
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Explainable machine learning for motor fault diagnosis 
 

Yuming Wang  
Department of Electrical and Computer Engineering 

University of Kentucky  
Lexington, USA 

yuming.wang@uky.edu 

Peng Wang  
Department of Electrical and Computer Engineering & 
Department of Mechanical and Aerospace Engineering 

University of Kentucky  
Lexington, USA 

edward.wang@uky.edu 

 
Abstract— Industrial motors have been widely used in 

various fields such as power generation, mining, and 
manufacturing. Various motor faults and time-consuming 
motor maintenance processes will lead to serious economic 
losses in this context. Different sensing technologies, including 
acceleration, acoustic, and current sensing can be useful in 
motor condition monitoring, defect detection, and diagnosis. 
Regarding sensing data analytics, Machine Learning (ML) and 
Deep Learning (DL) techniques have been increasingly 
investigated, because of their promising capabilities in complex 
data characterization and pattern recognition. However, the 
explainability of ML and DL models and their decision-making 
remains a challenge, because of their black-box modeling by 
nature. Shapley Additive Explanations (SHAP), as a game 
theoretic approach, provides a way to explain ML and DL 
modeling results, by allocating credits (known as SHAP values) 
through local connections to quantify the contributions of input 
features to model outputs. In this paper, three commonly seen 
ML techniques, including Support Vector Machine (SVM), 
Random Forest (RF), and Neural Network (NN) are investigated 
for vibration-based motor fault diagnosis. Corresponding 
SHAP explanation methods are applied to the three ML 
techniques to discover the most important vibration features in 
detecting motor conditions and differentiating faults. 
Explanation results from the three ML techniques demonstrate 
great consensus: average vibration frequency contributes most 
to motor fault diagnosis. This explanation conclusion matches 
the physical understanding that fault occurrences would bring 
in additional frequency components to the spectrum. Improving 
the physical explainability of ML and DL techniques would 
significantly improve their credibility and generalizability.  
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I. INTRODUCTION 
Industrial motors have been widely used in different 

industrial fields across the globe. An industrial motor mainly 
consists of several mechanical components, such as a stator, 
rotor, stator windings, bearing, and terminal box. These 
mechanical components are prone to failure. The most 
common motor failures include bowed rotor, broken rotor, 
unbalanced rotor, and faulted bearing. These failures generally 
lead to abnormal motor speed, abnormal noise, and vibration, 
which would hugely influence motor efficiency. That’s why 
motor condition monitoring and fault diagnosis is vital to the 
whole industry.  

Many motor fault diagnosis methods (more related to 
motor sensing) have been established, such as motor oil 
analysis, temperature analysis, and vibration analysis. These 
techniques may or may not be practical. Oil analysis requires 
sophisticated and expensive instruments. Temperature 
measurement, because of the low sampling rate of 
thermometers, has been shown not valuable in capturing 
motor dynamic behaviors. Vibration analysis has been the 

focus of many studies. Vibration sensors are cost-effective, 
and vibration signals contain lots of crucial information about 
operating motors. In the last century, some early-stage works 
discovered the fundamental mechanism of vibration 
generation (mainly caused by electromagnetic force) in 
motors and tried to analyze vibration signals for motor fault 
diagnosis [1-8]. But the accuracy and efficiency of these 
signal processing approaches were poor. Researchers later 
investigated more advanced signal processing techniques like 
Short-Time Fourier Transform (STFT) and Wavelet in 
vibration data analysis, which increased the performance [9].  
However, these techniques are still limited in efficient and 
automated fault detection and diagnosis. 

Machine Learning (ML) techniques have been focused on 
recently to solve motor fault diagnosis problems because of 
the explosive growth of computing power. At the beginning 
of this century, some researchers proposed that some machine 
learning techniques like Fuzzy Logic (FL), Neural Networks 
(NN) can be used along with vibration analysis [10]. Saud 
Altaf et al. discussed using a NN model to diagnose motor 
Broken Rotor Bars (BRB) faults under two-level load torque 
[11]. This work was later expanded to a new distributed NN 
model for detecting BRB fault and air eccentricity [12]. 
Wavelet Neural Network (WNN) was developed to make 
classification independent from different load levels, and 
time-frequency representation (TFR) was used to transform 
vibration data to low dimension array for performance 
improvement [13]. Kil Chong et al. used STFT for converting 
time series quasi-steady vibration signal to continuous spectra 
and trained a NN model with converted data and Levenberg-
Marquardt (LM) algorithm to generate extra fault information 
[14]. As a new variant of NN, 1-D Convolutional Neural 
Network (CNN) was designed to have the ability to extract 
features from vibration or current signal, which avoids manual 
parameter tuning [15-16]. Recurrent Neural Network (RNN) 
was developed as an important variant of NN. Bambang et al. 
classified motor bearing faults using a custom RNN model 
that is robust to environmental changes because of its 
recurrent connections [17]. Long Short-Term Memory 
(LSTM) was a powerful tool over RNN for fault diagnosis 
because it can remember long-term memory, which made it 
more adaptive [18]. Support Vector Machine (SVM) was 
another popular machine-learning technique for motor fault 
classification. Lane et al. discussed using multiple SVM 
classifiers to diagnose vibration signals that were processed 
by Fast Fourier Transform (FFT) [19]. A Random Forest (RF) 
model was developed with a simpler structure and excellent 
performance for vibration data analysis [20]. Tapana et al. did 
a study that compare some unsupervised learning algorithms 
like k-means clustering, hierarchical clustering, and 
Expectation-maximization (EM) clustering. These algorithms 
don’t require any labels on data, and EM clustering had the 
overall best performance among them [21].  



Most ML models have been called “black box” models 
because the causal reasoning underlying the model and 
modeling results cannot be physically explained. ML models 
make decisions without any interpretation, which reduces 
their credibility, applicability, and generalizability. Surrogate 
methods can explain a machine learning model by 
constructing new models. Scott et al. created an outstanding 
surrogate method called Shapley Additive Explanations 
(SHAP) to explain machine learning models by calculating the 
SHAP value for each feature. SHAP value shows how features 
contribute to the model results [22]. 

Motivated by studies on the recent SHAP model 
explanation method, this paper tries to apply SHAP 
explanations to three commonly applied ML techniques, 
including SVM, RF, and NN in the context of motor fault 
diagnosis, and compare the explanation results of these three 
techniques to identify the most valuable features of vibration 
data in detecting the motor fault and differentiating fault types.  

II. EXPLAINABLE MACHINE LEARNING 
Three different ML techniques are reviewed and compared 

in II. A. Corresponding SHAP explanation methods are 
introduced and explained in II. B. 

A. Machine Learning Techniques   
In general, ML techniques process input data 𝑋𝑋 and output 

predictions 𝑦𝑦� upon different input-output functions.  

1) Neural Network (NN) 
The NN model was inspired by the human brain, and it 

usually belongs to the supervised learning category, which 
means it needs labeled data for training. A general NN consists 
of three parts, an input layer, one or multiple hidden layers, 
and an output layer. The input layer is where data is fed in, and 
the output layer is where models return the results.  A simple 
three-layer NN can be expressed as 

𝑦𝑦� = 𝑓𝑓(�𝑤𝑤𝑖𝑖 ∗ 𝑔𝑔(�𝑥𝑥𝑗𝑗 ∗ 𝑤𝑤𝑗𝑗 + 𝑏𝑏1)
𝑗𝑗𝑖𝑖

+ 𝑏𝑏2) (1) 

where 𝑦𝑦� is the output, 𝑥𝑥𝑗𝑗 is the input, 𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗are weights and 
𝑏𝑏1, 𝑏𝑏2  biases. 𝑓𝑓  and 𝑔𝑔 are the activation functions which is 
used to add nonlinearity to the network. The most common 
activation function is ReLU function, which is expressed as 
𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥). 

2) Support Vector Machine (SVM) 
The essence of SVM is more like a road with a middle 

line that separates cars on the left side and right side. SVMs 
use hyperplanes to separate different classes instead. The 
distance between classes is called the margin of SVM. Thus, 
the optimization process of SVMs is to find the best position 
of each hyperplane and maximize the margin. Lagrange 
multipliers are used to solve the optimization process, and the 
Kernel trick is used to map the input to a higher dimension 
for non-linear classification. 

3) Random Forest 
RF is a useful machine learning tool based on the decision 

tree classifier, and it can address the overfitting issue that the 
decision tree has. Bootstrapping is used for making subsets of 
data and multiple trees are raised based on each subset. Each 
decision trees use the traditional Gini index to get its own 
results. The ultimate result of RF will be decided by using 
majority voting. 

B. SHAP-based ML Model Explanation 
SHAP explainers are built after ML models. It can explain 

an ML model by generating SHAP values to quantify the 
contributions of individual input features to the model outputs. 
Then, the model explanation results can be cross-checked with 
physical/empirical domain knowledge to make ML decision-
making physically explainable. SHAP explanation of a 
general ML model can be expressed as [23]: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … ) = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖

𝑀𝑀

𝑖𝑖=1

(2) 

where M is the number of input features in feature set {𝑥𝑥𝑖𝑖 , 𝑖𝑖 =
1:𝑀𝑀} and y is the output. 𝜙𝜙0 is the average prediction and 𝜙𝜙𝑖𝑖 
is the SHAP value of the 𝑖𝑖𝑡𝑡ℎ feature. 

SHAP explanations stem from game theory. SHAP values 
are generated considering the interaction between features in 
affecting the modeling results. In other words, subsets of 
features are exhausted, and the marginal contribution of a 
specific feature is obtained from averaging the contributions 
of subset features before and after removing that specific 
feature. The marginal contribution of a feature is also called a 
SHAP value, which is generally expressed as 

𝜙𝜙𝑖𝑖(𝑓𝑓, 𝑥𝑥) = �
|𝑧𝑧′|! (𝑀𝑀 − |𝑧𝑧′| − 1)!

𝑀𝑀!
𝑧𝑧′⊆𝑥𝑥′

[𝑓𝑓𝑥𝑥(𝑧𝑧′) − 𝑓𝑓𝑥𝑥(𝑧𝑧′\𝑖𝑖)](3) 

where 𝑖𝑖 is the serial number of features and 𝑓𝑓 is the model that 
needs to be explained. 𝑧𝑧′ are the subsets that are recurrently 
calculated and 𝑥𝑥′  is simplified data input. 𝑀𝑀  is the total 
number of features. 

The above SHAP value generation method applies only to 
linear models. For nonlinear modeling techniques, more 
advanced SHAP methods are needed, and different ML 
techniques require different types of SHAP explainers. For 
NN models, the SHAP values need to be calculated through 
the DeepSHAP explainer which is based on the DeepLIFT 
approximation method [24]. The average prediction 𝜙𝜙0  in 
DeepLIFT is the reference point 𝑦𝑦0 = 𝑓𝑓(𝑥𝑥01, 𝑥𝑥02, … ) . 𝜙𝜙𝑖𝑖  is 
represented by 𝑚𝑚∆𝑥𝑥𝑖𝑖∆𝑦𝑦𝑖𝑖 . It means that DeepLIFT explains the 
difference in output from the reference point in the field of the 
difference in input from the reference point. For a simple NN 
with one hidden layer, the SHAP value for the 𝑖𝑖𝑡𝑡ℎ feature can 
be written as: 

𝑚𝑚∆𝑥𝑥𝑖𝑖∆𝑦𝑦 = �𝑚𝑚∆𝑥𝑥𝑖𝑖∆ℎ𝑗𝑗𝑚𝑚∆ℎ𝑗𝑗∆𝑦𝑦
𝑗𝑗

(4) 

where h represents the outputs of hidden neurons. Eq. (4) is 
based on the chain rule for multipliers. To differentiate 
positive and negative contributions of individual input 
features SHAP RevealCancel rule [26] can be applied. If the 
output of a hidden neuron is ℎ = 𝑓𝑓(𝑥𝑥), the SHAP values can 
be evaluated in terms of positive and negative output 
differences ∆ℎ+ and ∆ℎ− through the RevealCancel rule: 

∆ℎ+ =
1
2
�𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖+) − 𝑓𝑓(𝑥𝑥𝑖𝑖0)� 

+
1
2
�𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖+ + ∆𝑥𝑥𝑖𝑖−) − 𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖−)� (5) 

∆ℎ− =
1
2
�𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖−) − 𝑓𝑓(𝑥𝑥𝑖𝑖0)� 

+
1
2
�𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖− + ∆𝑥𝑥𝑖𝑖+) − 𝑓𝑓(𝑥𝑥𝑖𝑖0 + ∆𝑥𝑥𝑖𝑖+)� (6) 



The SHAP values then can be approximated by calculating 
the positive and negative contribution of input features to the 
positive and negative differences in the output: 

𝑚𝑚∆𝑥𝑥𝑖𝑖+∆ℎ+ =
∆ℎ+

∆𝑥𝑥𝑖𝑖+
;     𝑚𝑚∆𝑥𝑥𝑖𝑖−∆ℎ− =

∆ℎ−

∆𝑥𝑥𝑖𝑖−
(7) 

KernelSHAP explainer [25] and TreeSHAP explainer [26] 
are used for SVM models and random forest models 
respectively. They use different methods to explain models 
but the basic idea behind them is similar. 

III. EXPERIMENTAL EVALUATION 
The experimental study is carried out to evaluate the 

proposed SHAP explanation methods for the three ML models 
in the context of motor fault diagnosis. This section introduces 
details related to the experimental setup, vibration signal 
collection, ML model construction, and training. 

A. Experimental Setup 
This study focuses on diagnosing four types of common 

motor faults, which are bowed rotor, broken rotor, unbalanced 
rotor, and faulted bearing. Thus, datasets are obtained from 
five different motors (including a normal motor). The 
experimental setup is shown in Fig. 1 These motors were 
mounted on the experiment platform one by one to obtain 
vibration data under motor operation. Two vibrations sensors 
(Horizontal and vertical, normal to each other) are applied to 
capture electromagnetic forces in different directions. 7 
different rotating speeds from 1200rpm to 3000rpm have been 
tested, generating 7 sets of vibration data from each motor. A 
consistent load was set with all motor speeds. The load is very 
light compared to the weight and power of motors so the 
influence of load on motor torque can be ignored.  

B. Data sampling and Feature extraction 
Statistics features are extracted from both the time domain 

and frequency domain of motor vibration signals. Feature 
extraction helps reduce the dimensionality of data processing, 
and these features have been demonstrated effective in 
characterizing motor operating conditions [27]. In this paper, 
16 features are selected and extracted from one channel of the 
vibration data, including 9 time-domain features and 7 
frequency-domain features, as listed in Table I.  

The sampling rate of the vibrations sensor is 10kHz. From 
individual motors running under a specific speed, 60 seconds 
of data (i.e., 600,000 data points from each vibration channel) 
have been collected. Sliding windows are applied to pre-

process the raw vibration data and generate features. In this 
case, a window is set across 1000 data points, and there is no 
overlapping between subsequent windows. In other words, a 
sample would be created to contain 16 features extracted from 
1000 horizontal vibration data points and 16 features from 
vertical vibration data. In total, Thus 21,540 samples are 
generated for the 5 motor fault types and 7 rotating speeds, 
and each sample contains 32 features.  

C. Model Construction and Training 
The NN model used in this study has 5 layers. The input 

layer has 32 neurons corresponding to 32 features, and three 
hidden layers have 128, 64, and 32 neurons respectively. The 
output layer has 5 layers corresponding to 5 types of motor 
faults. The learning rate is set to 0.01, and the Adam algorithm 
is used for the optimizer. The construction of SVM and RF 
models is similar. To improve the training robustness, 5-fold 
cross-validation is applied during the training process, which 
split the dataset into 5 pieces and uses each piece as a test set 
and the rest as a training set so that the model will be trained 
5 times. Each time will return a result and the final result will 
be the mean value of all results. Three SHAP explainers are 
applied to interpret the classification results of the three ML 
models, once they are done with training.  

Training of the three ML models is evaluated in 5 different 
scenarios, corresponding to 5 sets of training data. In the first 
round of experiment, training data proportionally come from 
all rotating speeds. In the second round of the experiment, 
only slow motor speed data from 1200rpm to 2100rpm are 
used for training, which would tell whether the motor speed 
influences the performance of models. In the third round of 
the experiment, only selected interval motor speed data, which 
are 1200rpm, 1800rpm, 2400rpm, and 3000rpm are used for 
training, which would also further observe the influence of 
motor speed on the performance of models. In the fourth round 
of the experiment, only the 10 most important features 
selected from the SHAP explanation results of the first round 
of the experiment are used for model training. In the last round 
of experiments, only 16 features extracted from the horizontal 
vibration signal are used for model training.  

IV. RESULTS AND DISCUSSION 
The model accuracy comparison for five rounds of 

experiments is shown in Fig. 2. The results indicate that the 
first standard experiment (i.e., training data come from all 
tested rotating speeds) produced the best results, with all three 
different models achieving 100% accuracy. The accuracy of 
the three models is very low in the second round of 
experiments that only uses data from slow motor speeds as 

Fig. 1.   Experiment gearbox setup 
Fig. 2.   Model accuracy comparison 



training data, which preliminarily indicates that the training 
data coverage is very important for model performance. The 
main reason for such poor results is that motor operating 
dynamics under low and high rotating speeds are different, 
and fault-related patterns learned by the three ML models 
from low-speed data cannot be well generalized to high-speed 
data. Training data coverage is also a major concern in 
affecting the generalizability of ML models. The accuracy of 
the three models in the third round of experiments that uses 
interval motor speeds as training data, although not high, is 
still better than that of the previous round of experiments. By 
seeing the data from the lowest and highest speed limits, the 
identified fault-related patterns by the ML models are more 
generalizable to data from interval speeds.  

The fourth round of experiments is based on the 10 most 
important features that are obtained from the SHAP 
explanation results of the first round of experiments. This 
round of results is very close to the first round of experiments. 
This indicates that the 10 most important features identified 

by SHAP explanation contain almost all necessary 
information out of 32 features in detecting and differentiating 
motor faults. This also demonstrates the effectiveness of 
SHAP explanation in identifying critical data features. The 
fifth round of experiments uses only 16 features extracted 
from the horizontal signal. The accuracy of the three models 
is good but lower than that of models trained with the 10 most 
important features, indicating that the quality of features is 
more important than the quantity. However, this experiment 
still shows that the model can be trained well using only the 
data obtained from one sensor.  

The SHAP feature importance plot for three machine 
learning models in the standard experiment is presented in Fig. 
3. (a) ~ (c). The vertical axis of plots shows the names of 
features, and the suffix (v or h) of each name indicates whether 
the feature is extracted from the horizontal or vertical sensor 
data. The horizontal axis represents the corresponding mean 
SHAP value. The higher the SHAP value, the greater the 
contribution of this feature to model classification results. Five 
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where 𝑥𝑥𝑖𝑖  is sampled vibration signal for 𝑖𝑖 = 1,2, … ,𝑛𝑛.   

TABLE I.   FEATURE EXTRACTION EQUATIONS 



different colors represent the contribution of a particular 
feature to a particular motor fault class during model training. 
The SHAP value of AF(h) (Average frequency extracted from 
the horizontal signal) in the three models is dominant, 
indicating that AF(h) contributes the most among all the 
features, as it carries information on how signal components 
vary with motor faulty conditions. Another finding is that the 
SHAP explanation results of three different ML models have 

great consensus: the first two most critical features from the 
three explanations are the same. This proves the 
generalizability of SHAP explanations in relative to specific 
ML models. Fig. 4 are SHAP summary plots that show the 
decomposition of feature contributions for a specific fault 
type. The horizontal axis of each plot is the SHAP value rather 
than the mean SHAP value. Unlike previous plots, these 
scatter plots consisting of many points, and each point 

Fig. 3.   SHAP model importance plot 

Fig. 4.   SHAP summary plot for two types of faults 



represents a sample. The color of points represents feature 
value. Fig. 4. (a) ~ (b) is the summary plots of NN for two 
different fault types. As mentioned earlier, the feature in the 
first row is AF because it contributes the most to the model. A 
high value of AF(h) would make the NN model to be more 
likely to classify that sample as an unbalanced rotor fault and 
against other fault types. So that in Fig. 4. (a) high values of 
AF(h) are explained as positive contributions to unbalanced 
rotor fault. Similarly, as shown in Fig. 4. (b), a low value of 
AF(h) would make the model classify the sample as bowed 
rotor fault; hence, low AF(h) values have a positive 
contribution to the identification of this specific motor fault 
type. Fig. 4. (c) ~ Fig. 4. (d) are summary plots of SVM for 
two different fault types. Similar explanation results in Fig. 4 
again prove the generalizability of SHAP explanation of 
different ML models. SHAP explanation would advance our 
physical understanding of the motor operation and fault 
occurrence, e.g., what type of fault leads to what changes in 
electromechanical force in motor operating and vibration 
measurement.  

V. CONCLUSION 
This paper presents a SHAP-based explanation of three 

commonly used ML techniques (SVM, RF, and NN) in 
detecting and classifying motor faults. The explanation helps 
identify the critical vibration sensing features in 
differentiating fault types, not only reducing the dimension of 
data analysis but also advancing the physical understanding of 
motor fault occurrences. The ML models are evaluated in 
different training scenarios and explained by different SHAP 
explainers. Some observations are drawn from the analysis:  

x All three ML techniques could achieve great fault 
diagnosis if training data has full coverage. 

x Uncomprehensive training data coverage greatly reduces 
model performance; including data from upper and lower 
operating limits is necessary.  

x Explanation results of the three ML models, although 
performed by different SHAP explainers, show a great 
consensus that average vibration frequency is the most 
critical feature in motor fault diagnosis. 

x Including features with the highest contributions achieve 
comparable performance as including all features.  

Future work will explain more types of ML and DL models 
like CNN and RNN.  
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