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Because of lithium-ion batteries’ wide applications in our daily life and industrial sectors, understanding their
performance degradation mechanisms and improving their health management are essential to improve their
durability, reliability, and sustainability. However, Li-ion batteries exhibit complex performance degradation
behaviors, typically in a combination of nonlinear gradual degradation with time-varying deterioration rates and
abrupt performance changes (e.g., sudden capacity drops or regenerations), posing significant challenges to
accurate and reliable degradation tracking and prediction. This study tackles this challenge from two perspec-
tives: an advanced stochastic model to describe complex degradation patterns and a generalizable Bayesian
inference neural network for efficient parametric estimation of the stochastic model. Specifically, the stochastic
model employs a rational polynomial term for tracking gradual battery degradation and a compound Poisson
process term for capturing abrupt capacity changes. To estimate the model parameters related to degradation
rates and scaling, a novel Conditional Invertible Neural Network (CINN) architecture is investigated. CINN can
comprehensively evaluate the degradation likelihood (i.e., dependencies of capability observations on various
battery degradation patterns) by leveraging extensive simulation data during the training phase, and then
through its unique inverse calculation capability, efficiently and probabilistically estimate the posterior density
of model parameters conditional on capacity observations in the real-world applications. The effectiveness of the
proposed stochastic model and parametric estimation method, in terms of accuracy and generalizability, has
been evaluated using simulation data and run-to-failure tests provided in NASA’s lithium-ion battery dataset.
Experimental studies and comparisons reveal that the CINN-based parametric estimation substantially out-
performs two commonly adopted Bayesian inference methods, Particle Filtering (PF)-based step-by-step esti-
mation and Markov Chain Monte Carlo (MCMC)-based batch estimation, on both accuracy and computational
efficiency.

1. Introduction the importance of battery condition monitoring and health management
[5]. Presently, battery health management typically relies on conven-

Because of advantageous properties in power capacity, thermal sta- tional condition-based maintenance, which involves routine checks and

bility, and other factors, lithium-ion (Li-ion) batteries have been widely
applied in our daily life and industrial applications [1]. For example, in
manufacturing, Li-ion batteries equipped electric freight vehicle fleets
[2] and automated guided vehicles (AGV) greatly enhance the
manufacturing automation, flexibility, and efficiency toward smart
manufacturing [3,4].

As Li-ion batteries become more integral to industrial equipment,
their performance directly affects overall system reliability, highlighting

replacements at predetermined intervals. However, the shift toward
predictive maintenance, which schedules maintenance based on dy-
namic battery condition assessments and Remaining Useful Life (RUL)
predictions, can minimize unnecessary maintenance and equipment
downtime. This approach has the potential to reduce maintenance ex-
penses and enhance production efficiency [6,7].

Predictive maintenance relies on two core components: performance
degradation tracking and RUL prediction [8]. Performance degradation
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tracking models the dependencies of degradation on various influencing
factors such as time, usage patterns, and environmental conditions,
which are then leveraged to predict batteries’ future degradation tra-
jectories h and RUL [9]. Existing methods in performance degradation
modeling can be categorized into three approaches: physics-based,
data-driven and hybrid. Physics-based models empirically and mathe-
matically represent degradation as a function of influence factors, and
determine model coefficients from experimental data through deter-
ministic regression techniques [10-12]. While generalizable to describe
global degradation behaviors, these models fall short in capturing
instance-to-instance variations or uncertainties [13]. Data-driven
models, especially upon emerging machine learning techniques such
as statistical regression [14], relevance vector machines [15], neural
networks [16], and deep learning [17], aim to discover the degradation
patterns from historical data in a black-box modeling nature. This
approach, while usually achieving better estimation and prediction ac-
curacies than physics-based models due to their ability to learn from
large datasets, lacks the interpretability that is necessary to physically
validate the decision-making process. The hybrid approach combines
the strengths of the previous two approaches, i.e., integrating
physics-informed model structures with a data-driven estimation algo-
rithm, aiming to enhance the interpretability and generalizability of the
modeling as well as the accuracy of estimations and predictions [18,19].

Our previous work has developed an advanced stochastic model that
employs a rational polynomial term for tracking nonlinear gradual
battery degradation and a compound Poisson process term for capturing
abrupt capacity changes [20]. To estimate the model parameters that
determine the degradation rates as well as probabilistically evaluate the
variation of model parameters under different conditions, Bayesian
inference techniques are investigated in estimating the posterior Prob-
ability Density Function (PDF) of model parameters on battery capacity
observations. Two representative Bayesian inference techniques are
compared: Particle Filtering (PF) as a sequential estimation method and
Markov Chain Monte Carlo (MCMC) as a batch estimation method. PF
applies sequential Monte Carlo sampling to estimate posterior PDFs of
model states and parameters, and is applicable to nonlinear and
non-gaussian system estimation because of its Jacobian-free calculations
[20-22]. MCMC follows a similar Monte Carlo sampling approach. But
instead of updating the parameter distribution after each step in the
sequence of observations as is done in PF, the model performance in
MCMC is evaluated across the whole training set of observations before
changing the estimated parameters for a batch estimation [23,24].
Findings from [20] indicate that PF-based step-by-step estimation pre-
dicts future degradation based on the latest degradation trend and
misses an overview of global degradation trend, especially related to
non-stationary abrupt capacity changes. MCMC is better in adaptively
capturing abrupt events, but involves more model parameters and falls
short in computational efficiency.

In this paper, a novel Conditional Invertible Neural Network (CINN)-
based posterior PDF estimation method is investigated for imple-
mentation of Bayesian inference and parametric estimation of the sto-
chastic battery degradation model developed in [20]. CINN is unique for
its affine coupling block structure and inverse calculation capability.
During the training phase of the CINN, capacity observations and sto-
chastic model parameters are prepared in pairs, and their conditional
PDFs are mapped into unit Gaussian distributions to minimize correla-
tion ambiguities between model parameters and capacity observations.
Once the training is completed, the CINN applies its inverse calculation
capability to estimate the posterior PDF upon capacity observations,
through inverse mapping from sampling from unit Gaussian distribu-
tions. Compared to other Bayesian inference methods, there are two
major advantages of this CINN method:

e CINN training can be realized using simulation data, which mini-
mizes the real-world data collection/labeling efforts and also
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facilitates the model’s ability to generalize across a wide range of
battery degradation scenarios through comprehensive simulations;

e Unlike PF or MCMC that perform model training for individual
batteries, the CINN approach allows for the direct input of capacity
measurements to obtain stochastic model parameters through
straightforward calculations. Hence, CINN is more versatile in its
application, as it does not necessitate individualized training per
battery, and surpasses computational efficiency.

To evaluate the performance of the combination of the advanced
stochastic battery degradation model and CINN-based probabilities
model parametric estimation method, experimental evaluations are
done in the run-to-failure tests provided in the NASA’s lithium-ion
battery data. Comparative studies are also done between CINN and PF
and MCMC. The following sections detail the methodologies, experi-
mental studies, results, and findings.

2. Methodology

This section starts with the review of the advanced stochastic battery
degradation model, and then introduces CINN-based posterior PDF
estimation.

2.1. Stochastic battery degradation model

Developed in our previous work [20], the stochastic model can ac-
count for both non-linear gradual degradation and transient capacity
changes in battery performance degradation. The model employes a
rational polynomial model with two unknown parameters a and § to
describe gradual capacity degradation:

apk
B AT 1
10000 + (k) T =

X = Xg—1
where k denotes battery charging-discharging cycles, and the modeling
uncertainty is characterized by v,. The unknown parameters a and f
control the degradation rate’s vertical scaling, horizontal scaling, and
peak position, respectively. Fig. 1.

Besides gradual degradation, batteries may experience abrupt ca-
pacity changes, for example transient capacity regeneration events that
drastically raise capacity values after a long period of rest between two
sequential charge-discharge cycles. The regeneration events arise as a
continuous, random process with jumps, which could be detailed by
Compound Poisson Process (CPP). The abrupt changes in capacity are
modeled as stochastic increments:

Ak
AC(k) =) R; @
i=1

where i event’s regeneration magnitude is R;, the event frequency is
represented by 1. Regeneration magnitudes are not constant but can be
characterized by different non-negative distributions, whereas regen-
eration frequency can be assumed to follow an exponential distribution
and to be a constant value for a particular battery. To get a compre-
hensive stochastic degradation model, the rational polynomial model
and the CPP model are combined as follows:

afk 1
—W"r&((k)mod(ﬂ ))Rk-‘r\/p 3)

Xk = Xg—1
In this study, five different distributions are examined for Ry: gamma
distribution Ry ~ Gamma(s, 9), normal distributionRy ~ N(u, 6), expo-
nential distribution Ry ~ exp(m), uniformRy ~ U(a,b) and Chi-square:
Rk ~ y*(x), where s and 9 determine the scale and shape of the gamma
distribution, x and ¢ are the mean and variance of the normal distri-
bution, m determines how quickly the exponential distribution decays, a
and b are the minimum and maximum values of the uniform
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Fig. 1. Overview of the stochastic battery degradation model and CINN-based parametric estimation for battery performance tracking and prognosis.

distribution, and « is the degree of freedom for the Chi-square distri-
bution. Historical regeneration occurrences are used to fit the relevant
distributional characteristics.

2.2. CINN-based posterior estimation

The objective of the probabilistic parametric estimation is to learn a
posterior PDF p(8|x1.x) given the historical degradation development x;.
N- The parameters 0 refer to the unknown parameters in Eq. (3), for
example a, f, 4, y and o if Ry is modelled as a normal distribution. One
challenge for posterior PDF estimation is that there may not be a one-to-
one mapping between 0 and x;.y. Hence, estimating p(6|x;.x) is indeed
an ambiguous inverse estimation problem. One way to address this
problem is to introduce an additional latent variable z, to constrain the
mapping in the inverse estimation:p(0|x1.v) < p(0|x1.n,2),withz ~ N5 (z|0,
1). z can be set to follow a 5-dimensional unit normal distribution, to not
disrupt the original correlation between 6 and x;.x.

The posterior PDF estimation is then proposed to be realized through
CINN with network parameters ® [25], which tries to predict unit
Gaussian distribution upon inputs of  and x;.n. CINN is selected because
of its unique Affine Coupling Block (ACB) structure, which facilitates the
inverse calculation from network outputs to network inputs, as shown in

Fig. 2. Illustration of ACB structure.

Fig. 2.

The CINN segments the parameters into two sets, corresponding to
two information flows, the connection between which is done through
four separate sub-networks, sl1, t1, s2, and t2. Each sub-network takes
one subset of parameters and degradation data as inputs, and the four
networks are subsequently stacked. Intuitively speaking, this configu-
ration allows CINN to hierarchically decompose the degradation, in an
order of determining parameters related to transient capacity changes
first, as transient changes need to be evaluated in a global overview. The
forward and backward operations of ACB structure are:

{ wi = v; © exp(s;(va, X1v) + 11 (v2, X1v)) @

wy = v, © exp(sa(wi, x1v) + (Wi, X1v))

{ vy = (W2 — a(wi,x1v)) © exp(sa(wi, x1n)) )
vi = (w1 =t (v, x18)) © exp(s1(v2, x1v))

During the training phase, the training data mainly come from sim-
ulations that define appropriate ranges of parameters and generated
degradation time series based on Eq. (3). In simulations, parameter
ranges can be obtained from statistical analysis of practical data and
should have good coverage of all possible degradation scenarios. Then
the posterior estimation can be obtained as inverse calculation of
network inputs 0 given samples generated from Gaussian distribution
once the network is trained: f»(8;x1.8) = 20 = f;,l (z;x1.5). The
approach is based on an assumption that an appropriate network can
compensate for the ambiguous mapping from x;.y to 0, and ideally
achieves one-to-one mapping. The network training objective is pro-
posed to minimize the Kullback-Leibler (KL) divergence [26] between
the true and approximated posterior PDFs. Following the change of
variable rule of probability [27], the network loss function is derived as:

® = arg max//p(é),xm)log Do (0)x1.n)dOdx
[}

— log p(z = fo(6; x1v))

©)
$¢:mg$nin// ~log det<7af‘b(0;xlw))‘ o

20
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The first term in Eq. (6), evaluating the closeness of the predicted
network outputs to the unit Gaussian distribution, can be quantified by
lfio(8;1.8)[|3. The second term controls the convergence rate of the
learning process of the nonlinear transformation from 6 to z. Both terms
in Eq. (6) can be easily calculated in CINN, and Eq. (6) can be realized
through commonly used network training optimizers.

2.3. CINN for stochastic model parametric estimation

The training and inference phases of leveraging CINN for parametric
estimation of the stochastic battery degradation model is shown in the
flowchart Fig. 3.

As mentioned, the training of CINN can fully leverage simulation
data, to cover a wide spectrum of degradation scenarios. Specifically, 64
batches of simulated data are generated from on Eq. (3), by sweeping
through various values of model parameters, a, f, 4, and 5 distributions
of Rg. The simulated capacity series are manually evaluated and rejected
if their degradation trajectories do not look realistic. Training of the
CINN maps the conditional probability of model parameters on simu-
lated corresponding capacity series to unit normal distributions, with
the dimension the latent space same as the dimension of model pa-
rameters (i.e., 4 or 5 depending on the distributions assumed for ca-
pacity regeneration magnitude R). Following the network training loss
function specified in Eq. (6), iterative gradient descent can be imple-
mented to adjust network parameters to minimize Eq. (6). The gradient
calculation and backpropagation are implemented by the Adam opti-
mizer, with a initial learning rate of 0.001 and an exponential decay rate
of 0.95 to ensure convergence.

When applying the trained CINN for inference (i.e., estimating the
stochastic model parameters), given a certain series of capacity degra-
dation observations, 100 samples are first sampled from the unit normal
distributions in the latent space. Leveraging the inverse calculation of
CINN in Eq. (5), a set of model parameters’ values can be calculated
upon a single sample and capacity observation. Correspondingly, 100
sets of model parameter values will be generated, formulating an esti-
mation of the posterior PDF. The estimated stochastic model can then be
used to predict the capacity degradation at a future time. By setting a

Orginal observations
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capacity threshold, the battery RUL can be predicted.
3. Simulation and experimental study

The proposed stochastic battery degradation model together with
CINN-based model parametric estimation are evaluated on Li-ion bat-
tery simulations and run-to-failure tests provided in NASA’s Battery
Dataset.

3.1. NASA battery dataset

The NASA Li-ion Battery Dataset is publicly released in the NASA
Ames prognostics data repository [28]. In the run-to-failure tests, indi-
vidual batteries experienced extensive charge-discharge cycles, e.g.,
charging it to 4.2 V at 1.5 A and then discharging it over a 2 A load until
the cell voltage hit 2.7 V. Depending on the battery, different
charge-discharge curves and resting times between cycles were used. A
battery was assumed to fail when the measured battery capacity drop-
ped below 70% of its initial capacity. Samples of battery capacity
degradation curves over charge-discharge cycles, as shown in Fig. 4,
were normalized, considering different batteries had different initial
capacities.

3.2. Battery degradation simulation

NASA Battery Dataset contains limited Li-ion battery run-to-failure
tests, which are not enough to fully train CINN. Simulations are then
generated upon Eq. (3) to complement experimental data. To determine
appropriate ranges of model parameters, statistical regression analysis is
performed on experimental data. The adopted parameter ranges for
simulations are: a ~ U(0.70, 1.70),  ~ U(3.15, 5.40), and 4 ~ U(0.05,
0.10). The A range assumes that a capacity regeneration event occurs
every 10-20 charge-discharge cycles. Five distributions are examined
for the amplitudes of regeneration events: s ~ U(0.0048, 0.0120) and &
~ U(0.200, 0.400) for Gamma distribution, u ~ U(0.70, 1.70) and 6 ~ U
(0.70, 1.70) for Normal distribution, m ~ U(0.018, 0.030) for Expo-
nential distribution decays, U(0.07, 0.08) for Uniform distribution, and «
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Fig. 3. Flowchart of CINN-based stochastic model parametric estimation, degradation tracking and prediction.
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NASA lithium-ion battery dataset
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Fig. 4. Normalized capacity degradation of NASA lithium-ion battery datasets 5, 6, 7, and 18.

~ U(0.01, 0.03) for Chi-square distribution. 64 batches of simulation
data, with 170 samples in each batch, are generated.

4. Results and discussions
After the CINN model training upon simulation data, the trained

model was tested on NASA Battery Dataset. Trained model was provided
by observed capacity observations throughout 75 or 100 cycles, and

Tracking and prediction:Battery-5 (RMSE = 0.00820 )

prognosis of capacity degradation were made after, as shown in Fig. 5
and Fig. 6. Overall, the rational polynomial model upon CINN-based
parametric estimation tracks the gradual degradation well. Accurate
prediction of capacity regeneration can be challenging, as it is difficult
to accurately predict the regeneration moments, although an accurate
estimation of regeneration event frequency may be obtained. Compar-
ison of the 5 assumed amplitude distributions for regeneration events is
summarized in Tables 1 and 2.
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Fig. 5. CINN-based probabilistic prognosis made at 75th charge-discharge cycles, by assuming the amplitudes of the regeneration events following (a) normal

distribution and (b) exponential distribution.
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Fig. 6. CINN-based probabilistic prognosis made at 100th charge-discharge cycles, by assuming the amplitudes of the regeneration events following (a) normal
distribution and (b) exponential distribution.

events of the model exhibits the most accurate prediction for both
Zable 1. ; litude distributi . . . J prognoses after 75 and 100 cycles for Battery # 5, 6, and 7. Despite the
omparison of amplitude distributions of regeneration events, prognosis made narrow prediction intervals, the degradation curve of Battery # 18 is the

t 75th cycle.
2 oee only one that is not completely covered by the prediction interval. That

Battery # Distribution is because that battery has two significant regeneration occurrences
Gamma Normal Exponent Uniform Chi-square after 100 cycles, the intensity of which is out of the range of its histor-
5 0.0142 0.0082 0.0568 0.0087 0.0348 ically shown capacity regeneration events that are used for CINN-based
6 0.0329 0.0190 0.0471 0.0263 0.0477 parametric estimation.
7 0.0310 0.0197 0.0346 0.0301 0.0512 The best prognosis for Battery # 18 is generated by assuming an
18 0.0336 0.0306 0.0136 0.0330 0.0495 exponential distribution for capacity regeneration amplitude. This is
because exponential distribution generates a wider range of estimation,
suitable for tracking and predicting degradations with large fluctuations
Table 2 triggered irregular capacity regeneration events (e.g., two regeneration
Comparison of amplitude distributions of regeneration events, prognosis made events after 100th cycle in Battery # 18). But it compromises prognosis
at 100th cycle. precision, i.e., represented by the prediction confidence intervals. The
Battery # Distribution uniform and gamma distributions demonstrate moderate accuracy while
Gamma Normal Exponent Uniform Chi-square the Chi-square distribution shows the worst prognosis results.
A comparison between CINN-based parametric estimation and
5 0.0082 0.0062 0.0435 0.0064 0.0200 . .. .. . .
6 0.0104 0.0103 0.0480 0.0128 0.0179 dominant Bayesian inference estimation techniques, PF and MCMC, is
7 0.0183 0.0058 0.0312 0.0125 0.0334 provided in Tables 3 and 4 for prognosis after 75 and 100 cycles
18 0.0402 0.0337 0.0217 0.0392 0.0466 respectively.

Overall, CINN-based parametric estimation for battery degradation
tracking and prediction outperforms PF and MCMC methods. Particu-
larly, significant prognosis accuracy (evaluated in RMSE) improvements
are demonstrated in Battery # 6, and 7. RMSEs of predicted capacity
made by MCMC and PF almost double the results generated by CINN
with the normal distribution. As more data are used to estimate the
model parameters, the prognosis after 100 cycles is better than the
prognosis after 75 cycles, as is expected for all parametric estimation

For prognosis based on the CINN parametric estimation method with
the normal distribution, the prediction curves visually track better than
the other distributions. Because CINN training is based on a collection of
simulation data and follows the central limit theorem, it is straightfor-
wardly assumed that the sample mean follows the normal distribution.
The prognosis performance is furthermore quantitively evaluated in
RMSE. The normal distribution for the amplitude of the regeneration
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Table 3
Comparison among CINN, PF and MCMC-based parametric estimation, prog-
nosis made at 75th cycle.

Battery # Parametric estimation method
CINN PF MCMC
Normal Exponential
5 0.0082 0.0568 0.0181 0.0118
6 0.0190 0.0471 0.0412 0.0406
7 0.0197 0.0346 0.0460 0.0317
18 0.0306 0.0136 0.0262 0.0427
Table 4

Comparison among CINN, PF and MCMC-based parametric estimation, prog-
nosis made at 100th cycle.

Battery # Parametric estimation method
CINN PF MCMC
Normal Exponential
5 0.0062 0.0435 0.0211 0.0134
6 0.0103 0.0480 0.0500 0.0138
7 0.0058 0.0312 0.0295 0.0116
18 0.0337 0.0217 0.0254 0.0423
methods.

For prognosis based on the CINN parametric estimation method with
the normal distribution, the predicted capacity degradation trajectories
visually look more similar to actual degradation trajectories than pre-
dictions by PF or MCMC methods (as demonstrated in [20]). In contrast
to PF and MCMC that perform model training for individual batteries,
CINN trains the model using a large amount of simulated data and only
perform model parametric calculation for individual batteries. As a
result, CINN exhibits improved modeling generalizability and estima-
tion efficiency.

As discussed earlier, Battery # 18 is unique because of its abnormal
capacity regeneration events during the prognosis phase, and CINN with
exponential distribution achieved the best prognosis performance. If a
normal distribution is assumed for the regeneration events, the average
of estimation is the sample mean, and for Battery #18 the mean of the
amplitudes of all historical regeneration events is lower than the mean of
the amplitudes of the two regeneration events in the prediction stage. In
this case, the prediction confidence interval, determined by both the
global degradation variation and magnitudes of the regeneration events
demonstrated in historical degradation behavior, is not able to constrain
the regeneration events that behave differently from historical events in
the prognosis.

To evaluate the repeatability and uncertainty associated with CINN-
based parametric estimation, 50 independent runs are implemented for
individual batteries. The results are shown in the bar graphs, Figs. 7 and
8, corresponding to CINN with normal and exponential distributions,
respectively. Overall, CINN with normal distribution performs better
with good repeatability and less uncertainty. Additionally, the results
demonstrate that discrepancies between actual degradation and pre-
dictions are statistically insignificant, and ultimately prove the effec-
tiveness of battery performance degradation tracking and prognosis
based on the integration of developed advanced stochastic model with
CINN-based parametric estimation.

The computational efficiency of CINN has also been compared to
MCMC and PF, in terms of comparing the time required to perform a
single run of tracking and parameter estimation. Tests were performed
on a 2.1 GHz, 16-core Intel Xeon 6130 CPU with 192 GB of RAM, and
NVIDIA Tesla V100 GPU with 24 GB of RAM. Averaged over 30 trials,
CINN finished the 100 cycles input data-based parameter estimation in
0.2s in average, while PF took 15s and MCMC required 690 s,
demonstrating the computational efficiency advantages of CINN-based
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Fig. 7. Repeatability test and uncertainty evaluation for CINN-based para-
metric estimation with the amplitude of the regeneration events modeled as
normal distribution.
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Fig. 8. Repeatability test and uncertainty evaluation for CINN-based para-
metric estimation with the amplitude of the regeneration events modeled as
exponential distribution.

parametric estimation for battery performance degradation tracking
and prognosis.

5. Conclusions

This paper presents a novel and efficient stochastic modeling and
estimation method for battery performance degradation tracking and
prediction, by integrating the advanced stochastic model developed
from our previous work with CINN-based parametric estimation.
Compared to conventional Bayesian inference estimation techniques
such as PF and MCMC, CINN can be trained on simulation data that can
cover a broad spectrum of degradation scenarios, thus demonstrating
better modeling generalizability. Also, CINN only performs straightfor-
ward calculation without retraining during the inference phase for in-
dividual batteries, hence improving the prognosis efficiency.
Experimental studies on NASA Battery Dataset show significant prog-
nosis improvements by CINN than conventional PF and MCMC-based
parametric estimation methods. In further studies, Lévy process-based
stochastic modeling will be examined with the CINN parametric esti-
mation in place of the CPP model to better capture and describe
regeneration events.
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