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ABSTRACT
Monitoring machine health and product quality enables pre-

dictive maintenance that optimizes repairs to minimize factory
downtime. Data-driven intelligent manufacturing often relies on
probabilistic techniques with intractable distributions. For ex-
ample, generative models of data distributions can balance fault
classes with synthetic data, and sampling the posterior distribu-
tion of hidden model parameters enables prognosis of degrada-
tion trends. Normalizing flows can address these problems while
avoiding the shortcomings of other generative Deep Learning
(DL) models like Generative Adversarial Networks (GAN), Vari-
ational Autoencoders (VAE), and diffusion networks. To evaluate
normalizing flows for manufacturing, experiments are conducted
to synthesize surface defect images from an imbalanced data set
and estimate parameters of a tool wear degradation model from
limited observations. Results show that normalizing flows are an
effective, multi-purpose DL architecture for solving these prob-
lems in manufacturing. Future work should explore normalizing
flows for more complex degradation models and develop a frame-
work for likelihood-based anomaly detection. Code is available
at https://github.com/uky-aism/flows-for-manufacturing.
Keywords: Condition Monitoring, Deep Generative Models,
Normalizing Flows, Parameter Estimation

1. INTRODUCTION
Predictive maintenance depends on monitoring machine

health and product quality. Data-driven approaches rely on ma-
chine learning and Deep Learning (DL) to extract features from
raw sensing data and predict health indicators and assess quality.
The constraints of manufacturing applications motivate explo-
ration of generative models. For example, the scarcity of data
from abnormal health conditions hinders training DL models but
can be alleviated by generating realistic fake data to expand the
training set. Similarly, approximating the posterior distribution
of degradation model parameters can estimate future degradation
trends and Remaining Useful Life (RUL). However, both the data

�Corresponding author: matthew.russell@uky.edu

distribution and parameter distribution are usually too complex
to compute analytically.

Fortunately, advances in DL have produced data-driven gen-
erative techniques that can synthesize data and estimate parame-
ters by approximating complex distributions. Popular generative
DL models include Generative Adversarial Networks (GAN) [1],
Variational Autoencoders (VAE) [2, 3], and diffusion networks
[4] (e.g., DALL-E 2 [5] and Stable Diffusion [6]). However,
all three approaches encounter difficulties during training or in-
ference. Alternatively, normalizing flows leverage an invertible
random variable transformation that simplifies both training and
inference. The core idea is to normalize a complex distribu-
tion (e.g., that of surface defect images) by transforming it into
a tractable distribution like a standard normal distribution. By
inverting the transformation, samples from the tractable distri-
bution can be mapped back into the input domain to generate
samples from the complex distribution.

Despite the potential advantages, very little work has been
done with normalizing flows in manufacturing. Zhang et al.
[7] used normalizing flows to model the distribution of bearing
vibration signals for anomaly detection. The flow transformed
the signals into a standard normal distribution where the vector
norm was used for threshold-based, one-class anomaly detection.
However, the results showed minimal improvements over sim-
pler, root mean square (RMS)-based methods. Both Rudolph et
al. [8] and Szarski and Chauhan [9] adopted similar flow-based
anomaly detection methods for product defect images, but neither
provided a strong case for using normalizing flows over alterna-
tive methods. In another direction, Yang et al. [10] noticed that
flows can be used to normalize the distribution of latent codes in
a bidirectional Gated Recurrent Unit (GRU) network, making it
easier for a decoder to predict the RUL of turbofan jet engines.
However, normalizing flows have considerably broader applica-
tions in manufacturing that remain unexplored, notably, synthetic
data generation and parameter estimation.

Inspired by the general utility and multifaceted applications
of normalizing flows, this study offers the following contribu-
tions:
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1. a theoretical overview to normalizing flows in the context of
manufacturing, and

2. two case studies evaluating the use of normalizing flows for
synthesizing surface defect images and estimating parame-
ters of a tool wear degradation model.

In the remainder of this paper, Section 2 describes the motivation
and theory behind normalizing flows, Section 3 discusses the pro-
posed applications in machine condition monitoring, Sections 4
and 5 present two case studies, and Section 6 presents concluding
remarks.

2. GENERATIVE MODELING WITH NORMALIZING FLOWS
Generative models can answer questions about data distribu-

tions. That is, a generative model of ?(G) can query the distribu-
tion of G for new examples or estimate the likelihood (density) of
a given G.

2.1 Related Generative Methods
Related methods include Generative Adversarial Networks

(GAN), Variational Autoencoders (VAE), and diffusion networks.
GANs combine a discriminator network with an adversarial gen-
erator network that synthesizes new samples from the data dis-
tribution [1]. The discriminator tries to distinguish real data
samples from fake examples produced by the generator, acting
as a trainable metric for determining distribution membership.
While the discriminator is trained to better distinguish real and
fake data, the generator is trained to produce examples that con-
fuse it, i.e., look like real data. GANs cannot estimate density
and can be difficult to train since the competing networks must
be properly balanced [11].

VAEs use a latent variable generative model in which a hid-
den code I generates the observed G [2, 3]. As a variational
method, VAE attempts to infer a distribution of codes that matches
a simple prior @(I). To do this, a probabilistic encoder infers the
parameters of ?(I | G) from a data point, and a probabilistic
decoder predicts ?(G | I) using I ⇠ ?(I | G) to reconstruct the
input. During training, the probabilistic encoder learns to encode
key semantics about G into I while matching the prior @(I) (e.g.,
a standard normal distribution). Then samples from ?(G) are
drawn by first sampling the prior @(I) and using the probabilistic
decoder. Like GANs, VAEs cannot provide density estimates,
and it can be difficult to balance learning a good reconstruction
model ?(G | I) and regularizing the latent codes to match the
desired @(I) [12, 13].

Diffusion networks model the generative process as a multi-
step reverse diffusion process [4]. The forward diffusion process
progressively destroys the input through additive Gaussian noise.
A neural network is trained to reverse the stochastic process and
gradually materialize an image from noise. While producing im-
pressive synthetic images [5, 6], these networks often require a
lengthy and iterative reverse process to generate samples. The
computational requirements make them less suitable for generat-
ing large batches of simulated data (e.g., synthetic defect images
to balance a condition monitoring data set). Like GANs and
VAEs, diffusion networks cannot produce density estimates. In

contrast, normalizing flows offer an alternative that avoids many
shortcomings of all three approaches.

2.2 Normalizing Flows
Let ?\ (G) be a generative model parameterized by \ that

should match the true data distribution ?(G), i.e., \ should be
chosen to minimize the KL Divergence between the two:

\
⇤ = arg min

\
⇡KL (?(G) | | ?\ (G))

= arg min
\
EG⇠? (G ) [log ?(G)] � EG⇠? (G ) [log ?\ (G)]

(1)

Since the first term does not include \, this minimization objec-
tive is identical to maximizing the second term, the model’s log
likelihood over the data set:

\
⇤ = arg max

\
EG⇠? (G ) [log ?\ (G)] (2)

Predicting ?\ (G) directly with a neural network would result in a
trivial solution where all G map to infinite density and would not
permit efficient sampling of ?\ (G).

To resolve this, normalizing flows implement an invertible
random variable transformation (RVT) 5\ (G) with tractable Ja-
cobian determinant det � that computes the log likelihood by
mapping G to a base distribution @(n):

log ?\ (G) = log @( 5\ (G)) + log | det � | (3)

The determinant of the Jacobian itself captures how the transfor-
mation scales volume. A small value indicates that the transfor-
mation condenses data to a single point, and thus maximizing it
avoids this outcome. Therefore, the two terms work in unison to
pull data towards the maximum likelihood point of @(n) while
preventing the mapping from collapsing [14]. From Eq. (2) and
Eq. (3), the normalizing flow optimization problem is then

\
⇤ = arg max

\

1
#

#’
8=1

⇥
log @( 5\ (G8)) + log | det � |

⇤
(4)

where @(n) is usually a simple distribution like a standard normal
or Bernoulli distribution, and the expectation is replaced with an
approximation using samples G8 from the data set. If 5\ (·) is a
neural network, the training loss function is:

LNF (G8) = � log @( 5\ (G8)) � log | det � | (5)

This expression can be optimized using standard backpropagation
and stochastic gradient descent.

This RVT approach requires an invertible function 5\ (·) with
a tractable Jacobian determinant. Autoregressive neural networks
are a solution that arbitrarily orders the dimensions (e.g., pixels)
and models each as a normal distribution conditioned on the
preceding dimensions [15, 16]:

G8 ⇠ N(0, 1)
H8 = G8 exp B(x1:8�1) + C (x1:8�1)

(6)

where H8 is the 8th ordered dimension of #-dimensional output
y1:# , B(·) and C (·) are neural networks predicting the normal
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distribution parameters from the previous 8 � 1 dimensions of y.
Equation (6) can be inverted easily:

G8 = [H8 � C (x1:8�1)] exp�B(x1:8�1) (7)

The Jacobian of Eq. (6) is �8 9 = mH8/mG9 . Note that �8 9 = 0 for
9 > 8 because H8 only depends on G8 and x1:8�1. Therefore, � is
lower triangular, and the tractable determinant is

| det � | =
÷
8

mH8

mG8
= exp

’
8

B(x1:8�1) (8)

Stacking several autogressive networks end-to-end (y of the previ-
ous block is x of the next block) creates a powerful autoregressive
flow [15]. While highly capable, this autogressive strategy un-
avoidably requires inefficient sequential computation in either the
forward/normalizing [15] or inverse/sampling [16] direction.

Trading power for efficiency, affine coupling blocks [14, 17]
use two partitions x = [x( , x(̄] instead of autogressively calcu-
lating each G8 [16]:

y( = x(
y(̄ = x(̄ � exp B(x() + C (x()

(9)

The block’s output is y = [y( , y(̄], and � is the elementwise
product. Following Eq. 8, the corresponding Jacobian determi-
nant is

| det � | = exp
’

B(x(), (10)

and the inverted affine coupling block is simply

x( = y(
x(̄ = [y(̄ � C (x()] � exp�B(x()

(11)

Figure 1 graphically illustrates the forward and inverse operations.
Without inefficient autoregressive steps, coupling blocks support
fast computation in both directions. Stacking multiple coupling
blocks end-to-end with varying (e.g., complementary) partitions
enables information from different parts of the input to “mix”
sufficiently and create an effective normalizing mapping 5\ (·)
such that 5\ (x) = & ⇠ @(&) [14]. Affine coupling blocks can
be extended to model the conditional distribution ?(x | c) by
including the contextual information c as an additional argument
to the scale and translate neural networks (see dotted path in
Fig. 1). The conditional flow is then written 5\ (x; c).

3. PROPOSED METHODS FOR MANUFACTURING
Normalizing flows are an attractive, multipurpose generative

model for intelligent manufacturing because they are easier to
train than GANs and VAEs, require only a single pass to gen-
erate samples (vs. diffusion networks), and can produce density
estimates via the invertible flow transformation. Two specific
manufacturing applications are generating synthetic training data
and estimating parameters of a degradation model.

3.1 Synthetic Training Data Generation
Real-world manufacturing data sets contain very few exam-

ples of faults and defects. Synthesizing additional examples can
balance the data set. A classifier trained on balanced data can
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FIGURE 1: FORWARD (TOP) AND INVERSE (BOTTOM) AFFINE
COUPLING BLOCK OPERATIONS

find a decision boundary that generalizes better than a classifier
trained on limited fault examples. Existing manufacturing work
has used GANs to generate synthetic vibration data [18, 19] and
surface defect images [20], but normalizing flows can accomplish
the same tasks with simpler, more stable training objectives.

While applying flows to raw images requires complex hier-
archical architectures to capture multiscale structures like edges,
shapes, and objects [17, 21], Fig. 2 shows how a normalizing flow
can instead model the latent code distribution of an image autoen-
coder, following the idea of Latent Diffusion Models (LDM) [6].
In this approach, a latent code is sampled from the normalizing
flow and then decoded into the final output image. This lever-
ages the strengths of both models—the autoencoder generates
high-quality reconstructions while the flow models latent codes
lacking high-dimensional complexities. For grayscale surface
defect images, an autoencoder with encoder ⌘k (·) and decoder
6q (·) is pretrained using Binary Cross-Entropy (BCE) loss:

LAE (x8) = x8 log x̂8 + (1 � x8) log(1 � x̂8) (12)

where x8 is the 8th input example, and x̂8 = 6q (⌘k (x8)) is the
reconstruction. The autoencoder is then frozen, and the normal-
izing flow 5\ (·) is trained using loss derived from Eq. (5):

LNF (x8) = � log @( 5\ (⌘k (x8))) � log | det � | (13)

Since @(n) is frequently chosen to be N(0, �), log @(&) = �1/2 ·
(log 2c + n

2). After training, synthetic images can be generated
by sampling the base distribution, inverting the flow, and applying
the decoder:

& ⇠ N(0, �)
x = 6q ( 5 �1

\ (&))
(14)

The synthetic images can balance the data set for training classi-
fiers.
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FIGURE 2: FLOW-BASED SURFACE DEFECT IMAGE GENERATION

3.2 Degradation Model Parameter Estimation
Estimating the RUL of manufacturing components is an im-

portant part of predictive maintenance. Degradation trends can
often be modelled empirically (e.g., with an exponential curve)
and the model parameters inferred from observations. For ex-
ample, the parameters of an empirical model of milling machine
tool wear can be estimated from a series of wear observations.
The estimated parameters can then be used for prognosis, i.e.,
prediction of tool wear evolution in future cycles. If ?(z | x)
represents the distribution of model parameters z when data x is
observed, this inference can be mathematically expressed as:

?(z | x) = ?(x | z)?(z)
?(x) (15)

Here ?(x | z) is the likelihood of observation x given a model
with parameters z, ?(z) is the prior over the model parameters,
and ?(x) =

¥
?(x | z)?(z)3z is the likelihood function of the

data. In general, ?(x) is intractable because ?(x | z) and ?(z)
are not restricted to conjugate pairs. Bayesian methods for ap-
proximate inference like Markov chain Monte Carlo (MCMC)
and Particle Filtering (PF) can estimate the posterior ?(z | x) but
are computationally intense and perform inference from scratch
on each new x.

A more efficient approach is amortized inference, in which
global parameters (e.g., the weights of a neural network) are
learned and reused to quickly predict local parameters (e.g., the
parameters of the latent variable distributions) from observations
[22]. Normalizing flows can solve this problem by modeling
?(z | x) based on the distribution of Monte Carlo simulations
?(x | z) with parameters sampled from the prior ?(z) [23]. These
simulations form a data set of pairs (z8 , x8) from ?(x | z)?(z)
(step 1 in Fig. 3). In practice, time-series observations may
not have fixed length. Therefore, a summary network ⌘i (·)
condenses variable-length observations into fixed-length context
vectors [23]. The conditional normalizing flow is trained with
the following loss function (step 2 in Fig. 3):

LcNF (z8 , x8) = � log @( 5\ (z8; ⌘i (x8))) � log | det � | (16)

Approximate inference on new observation x is possible by sam-
pling the learned posterior distribution of model parameters (step

N(0, I)
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FIGURE 3: PARAMETER ESTIMATION FOR RUL PROGNOSIS

3 in Fig. 3):
& ⇠ N(0, �)
z = 5

�1
\ (& ; ⌘i (x))

(17)

The stochastic model ?(x | z) can then use the posterior samples
to generate prognosis curves. Importantly, this amortized infer-
ence is well-suited for manufacturing applications since it does
not require real observations to train the inference model.

4. SYNTHETIC DEFECT IMAGE EXPERIMENTS
To validate the proposed image generation methods from

Section 3.1, experiments were conducted to generate synthetic
product surface defect images to augment a highly imbalanced
manufacturing data set.

4.1 Kolektor SDD2 Data Set
The experiment uses the publicly available Kolektor SDD2

data set of product surface defect images from the Kolektor Group
d.o.o. [24]. The training set contains 246 images with defects and
2085 images without defects, approximately a 10:1 imbalance.
Synthetic defect images would help balance this data set. To learn
the defect image distribution, the 246 defect images are used as the
training set. Images are resized to 64⇥64, converted to grayscale,
randomly flipped horizontally, and uniformly dequantized into
the range [0, 1]. Figure 4a shows examples of real defect images
used for training.

4.2 Network Design and Training
The network architecture uses Fig. 2 as a template. Figure 5

shows the details of the autoencoder, and Fig. 6 shows the the
details of the normalizing flow that operates on the 16-length
latent codes of the autoencoder and uses alternating checkboard
masks for the partitions. Note that the autoencoder uses tanh
activation for the latent code, producing constrained values easier
for the flow to model. The scale output in the flow blocks uses
a modified tanh activation that includes a trainable parameter U
that mitigates numerical instability with the exponential function
[25]:

tanhU (G) = U tanh(G/U) (18)
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(a) Surface defect training images

(b) Synthetic images from AE latent space

(c) Synthetic images from normalizing flow

FIGURE 4: EXAMPLE IMAGES FROM SURFACE DEFECT EXPERIMENTS

The autoencoder is pre-trained for 300 epochs using a learning
rate of 0.0001, BCE loss from Eq. (12), and the Adam optimizer.
The encoder and decoder are then frozen, and the flow is trained
on latent codes for 4700 epochs using the loss function from
Eq. (13). The learning rate starts at 0.001 and was halved ev-
ery 500 epochs. Once trained, the network produces synthetic
images by sampling a standard normal distribution, inverting the
normalizing flow, and then decoding the latent code into an image
(see Eq. (14)).

4.3 Synthetic Image Results
To evaluate the usefulness of the normalizing flow, the syn-

thetic images are compared to images generated by decoding
normally distributed latent codes without the normalizing flow
(see Fig. 4b):

& ⇠ N(0, �)
x0 = 6q (&)

(19)

Compared to the real images from Fig. 4a, these examples exhibit
fewer large-scale defects and more local, cloud-like textures. In
contrast, the normalizing flow’s synthetic images in Fig. 4c dis-
play local uniformness and larger defect features that are charac-
teristic of the images from the training set. Quantative assessment
of image quality lacks a commonly accepted metric and is left to
future work.

These results motivate two observations. First, the latent
codes of the AE are not normally distributed. If they were, the
images from normally distributed codes would closely resemble
real images, whereas the actual decoded images show both global
and local differences. Conversely, the realistic images from the
normalizing flow indicate that it can reasonably approximate the
true distribution of latent codes. Thus, the normalizing flow
facilitates efficient generation of synthetic surface defect images

without needing complex dual-optimizer training like GAN or
competing objectives like VAE.

5. TOOL WEAR PROGNOSIS EXPERIMENTS
To validate the proposed parameter estimation methods from

Section 3.2, experiments were conducted using a conditional nor-
malizing flow to estimate the distribution of degradation model
parameters from a sequence of tool wear measurements. Future
degradation can then be predicted using the estimated parameters.

5.1 Milling Data Set
The reference data set for milling tool wear degradation is

distributed by the Prognostics Center of Excellence at NASA
Ames [26]. The data set was created by UC Berkeley Emergent
Space Tensegrities (BEST) Lab and includes cutting experiments
on stainless steel and cast iron with depths of 0.75 mm and 1.5
mm and feed rates of 0.25 mm/s and 0.5 mm/s. Tool flank wear
was measured throughout repeated cutting runs, although not
always consistently. Missing data was linearly interpolated from
neighboring values. Figure 7 shows a collection of flank wear
degradation curves from the data set.

Given the exponential degradation trends, an exponential
stepwise model is designed to capture tool wear evolution:

(
G [0] = 0
G [: + 1] = 0.41 exp(0.40:) + G [:] + a

(20)

The coefficients of 0.4 are empirically selected to bias the model
towards the range of the milling curves in Fig. 7, and a is pro-
cess/measurement noise drawn from N(0, 0.002). Probabilistic
parameter estimation seeks to infer the posterior distribution of
0 and 1 conditioned on an observed sequence of wear measure-
ments (e.g., the first 10 cuts). Values of 0 and 1 from the inferred
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posterior can be substituted into Eq. (20) for Monte Carlo simu-
lation of future degradation trends.

5.2 Simulated Degradation Data Set
To perform amortized inference with conditional normaliz-

ing flows, the normalizing flow is first trained on a simulated data
set of the stepwise model Eq. (20) that captures the prior be-
liefs about the distribution of the two parameters 0 and 1. Since
the two parameters can exhibit joint behavior and dependence,
the simulated data set was created by first generating curves for
: = 0, 1, . . . , 24 with 0 and 1 sampled from N(0, 1) and then
excluding physically unexpected curves (i.e., curves with wear
increasing too sharply, decreasing wear, or non-exponential wear
trends). This formed a data set of simulations capturing these
emprical prior beliefs about milling tool wear evolution.

5.3 Network Design and Training
Figure 8 shows the architecture of the conditional normal-

izing flow for modeling the posterior distribution of milling tool
wear model parameters. A Gated Recurrent Unit (GRU) net-
work is used to summarize variable-length tool wear observations
into fixed-length context vectors for the conditional normalizing
flow. A set of 243 hyperparameter grid search experiments were

FIGURE 7: MILLING TOOL DEGRADATION CURVES

conducted with 2000 training and 200 validation examples and
downselected to the top sixteen performers (see Table 1). The
final hyperparameter set was selected as the trial with the low-
est variation in loss (i.e., most stable loss curve). The resulting
architecture is trained with 12000 training and 3000 validation
simulated degradation curves. During training the summary net-
work generates context vectors from the first 8 to 20 points of
the simulated curve to support prognosis with variable-length
observations. The entire model is trained five separate times with
differing random seeds to assess variability.

After training, prognosis curves are generated by mapping an
observed milling degradation curve into a context vector with the
GRU summary network and conditioning the normalizing flow
samples on this context. Repeatedly sampling the conditional
normalizing flow with fixed context produces a group of possible
parameter sets (0, 1) from ?(0, 1 | x) which can be used with
Eq. (20) to predict future evolution. Prognosis of future tool
wear degradation is performed after 10 cuts in these experiments.

5.4 Parameter Estimation Results
Figure 9 shows the prognosis performance after 10 cuts on

the randomly selected validation set of milling tool wear curves
(milling cases 1, 3, and 13). While two of the actual curves end up
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TABLE 1: TOOL WEAR HYPERPARAMETER SEARCH

Hyperparameter Search Values Selected

Learning Rate [1e-4, 1e-3, 5e-3] 1e-3
GRU Layers [2, 3, 4] 2
GRU Output Size [8, 16, 32] 32
Number of Affine

Coupling Blocks
[8, 16, 32] 8

Affine Coupling
Block Hidden
Layer Size

[8, 16, 32] 32

outside the 90%/10% quantiles of prognosis, this behavior stems
from the strictly exponential nature of the stepwise model. The
model assumes that degradation will have increasing slope, but
the problematic curves have sections where degradation levels
off or even decreases. This could be caused by measurement
error which future work can capture by adjusting the stepwise
model. Root Mean Square Error (RMSE) is computed for each
milling example using the median of 10,000 prognosis curves.
The uncertainty is captured by repeating this for the five models
trained with different random seeds. In all cases, the RMSE falls
well below 0.1 mm.

Figure 10 shows the prognosis performance after 10 cuts
on the randomly selected test set (milling cases 2, 11, and 12).
The output range grows as the exponential curves are propa-
gated farther into the future, causing longer curves to have wider
windows of uncertainty. However, the median of the prognosis
curves closely and consistently matches the actual tool wear evo-
lution, as evidenced by the low RMSE. All RMSE values fall
below 0.05 mm with standard deviations less than 0.01 mm. This
indicates that the GRU summary network has learned a mean-
ingful context representation, and the flow can use this context
to approximate the posterior distribution of model parameters.
While the parameters could be estimated with MCMC or PF with
comparable or better RMSE, inference with normalizing flows is
more efficient—the same flow can estimate parameters from all
new curves without retraining. In contrast, PF requires sequen-
tial updates of hundreds or thousands of particles for every curve,
and MCMC requires thousands of model simulations, many of
which must be rejected to uphold the sampling criteria. Thus, the

FIGURE 9: VALIDATION WEAR PROGNOSIS AFTER 10 CUTS

FIGURE 10: TEST WEAR PROGNOSIS AFTER 10 CUTS

normalizing flow-based approach offers a reusable solution that
overcomes the computational burdens of both traditional tech-
niques.

6. CONCLUSION
Experiments show that normalizing flows can generate real-

istic synthetic surface defect images capturing global and local
image structures. These images can augment an imbalanced data
set, future work in this area should evaluate the quantitative im-
pact of using the synthetic images when training a defect classfier.
Similarly, parameter estimation experiments show that normaliz-
ing flows are effective for amortized inference with milling tool
wear degradation models. The posterior parameter distribution
generated by the conditional normalizing flow produces prog-
nosis curves accurately capturing future trends. To further this
area, future studies should explore using flows for more com-
plex multistage/piecewise degradation models. Both case studies
demonstrate that normalizing flows can be a general approach for
solving diverse manufacturing and condition monitoring prob-
lems. The advantages include more stable training compared to
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GANs and VAEs, efficient generation versus diffusion models,
and fast, amortized inference instead of time-consuming itera-
tions of MCMC or PF. Additional research should continue ex-
ploring other manufacturing applications of normalizing flows
such as likelihood-based anomaly detection.
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