted index is much smaller than the medium-scale corpus for a reasonable
length threshold ¢ (e.g., 50). For large-scale corpora like C4 [49] (around 750 GB after tokenization)
and P1LE [27] (around 825 GB) that cannot fit in memory, we use hash aggregation [51, 56] to build
the inverted index files. Specifically, we load a batch of texts at a time and generate their compact
windows. For each of the k hash functions, we partition the generated compact windows such that
compact windows from the same i-th hash function and with the same min-hash value h are in
the same partition. Finally, we load each partition into memory to build the inverted list I;[h] and
write them back to disk to construct the inverted index. In case a partition cannot fit in memory,
we use recursive partitioning [51]. The hash aggregation entails two passes of the inverted indexes
(one read and one write).

We can also build the index in parallel. Specifically, we assign each thread a batch of texts and
a private memory space. Each thread generates compact windows for all its texts and writes the
compact windows to its private memory. Finally, the compact windows in the private memory
space are merged and flushed to disk.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 179. Publication date: June 2023.



179:8 Zhencan Peng, Zhizhi Wang, and Dong Deng

Algorithm 3: NearDuplicateSearch

Input: Q: a query sequence; 0: a similarity threshold; fi, f2, - - -, fy: k independent hash

functions.
Output: All the near-duplicate sequences of Q in the corpus.

1 begin

2 get the k min-hash values of Q using fi, - -, fi;

3 load the short inverted lists Iy, I, - - - , I, into memory;

4 group the compact windows by their texts;

5 foreach group C of text T of size > f — (k — p) do

6 A = CorLisioNCouNT(C, f — (k — p));

7 if A is not empty then

8 locate and load the compact windows of T in the k — p long inverted lists and add

them to C;

9 A’ = CorrisioNCounT(C, f);
10 foreach ([x,x'], [y,y’]) in A’ do
11 foreachi € [x,x'] and j € [y,y'] do
12 L L add near-duplicate sequence T[i, j] to Q;
13 return Q;
14 end

3.5 Query Processing

Once a query sequence Q arrives, we first calculate its k min-hash values (a.k.a., k-mins sketch [24])
and load the k corresponding inverted lists into memory. Each of them contains a list of compact
windows (T, I, ¢, r), in which every sequence T[i, j] where [ < i < ¢ < j < r collides once with
the query sequence. To find all the near-duplicate sequences in a text that collide with the query
sequence enough times (i.e., at least [k6] times), we aggregate the compact windows in the k
inverted lists by their text identifiers T. For each group of compact windows, we aim to find
all the sequences T[i, j] reside in at least § = [kO] compact windows (/, ¢, r) in the group, i.e.,
I<i<c<j<r.

For this purpose, we split each compact window (/, ¢, 7) into two parts, the left interval [/, c]
and the right interval [c, r]. For any subset of compact windows in the group, let [x, x"] be the
overlap of their left intervals and [y, y’] be the overlap of their right intervals. Then, every sequence
T[i, j] where i € [x,x’] and j € [y, y’] must collide with the query sequence s times, where s is
the number of compact windows in the subset. If s > f = [k0], T[i, j] must be a near-duplicate
sequence of the query sequence.

Based on the above observation, we propose an algorithm CollisionCount to find all the “large
enough” subsets of compact windows whose left intervals and right intervals both have non-empty
overlaps. It processes the left intervals and right intervals separately using our IntervalScan method.
In a nutshell, given a collection of intervals, IntervalScan first collects the endpoints of all intervals.
Then, it sorts the endpoints in ascending order and visits them one by one. As each endpoint either
means the start (entrance) of an interval or the end (exit) of an interval, we can keep track of the
subset of intervals that already start but not end yet during visiting. Clearly, the overlap of the
subset of intervals must be non-empty. Thus we report the subset if its size is “large enough”.

The pseudo-code of IntervalScan is shown in Algorithm 5. It takes a collection of intervals X
and an integer threshold « as input and reports all the subsets of X whose overlaps are non-empty
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Algorithm 4: CollisionCount(C, )

Input: C: a collection of compact windows from the same text; a: a collision threshold.
Output: Interval pairs containing all the sequences contained by at least > o compact

windows.

1 begin

2 X « the left intervals [/, ¢] of all compact windows in C;
3 A = INTERVALSCAN(X, a);

4 foreach (C’, [x,x’]) in Ado

5 Y « the intervals [c, r] of all compact windows in C’;
6 A’ = INTERVALSCAN(Y, a);

7 foreach (C”,[y,y']) in A’ do

8 L add the pair ([x,x’], [y,y’]) to the result set A”’;

9 return A”;
10 end

Algorithm 5: IntervalScan(X, @)

Input: X: a collection of intervals; a: a collision threshold.
Output: All subsets of X with non-empty overlap and size >a.
1 begin

2 foreach interval (W, [x,y]) in X do

3 L add endpoints (x, 1, W) and (y + 1,0, W) into ep;
4 sort the endpoints in ep in ascending order;

5 foreach distinct endpoint e in ep do

6 foreach endpoint (e,b, W) in ep do

7 if b is 1 then add W into C;

8 if b is 0 then remove W from C;

9 if |C| > « then

10 L add (C, [e, next distinct endpoint)) to A;
11 return A;
12 end

and whose sizes are at least a. The algorithm first collects the two endpoints x (means the interval
starts) and y + 1 (means the interval exits) of every interval [x, y] in the input X (Lines 2 to 3).
Then, it sorts all the endpoints in ascending order and visits them in sequence (Lines 4 to 6). For
each starting endpoint, its corresponding interval is added to an array C (Line 7). For each ending
endpoint, its corresponding interval is removed from the array C (Line 8). Once a distinct endpoint
x is passed, we check the status of the array. Let the next distinct endpoint be x’. Then, [x, x") must
be part of the overlap of all the intervals in the array right now. This is because these intervals all
have started but not ended yet in [x, x"). If there are at least « intervals in the array, we report it,
as well as the part of their overlap [x, x”) (Lines 9 to 10).

LEMMA 1. IntervalScan generates every subset of X whose overlap is non-empty and whose size is
at least a once and only once.

We omit the proof due to space limit. Based on the IntervalScan method, we can find all the “large
enough” subsets of compact windows whose left and right intervals both have non-empty overlaps.
As shown in Algorithm 4, it takes a group of compact windows from the same text T and an integer
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threshold as input. It first collects the left intervals [/, c¢] of every compact window (l, ¢, r) in the
group. Then, it finds all the subsets of “large enough” left intervals with non-empty overlaps using
IntervalScan. For each of the subsets, it collects the right intervals of the compact windows from
where the left intervals in the subset come. It uses IntervalScan again to find those large enough
subsets of right intervals with non-empty overlaps. Finally, it adds the pair of non-empty interval
overlaps to the result set and returns the result set finally.

Complexity Analysis. Suppose there are m compact windows in the group. The time complexity
is O(m?log m). This is because it generates at most O(m) large enough subsets of left intervals
with non-empty overlaps. For each of them, it takes O(mlog m) to sort the endpoints of the right
intervals. The scan takes linear time to m. Thus the total time complexity is O(m? log m). Note the
size of each compact window group is usually small. In addition, the I/O cost dominates the query
latency. Thus the time complexity of our algorithm is affordable.

Prefix Filtering to Avoid Long Inverted Lists. Although each (distinct) token has the same
chance to be the min-hash of a sequence, the lengths of their inverted lists are vastly different.
This is because, in our compact window generation algorithm (that designed specifically for the
distinct Jaccard similarity instead of the multi-set Jaccard similarity), if a token has the minimum
hash value in the input sequence, each occurrence of the token in the sequence may produce a
compact window, which is placed in the same inverted list. Thus the length of the inverted list
is proportional to the token frequency. In the meanwhile, it is well known that the word/token
frequency in natural languages follows the Zipf law [48], i.e., the frequency of the most frequent
token is twice that of the second most frequent token, three times that of the third most frequent
token, etc. Thus in each inverted index, there are a few very long inverted lists.

When a query sequence contains min-hash values with long inverted lists, it is time consuming
to read the entire inverted lists. To avoid this, we use the prefix filtering techniques [5, 6, 18, 64].
Specifically, among the k inverted lists, we only load those whose lengths are smaller than a
threshold. Suppose there are p of them. Then we use our CollisionCount algorithm to find all the
candidates that collide at least f — (k — p) times. For each text T in the candidates, we locate its
compact windows in the rest long inverted lists and only load their compact windows into memory.
After that, we re-apply our CollisionCount algorithm to produce the final near-duplicate sequences.
The pseudo-code is shown in Algorithm 3.

Zone Map. To facilitate locating compact windows of a specific text in an inverted list, we create
a zone map [51] for the long inverted lists. Specifically, since the compact windows are ordered
by the text identifiers in the inverted list, we record the offset of every other s text identifier in
the inverted list, where the step size s is a parameter. A few works design cost-models to choose a
good cutoff of long and short inverted lists (a.k.a., prefix length) [6, 21, 61]).

THEOREM 2. Algorithm 3 is sound and complete. The sequences generated by the algorithm are all
(approximate) near-duplicate to the query sequence and all (approximate) near-duplicate sequences of
the query sequence are generated by the algorithm.

Remark. In practice, it is undesired to enumerate and show all the (redundant) near-duplicate
sequences to the users. Instead, we merge the overlapping near-duplicate sequences such that all
the sequences we report are disjoint from each other.

4 Evaluating Near Duplicate Sequence Search

Datasets. We used two real-world datasets. Both of them are frequently used in large neural
language model pre-training. (1) OpenWebText is a collection of web texts highly ranked on
Reddit [29]. It is an open-source replication of the WebText dataset, which is used to train the LLM
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Fig. 2. Evaluating Index Construction.

GPT-2 [49]. Note that both exact and near-duplicate texts in OpenWebText have been removed. We
downloaded the dataset from huggingface?. It consists of around 8 million texts and the raw size is
around 40 GB. (2) The P1LE [27] is constructed from 22 diverse high-quality datasets. We downloaded
it from huggingface®. Its raw size is 825.18 GB. It was used to trained the LLM GPT-Neo*.

BPE Tokenization. For OpenWebText, we trained a BPE model with vocabulary size of 64000
using 1 million texts with maximum length 10,000. After tokenization using the BPE model, the
size of OpenWebText was 31GB (note that we used a 4-byte integer to represent a token). For PILE,
we used the GPT2Tokenizer’ to tokenize the dataset. This BPE tokenizer’s vocabulary size is 50257.
The dataset size after tokenization was 649 GB.

Environment. We implemented our algorithm using C++ and compiled the programs using g++7.5
with -O3 optimization. All the experiments were conducted on a machine with 24 2.40GHz Intel
Xeon Gold 6212U CPU cores (48 threads with hyper-threading) and 64 GB memory and 20 TB hard
disk. The operating system is Ubuntu 18.04. We used OpenMP for parallel computation.

4.1 Evaluating Index Construction

In this section, we evaluate our compact window generation and indexing algorithms.
Zhttps://huggingface.co/datasets/openwebtext
3https://huggingface.co/datasets/the_pile

“https://huggingface.co/docs/transformers/model_doc/gpt_neo
Shttps://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer
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Number of Compact Windows Generated: We first evaluate the number of compact windows
generated under various length thresholds ¢, numbers of hash functions k, vocabulary sizes, and
dataset sizes n. As shown in Figures 2(a)-2(b), when we increased the length threshold ¢, the
numbers of compact windows generated linearly decreased. For example, for ¢t = 25, 50, and 100,
the numbers of compact windows generated were around 620 million, 330 million, and 180 million
for k = 1, 32K vocabulary size, and 8 million OpenWebText texts. This is because the number of
compact windows generated in expectation is 2221 — 1, which is inversely proportionally to the
length threshold t. In addition, for the same length threshold, a larger vocabulary size resulted
in a bit fewer compact windows. This is because the number of tokens n in a text after encoding
using a larger vocabulary was usually a little smaller, while the number of compact windows is
proportional to n. Furthermore, the number of compact windows generated grew linearly with the
number of hash functions k. Moreover, as shown in Figures 2(c)-2(d), when we increased the corpus
size, the number of compact windows generated grew linearly. For example, for 1M (million), 2M,
4M, and 8M OpenWebText texts, with fixed k = 1, vocabulary size 64K, and t = 100, the numbers of
compact windows generated were respectively 23 million, 46 million, 92 million, and 183 million.
This is consistent with our theoretical analysis.

Index Size. Next we evaluate the index sizes. Figures 2(e)-2(h) show the results. The index size
was proportional to the number of compact windows and showed the same trends as the number
of compact windows. As we can see, each inverted index was only around 2 GB when t = 100 on
OpenWebText, while the dataset size after tokenization was around 31 GB. For PiLE, each inverted
index was around 100 GB when t = 100, while the raw dataset size was 825 GB. Although k inverted
indexes were constructed in total, the index size was reasonable compared to the dataset size.

Index Time. We report the index time in Figures 2(i)-2(l). The index time consists of the compact
window generation time (the lower bars in the figures) and the disk I/O cost (the upper bars in the
figures). As we can see, the index time was also linear to the dataset size and the number of hash
functions, while inversely linear to the length threshold.

4.2 Evaluating Query Processing

In this section, we evaluate our query processing algorithm. We downloaded a collection of texts
generated by GPT-2 released by OpenAl (the creator of GPT-2) ® and randomly chose a few texts as
the query sequences for OpenWebText. For PiLE, we first generated a few texts using the GPT-Neo-
1.3B model without prompt. Then we slide a fixed-width window of 64 tokens over the generated
texts as the query sequences. We first vary the number of hash functions k and the similarity
threshold 6 and report the query latency and the number of near-duplicates found. Note the query
latency consists of two parts, the IO cost for loading inverted indexes (lower bars in the figures)
and the CPU computation cost (upper bars in the figures). In addition, all the experimental results
were averaged over 100 random queries. Figures 3(a), 3(b), 3(e), and 3(f) show the results. As we
can see from the figures, when the similarity threshold decreased, the query latency significantly
increased. Furthermore, query latency was dominated by the IO cost when the similarity threshold
was low. This is because prefix filtering did not filter all the sequences. A few texts need to access
their zone maps and long inverted lists, which incurred significant IO cost. There was no clear
trend between the number of hash functions and the query latency. This is because for different k,
the filtering power of prefix filter differs. Furthermore, no exact duplicates (i.e., when the similarity
threshold 6 = 1) were found for the 100 random query sequences, while for 6 = 0.7, on average 13
near-duplicate sequences were found in OpenWebText.

Shttps://github.com/openai/gpt-2-output-dataset
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Fig. 3. Evaluating Query Processing.

Next, we vary the dataset size, the similarity threshold, and the length threshold and report the
query latency. Figures 3(c), 3(g) and 3(h) show the results. As we can see, when the dataset size
increased (i.e., the number of texts in the corpus), the query latency linearly increased. This is
because the inverted index grows linearly with the dataset size, while both the IO cost and the
computation cost grow linearly with the dataset size. Moreover, for large dataset sizes, the IO cost
dominated the query latency. Furthermore, the query latency was inversely proportional to the
length threshold. This is because the large length threshold results in less number of compact
windows and shorter inverted lists. Figure 3(d) shows the query latency under various prefix lengths
from 5% most frequent tokens to 20% most frequent ones. We can see the total query latency stayed
roughly the same. However, the IO cost was proportional to the prefix length, while the CPU
computation cost was inversely proportional.

5 Evaluating Language Model Memorization

Settings. We focus on the GPT-2 [49] language models, which are Transformer-based neural
language models. Specifically, we downloaded the Mistral family pre-trained GPT-2 models’. It
contains 5 small (117M parameters) and 5 medium (345M parameters) GPT-2 models. These models
were trained using the OpenWebText dataset. For each model, it has many checkpoints of the
model in different training steps. In our experiments, we used the small and the medium GPT-2
models with seed 21 at training step 400,000. Furthermore, we downloaded two GPT-Neo language
models®. The GPT-Neo-1.3B model contains 1.3 billion parameters, while the GPT-Neo-2.7B model
has 2.7 billion parameters. These models were trained using the P1LE dataset. For each of the four
language models, similar to the previous work [38], we used the top-50 sampling [37] strategy to
generate 1000 texts without prompts. The lengths of the generated texts were up to 512 tokens.
The first column in Table 1 shows a couple of example texts (snippets) generated by GPT-Neo-2.7B.

Evaluating Memorization. To evaluate the memorization behaviors in a reasonable time, given a
text T generated by the models, we used all the fixed-length sequences T[i-x + 1, (i + 1) - x] in

"https://github.com/stanford-crfm/mistral
8https://huggingface.co/docs/transformers/model_doc/gpt_neo
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Fig. 4. Evaluating Language Model Memorization.

Table 1. Examples of generated texts (query sequences) and their near-duplicate sequences in the training
corpus PILE.

Generated Text [ Training Text

Copyright (C) 2016 Turi\n *\n * This program is free | Copyright 2016 by Sehraf*\n *\n * This program is free
software: you can redistribute it and/or modify\n * it | software: you can redistribute it and/or modify™\n * it un-
under the terms of the GNU General Public License | der the terms of the GNU Lesser General Public License
as published by\n * the Free Software Foundation, ei- | as *\n * published by the Free Software Foundation, ei-
ther version 3 of the License, or\n * (at your more de- | ther version 3 of the *\n * License, or (at your option) any
tails.\n *\n * You should have received a copy of the | later version. *\n * See the GNU General Public License
GNU General Public License\n * along with this program. | for\n * more details.\n *\n * You should have received a
If not, see <http://www.gnu.org/licenses/>.\n */\n#ifndef | copy of the GNU General Public License along\n * with
GLSUB_BINARY_H\n#define GLS this program. If not, see <http://www.gnu.org/licenses/>.\n
*/\n\n#ifndef TRINITY AREA_BOUNDARY_ H\n#define
TRINITY_AREA_BOUNDARY_H\n

UNPUBLISHED\n\n UNITED STATES COURT OF AP- | UNPUBLISHED\n\nUNITED STATES COURT OF
PEALS\n FOR THE FOURTH CIRCUIT\n\n\n No. 09- | APPEALS\nFOR THE FOURTH CIRCUIT\n\n\nNo. 11-
4269\n\n\nUNITED STATES OF AMERICA,\n\n Plaintiff - | 4269\n\n\nUNITED STATES OF AMERICA,\n\nPlaintiff
Appellee,\n\n v.\n\nTHOMAS JOHNSON,\n\n Defendant - | - Appellee,\n\nv.\n\nJOHN MOWAD JOHN-
Appell SON,\n\Defendant -

the text as the query sequences where x is the fixed query sequence length and (i + 1) - x < |T|.
Then we used our near-duplicate sequence search algorithm to find near-duplicate sequences of
the query sequences in the training corpus. Finally, we report the ratio of query sequences having
near-duplicates in the training corpus over all the evaluated query sequences. Table 1 lists a couple
of sequences generated by GPT-Neo-2.7B and their near-duplicate sequences we found in the
training dataset PILE.

We first evaluate the memorization behaviors of language models of various sizes. We set x = 32,
t = 25, and k = 32 and varied the similarity threshold 0. Figures 4(a) and 4(c) show the results. As
we can see, with the decrease of the similarity threshold, the percentage of generated texts having
near-duplicates in the training corpus increased. For example, there were around 2.3%, 3.3%, and
4.8% of sequences generated by GPT-Neo-1.3B having near-duplicate sequences in the training
corpus PiLE when the similarity threshold were 1.0, 0.9, and 0.8. Furthermore, the GPT-Neo-2.7B
model memorized more sequences than the GPT-Neo-1.3B model. For example, when 8 = 0.8,
around 7.2% and 4.8% of sequences generated by GPT-Neo-2.7B and GPT-Neo-1.3B were memorized
respectively. This is consistent with previous studies [38], which find that language models with
more parameters tend to memorize more training data. However, the small model with 117M
parameters in the Mistral GPT-2 family memorized more sequences than the medium model with
345M parameters. It may be because the model sizes were not large enough. Note the previous
work [38] used a language model with 1.5 billion parameters.
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We also measured the impact of the sliding window width x (i.e., the query sequence length).
Figures 4(b) and 4(d) show the results. As we can see, the smaller sliding window usually entailed a
greater percentage of memorized sequences. This is because short sequences are more likely to
have near-duplicate sequences. The reason that sliding window width x = 128 memorized more
percentage of generated sequences than x = 64 for the GPT-Neo-2.7B model was because the
number of sliding windows (i.e., query sequences) of width 64 is more than twice the number of
sliding windows of width 128 (as the last 64-token sliding window in a text may not be in the last
128-token sliding window in the text).

6 Related Work

Near-Duplicate Search and Detection. Near-duplicate detection has been extensively studied
in many fields [1, 16, 17, 47, 53, 62, 65, 66]. There are various definitions of near-duplicates based
on the data model (using g-grams, tokens, or characters as the units), the metrics (weighted and
unweighted, Jaccard similarity [39], cosine similarity, overlap similarity, edit distance, Soundex
distance, etc), and the problem settings (similarity joins [19, 41], similarity search [18], approximate
extraction [40], approximate alignment [24], etc). A frequently used heuristic for near-duplicate
search is seed-and-extend [4, 8, 10, 31, 33, 36, 44, 47, 53, 55, 62]. It first finds seed matches between
the query sequence and the data sequence and then extends the seed matches as far as possible.
However, this heuristic does not have any guarantee. Moreover, it usually only works for order-
sensitive similarity metrics. For Jaccard similarity, a sequence is a set of unordered tokens. Thus it is
hard, if not impossible, to apply the heuristic. Moreover, it is suspicious if the heuristic would work
for terabyte data. The two most relevant works are ALLIGN [24] and TXTALIGN [63]. TXTALIGN
focuses on text alignment, which takes two texts as input and finds all the near-duplicate sequence
pairs in the two texts. ALLIGN focuses on partial plagiarism detection, which detects near-duplicate
sequences between a query document and every data document.

Full-Text Search and Search Engine. Full-text search and search engine support keyword
searches, which finds all the documents containing the query keywords [30, 32, 34, 42]. Fuzzy
match, regular expression, boolean operators, and wildcards can be used for keyword matches [4, 20].
For example, AI2 maintains a full-text search service for the C4 dataset using ElasticSearch® [28].
Full-text search and search engine cannot handle near-duplicate sequence search, which is much
more computationally intensive.

Large Language Model Memorization Evaluation. Many studies show large, neural language
models memorize part of the training data. However, existing works mostly focus on the exact
memorization behaviors [12, 13, 35, 49, 59]. For example, it has been observed that GPT-2 memorizes
long repeated strings such as famous speeches (e.g., Gettysburg Address) [49]. However, once the
model drifts from the repeated strings (typically within 100-200 tokens), it displays widening
diversity [49]. Tirumala et al. [59] show that language models memorize the training data before
over-fitting and nouns and numbers are memorized first. McCoy et al. [45] shows language models
can memorize very long sequences with over 1000 words from the training data. Carlini et al. [14]
shows it is possible to extract training data by querying language models and demonstrate the
training data extraction attack [14] and the membership inference attack [12] on GPT-2 [49].
Lee et al. shows that over 1% of tokens generated unprompted by a language model are part of
a memorized sequence and deduplicating training data offers significant advantages (including
reducing memorization) and no observed disadvantages to language modeling [38]. Kandpal et
al. [35] shows that empirically the rate a training sequence is emitted by a language model is
superlinear to the sequence’s frequency in the training corpus. For example, on average, a sequence

“https://c4-search.apps.allenai.org/
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that appears 10 times in the training corpus is generated 1000X more often than a unique sequence in
the training corpus. At the same time, Carlini et al. [13] found that the chance language models emit
memorized training data significantly (superlinearly) grows when the model size, the sequence’s
frequency in the training corpus, or the context length increases.

7 Conclusion

In this paper, we study how many texts generated by large neural language models have near-
duplicates in the training corpus. However, as modern language models are trained on larger and
larger corpora (up to 1 terabyte) and the number of sequences in a text is quadratic to the text
length, it is a computational challenge to search near-duplicates in the large-scale text corpus. To
address this issue, we develop an efficient and scalable near-duplicate sequence search algorithm
based on the min-hash techniques. Experimental results show that our algorithm achieved high
performance and good scalability.
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