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A B S T R A C T

Deep Learning (DL) can diagnose faults and assess machine health from raw condition monitoring data
without manually designed statistical features. However, practical manufacturing applications require robust
and repeatable solutions that can be trusted in dynamic environments.

Machine data is often unlabeled and from very few health conditions (e.g., only normal operating data).
Furthermore, models often encounter shifts in domain as process parameters change and new categories of
faults emerge. Traditional supervised learning may struggle to learn compact, discriminative representations
that generalize to these unseen target domains since it depends on having plentiful classes to partition the
feature space with decision boundaries. Transfer Learning (TL) with domain adaptation attempts to adapt
these models to unlabeled target domains but assumes similar underlying structure that may not be present if
new faults emerge. This study proposes focusing on maximizing the feature generality on the source domain
and applying TL via weight transfer to copy the model to the target domain. Specifically, Self-Supervised
Learning (SSL) with Barlow Twins may produce more discriminative features for monitoring health condition
than supervised learning by focusing on semantic properties of the data. Furthermore, Federated Learning
(FL) for distributed training may also improve generalization by efficiently expanding the effective size and
diversity of training data by sharing information across multiple client machines. Results show that Barlow
Twins outperforms supervised learning in an unlabeled target domain with emerging motor faults when the
source training data contains very few distinct categories. Incorporating FL may also provide a slight advantage
by diffusing knowledge of health conditions between machines. Future work should continue investigating SSL
and FL performance in these realistic manufacturing scenarios.

1. Introduction

Smart factories need to detect and diagnose machine faults to
prevent costly downtime and repairs. To this end, machine learning
can build classification and regression models for condition monitoring
and fault diagnosis using statistical patterns discovered in large data
sets. Deep Learning (DL) has shifted the paradigm away from manually-
designed features (e.g., mean, variance, kurtosis, peak values, etc.) by
introducing efficient algorithms for training neural networks with many
layers to extract features automatically from raw data (e.g., vibration
signals) [1,2]. However, practical manufacturing applications require
robust and repeatable solutions that can be trusted in dynamic environ-
ments. Since DL models derive their behavior from empirical training
data, predictions can be difficult to verify and validate, and large
quantities of clean examples are not available covering all possible
operating conditions and process parameters. Building such exhaustive
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training sets is prohibitively time-consuming and cost-intensive—not
to mention the privacy concerns if data comes from many different
sources. Widespread use of DL for condition monitoring hinges on
finding effective alternatives that promote trust and repeatability.

Interest in pursuing trustworthy DL stems from early DL work
in manufacturing that established its superiority over traditional ap-
proaches like Support Vector Machine (SVM) for analyzing condition
monitoring data sets [3]. Despite excellent results on controlled lab-
oratory data sets, many practical considerations hinder widespread
adoption of DL within manufacturing. Contrary to image domains that
have millions of images from hundreds or thousands of categories [1],
fault diagnosis problems often lack the volume and diversity of data
required to learn robust feature extraction networks that generalize
beyond a single data set, operating condition, or machine [4]. Healthy
operating conditions dominate real-world industrial data sets with very
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few – if any – examples of faults [5]. Any limited examples of faults
will be overwhelmingly unlabeled. Furthermore, factory environments
are dynamic; new types of faults can occur without warning and be
confidently misclassified by an outdated model [6–8]. Thus, increased
operational trust starts with improving generalization to ensure mod-
els behave more predictably when confronted with uncertain process
dynamics and incomplete observational knowledge.

Transfer Learning (TL) can alleviate some issues with generaliza-
tion. TL seeks to repurpose and reuse a model when faced with chang-
ing data or tasks (e.g., new faults or process parameters) [9]. These
changes affect the statistical properties of the data, shifting it out of the
model’s valid input domain [10]. TL for domain adaptation transfers a
model from a labeled source domain to an unlabeled target domain.
However, emerging faults in the target domain may hinder the ability
to transfer the source domain model. Additionally, the target domain
itself could be unknown or represent a future operating state with
no data – even unlabeled data – available at training time. In this
case, TL approaches must learn the most generalizable representation
possible from the available data. The model can then be transferred
to the target domain and used as-is or fine tuned as target domain
data becomes available [9]. This technique can bootstrap models for
the target domain without assuming an isomorphic relationship to the
source domain conditions.

Bootstrapping source models with supervised learning (i.e., labeled
data) may be ineffective in practical condition monitoring since few
training conditions are available, and labels are often missing. Self-
Supervised Learning (SSL) may be more appropriate. SSL techniques
create compact clusters of features with similar semantic characteris-
tics [11]. Random augmentations (e.g., random scale, time shift, etc.)
implicitly specify what variation the model should expect within a
category of signals. For example, if both a randomly flipped signal
and the original should map to the same feature, the model learns to
ignore flipping. Requiring no labels, SSL facilitates learning data-centric
representations from raw, unannotated factory data.

While SSL may better bootstrap condition monitoring models, gen-
eralization can be improved further by sharing information among a
fleet of machines. Bandwidth constraints may prevent the fleet from
continually aggregating data in the cloud, but Federated Learning
(FL) can utilize the distributed data efficiently to develop a globally-
informed model [12]. Each client machine trains on locally observed
data and periodically transmits its model – not the raw data – to a
server which combines the updates into a single model. This global
model is then distributed to the clients, diffusing information among
them. Thus, FL can expand the effective size and diversity data sets
by integrating information from multiple clients without inundating
communication networks.

Condition monitoring literature lacks a cohesive introduction to SSL
and FL for maximizing model generalization. This study outlines how
SSL and FL can improve the generalization – and therefore trustwor-
thiness – of DL models on the factory floor via two complementary
strategies: SSL extracts informative representations without needing
labeled data, and FL expands the effective size and diversity of the
data set. Pursuing generalizable models through SSL and FL allows
manufacturers to adopt a knowledge-informed approach and securely
share information via FL among clients grouped by expert knowledge
while simultaneously maximizing the utilization of massively unlabeled
data via SSL. The contributions of this study can be summarized as
follows:

1. an overview of SSL and related work in manufacturing,
2. an overview of FL and related work in manufacturing,
3. a theoretically motivated framework for combining SSL and FL
to improve model generalization, and

4. a case study assessing SSL and FL under emerging faults and
changing process parameters using a motor fault data set.

The rest of this paper is organized as follows: Section 2 outlines the the-
oretical background and related work, Section 3 describes the proposed
SSL and FL methods for condition monitoring, Section 4 introduces a
motor health condition case study, Section 5 presents and discusses the
results, and Section 6 provides concluding remarks.

2. Theoretical background and related work

This work builds on Transfer Learning, Self-Supervised Learning,
and Federated Learning.

2.1. Supervised learning and transfer learning

Many factors can limit the applicability and robustness of machine
learning models. In manufacturing, changing processing parameters,
operating environments, and health conditions can negatively impact
performance by shifting the input data distribution outside the expected
domain. Transfer Learning (TL) seeks to adapt or reuse models trained
in a source domain to a related target domain [9], circumventing the
need for large volumes of labeled data for the target task.

2.1.1. Supervised learning
A typical fault diagnosis model can be split into a feature extraction

backbone G
✓
parameterized by weights ✓ and classification head F

�

with weights � that predicts the probabilities of K classes (e.g., faults)
from the extracted features. With labeled data, the model parameters
can be optimized with stochastic gradient descent and backpropagation
using the cross-entropy loss (i.e., cost) function:
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] is the set of predicted class probabilities for the batch.

Optimizing the weights to maximize classification accuracy teaches
the model to draw ‘‘decision boundaries’’ that separate the features
from different categories. However, changes in process parameters or
operating environment shift the distribution of input data and features
from G

✓
. These new features no longer align with the decision bound-

aries learned by the classifier F
�
, producing undefined or inconsistent

behavior. This damages the generalization of supervised classifiers.

2.1.2. Transfer learning via domain adaptation
Transfer Learning (TL) is one solution to the domain shift problem.

For domain adaptation, unlabeled data from a known target domain
can regularize the supervised training process so G

✓
produces stable,

matching distributions of source and target domain features for the
classifier F

�
. An updated loss function that includes unlabeled target

domain data is used during training:
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where X
s
is the batch of source domain inputs, Y

s
is the batch of source

domain labels, X
t
is the batch of unlabeled target domain inputs, and

D(�, �) is a function measuring the distribution discrepancy between
source domain features G

✓
(X

s
) and target domain features G

✓
(X

t
) [13].

The � factor controls the strength of feature regularization. Since the
feature extractor G

✓
produces a consistent distribution of features from

both the source and target domains, the fault classifier F
�
is more likely

to generate accurate predictions for the target domain.
A popular implementation of D(�, �) in manufacturing is Maximum

Mean Discrepancy (MMD). Using MMD to ensure similarity between
source and target features, [14] demonstrated TL of bearing and gear-
box vibration data across different loads and shaft speeds. With flexible
kernel implementations, MMD can be combined with a polynomial or
Cauchy kernel as shown on laboratory fault data sets [15,16]. Applying
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MMD at multiple levels in a deep feature extractor can also provide
performance gains for lab-to-real transfer for locomotive bearing fault
diagnosis and classification and localization of bearing faults [17,18].

Rather than relying on an explicit metric, another widely used ap-
proach is Domain Adversarial Neural Network (DANN) which replaces
the D(�, �) loss term with another neural network D

 
that learns to

discriminate source and target features [19]. By training the feature
extractor G

✓
to confuse the domain discriminator D

 
, the feature

extractor learns to generate matching features for source and target
domain data. DANN can facilitate TL across different bearing data sets
with a 1D CNN feature extractor [20]. Interestingly, combining both
MMD and DANN may be beneficial and has also been demonstrated
for TL across data sets [21].

2.1.3. Transfer learning via weight transfer
Domain adaptation may encounter difficulties when new faults

emerge. If the target domain contains emerging faults, encouraging
source and target features to match may be detrimental. Further-
more, the classifier itself must be reconfigured to detect the addi-
tional fault(s). Thus, instead of domain adaptation, TL under emerging
faults shifts to maximizing the generalization of feature representa-
tions learned on the source domain. If the representation is general
enough, network weights can be transferred to the target domain to
separate emerging faults and previously known faults. That is, given
labeled source and/or unlabeled target domain data, TL via weight
transfer seeks to pretrain a representation that remains discriminative
for future emerging faults. In image processing, weight transfer allows
applications to reuse low-level, general features learned by networks
trained on massive image data sets [22]. The size and diversity of
the training data enables these pretrained networks to produce highly
discriminative features for emerging categories of images. Starting from
these pretrained weights can produce useful feature representations for
solving problems in domains like medical imaging where data is too
scarce to train reliable image classifiers from scratch [23].

Manufacturing researchers have leveraged these pretrained image
networks creatively by transforming condition monitoring data sets into
images. While the high-level tasks differ, pretrained networks extract
useful low-level information about lines and shapes in the images [1].
If vibration data is transformed into 2D images via the Continuous
Wavelet Transform (CWT), these pretrained image networks can pro-
vide out-of-the-box features for training fault classifiers when labeled
manufacturing data is limited [24,25]. They can even accelerate do-
main adaptation by providing the initial feature representation before
applying a technique like MMD [13]. Outside of pretrained image
networks, [26] demonstrated that TL via weight transfer can improve
predictions of a target aircraft engine’s degradation by training a degra-
dation model on source engines, transferring the weights to the target
engine, and then fine-tuning on the target’s first few degradation steps.
However, in many cases TL via weight transfer remains difficult for
manufacturing because of the lack of labeled data required to pretrain
highly general feature extractors.

2.2. Self-supervised learning

Self-Supervised Learning (SSL) uses unlabeled data to train fea-
ture extraction networks that can be transferred to downstream tasks.
Broadly speaking, SSL lets the data ‘‘supervise itself’’ through pretext
tasks or invariance-based methods to learn a useful encoding of the
input examples. SSL could be transformational in manufacturing where
labeled data is scarce and unlabeled data is plentiful.

Fig. 1. SSL techniques seek to move augmented features towards members of the same
pseudoclass while increasing separation from other pseudoclasses.

2.2.1. Pretext task SSL
Pretext task SSL trains models on a related problem using auto-

generated labels. Examples of pretext tasks include predicting image
rotations [27], the relative position of patches within an image [28],
or the next word in a natural language sequence (e.g., GPT-n models
from OpenAI) [29]. Manufacturing and health monitoring research
has explored various adaptations of this approach. Some studies re-
brand traditional unsupervised techniques as ‘‘self-supervised’’. For
example, an embedding learned from only normal data via Kernel
Principal Component Analysis (PCA) helped detect faults in an indus-
trial metal etching process and was described as self-supervised [30].
Similarly, [31] trained a deep autoencoder as a ‘‘self-supervised’’ aux-
iliary task for bearing fault classification, while [32] adopted a similar
approach for anomaly detection in washing machines. Work by [33]
predicted the orientation of randomly rotated laser powder bed fusion
process images from additive manufacturing and characterized this as a
pretext task. However, since the downstream task was also orientation
prediction, this resembles pretraining with data augmentation rather
than a distinct pretext goal. True pretext task SSL for downstream fault
diagnosis mines features from unlabeled data via distinct pretraining
tasks that do not depend on fault information. For example, a model
could learn useful features by predicting statistical properties of un-
labeled input signals (e.g., mean, variance, skew, and kurtosis) [34].
Both [35,36] randomly distorted input signals and trained a model to
identify the applied distortion. All three approaches produced features
useful for bearing fault diagnosis. Thus, without requiring manual la-
bels, pretext task SSL can bootstrap models for future health monitoring
tasks.

2.2.2. Invariance-based SSL
Instead of using pretext tasks, invariance-based SSL applies random

transformations to a ‘‘seed’’ example from the data set, creating family
of examples belonging to the same ‘‘pseudoclass’’. The feature extrac-
tion network is then trained to homogenize features from all augmented
examples in the pseudoclass [11]. A contrastive loss function encour-
ages each pseudoclass to be both compact and well-separated from
others [37]. Through this process, the network learns to ignore the
randomized attributes and focus on semantically meaningful ways to
cluster the inputs data (see Fig. 1).

Contrastive approaches to Invariance-based SSL depend on having
plentiful ‘‘negative’’ examples of other pseudoclasses to ensure good
clustering. For example, consider the InfoNCE loss function, where x®+
is an augmented version (i.e., same pseudoclass) of a positive reference
example x+ [38,39]:

LInfoNCE = * log
s(G

✓
(x®+),G✓(x+))≥n

j=1 s(G✓(x®+),G✓(xj ))
(3)

where n is the size of the batch that includes a positive example x+
and n * 1 negative examples (i.e., other pseudoclasses), and s(�, �) is a
similarity metric. Increasing the number of negative examples increases
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Fig. 2. Barlow Twins encourages feature projections to be correlated within
each pseudoclass and independent from each other to reduce redundancy in the
representation.

the lower bound on the mutual information (similarity) between the
features of the positive sample G

✓
(x+) and those of its augmentation

G
✓
(x®+) [38]. This will encourage compact feature clusters. However,

efficiently training with enough negative examples can be nontrivial
since the batch size is limited [40]. Momentum Contrast (MoCo) [39]
increased the number of negative examples by accumulating features
across multiple batches. The encoder trained with contrastive loss to
separate the current batch from this larger group of negative example
features. A ‘‘momentum encoder’’ embedded the previous examples
into the latent space was updated through a running average to en-
sure the representations of negative examples from multiple previous
batches remained stable.

MoCo prompted many conceptually related developments. A Simple
Framework for Contrastive Learning of Visual Representations (Sim-
CLR) [41] and Bootstrap Your Own Latent (BYOL) [42] both proposed
modifications of the MoCo-style architecture that could perform well
with fewer or no negative examples. SimCLR made the important
contribution of a ‘‘projection head’’ network that mapped features to a
larger-dimension space before applying contrastive loss, protecting the
features themselves from being too aggressively homogenized. Work
by [43] proposed an even more straightforward approach known as
Simple Siamese Representation Learning (SimSiam). SimSiam learned
to consolidate feature projections from two augmentations while pre-
venting gradients from one of the projections from updating the en-
coder. This effectively held one projection stationary while moving the
other towards this anchor. This proved effective even without large
batches, plentiful negative examples, or momentum networks. Bypass-
ing issues with contrastive loss altogether, Barlow Twins used a cross-
correlation loss that learned correlated features among pseudoclass
examples while discouraging redundancy among the feature dimen-
sions (see Fig. 2) [44]. Subsequently, Variance-Invariance-Covariance
Regularization (VICReg) introduced a generalization of Barlow Twins
with a slightly more complex loss function [45]. These methods proved
increasingly useful for computer vision problems.

Within manufacturing, invariance-based SSL from computer vision
can be leveraged by first converting 1D sensing data into 2D images.
With 2D images of unlabeled vibration data, SimCLR can find discrimi-
native fault features for rotating machinery using image augmentations
like rotations, crops, and affine transforms [46]. Utilizing BYOL, [47]
extracted bearing fault features after converting vibration data to im-
ages with methods including Short-Time Fourier Transform (STFT)
and Continuous Wavelet Transform (CWT). However, applying image
domain techniques to vibration data might lack a robust, physically
meaningful interpretation. Therefore, an important step for adapting
invariance-based SSL to condition monitoring is designing appropriate
random augmentations for raw time series data (e.g., vibration and
electrical current) that guide training towards features with rich fault
information.

Fig. 3. By randomizing semantically meaningless attributes, augmentations force SSL to
identify pseudoclasses through the remaining, semantically meaningful characteristics.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.2.3. Designing time series data augmentations
The random augmentations used by invariance-based SSL must be

carefully selected to avoid destroying important semantic information.
Input semantics often emerge from complex underlying relationships;
high-level, semantic labels (e.g., bearing inner race fault) cannot be
reduced to a simple feature analysis (e.g., normalized vibration am-
plitude exceeding 0.6) nor should this be expected. The difficulty in
uncovering these nonobvious correlations motivates the use of DL.
Therefore, if an input attribute is semantically meaningful, extracting
and manipulating the attribute tends to be very difficult (e.g., algo-
rithmically transforming vibrations from a bearing inner race fault
to a healthy vibration signal). The contrapositive is also true: if an
attribute is not difficult to manipulate, it will likely not be semantically
meaningful (to an extent). Thus, effective random augmentations need
not be complex to homogenize representations of semantically-related
examples (see Fig. 3). Existing augmentation-based SSL work with
images supports this theory by using simple transforms like translation,
crop, flip, rotation, contrast, blur, and color distortion for state-of-
the-art results [43–45]. Each domain is different [48], and designing
equivalent augmentations for 1D time series data unlocks the potential
of invariance-based SSL for raw sensing signals.

Several studies have explored possible time series augmentations.
Since time series examples are related temporally (unlike images),
[49] generated pseudoclasses for invariance-based SSL from pairs of
consecutive instances from the vibration signal in addition to time and
amplitude distortions of single instances. Gaussian noise, amplitude
scaling, stretching, masking, and time shifting were used with MoCo
to pretrain a feature extractor for detect incipient faults in bearing
histories [50]. Adopting BYOL, [51] used truncation (i.e., masking a
contiguous region), lowpass filtering, Gaussian noise, geometric scal-
ing, and downsampling to learn representations from raw, unlabeled
vibration data for bearing fault diagnosis. Results indicated that trun-
cation and downsampling were particularly useful. A similar study
utilizing SimSiam was conducted by [52] with truncation, lowpass
filtering, Gaussian noise, and time reversal. Using a motor condition
data set, [53] implemented Barlow Twins on multichannel vibration
and current signals with random time shifting, truncation, scaling, and
vertical flipping. The random time shift was crucial for extracting good
features for the motor fault diagnosis task. These studies demonstrate
effective data augmentations when applying invariance-based SSL to
1D signals.



Journal of Manufacturing Systems 71 (2023) 274–285

278

M. Russell and P. Wang

Fig. 4. Overview of Federated Learning using FedAvg.

Algorithm 1: The FedAvg FL algorithm [12]
Input : Number of rounds N ; number of clients M ; client

steps per round n;
Output: Trained global model weights wN
w

0 } Random initial model weights;
for i} 1 to N do

for j } 1 to M do
w
i

j
} w

i*1; // Copy global to client
a
j
} 0;

for k } 1 to n do
// Train one minibatch on clientM } sample minibatch;L } ComputeLoss(M;wi

j
) wi

j
} w

i

j
* ⌘(L;

a
j
} a

j
+ M;

end
end
w
i } 1≥M

l=1 al

≥M

j=1 ajw
i

j
; // Update global

end

2.3. Federated learning

Federated Learning (FL) facilitates distributed training of predictive
deep learning models on private user data via the FedAvg algo-
rithm [12]. To maintain user privacy, network training is performed
on the user’s device—only the updated model weights and parameters
are sent to the cloud. In the FedAvg algorithm, the network weights
are averaged together to create the global model without needing
to send any client data to the cloud. This allows clients to retain
private control over their data while still collaborating to train a more
generalizable model. Algorithm 1 outlines FedAvg, starting with a
randomized global model w0 and performing N rounds of federation.
The global model for round i = 1, 2,… ,N is distributed to M clients
who update the model using n local minibatches of data. Each client
j = 1, 2,… ,M then transmits the updated model wi

j
for round i back

to the server. Each client also transmits total amount of training data
a
j
used by client j. Once all the updates are received for round i, the

server computes the global model via weighted average:

w
i = 1≥M

l=1 al

M…
j=1

a
j
w
i

j
(4)

The weighting coefficients a
j
ensure that the global update is biased

towards client models that trained on more data, which are likely to
produce a more stable step than models trained on only a few examples.
The global model is then redistributed to all the clients for the next
round of FL (see Fig. 4).

2.3.1. FL for condition monitoring and fault diagnosis
An immediately apparent benefit of FL for manufacturing is the

ability to train on multiple data sets without exposing sensitive factory

data to the server. Motivated by this privacy perspective, [54] proposed
FL for building a fault diagnosis model from isolated data sets, although
the method assumes all clients see matching faults. Client models with
low validation performance are ignored when aggregating the global
model to improve robustness. A peer-to-peer adaptation of FL showed
improvements over local training at each node for detecting wind tur-
bine and bearing faults [55]. [56] also investigated FL for bearing fault
diagnosis while proposing a vertical FL algorithm based on gradient
tree boosting to accommodate clients with different feature subsets.
For Remaining Useful Life (RUL) applications, [57] implemented FL for
collaborative training of transformer models on degradation data from
simulated turbofan aircraft engines.

2.3.2. Multi-party and single-party incentives for FL
Beyond privacy, FL offers benefits to both coalitions of multiple

manufacturers and within a single, distributed manufacturer. In addi-
tive manufacturing, [58] found that FL improves defect image segmen-
tation over locally trained client models and showed that performance
gains can both incentivize manufacturers to join existing federations
and incentivize these federations to welcome new clients. Work by [59]
further supports FL’s ability to improve model performance versus
locally trained models while preserving privacy among aircraft manu-
facturers. Even if manufacturers decline federations with competitors to
avoid possible model poisoning [60], FL offers substantial benefits for
communication-efficient training on distributed data owned by a single
manufacturing entity, reducing the network traffic needed to maximize
utilization of distributed sensing. However, in both the multi-party
and single-party paradigms, FL implementations must handle discrep-
ancies between clients while still maximally leveraging a collaborative
approach.

2.3.3. FL for heterogeneous clients
In practical applications, clients could have different tasks or dis-

tributions of data, making basic FedAvg suboptimal for each member
but still desirable for privacy benefits. Initializing FL clients with a pre-
trained global feature extractor can reduce the required training time
on individualized downstream tasks [61]. However, the case studies
only tested this for image domain tasks. Similarly, a personalized FL
approach can locally optimize feature extractors and classifiers while
penalizing shifts between the local classifier weights and the globally
optimized weights [62]. This permits the clients to share information
without a hard constraint that fixes weights among them. Surprisingly,
if the clients observe different faults, [63] demonstrated that FL can
share classifier information across rotating machinery clients even if
they have unbalanced or non-i.i.d classes. Injecting noise and creat-
ing fake pseudoclasses within each client can also help with globally
aligning classes between models [64]. Conversely, if the client input
distributions differ significantly, a single global model might not be
successful. [65] opted to cluster gradient updates from members and
perform FL separately within each subgroup. Experiments validated
the algorithm on benchmark data and a custom bearing fault data
set. However, these studies in heterogeneous FL critically stop short
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Fig. 5. SSL encourages compactness and separation of pseudoclasses while supervised representations are dependent on decision boundaries.

of addressing the problem of massively unlabeled data at each client.
Furthermore, when the number of observed classes is extremely limited,
relying supervised learning could hinder the discriminativeness of learn
representations.

3. Proposed methods for maximizing model generalization

Although supervised learning on massively diverse data sets may
produce generalizable features [66], it may struggle when class (i.e.,
fault/condition) diversity is limited in two ways by (1) producing less
compact clusters, and (2) allowing noise or systematic biases to dom-
inant feature extraction. A simple classification objective constructs
the feature space and decision boundaries without explicitly encour-
aging compact clusters (see Fig. 5). With limited training classes, the
model has few decision boundaries with which to partition the feature
space. This could produce loosely structured features, increasing the
likelihood that features from future emerging faults will overlap those
from previous health conditions. While adding compactness objectives
may help, fewer classes also means the model has fewer observations
from varied environmental conditions and process parameters. Since
DL implementations are free to learn features themselves, a supervised
model could resort to systematic biases to separate data rather than
the more complex underlying fault signals as intended. Combining data
from distributed machines could mitigate these issues by increasing
class diversity, but aggregating high-velocity sensing streams could be
difficult given bandwidth constraints. Furthermore, most raw data will
be unlabeled regardless, making large-scale supervised learning impos-
sible. The proposed method instead adopts SSL to support unlabeled
data and improve the feature space structure and FL to expand the
effective data set size without inundating communication networks or
introducing privacy concerns (see Fig. 6). Together, these techniques
learn a more discriminative feature space that generalizes to new
operating conditions and emerging faults.

3.1. Barlow twins

Replacing supervised learning with SSL introduces the knowledge-
informed assumption that although emerging faults or new operating
conditions have not been observed, this time series data from the target
domain will have similar building blocks and salient characteristics
– e.g., frequency content – that discriminates them. To extract these
salient indicators instead of unwanted biases, SSL relies on expert-
designed random data augmentations that indicate the expected varia-
tion with the signals. Barlow Twins SSL seeks to tightly cluster feature
projections from different augmentations of the same observation by

Algorithm 2: Random augmentations for Barlow Twins in
PyTorch style

# x: 1D input tensor with shape (B, C, L)
def randomly_augment(x):

# Random jitter
jitter = random.randrange(x.shape[-1])
x = torch.cat(

(x[:, :, jitter:], x[:, :, :jitter]),
dim=-1,

)
# Random scale
vmax = (

x.abs()
.reshape(x.shape[0], -1)
.max(dim=-1, keepdim=True)[0]

)
max_scale = vmax.reciprocal()
min_scale = 0.1
scales = (

torch.rand_like(max_scale)
* (max_scale - min_scale)
+ min_scale

)
x = x * scales.unsqueeze(-1)
# Random mask
mask_size = 64
mask_start = random.randrange(

x.shape[-1] - mask_size
)
mask_end = mask_start + mask_size
x[:, :, mask_start:mask_end] = 0.0

return x

maximizing the cross-correlation between projections. This ensures
that examples falling within the expected signal variation are grouped
closely together. The augmentations themselves should be informed by
knowledge of condition monitoring signals to randomize unimportant
signal attributes while preserving the semantic class [51]. Extending
the proposed augmentations from [53], Algorithm 2 outlines the ran-
dom transformations used with Barlow Twins in the proposed methods
for condition monitoring. The examples are randomly shifted (jittered)
in time, scaled, and masked. Given input batch X of n examples, feature
extraction backbone G

✓
, projector H

 
, Barlow Twins first computes

the projections of two augmented versions X® and X
®® of the input

batch (according to Algorithm 2) and their corresponding projections
Z

® = H
 
(G

✓
(X®)) and Z®® = H

 
(G

✓
(X®®)). Then both sets of projections



Journal of Manufacturing Systems 71 (2023) 274–285

280

M. Russell and P. Wang

Fig. 6. Proposed methods for comparing the discriminability of emerging faults when transferring weights from a supervised or self-supervised 1D CNN feature extraction backbone.
Federated Learning can then be used to share information efficiently among multiple client machines.

are normalized across the batch:
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Next, the cross-correlation matrix R is computed and normalized by the
batch size:

R = ÇZ
® ÇZ®®Ò_n (6)

Finally, the loss function can be calculated using R:

LBT(R) = tr
�
(R * I)2

�
+ �

…
i

…
jëi

R
ji

(7)

where � controls the strength of the independence constraint. The first
term encourages the diagonal elements to be one, meaning that individ-
ual features are highly correlated (aligned) across the batch, meaning
that instances within the expected variation—as defined by the ap-
plied random augmentations–will map to similar feature projections
(i.e., cluster together). The second term drives off-diagonal elements
to zero so each feature is independent from the rest. This improves
the representational capacity by ensuring multiple features do not
encode the same information. With this loss function, the Barlow Twins
feature extractor and projection head can be trained with standard
stochastic gradient descent and backpropagation methods. Fig. 7 shows
the architecture of the 1D CNN backbone G

✓
for extracting features

from condition monitoring data and the Barlow Twins projection head
H
 
.

3.2. Federated learning for information sharing

Most factory floors will have multiple similar machines that will
each experience different health conditions throughout operation. Data
from a single machine may contain very few distinct conditions, but
network constraints may prevent each machine from streaming all its
sensing data to the cloud to construct a unified data set. The machines
themselves may not be geographically colocated or may belong to
separate manufacturers without data-sharing agreements. To circum-
vent these hindrances, the model can be trained with FedAvg (see
Algorithm 1). Each client machine retains complete ownership of its
data while indirectly gaining knowledge about new health conditions
through model averaging on the FL server. This indirect information
sharing between clients via the global model can be viewed as a form

Fig. 7. The architectures for the 1D CNN backbone feature extractor G
✓
, supervised

K-class classifier F
�
, a and Barlow Twins projection head H

 
.

of TL. When each client receives an updated global model, they benefit
from the observations and knowledge of the other clients. Thus, even
if a client lacks training experience with a given health condition, if
another client has trained with that condition, the FL algorithm will
diffuse this experience back to the uninformed client (see Fig. 8).
Thus, FL may offer TL advantages among the clients, improving the
generalization of each one to future fault conditions. Moreover, The
client machines only send updated models to the FL server once per
round, significantly reducing the volume and velocity of data trans-
mitted to the cloud. By combining FL with SSL, DL can operate in
realistic condition monitoring scenarios with unlabeled, distributed
training data while reducing network communication and maintaining
manufacturer privacy.
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Fig. 8. Each client experiences different conditions, and averaging model weights diffuses this knowledge to other clients, maximizing the diversity of the data set and improving
performance on emerging faults.

Fig. 9. The SpectraQuest Machinery Fault Simulator used to collect the motor health condition data set.

4. Experiments

Two case studies investigate the proposed claims. The first compares
the generalizability of representations after pretraining with super-
vised learning or SSL on varying numbers of distinct classes. The
second examines the impact of distributed training with FL on model
performance under emerging faults.

4.1. Motor condition data set

Both case studies use a motor fault condition data set collected
from the SpectraQuest Machinery Fault Simulator (MFS) in Fig. 9. With
a 12 kHz sampling rate, two accelerometers mounted orthogonally
capture vibration data, and a current clamp measures electrical cur-
rent signals. Sixty seconds of steady-state data is gathered for eight
motor health conditions: normal (N), faulted bearings (FB), bowed
rotor (BoR), broken rotor (BrR), misaligned rotor (MR), unbalanced
rotor (UR), phase loss (PL), and unbalanced voltage (UV). Each of the
conditions is run at 2000 RPM and 3000 RPM with loads of 0.06 N m
and 0.7 N m for a total of 32 unique combinations of health conditions
and process parameters. For simplicity, each unique combination can
be identified with xy where x is 2 or 3 to specify the RPM parameter,
and y is ‘‘H’’ or ‘‘L’’ to specify a high or low load parameter (e.g., 3L
refers to 3000 RPM with load of 0.06 N m). The signals are then
normalized to [*1, 1] and split into 256-point windows for the DL
experiments.

4.2. Transfer learning experiments

The first set of experiments tests the claim that SSL is a more
effective TL pretraining method. The experimental design reflects the
following assumptions:

1. labeled training data is available from a source set of process
parameters,

2. unlabeled training data is available from a target set of process
parameters, and

3. the pretrained model may encounter new fault types once de-
ployed.

This scenario leads to three comparison methods:

• Supervised (Source): supervised training on the labeled source
domain data

• Barlow Twins (Source): self-supervised training on the source
domain data (ignoring labels)

• Barlow Twins (Target): self-supervised training on the unlabeled
target domain data

All three methods use the same 1D CNN feature extraction backbone
G shown in Fig. 7. The supervised network adds the K-class classifier
F
�
to the backbone, while Barlow Twins adds the projection head H

 
.

The networks F
�
and G

✓
are then optimized using stochastic gradient

descent and backpropagation with cross-entropy loss from (1). The
Barlow Twins model produces projections Z® = H

 
(G

✓
(X®)) and Z®® =

H
 
(G

✓
(X®®)) from input batch augmentationsX® and X®® (see Algorithm

2), and the training loss is computed from (5)–(7) with � = 0.01. Both
the supervised and self-supervised models are trained for 1000 epochs
with an Adam optimizer and learning rate of 0.0005.

To assess the quality and generalizability of each method’s repre-
sentation, the frozen features of each pretrained network are used to
train a privileged linear evaluation classifier with access to labeled
target domain data from all eight health conditions (the evaluation
data set), following conventions in the literature for evaluating SSL
models [44]. Access to privileged label information prevents this clas-
sifier from being trained and deployed in practice, but it follows the
accepted standard for assessing the separability of the underlying fea-
ture representations. The evaluation classifier is trained for 75 epochs
on the frozen features, and the test set accuracy is used to judge the
representation quality.
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Table 1
Transfer learning health condition sets.
# of conditions Condition classes

2

{N, PL}
{PL, BoR}
{BrR, UV}
{UR, UV}
{FB, UV}

4

{N, BrR, UR, UV}
{PL, BrR, MR, UV}
{FB, PL, BoR, UV}
{FB, BrR, MR, UR}
{BoR, BrR, MR, UR}

6

{N, FB, PL, BrR, MR, UR}
{N, PL, BoR, MR, UR, UV}
{N, PL, BoR, BrR, MR, UV}
{N, FB, BoR, BrR, MR, UV}
{N, PL, BoR, BrR, MR, UR}

Table 2
Federated learning health condition sets.
ID Client 1 Client 2

1 {BoR, MR} {BrR, UR}
2 {FB, UR} {BrR, UV}
3 {BoR, N} {BrR, FB}
4 {BrR, UV} {UR, N}
5 {FB, MR} {BoR, UV}

To simulate the occurrence of new, unseen faults, the source and
target domain training data sets are limited to two, four, or six ran-
domly selected health conditions. Since the evaluation data set contains
all eight conditions, this corresponds to encountering six, four, or two
previously unseen classes after pretraining, respectively.

To capture variation caused by the source/target domain selection,
training health conditions, and model initialization, 450 experiments
are conducted, 150 for each of the three comparative methods. The
150 runs come from all combinations of two source/target domain
pairs (3Lô2H or 2Hô3L), 15 unique health condition configurations
for the source/target training data, and five random seeds (0 through
4). The 15 combinations of training health conditions consist of five
randomly sampled sets for each of two, four, and six health conditions
(see Table 1). All experiments use an NVIDIA V100 GPU with 32 GB of
RAM for hardware acceleration.

4.3. Federated learning experiments

The FL experiments determine whether sharing model information
between clients with disjoint sets of training conditions will improve
the distinguishability of future emerging faults. To evaluate this, two
clients are each assigned two randomly selected motor health condi-
tions. Each client has local training data for its two conditions from
all process parameters combinations (i.e., 2L, 2H, 3L and 3H). The FL
server provides both clients with an initial global model with random
weights. In each round of FL, the clients train their local model on
their unique set of two health conditions and then return the updated
model to the server. The server averages the weights and redistributes
the new model to the clients in preparation for the next round of FL
(see Algorithm 1).

FL experiments are run for 1000 rounds, and each client trains for
20 local batches in each round. When performing supervised learning,
each client updates the weights using cross-entropy loss from (1).
For Barlow Twins training, each client uses the cross-correlation loss
from (5)–(7). Both supervised learning and Barlow Twins use the same
network architectures for TL shown in Fig. 6 and are trained with an
Adam optimizer and learning rate of 0.0002.

Each of the four possible model configurations – supervised learning
and Barlow Twins each with and without FL – is trained with five

Fig. 10. Target domain accuracy of the weight transfer methods on all eight motors
condition versus number of faults in the training domain.

random seeds (0 through 4) to gauge variation caused by random
initialization. Five unique sets of training conditions are tested to
marginalize effects of individual health conditions (see Table 2). All
combinations of the four methods, five seeds, and five condition sets
lead to a total of 100 FL experiments. All experiments use an NVIDIA
V100 GPU for hardware acceleration. Similar to TL, both clients are
evaluated using the accuracy of a privileged linear classifier trained on
the frozen feature extraction network to classify all eight conditions.
The classifier is trained for 75 epochs after FL is complete.

5. Results and discussion

The results indicate that Barlow Twins produces more generalizable
and transferable representations than supervised learning, and that FL
for information sharing may further improve performance.

5.1. Transfer learning results

Table 3 and Fig. 10 present the key TL results comparing super-
vised learning on labeled source process parameters, Barlow Twins
on unlabeled source process parameters, and Barlow Twins on unla-
beled target process parameters. The accuracy metrics are computed
from the test split of the evaluation data set containing all eight
conditions under the target process parameters. Even when just two
conditions are available for training, Barlow Twins generates a sepa-
rable representation capable of 93.5% accuracy when shown all eight
health conditions. In the same scenario, supervised learning is limited
to 83.9% accuracy. Fig. 11 shows representative confusion matrices
that highlight the improvements of SSL over supervised learning. For
example, supervised learning struggles to distinguish the misaligned
rotor (MR) and unbalanced rotor (UR) conditions while using Barlow
Twins boosts the accuracy within these categories by 15 and 6 points,
respectively. The SSL approach still confuses some classes (e.g., NõUR
and URô{MR,N}) possibly because the random augmentations could
not fully span the expected variation of these classes. That is, data
labeled as normal varied more than the expected variation captured
by the random jitter, scaling, and masking from Algorithm 2. As a
result, Barlow Twins clustered some of these examples closer to UR,
leading the evaluation classifier to miscategorize them. Similarly, some
PL examples are classified as MR using Barlow Twins representations,
indicating that these PL instances experience some variation that clus-
tered them closer to MR. Future work can investigate whether these
examples truly are miscategorized or actually resemble members of the
confused class. Barlow Twins can also utilize unlabeled target domain
data to further improve the representation – Barlow Twins (Target) in
Table 3 – while supervised learning cannot use this data due to the
lack of labels. Interestingly, Barlow Twins (Target) does not show a
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Fig. 11. Representative confusion matrices showing the advantage of using Barlow Twins over supervised learning when transferring models to new process parameters (3Lô2H)
with six emerging conditions.

Fig. 12. Client evaluation accuracies on all health conditions.

clear improvement over Barlow Twins (Source) indicating that SSL is
effective for learning generalizable features from the motor condition
monitoring source domain data.

As more conditions are included in training, the performance con-
vergence of supervised learning and Barlow Twins can be explained
according to the optimization objective of each approach. Supervised
learning seeks to split the data along decision boundaries for the
classifier. While this may ensure the training classes are distinguishable,
it does not guarantee compactness of the feature clusters. Thus, it is
suspected that features from new, emerging faults could overlap with
those from faults seen in training. In contrast, Barlow Twins encour-
ages similar input instances to have correlated and closely matching
features. This emphasis on feature similarity produces tight clusters
that reduce the likelihood of new fault features overlapping with ex-
isting clusters. When the number of training conditions increases, the
additional decision boundaries created by supervised learning naturally
improve feature cluster compactness, bringing its evaluation accuracy
closer to that of Barlow Twins. However, because manufacturing ap-
plications will have limited class diversity compared to the possible
number of emerging faults, these results show the general superiority
of SSL-based representations over those transferred from supervised
learning in uncertain operating environments.

5.2. Federated learning results

Table 4 and Fig. 12 present the FL results. Supervised learning
shows an noticeable increase in discriminability of emerging faults
when FL is included. Without FL, the overall evaluation accuracy
between the clients is only 67.6%. When FL is included, information
about the health conditions is shared indirectly through the FedAvg

Table 3
Transfer learning evaluation accuracy results (%).

# of training health conditions

Method 2 4 6

Supervised (Source) 83.9 ± 5.6 93.7 ± 2.8 96.7 ± 1.8
Barlow Twins (Source) 93.5 ± 2.1 94.8 ± 1.5 95.8 ± 1.9
Barlow Twins (Target) 93.3 ± 1.7 94.5 ± 1.1 95.9 ± 1.4

Table 4
Federated learning accuracy results (%).
Method Client 1 Client 2 Overall

Supervised 70.7 ± 4.5 64.4 ± 6.8 67.6 ± 6.5
Supervised (FL) 73.8 ± 4.5 73.7 ± 4.6 73.7 ± 4.5

Barlow Twins 80.8 ± 3.1 84.1 ± 3.0 82.4 ± 3.5
Barlow Twins (FL) 83.7 ± 2.0 83.6 ± 2.0 83.7 ± 2.0

server, boosting the overall accuracy to 73.7%. Since both clients share
a global model during FL, they have nearly identical accuracy. When
trained without FL, the supervised learning clients show a 6-point
discrepancy.

Barlow Twins outperforms all supervised learning methods even
when FL is excluded. The separately-trained clients reach an overall
evaluation accuracy of 82.4%. Once FL combined with Barlow Twins,
performance increases to 83.7%, the highest overall accuracy among
all methods. As in the supervised case, FL also reduces the discrepancy
between the clients, reducing the accuracy difference from 3.3 points to
0.1 point. The representative confusion matrices in Fig. 13 show in the
improvement in Client 1 when FL is included. Phase loss (PL) accuracy
increases from 90.5% to 97.8%, and misaligned rotor (MR) accuracy
increases from 63.9% to 71.4%. The differences in accuracy with
respect to the TL-only results may be a result of training with all sets of
process parameters instead of a single source domain set. The Barlow
Twins data augmentations might be effective for one or two process
parameter sets, they require additional development to capture the
class variation expected across all the process parameter combinations.
For example, the TL experiments might more easily distinguish N vs.
MR and UR because the transfer occurred between 2Hõ3L naturally
leading to more distant clusters than when data contains only a single
process parameter change. While these are directions for future work,
these preliminary results demonstrate how indirect information sharing
through the FedAvg server may be able to boost discriminability of
emerging faults, if the individual clients see a limited number of distinct
health conditions. By merging models trained on different subsets of
health conditions, FL may increase the diversity of the training data
set, improving the generalization of the learned features.
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Fig. 13. Representative confusion matrices showing the benefits of including FL for Barlow Twins Client 1. Client 1 was trained on {BoR, N}, while Client 2 (not shown) was
trained on {BrR, FB}.

5.3. Limitations and future directions

While the results are promising, the case study focuses on motor
condition monitoring. Additional experiments are necessary to validate
the approach more fully against a variety of manufacturing problems
and data sets. In addition, while SSL facilitates learning discriminative
representations without labeled data, downstream classification tasks
still require an additional step to either cluster features automatically
into presumed class groups or integrate a human-in-the-loop solution
in which an operator can tag a limited number of features with labels.
Future work should also characterize when SSL and FL approaches
struggle with manufacturing data. Understanding possible shortcom-
ings and failure modes will enable practitioners to rapidly implement
the right technology for a given problem.

6. Conclusion

Given growing developments in SSL, this study compares the gener-
alization of feature representations learned via SSL versus those learned
via supervised methods. In weight transfer experiments, a feature ex-
tractor trained with Barlow Twins outperformed a supervised classifier
when transferring to an operating environment with different process
parameters that contained emerging faults. With only two health con-
ditions for training, the features learned by Barlow Twins from the
source domain produced an evaluation classifier accuracy 9.6 points
higher than that of the representation learned by supervised training on
labeled source domain data. To further improve performance, knowl-
edge of distributed but similar SSL client models can inform an FL
architecture that shares fault experience while respecting privacy con-
cerns. Thus, manufacturing applications with large unlabeled data sets
can use SSL and FL to learn generalizable representations for emerging
faults even without diverse, labeled data. With enhanced emerging
fault detection across conditions, models will be better equipped for
the factory floor and improve the trustworthiness and reliability of
practical condition monitoring deployments.
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