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Abstract— Industrial motors have been widely used in
various fields such as power generation, mining, and
manufacturing. Various motor faults and time-consuming
motor maintenance processes will lead to serious economic
losses in this context. Different sensing technologies, including
acceleration, acoustic, and current sensing can be useful in
motor condition monitoring, defect detection, and diagnosis.
Regarding sensing data analytics, Machine Learning (ML) and
Deep Learning (DL) techniques have been increasingly
investigated, because of their promising capabilities in complex
data characterization and pattern recognition. However, the
explainability of ML and DL models and their decision-making
remains a challenge, because of their black-box modeling by
nature. Shapley Additive Explanations (SHAP), as a game
theoretic approach, provides a way to explain ML and DL
modeling results, by allocating credits (known as SHAP values)
through local connections to quantify the contributions of input
features to model outputs. In this paper, three commonly seen
ML techniques, including Support Vector Machine (SVM),
Random Forest (RF), and Neural Network (NN) are investigated
for vibration-based motor fault diagnosis. Corresponding
SHAP explanation methods are applied to the three ML
techniques to discover the most important vibration features in
detecting motor conditions and differentiating faults.
Explanation results from the three ML techniques demonstrate
great consensus: average vibration frequency contributes most
to motor fault diagnosis. This explanation conclusion matches
the physical understanding that fault occurrences would bring
in additional frequency components to the spectrum. Improving
the physical explainability of ML and DL techniques would
significantly improve their credibility and generalizability.
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I. INTRODUCTION

Industrial motors have been widely used in different
industrial fields across the globe. An industrial motor mainly
consists of several mechanical components, such as a stator,
rotor, stator windings, bearing, and terminal box. These
mechanical components are prone to failure. The most
common motor failures include bowed rotor, broken rotor,
unbalanced rotor, and faulted bearing. These failures generally
lead to abnormal motor speed, abnormal noise, and vibration,
which would hugely influence motor efficiency. That’s why
motor condition monitoring and fault diagnosis is vital to the
whole industry.

Many motor fault diagnosis methods (more related to
motor sensing) have been established, such as motor oil
analysis, temperature analysis, and vibration analysis. These
techniques may or may not be practical. Oil analysis requires
sophisticated and expensive instruments. Temperature
measurement, because of the low sampling rate of
thermometers, has been shown not valuable in capturing
motor dynamic behaviors. Vibration analysis has been the
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focus of many studies. Vibration sensors are cost-effective,
and vibration signals contain lots of crucial information about
operating motors. In the last century, some early-stage works
discovered the fundamental mechanism of vibration
generation (mainly caused by electromagnetic force) in
motors and tried to analyze vibration signals for motor fault
diagnosis [1-8]. But the accuracy and efficiency of these
signal processing approaches were poor. Researchers later
investigated more advanced signal processing techniques like
Short-Time Fourier Transform (STFT) and Wavelet in
vibration data analysis, which increased the performance [9].
However, these techniques are still limited in efficient and
automated fault detection and diagnosis.

Machine Learning (ML) techniques have been focused on
recently to solve motor fault diagnosis problems because of
the explosive growth of computing power. At the beginning
of this century, some researchers proposed that some machine
learning techniques like Fuzzy Logic (FL), Neural Networks
(NN) can be used along with vibration analysis [10]. Saud
Altaf et al. discussed using a NN model to diagnose motor
Broken Rotor Bars (BRB) faults under two-level load torque
[11]. This work was later expanded to a new distributed NN
model for detecting BRB fault and air eccentricity [12].
Wavelet Neural Network (WNN) was developed to make
classification independent from different load levels, and
time-frequency representation (TFR) was used to transform
vibration data to low dimension array for performance
improvement [13]. Kil Chong et al. used STFT for converting
time series quasi-steady vibration signal to continuous spectra
and trained a NN model with converted data and Levenberg-
Marquardt (LM) algorithm to generate extra fault information
[14]. As a new variant of NN, 1-D Convolutional Neural
Network (CNN) was designed to have the ability to extract
features from vibration or current signal, which avoids manual
parameter tuning [15-16]. Recurrent Neural Network (RNN)
was developed as an important variant of NN. Bambang et al.
classified motor bearing faults using a custom RNN model
that is robust to environmental changes because of its
recurrent connections [17]. Long Short-Term Memory
(LSTM) was a powerful tool over RNN for fault diagnosis
because it can remember long-term memory, which made it
more adaptive [18]. Support Vector Machine (SVM) was
another popular machine-learning technique for motor fault
classification. Lane et al. discussed using multiple SVM
classifiers to diagnose vibration signals that were processed
by Fast Fourier Transform (FFT) [19]. A Random Forest (RF)
model was developed with a simpler structure and excellent
performance for vibration data analysis [20]. Tapana et al. did
a study that compare some unsupervised learning algorithms
like k-means clustering, hierarchical clustering, and
Expectation-maximization (EM) clustering. These algorithms
don’t require any labels on data, and EM clustering had the
overall best performance among them [21].



Most ML models have been called “black box” models
because the causal reasoning underlying the model and
modeling results cannot be physically explained. ML models
make decisions without any interpretation, which reduces
their credibility, applicability, and generalizability. Surrogate
methods can explain a machine learning model by
constructing new models. Scott et al. created an outstanding
surrogate method called Shapley Additive Explanations
(SHAP) to explain machine learning models by calculating the
SHAP value for each feature. SHAP value shows how features
contribute to the model results [22].

Motivated by studies on the recent SHAP model
explanation method, this paper tries to apply SHAP
explanations to three commonly applied ML techniques,
including SVM, RF, and NN in the context of motor fault
diagnosis, and compare the explanation results of these three
techniques to identify the most valuable features of vibration
data in detecting the motor fault and differentiating fault types.

II. EXPLAINABLE MACHINE LEARNING

Three different ML techniques are reviewed and compared
in II. A. Corresponding SHAP explanation methods are
introduced and explained in II. B.

A. Machine Learning Techniques

In general, ML techniques process input data X and output
predictions § upon different input-output functions.

1) Neural Network (NN)

The NN model was inspired by the human brain, and it
usually belongs to the supervised learning category, which
means it needs labeled data for training. A general NN consists
of three parts, an input layer, one or multiple hidden layers,
and an output layer. The input layer is where data is fed in, and
the output layer is where models return the results. A simple
three-layer NN can be expressed as
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where J is the output, x; is the input, w;, wjare weights and
by, b, biases. f and g are the activation functions which is
used to add nonlinearity to the network. The most common
activation function is ReLU function, which is expressed as
f(x) = max(0, x).

2) Support Vector Machine (SVM)

The essence of SVM is more like a road with a middle
line that separates cars on the left side and right side. SVMs
use hyperplanes to separate different classes instead. The
distance between classes is called the margin of SVM. Thus,
the optimization process of SVMs is to find the best position
of each hyperplane and maximize the margin. Lagrange
multipliers are used to solve the optimization process, and the
Kernel trick is used to map the input to a higher dimension
for non-linear classification.

3) Random Forest

RF is a useful machine learning tool based on the decision
tree classifier, and it can address the overfitting issue that the
decision tree has. Bootstrapping is used for making subsets of
data and multiple trees are raised based on each subset. Each
decision trees use the traditional Gini index to get its own
results. The ultimate result of RF will be decided by using
majority voting.

B. SHAP-based ML Model Explanation

SHAP explainers are built after ML models. It can explain
an ML model by generating SHAP values to quantify the
contributions of individual input features to the model outputs.
Then, the model explanation results can be cross-checked with
physical/empirical domain knowledge to make ML decision-
making physically explainable. SHAP explanation of a
general ML model can be expressed as [23]:
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where M is the number of input features in feature set {x;, i =
1: M} and y is the output. ¢, is the average prediction and ¢;
is the SHAP value of the i*" feature.

SHAP explanations stem from game theory. SHAP values
are generated considering the interaction between features in
affecting the modeling results. In other words, subsets of
features are exhausted, and the marginal contribution of a
specific feature is obtained from averaging the contributions
of subset features before and after removing that specific
feature. The marginal contribution of a feature is also called a
SHAP value, which is generally expressed as
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where i is the serial number of features and f is the model that
needs to be explained. z' are the subsets that are recurrently
calculated and x' is simplified data input. M is the total
number of features.

The above SHAP value generation method applies only to
linear models. For nonlinear modeling techniques, more
advanced SHAP methods are needed, and different ML
techniques require different types of SHAP explainers. For
NN models, the SHAP values need to be calculated through
the DeepSHAP explainer which is based on the DeepLIFT
approximation method [24]. The average prediction ¢, in
DeepLIFT is the reference point y° = f(x3,x3,..). ¢; is
represented by mAx;Ay;. It means that DeepLIFT explains the
difference in output from the reference point in the field of the
difference in input from the reference point. For a simple NN
with one hidden layer, the SHAP value for the i*" feature can
be written as:

mAx;Ay = Z mAx;Ah;mAh;Ay 4)
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where & represents the outputs of hidden neurons. Eq. (4) is
based on the chain rule for multipliers. To differentiate
positive and negative contributions of individual input
features SHAP RevealCancel rule [26] can be applied. If the
output of a hidden neuron is h = f(x), the SHAP values can
be evaluated in terms of positive and negative output
differences Ah* and Ah~ through the RevealCancel rule:
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The SHAP values then can be approximated by calculating
the positive and negative contribution of input features to the
positive and negative differences in the output:
Ah* Av-Ah- = Ah™ @
Ax;"’ max; N Ax;

KernelSHAP explainer [25] and TreeSHAP explainer [26]
are used for SVM models and random forest models
respectively. They use different methods to explain models
but the basic idea behind them is similar.

mAx;F ARt =

III. EXPERIMENTAL EVALUATION

The experimental study is carried out to evaluate the
proposed SHAP explanation methods for the three ML models
in the context of motor fault diagnosis. This section introduces
details related to the experimental setup, vibration signal
collection, ML model construction, and training.

A. Experimental Setup

This study focuses on diagnosing four types of common
motor faults, which are bowed rotor, broken rotor, unbalanced
rotor, and faulted bearing. Thus, datasets are obtained from
five different motors (including a normal motor). The
experimental setup is shown in Fig. 1 These motors were
mounted on the experiment platform one by one to obtain
vibration data under motor operation. Two vibrations sensors
(Horizontal and vertical, normal to each other) are applied to
capture electromagnetic forces in different directions. 7
different rotating speeds from 1200rpm to 3000rpm have been
tested, generating 7 sets of vibration data from each motor. A
consistent load was set with all motor speeds. The load is very
light compared to the weight and power of motors so the
influence of load on motor torque can be ignored.

B. Data sampling and Feature extraction

Statistics features are extracted from both the time domain
and frequency domain of motor vibration signals. Feature
extraction helps reduce the dimensionality of data processing,
and these features have been demonstrated effective in
characterizing motor operating conditions [27]. In this paper,
16 features are selected and extracted from one channel of the
vibration data, including 9 time-domain features and 7
frequency-domain features, as listed in Table I.

The sampling rate of the vibrations sensor is 10kHz. From
individual motors running under a specific speed, 60 seconds
of data (i.e., 600,000 data points from each vibration channel)
have been collected. Sliding windows are applied to pre-

Fig. 1. Experiment gearbox setup

process the raw vibration data and generate features. In this
case, a window is set across 1000 data points, and there is no
overlapping between subsequent windows. In other words, a
sample would be created to contain 16 features extracted from
1000 horizontal vibration data points and 16 features from
vertical vibration data. In total, Thus 21,540 samples are
generated for the 5 motor fault types and 7 rotating speeds,
and each sample contains 32 features.

C. Model Construction and Training

The NN model used in this study has 5 layers. The input
layer has 32 neurons corresponding to 32 features, and three
hidden layers have 128, 64, and 32 neurons respectively. The
output layer has 5 layers corresponding to 5 types of motor
faults. The learning rate is set to 0.01, and the Adam algorithm
is used for the optimizer. The construction of SVM and RF
models is similar. To improve the training robustness, 5-fold
cross-validation is applied during the training process, which
split the dataset into 5 pieces and uses each piece as a test set
and the rest as a training set so that the model will be trained
5 times. Each time will return a result and the final result will
be the mean value of all results. Three SHAP explainers are
applied to interpret the classification results of the three ML
models, once they are done with training.

Training of the three ML models is evaluated in 5 different
scenarios, corresponding to 5 sets of training data. In the first
round of experiment, training data proportionally come from
all rotating speeds. In the second round of the experiment,
only slow motor speed data from 1200rpm to 2100rpm are
used for training, which would tell whether the motor speed
influences the performance of models. In the third round of
the experiment, only selected interval motor speed data, which
are 1200rpm, 1800rpm, 2400rpm, and 3000rpm are used for
training, which would also further observe the influence of
motor speed on the performance of models. In the fourth round
of the experiment, only the 10 most important features
selected from the SHAP explanation results of the first round
of the experiment are used for model training. In the last round
of experiments, only 16 features extracted from the horizontal
vibration signal are used for model training.

IV. RESULTS AND DISCUSSION

The model accuracy comparison for five rounds of
experiments is shown in Fig. 2. The results indicate that the
first standard experiment (i.e., training data come from all
tested rotating speeds) produced the best results, with all three
different models achieving 100% accuracy. The accuracy of
the three models is very low in the second round of
experiments that only uses data from slow motor speeds as
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Fig. 2. Model accuracy comparison



TABLEL FEATURE EXTRACTION EQUATIONS

Time-domain features

Frequency-domain features

Feature Equation Feature Equation
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where x; is sampled vibration signal fori = 1,2, ..., n.

training data, which preliminarily indicates that the training
data coverage is very important for model performance. The
main reason for such poor results is that motor operating
dynamics under low and high rotating speeds are different,
and fault-related patterns learned by the three ML models
from low-speed data cannot be well generalized to high-speed
data. Training data coverage is also a major concern in
affecting the generalizability of ML models. The accuracy of
the three models in the third round of experiments that uses
interval motor speeds as training data, although not high, is
still better than that of the previous round of experiments. By
seeing the data from the lowest and highest speed limits, the
identified fault-related patterns by the ML models are more
generalizable to data from interval speeds.

The fourth round of experiments is based on the 10 most
important features that are obtained from the SHAP
explanation results of the first round of experiments. This
round of results is very close to the first round of experiments.
This indicates that the 10 most important features identified

by SHAP explanation contain almost all necessary
information out of 32 features in detecting and differentiating
motor faults. This also demonstrates the effectiveness of
SHAP explanation in identifying critical data features. The
fifth round of experiments uses only 16 features extracted
from the horizontal signal. The accuracy of the three models
is good but lower than that of models trained with the 10 most
important features, indicating that the quality of features is
more important than the quantity. However, this experiment
still shows that the model can be trained well using only the
data obtained from one sensor.

The SHAP feature importance plot for three machine
learning models in the standard experiment is presented in Fig.
3. (a) ~ (c). The vertical axis of plots shows the names of
features, and the suffix (v or h) of each name indicates whether
the feature is extracted from the horizontal or vertical sensor
data. The horizontal axis represents the corresponding mean
SHAP value. The higher the SHAP value, the greater the
contribution of this feature to model classification results. Five



different colors represent the contribution of a particular
feature to a particular motor fault class during model training.
The SHAP value of AF(h) (Average frequency extracted from
the horizontal signal) in the three models is dominant,
indicating that AF(h) contributes the most among all the
features, as it carries information on how signal components
vary with motor faulty conditions. Another finding is that the
SHAP explanation results of three different ML models have
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great consensus: the first two most critical features from the
three explanations are the same. This proves the
generalizability of SHAP explanations in relative to specific
ML models. Fig. 4 are SHAP summary plots that show the
decomposition of feature contributions for a specific fault
type. The horizontal axis of each plot is the SHAP value rather
than the mean SHAP value. Unlike previous plots, these
scatter plots consisting of many points, and each point
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Fig. 3. SHAP model importance plot
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Fig. 4. SHAP summary plot for two types of faults



represents a sample. The color of points represents feature
value. Fig. 4. (a) ~ (b) is the summary plots of NN for two
different fault types. As mentioned earlier, the feature in the
first row is AF because it contributes the most to the model. A
high value of AF(h) would make the NN model to be more
likely to classify that sample as an unbalanced rotor fault and
against other fault types. So that in Fig. 4. (a) high values of
AF(h) are explained as positive contributions to unbalanced
rotor fault. Similarly, as shown in Fig. 4. (b), a low value of
AF(h) would make the model classify the sample as bowed
rotor fault; hence, low AF(h) values have a positive
contribution to the identification of this specific motor fault
type. Fig. 4. (¢) ~ Fig. 4. (d) are summary plots of SVM for
two different fault types. Similar explanation results in Fig. 4
again prove the generalizability of SHAP explanation of
different ML models. SHAP explanation would advance our
physical understanding of the motor operation and fault
occurrence, e.g., what type of fault leads to what changes in
electromechanical force in motor operating and vibration
measurement.

V. CONCLUSION

This paper presents a SHAP-based explanation of three
commonly used ML techniques (SVM, RF, and NN) in
detecting and classifying motor faults. The explanation helps
identify the critical vibration sensing features in
differentiating fault types, not only reducing the dimension of
data analysis but also advancing the physical understanding of
motor fault occurrences. The ML models are evaluated in
different training scenarios and explained by different SHAP
explainers. Some observations are drawn from the analysis:

o All three ML techniques could achieve great fault
diagnosis if training data has full coverage.

e Uncomprehensive training data coverage greatly reduces
model performance; including data from upper and lower
operating limits is necessary.

e Explanation results of the three ML models, although
performed by different SHAP explainers, show a great
consensus that average vibration frequency is the most
critical feature in motor fault diagnosis.

e Including features with the highest contributions achieve
comparable performance as including all features.

Future work will explain more types of ML and DL models
like CNN and RNN.
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