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A B S T R A C T   

Because of lithium-ion batteries’ wide applications in our daily life and industrial sectors, understanding their 
performance degradation mechanisms and improving their health management are essential to improve their 
durability, reliability, and sustainability. However, Li-ion batteries exhibit complex performance degradation 
behaviors, typically in a combination of nonlinear gradual degradation with time-varying deterioration rates and 
abrupt performance changes (e.g., sudden capacity drops or regenerations), posing significant challenges to 
accurate and reliable degradation tracking and prediction. This study tackles this challenge from two perspec-
tives: an advanced stochastic model to describe complex degradation patterns and a generalizable Bayesian 
inference neural network for efficient parametric estimation of the stochastic model. Specifically, the stochastic 
model employs a rational polynomial term for tracking gradual battery degradation and a compound Poisson 
process term for capturing abrupt capacity changes. To estimate the model parameters related to degradation 
rates and scaling, a novel Conditional Invertible Neural Network (CINN) architecture is investigated. CINN can 
comprehensively evaluate the degradation likelihood (i.e., dependencies of capability observations on various 
battery degradation patterns) by leveraging extensive simulation data during the training phase, and then 
through its unique inverse calculation capability, efficiently and probabilistically estimate the posterior density 
of model parameters conditional on capacity observations in the real-world applications. The effectiveness of the 
proposed stochastic model and parametric estimation method, in terms of accuracy and generalizability, has 
been evaluated using simulation data and run-to-failure tests provided in NASA’s lithium-ion battery dataset. 
Experimental studies and comparisons reveal that the CINN-based parametric estimation substantially out-
performs two commonly adopted Bayesian inference methods, Particle Filtering (PF)-based step-by-step esti-
mation and Markov Chain Monte Carlo (MCMC)-based batch estimation, on both accuracy and computational 
efficiency.   

1. Introduction 

Because of advantageous properties in power capacity, thermal sta-
bility, and other factors, lithium-ion (Li-ion) batteries have been widely 
applied in our daily life and industrial applications [1]. For example, in 
manufacturing, Li-ion batteries equipped electric freight vehicle fleets 
[2] and automated guided vehicles (AGV) greatly enhance the 
manufacturing automation, flexibility, and efficiency toward smart 
manufacturing [3,4]. 

As Li-ion batteries become more integral to industrial equipment, 
their performance directly affects overall system reliability, highlighting 

the importance of battery condition monitoring and health management 
[5]. Presently, battery health management typically relies on conven-
tional condition-based maintenance, which involves routine checks and 
replacements at predetermined intervals. However, the shift toward 
predictive maintenance, which schedules maintenance based on dy-
namic battery condition assessments and Remaining Useful Life (RUL) 
predictions, can minimize unnecessary maintenance and equipment 
downtime. This approach has the potential to reduce maintenance ex-
penses and enhance production efficiency [6,7]. 

Predictive maintenance relies on two core components: performance 
degradation tracking and RUL prediction [8]. Performance degradation 
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tracking models the dependencies of degradation on various influencing 
factors such as time, usage patterns, and environmental conditions, 
which are then leveraged to predict batteries’ future degradation tra-
jectories h and RUL [9]. Existing methods in performance degradation 
modeling can be categorized into three approaches: physics-based, 
data-driven and hybrid. Physics-based models empirically and mathe-
matically represent degradation as a function of influence factors, and 
determine model coefficients from experimental data through deter-
ministic regression techniques [10–12]. While generalizable to describe 
global degradation behaviors, these models fall short in capturing 
instance-to-instance variations or uncertainties [13]. Data-driven 
models, especially upon emerging machine learning techniques such 
as statistical regression [14], relevance vector machines [15], neural 
networks [16], and deep learning [17], aim to discover the degradation 
patterns from historical data in a black-box modeling nature. This 
approach, while usually achieving better estimation and prediction ac-
curacies than physics-based models due to their ability to learn from 
large datasets, lacks the interpretability that is necessary to physically 
validate the decision-making process. The hybrid approach combines 
the strengths of the previous two approaches, i.e., integrating 
physics-informed model structures with a data-driven estimation algo-
rithm, aiming to enhance the interpretability and generalizability of the 
modeling as well as the accuracy of estimations and predictions [18,19]. 

Our previous work has developed an advanced stochastic model that 
employs a rational polynomial term for tracking nonlinear gradual 
battery degradation and a compound Poisson process term for capturing 
abrupt capacity changes [20]. To estimate the model parameters that 
determine the degradation rates as well as probabilistically evaluate the 
variation of model parameters under different conditions, Bayesian 
inference techniques are investigated in estimating the posterior Prob-
ability Density Function (PDF) of model parameters on battery capacity 
observations. Two representative Bayesian inference techniques are 
compared: Particle Filtering (PF) as a sequential estimation method and 
Markov Chain Monte Carlo (MCMC) as a batch estimation method. PF 
applies sequential Monte Carlo sampling to estimate posterior PDFs of 
model states and parameters, and is applicable to nonlinear and 
non-gaussian system estimation because of its Jacobian-free calculations 
[20–22]. MCMC follows a similar Monte Carlo sampling approach. But 
instead of updating the parameter distribution after each step in the 
sequence of observations as is done in PF, the model performance in 
MCMC is evaluated across the whole training set of observations before 
changing the estimated parameters for a batch estimation [23,24]. 
Findings from [20] indicate that PF-based step-by-step estimation pre-
dicts future degradation based on the latest degradation trend and 
misses an overview of global degradation trend, especially related to 
non-stationary abrupt capacity changes. MCMC is better in adaptively 
capturing abrupt events, but involves more model parameters and falls 
short in computational efficiency. 

In this paper, a novel Conditional Invertible Neural Network (CINN)- 
based posterior PDF estimation method is investigated for imple-
mentation of Bayesian inference and parametric estimation of the sto-
chastic battery degradation model developed in [20]. CINN is unique for 
its affine coupling block structure and inverse calculation capability. 
During the training phase of the CINN, capacity observations and sto-
chastic model parameters are prepared in pairs, and their conditional 
PDFs are mapped into unit Gaussian distributions to minimize correla-
tion ambiguities between model parameters and capacity observations. 
Once the training is completed, the CINN applies its inverse calculation 
capability to estimate the posterior PDF upon capacity observations, 
through inverse mapping from sampling from unit Gaussian distribu-
tions. Compared to other Bayesian inference methods, there are two 
major advantages of this CINN method: 

• CINN training can be realized using simulation data, which mini-
mizes the real-world data collection/labeling efforts and also 

facilitates the model’s ability to generalize across a wide range of 
battery degradation scenarios through comprehensive simulations;  

• Unlike PF or MCMC that perform model training for individual 
batteries, the CINN approach allows for the direct input of capacity 
measurements to obtain stochastic model parameters through 
straightforward calculations. Hence, CINN is more versatile in its 
application, as it does not necessitate individualized training per 
battery, and surpasses computational efficiency. 

To evaluate the performance of the combination of the advanced 
stochastic battery degradation model and CINN-based probabilities 
model parametric estimation method, experimental evaluations are 
done in the run-to-failure tests provided in the NASA’s lithium-ion 
battery data. Comparative studies are also done between CINN and PF 
and MCMC. The following sections detail the methodologies, experi-
mental studies, results, and findings. 

2. Methodology 

This section starts with the review of the advanced stochastic battery 
degradation model, and then introduces CINN-based posterior PDF 
estimation. 

2.1. Stochastic battery degradation model 

Developed in our previous work [20], the stochastic model can ac-
count for both non-linear gradual degradation and transient capacity 
changes in battery performance degradation. The model employes a 
rational polynomial model with two unknown parameters α and β to 
describe gradual capacity degradation: 

xk = xk−1 −
αβk

10000 + (βk)2 + vp (1)  

where k denotes battery charging-discharging cycles, and the modeling 
uncertainty is characterized by vp. The unknown parameters α and β 
control the degradation rate’s vertical scaling, horizontal scaling, and 
peak position, respectively. Fig. 1. 

Besides gradual degradation, batteries may experience abrupt ca-
pacity changes, for example transient capacity regeneration events that 
drastically raise capacity values after a long period of rest between two 
sequential charge-discharge cycles. The regeneration events arise as a 
continuous, random process with jumps, which could be detailed by 
Compound Poisson Process (CPP). The abrupt changes in capacity are 
modeled as stochastic increments: 

ΔCr(k) =
∑λk

i=1
Ri (2)  

where ith event’s regeneration magnitude is Ri, the event frequency is 
represented by λ. Regeneration magnitudes are not constant but can be 
characterized by different non-negative distributions, whereas regen-
eration frequency can be assumed to follow an exponential distribution 
and to be a constant value for a particular battery. To get a compre-
hensive stochastic degradation model, the rational polynomial model 
and the CPP model are combined as follows: 

xk = xk−1 −
αβk

10000 + (βk)2 + δ
(
(k)mod

(
λ−1))Rk + vp (3)  

In this study, five different distributions are examined for Rk: gamma 
distribution Rk ∼ Gamma(s, ϑ), normal distributionRk ∼ N(μ, σ), expo-
nential distribution Rk ∼ exp(m), uniformRk ∼ U(a, b) and Chi-square: 
Rk ∼ χ2(κ), where s and ϑ determine the scale and shape of the gamma 
distribution, μ and σ are the mean and variance of the normal distri-
bution, m determines how quickly the exponential distribution decays, a 
and b are the minimum and maximum values of the uniform 
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distribution, and κ is the degree of freedom for the Chi-square distri-
bution. Historical regeneration occurrences are used to fit the relevant 
distributional characteristics. 

2.2. CINN-based posterior estimation 

The objective of the probabilistic parametric estimation is to learn a 
posterior PDF p(θ|x1:N) given the historical degradation development x1: 

N. The parameters θ refer to the unknown parameters in Eq. (3), for 
example α, β, λ, μ and σ if Rk is modelled as a normal distribution. One 
challenge for posterior PDF estimation is that there may not be a one-to- 
one mapping between θ and x1:N. Hence, estimating p(θ|x1:N) is indeed 
an ambiguous inverse estimation problem. One way to address this 
problem is to introduce an additional latent variable z, to constrain the 
mapping in the inverse estimation:p(θ|x1:N)⇔ p(θ|x1:N,z),withz ∼ N5(z|0,
І). z can be set to follow a 5-dimensional unit normal distribution, to not 
disrupt the original correlation between θ and x1:N. 

The posterior PDF estimation is then proposed to be realized through 
CINN with network parameters Φ [25], which tries to predict unit 
Gaussian distribution upon inputs of θ and x1:N. CINN is selected because 
of its unique Affine Coupling Block (ACB) structure, which facilitates the 
inverse calculation from network outputs to network inputs, as shown in  

Fig. 2. 
The CINN segments the parameters into two sets, corresponding to 

two information flows, the connection between which is done through 
four separate sub-networks, s1, t1, s2, and t2. Each sub-network takes 
one subset of parameters and degradation data as inputs, and the four 
networks are subsequently stacked. Intuitively speaking, this configu-
ration allows CINN to hierarchically decompose the degradation, in an 
order of determining parameters related to transient capacity changes 
first, as transient changes need to be evaluated in a global overview. The 
forward and backward operations of ACB structure are: 
{

w1 = v1 ⊙ exp(s1(v2, x1:N) + t1(v2, x1:N))
w2 = v2 ⊙ exp(s2(w1, x1:N) + t2(w1, x1:N))

(4)  

{
v2 = (w2 − t2(w1, x1:N)) ⊙ exp(s2(w1, x1:N))
v1 = (w1 − t1(v2, x1:N)) ⊙ exp(s1(v2, x1:N))

(5) 

During the training phase, the training data mainly come from sim-
ulations that define appropriate ranges of parameters and generated 
degradation time series based on Eq. (3). In simulations, parameter 
ranges can be obtained from statistical analysis of practical data and 
should have good coverage of all possible degradation scenarios. Then 
the posterior estimation can be obtained as inverse calculation of 
network inputs θ given samples generated from Gaussian distribution 
once the network is trained: fΦ(θ; x1:N) = z⇒θ = f−1

Φ (z; x1:N). The 
approach is based on an assumption that an appropriate network can 
compensate for the ambiguous mapping from x1:N to θ, and ideally 
achieves one-to-one mapping. The network training objective is pro-
posed to minimize the Kullback-Leibler (KL) divergence [26] between 
the true and approximated posterior PDFs. Following the change of 
variable rule of probability [27], the network loss function is derived as: 

Φ = arg max
Φ

∫ ∫
p(θ, x1:N)log pΦ(θ|x1:N)dθdx

⇒Φ = arg min
Φ

∫ ∫
⎛

⎜⎝
− log p(z = fΦ(θ; x1:N))

− log
⃒⃒
⃒⃒det

(∂fΦ(θ; x1:N)
∂θ

)⃒⃒
⃒⃒

⎞

⎟⎠dθdx
(6) 

Fig. 1. Overview of the stochastic battery degradation model and CINN-based parametric estimation for battery performance tracking and prognosis.  

Fig. 2. Illustration of ACB structure.  
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The first term in Eq. (6), evaluating the closeness of the predicted 
network outputs to the unit Gaussian distribution, can be quantified by 
‖fΦ(θ; x1:N)‖2

2. The second term controls the convergence rate of the 
learning process of the nonlinear transformation from θ to z. Both terms 
in Eq. (6) can be easily calculated in CINN, and Eq. (6) can be realized 
through commonly used network training optimizers. 

2.3. CINN for stochastic model parametric estimation 

The training and inference phases of leveraging CINN for parametric 
estimation of the stochastic battery degradation model is shown in the 
flowchart Fig. 3. 

As mentioned, the training of CINN can fully leverage simulation 
data, to cover a wide spectrum of degradation scenarios. Specifically, 64 
batches of simulated data are generated from on Eq. (3), by sweeping 
through various values of model parameters, α, β, λ, and 5 distributions 
of Rk. The simulated capacity series are manually evaluated and rejected 
if their degradation trajectories do not look realistic. Training of the 
CINN maps the conditional probability of model parameters on simu-
lated corresponding capacity series to unit normal distributions, with 
the dimension the latent space same as the dimension of model pa-
rameters (i.e., 4 or 5 depending on the distributions assumed for ca-
pacity regeneration magnitude R). Following the network training loss 
function specified in Eq. (6), iterative gradient descent can be imple-
mented to adjust network parameters to minimize Eq. (6). The gradient 
calculation and backpropagation are implemented by the Adam opti-
mizer, with a initial learning rate of 0.001 and an exponential decay rate 
of 0.95 to ensure convergence. 

When applying the trained CINN for inference (i.e., estimating the 
stochastic model parameters), given a certain series of capacity degra-
dation observations, 100 samples are first sampled from the unit normal 
distributions in the latent space. Leveraging the inverse calculation of 
CINN in Eq. (5), a set of model parameters’ values can be calculated 
upon a single sample and capacity observation. Correspondingly, 100 
sets of model parameter values will be generated, formulating an esti-
mation of the posterior PDF. The estimated stochastic model can then be 
used to predict the capacity degradation at a future time. By setting a 

capacity threshold, the battery RUL can be predicted. 

3. Simulation and experimental study 

The proposed stochastic battery degradation model together with 
CINN-based model parametric estimation are evaluated on Li-ion bat-
tery simulations and run-to-failure tests provided in NASA’s Battery 
Dataset. 

3.1. NASA battery dataset 

The NASA Li-ion Battery Dataset is publicly released in the NASA 
Ames prognostics data repository [28]. In the run-to-failure tests, indi-
vidual batteries experienced extensive charge-discharge cycles, e.g., 
charging it to 4.2 V at 1.5 A and then discharging it over a 2 A load until 
the cell voltage hit 2.7 V. Depending on the battery, different 
charge-discharge curves and resting times between cycles were used. A 
battery was assumed to fail when the measured battery capacity drop-
ped below 70% of its initial capacity. Samples of battery capacity 
degradation curves over charge-discharge cycles, as shown in Fig. 4, 
were normalized, considering different batteries had different initial 
capacities. 

3.2. Battery degradation simulation 

NASA Battery Dataset contains limited Li-ion battery run-to-failure 
tests, which are not enough to fully train CINN. Simulations are then 
generated upon Eq. (3) to complement experimental data. To determine 
appropriate ranges of model parameters, statistical regression analysis is 
performed on experimental data. The adopted parameter ranges for 
simulations are: α ~ U(0.70, 1.70), β ~ U(3.15, 5.40), and λ ~ U(0.05, 
0.10). The λ range assumes that a capacity regeneration event occurs 
every 10–20 charge-discharge cycles. Five distributions are examined 
for the amplitudes of regeneration events: s ~ U(0.0048, 0.0120) and ϑ 
~ U(0.200, 0.400) for Gamma distribution, μ ~ U(0.70, 1.70) and σ ~ U 
(0.70, 1.70) for Normal distribution, m ~ U(0.018, 0.030) for Expo-
nential distribution decays, U(0.07, 0.08) for Uniform distribution, and κ 

Fig. 3. Flowchart of CINN-based stochastic model parametric estimation, degradation tracking and prediction.  
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~ U(0.01, 0.03) for Chi-square distribution. 64 batches of simulation 
data, with 170 samples in each batch, are generated. 

4. Results and discussions 

After the CINN model training upon simulation data, the trained 
model was tested on NASA Battery Dataset. Trained model was provided 
by observed capacity observations throughout 75 or 100 cycles, and 

prognosis of capacity degradation were made after, as shown in Fig. 5 
and Fig. 6. Overall, the rational polynomial model upon CINN-based 
parametric estimation tracks the gradual degradation well. Accurate 
prediction of capacity regeneration can be challenging, as it is difficult 
to accurately predict the regeneration moments, although an accurate 
estimation of regeneration event frequency may be obtained. Compar-
ison of the 5 assumed amplitude distributions for regeneration events is 
summarized in Tables 1 and 2. 

Fig. 4. Normalized capacity degradation of NASA lithium-ion battery datasets 5, 6, 7, and 18.  

Fig. 5. CINN-based probabilistic prognosis made at 75th charge-discharge cycles, by assuming the amplitudes of the regeneration events following (a) normal 
distribution and (b) exponential distribution. 
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For prognosis based on the CINN parametric estimation method with 
the normal distribution, the prediction curves visually track better than 
the other distributions. Because CINN training is based on a collection of 
simulation data and follows the central limit theorem, it is straightfor-
wardly assumed that the sample mean follows the normal distribution. 
The prognosis performance is furthermore quantitively evaluated in 
RMSE. The normal distribution for the amplitude of the regeneration 

events of the model exhibits the most accurate prediction for both 
prognoses after 75 and 100 cycles for Battery # 5, 6, and 7. Despite the 
narrow prediction intervals, the degradation curve of Battery # 18 is the 
only one that is not completely covered by the prediction interval. That 
is because that battery has two significant regeneration occurrences 
after 100 cycles, the intensity of which is out of the range of its histor-
ically shown capacity regeneration events that are used for CINN-based 
parametric estimation. 

The best prognosis for Battery # 18 is generated by assuming an 
exponential distribution for capacity regeneration amplitude. This is 
because exponential distribution generates a wider range of estimation, 
suitable for tracking and predicting degradations with large fluctuations 
triggered irregular capacity regeneration events (e.g., two regeneration 
events after 100th cycle in Battery # 18). But it compromises prognosis 
precision, i.e., represented by the prediction confidence intervals. The 
uniform and gamma distributions demonstrate moderate accuracy while 
the Chi-square distribution shows the worst prognosis results. 

A comparison between CINN-based parametric estimation and 
dominant Bayesian inference estimation techniques, PF and MCMC, is 
provided in Tables 3 and 4 for prognosis after 75 and 100 cycles 
respectively. 

Overall, CINN-based parametric estimation for battery degradation 
tracking and prediction outperforms PF and MCMC methods. Particu-
larly, significant prognosis accuracy (evaluated in RMSE) improvements 
are demonstrated in Battery # 6, and 7. RMSEs of predicted capacity 
made by MCMC and PF almost double the results generated by CINN 
with the normal distribution. As more data are used to estimate the 
model parameters, the prognosis after 100 cycles is better than the 
prognosis after 75 cycles, as is expected for all parametric estimation 

Fig. 6. CINN-based probabilistic prognosis made at 100th charge-discharge cycles, by assuming the amplitudes of the regeneration events following (a) normal 
distribution and (b) exponential distribution. 

Table 1 
Comparison of amplitude distributions of regeneration events, prognosis made 
at 75th cycle.  

Battery # Distribution 
Gamma Normal Exponent Uniform Chi-square 

5 0.0142 0.0082 0.0568 0.0087 0.0348 
6 0.0329 0.0190 0.0471 0.0263 0.0477 
7 0.0310 0.0197 0.0346 0.0301 0.0512 
18 0.0336 0.0306 0.0136 0.0330 0.0495  

Table 2 
Comparison of amplitude distributions of regeneration events, prognosis made 
at 100th cycle.  

Battery # Distribution 
Gamma Normal Exponent Uniform Chi-square 

5 0.0082 0.0062 0.0435 0.0064 0.0200 
6 0.0104 0.0103 0.0480 0.0128 0.0179 
7 0.0183 0.0058 0.0312 0.0125 0.0334 
18 0.0402 0.0337 0.0217 0.0392 0.0466  
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methods. 
For prognosis based on the CINN parametric estimation method with 

the normal distribution, the predicted capacity degradation trajectories 
visually look more similar to actual degradation trajectories than pre-
dictions by PF or MCMC methods (as demonstrated in [20]). In contrast 
to PF and MCMC that perform model training for individual batteries, 
CINN trains the model using a large amount of simulated data and only 
perform model parametric calculation for individual batteries. As a 
result, CINN exhibits improved modeling generalizability and estima-
tion efficiency. 

As discussed earlier, Battery # 18 is unique because of its abnormal 
capacity regeneration events during the prognosis phase, and CINN with 
exponential distribution achieved the best prognosis performance. If a 
normal distribution is assumed for the regeneration events, the average 
of estimation is the sample mean, and for Battery #18 the mean of the 
amplitudes of all historical regeneration events is lower than the mean of 
the amplitudes of the two regeneration events in the prediction stage. In 
this case, the prediction confidence interval, determined by both the 
global degradation variation and magnitudes of the regeneration events 
demonstrated in historical degradation behavior, is not able to constrain 
the regeneration events that behave differently from historical events in 
the prognosis. 

To evaluate the repeatability and uncertainty associated with CINN- 
based parametric estimation, 50 independent runs are implemented for 
individual batteries. The results are shown in the bar graphs, Figs. 7 and 
8, corresponding to CINN with normal and exponential distributions, 
respectively. Overall, CINN with normal distribution performs better 
with good repeatability and less uncertainty. Additionally, the results 
demonstrate that discrepancies between actual degradation and pre-
dictions are statistically insignificant, and ultimately prove the effec-
tiveness of battery performance degradation tracking and prognosis 
based on the integration of developed advanced stochastic model with 
CINN-based parametric estimation. 

The computational efficiency of CINN has also been compared to 
MCMC and PF, in terms of comparing the time required to perform a 
single run of tracking and parameter estimation. Tests were performed 
on a 2.1 GHz, 16-core Intel Xeon 6130 CPU with 192 GB of RAM, and 
NVIDIA Tesla V100 GPU with 24 GB of RAM. Averaged over 30 trials, 
CINN finished the 100 cycles input data-based parameter estimation in 
0.2 s in average, while PF took 15 s and MCMC required 690 s, 
demonstrating the computational efficiency advantages of CINN-based 

parametric estimation for battery performance degradation tracking 
and prognosis. 

5. Conclusions 

This paper presents a novel and efficient stochastic modeling and 
estimation method for battery performance degradation tracking and 
prediction, by integrating the advanced stochastic model developed 
from our previous work with CINN-based parametric estimation. 
Compared to conventional Bayesian inference estimation techniques 
such as PF and MCMC, CINN can be trained on simulation data that can 
cover a broad spectrum of degradation scenarios, thus demonstrating 
better modeling generalizability. Also, CINN only performs straightfor-
ward calculation without retraining during the inference phase for in-
dividual batteries, hence improving the prognosis efficiency. 
Experimental studies on NASA Battery Dataset show significant prog-
nosis improvements by CINN than conventional PF and MCMC-based 
parametric estimation methods. In further studies, Lévy process-based 
stochastic modeling will be examined with the CINN parametric esti-
mation in place of the CPP model to better capture and describe 
regeneration events. 
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[27] Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE. A modern introduction to 
probability and statistics: understanding why and how. Springer Science & 
Business Media,; 2005. 

[28] Saha B, Goebel K. Modeling Li-ion battery capacity depletion in a particle filtering 
framework. Annu Conf PHM Soc 2009;1:1. 

L.N. Kumari and P. Wang                                                                                                                                                                                                                    

https://doi.org/10.1109/TIE.2017.2677319
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref2
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref2
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref2
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref3
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref3
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref4
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref4
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref5
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref5
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref6
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref6
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref6
https://doi.org/10.1109/ACCESS.2019.2925468
https://doi.org/10.1109/ACCESS.2019.2925468
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref8
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref8
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref8
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref9
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref9
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref9
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref10
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref10
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref10
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref11
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref11
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref11
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref12
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref12
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref13
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref13
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref14
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref14
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref14
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref15
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref15
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref15
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref16
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref16
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref17
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref17
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref18
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref18
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref18
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref19
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref19
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref19
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref20
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref20
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref20
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref21
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref21
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref22
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref22
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref23
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref23
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref24
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref24
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref25
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref25
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref25
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref26
http://refhub.elsevier.com/S0278-6125(24)00066-9/sbref26

	Efficient stochastic parametric estimation for lithium-ion battery performance degradation tracking and prognosis
	1 Introduction
	2 Methodology
	2.1 Stochastic battery degradation model
	2.2 CINN-based posterior estimation
	2.3 CINN for stochastic model parametric estimation

	3 Simulation and experimental study
	3.1 NASA battery dataset
	3.2 Battery degradation simulation

	4 Results and discussions
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


