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Abstract

The energy and geometry of maximizing paths in integrable last passage percolation
models are governed by the characteristic KPZ scaling exponents of one-third and
two-thirds. When represented in scaled coordinates that respect these exponents, this
random field of paths may be viewed as a complex energy landscape. We investigate
the structure of valleys and connecting pathways in this landscape. The routed
weight profile R → R associates to x ∈ R the maximum scaled energy obtainable
by a path whose scaled journey from (0, 0) to (0, 1) passes through the point (x, 1/2).
Developing tools of Brownian Gibbs analysis from [Ham22] and [CHH19], we prove
an assertion of strong similarity of this profile for Brownian last passage percolation
to Brownian motion of rate two on the unit-order scale. A sharp estimate on the rarity
that two macroscopically different routes in the energy landscape offer energies close
to the global maximum results. We prove robust assertions concerning modulus of
continuity for the energy and geometry of scaled maximizing paths, that develop the
results and approach of [HS20], delivering estimates valid on all scales above the
microscopic. The geometry of excursions of near ground states about the maximizing
path is investigated: indeed, we estimate the energetic shortfall of scaled paths forced
to closely mimic the geometry of the maximizing route while remaining disjoint from it.
We also provide bounds on the approximate gradient of the maximizing path, viewed
as a function, ruling out sharp steep movement down to the microscopic scale. Our
results find application in a companion study [GH20a] of the stability, and fragility, of
last passage percolation under a dynamical perturbation.
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1 Introduction

1.1 KPZ universality, last passage percolation models, and scaled coordinates

The 1 + 1 dimensional Kardar-Parisi-Zhang [KPZ] universality class includes many
microscopic models in which a random interface is suspended over a one-dimensional
domain, whose growth in a direction normal to the surface competes with a smoothening
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Near ground states for Gaussian polymers

surface tension in the presence of a local force that randomly roughens the surface.
Many planar last passage percolation [LPP] models exhibit these characteristics. In a
planar LPP model, directed paths, moving in directions in the first quadrant, are assigned
energy via a random environment, which is independent in disjoint regions. This energy
is assigned by integrating the environment’s value along the path. For a given pair of
planar points, the directed path between them attaining the maximum energy is called a
geodesic.

For LPP models lying in the KPZ class, a geodesic moving in a non-axial direction,
crossing a large distance n has an energy that is typically linear in n with a standard
deviation of order n1/3. The associated random interface mentioned at the outset is
the function obtained when the lower geodesic endpoint is held fixed, and the geodesic
energy is a function of the other endpoint varying horizontally. In this particular case,
where the first endpoint is fixed, the energy profile is termed ‘narrow wedge’. Non-trivial
correlations in the interface occur between points with separation of order n2/3. The
same exponent governs the related notion of transversal fluctuation of the geodesic from
the straight line joining its endpoints. Despite the predicted universality, these assertions
have been rigorously demonstrated for only a few LPP models with certain exactly
solvable features: the seminal work of Baik, Deift and Johansson [BDJ99] established
the one-third exponent, and the GUE Tracy-Widom distributional limit, for the case of
Poissonian last passage percolation, while Johansson [Joh00] derived the two-thirds
power law for maximal transversal fluctuation for this model.

In view of these facts, it is natural to represent the field of geodesics in a scaled
system of coordinates. Under this scaling, a northeasterly displacement of order n
becomes a vertical displacement of one unit, while a horizontal displacement of order
n2/3 becomes a unit horizontal displacement. The system of energies also transfers to
scaled coordinates, with the scaled geodesic energy being specified by centring about
the mean value and normalizing by the typical scale of n1/3.

In this way, the LPP geodesic that begins at (0, 0) and ends at (n, n) has a scaled
counterpart, which we will refer to as a polymer and label ρ

[︁
(0, 0) → (0, 1)

]︁
, that travels

between (0, 0) and (0, 1). This polymer has a scaled energy, or weight, that we denote
by Wgt

[︁
(0, 0) → (0, 1)

]︁
, which in the high n limit is distributed according to the GUE

Tracy-Widom distribution. In the scaled LPP description more generally, a polymer
ρ
[︁
(x, s) → (y, t)

]︁
is associated to each pair of planar points (x, s) and (y, t) with s < t.

The polymer’s weight is denoted by Wgt
[︁
(x, s) → (y, t)

]︁
.

1.2 The energy landscape of scaled LPP and the structure of its valleys

Many statistical mechanical systems may be described by a probability measure
whose density e−H(x) with respect to a background measure µ, supported on a space X,
is specified by a Hamiltonian H : X → R which may be viewed as an energy landscape
over X. Such a system may be viewed as a particle that dwells randomly in X; the
system is held at equilibrium by a Markovian dynamics in which the present state
evolves locally according to a Metropolis rule governed by the relative values of the
function e−H(x). The present state is thus a snapshot of a particle wandering in the
energy landscape, which is typically attracted into the landscape’s local valleys; its
long-term behaviour is governed by the structure of valleys—their number; depths; and
the heights and geometry of mountain passes that connect them. For Gaussian models
of disorder, including Gaussian polymers, [Cha14] proved via an interpolation method
that certain strong concentration properties exhibited by such systems are equivalent to
an abundance of well-separated valleys—which abundance entails chaotic behaviour of
observables when the system is slightly perturbed. The landscape geometry of several
models has since then been studied. Landscapes of general smooth Gaussian functions
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on the sphere in high dimensions as well as those related to spin-glass models have been
studied in [AAČ13, ABA13]. More recently, refined results for the number of valleys for
spin-glasses have been obtained in [DEZ15, CHL18, Eld20].

In this article, we investigate the structure of the energy landscape of Brownian last
passage percolation, a semi-discrete polymer wandering through Gaussian noise, in its
scaled coordinate description. This will find application in a companion study [GH20a]
of the transition from stability to chaos of this model subject to a dynamical perturba-
tion. Brownian LPP model will be recalled shortly; its noise environment is comprised
of Brownian randomness. The model carries a parameter n ∈ N which in rising ap-
proximates a limiting scaled description; in our present heuristic purpose, we omit
mention of it; indeed we already did so, in indicating the meaning of the field of weights
Wgt

[︁
(x, s) → (y, t)

]︁
.

Let x ∈ R and a ∈ (0, 1). Set Z(x, a) equal to the supremum of weights of scaled paths
on the route from (0, 0) to (0, 1) that pass through (x, a). That is,

Z(x, a) = Wgt
[︁
(0, 0) → (x, a)

]︁
+Wgt

[︁
(x, a) → (0, 1)

]︁
. (1.1)

We refer to the random process R → R : x → Z(x, a) as the routed weight profile at
height a, because this process records weights of paths that are routed through a given
location at this height. This profile is a cross-section of the LPP energy landscape that
is pertinent for understanding the geometry of the polymer ρ

[︁
(0, 0) → (0, 1)

]︁
and how

effectively scaled paths that share the polymer’s endpoints but that take alternative
routes compete in weight with the polymer. For example, the horizontal location at which
ρ
[︁
(0, 0) → (0, 1)

]︁
traverses height a is the maximizer M of the random function R →

R : x→ Z(x, a) (an almost surely unique location, as we will indicate in Lemma 2.1(2)).
For x ∈ R, the quantity Z(M,a) − Z(x, a) ≥ 0 is the shortfall in weight relative to the
polymer’s of a scaled LPP path from (0, 0) to (0, 1) that is constrained to pass via the
point (x, a).

1.3 Principal conclusions and themes in overview

In this article, we will prove several conclusions concerning the energy landscape
of scaled Brownian LPP. As we informally summarise them now, we continue to omit
mention of the scaling parameter n ∈ N: roughly, our assertions should be understood
uniformly in high choices of this parameter.

1.3.1 Brownianity of the routed weight profile

On scales larger the unit scale, the profile x→ Z(x, a) is curved, following the parabola
x → −2−1/2a−1(1− a)−1x2. On the unit scale, however, it resembles Brownian motion.
Building on a Brownian comparison result for narrow wedge weight profiles from
[CHH19], our first result, Theorem 1.2, offers a strong attestation of this resemblance.
For a ∈ (0, 1), the profile x → Z(x, a) enjoys a strong similarity with Brownian motion
B of rate two. Indeed, if A denotes a collection of continuous functions on [−1, 1] that
vanish at −1 for which the probability that [−1, 1] → R : x→ B(x)−B(−1) belongs to A
is denoted by η, then the probability that the profile [−1, 1] → R : x→ Z(x, a)− Z(−1, a)

belongs to A is at most an expression of the form η · exp
{︁
Θ(1)(log η−1)5/6

}︁
. The latter,

correction, term grows much more slowly than any inverse power of η in the limit of
η ↘ 0. The constant implied by use of the notation Θ(1) may be chosen uniformly as a
varies over any given compact set in (0, 1). In general, the notation Θ(1) will be used
to refer to positive constants that are bounded away from zero and infinity in a manner
that is independent of variable parameters in the context in question.
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1.3.2 The rarity of twin peaks

If the maximizer M of x→ Z(x, 1/2) lies to the right of the origin, so that say the positive
probability event M ∈ [1, 3] is satisfied, the random variable

Z(M, 1/2) − sup
{︁
Z(x, 1/2) : x ∈ [−3,−1]

}︁
≥ 0

equals the shortfall in weight relative to the polymer’s along those scaled paths from
(0, 0) to (0, 1) that instead pass on the left, via locations in [−3,−1], at the mid-life time
one-half. If this random variable is less than a given small quantity σ > 0, the profile
x → Z(x, 1/2) resembles a pair of peaks, with the left hill’s height rivalling the right
hill’s to within a distance of σ. When this twin peaks’ event occurs, a local valley in
the LPP energy landscape lies at a significant remove from the global valley while
succeeding to rival the latter’s depth. An upper bound on this event’s probability thus
sheds light on the landscape’s geometry. Given the strong resemblance of the profile
to Brownian motion, the probability of the twin peaks’ event is inherited from the
counterpart Brownian probability. Our second principal conclusion, Theorem 1.3, asserts
that twin peaks with discrepancy σ arise in the routed weight profile with probability
at most σ · exp

{︁
Θ(1)(log σ−1)5/6

}︁
. Figure 1 offers a guide to twin peaks in the energy

landscape via the equivalent notion of near touch for a natural decomposition of the
routed weight profile.

x→ Z(x, 1/2)

σ

31−1−3

x→ Z−(x)

x→ Z+(x)

σ

−3 −1
1

3

0

0

1

1/2

3−3

M

M

M

Figure 1: Left: The routed weight profile x→ Z(x, 1/2) realizes the twin peaks’ event.
Middle: Let Z−(x) = Wgtn

[︁
(0, 0) → (x, 1/2)

]︁
; and let x → Z+(x) denote the vertical

translate of x→ −Wgtn
[︁
(x, 1/2) → (0, 1)

]︁
such that the graphs of Z− and Z+ touch, but

do not cross. The horizontal coordinate of the point of touch is M , the maximizer of
Z(·, 1/2); the occurrence of twin peaks is now represented by a near touch on the part
of the two graphs in the strip [−3,−1] × R. Right: The bold polymer ρ

[︁
(0, 0) → (0, 1)

]︁
has horizontal coordinate M ∈ [1, 3] at height one-half. The rival path, following the
bold-dashed-bold route, attains a weight within σ of the polymer’s while swinging left,
into [−3,−1], at the mid-life time one-half.

1.3.3 Robust assertions of modulus of continuity for geometry and weight of
polymers

Polymers such as ρ = ρ
[︁
(0, 0) → (0, 1)

]︁
may be viewed as functions of the vertical

coordinate; in this way, we interpret ρ : [0, 1] → R as a random real-valued function. A
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modulus of continuity for this function is known by [HS20, DOV22] to take the form of

a large constant multiple of z → z2/3
(︁
log z−1

)︁1/3
. The weight of the polymer restricted

to [0, t] may also be viewed as a function of t ∈ [0, 1]; these same references prove a

modulus of continuity for this weight profile of order z → z1/3
(︁
log z−1

)︁2/3
. We provide

robust forms of such assertions in Theorems 1.4 and 1.6. These results are valid in
Brownian LPP uniformly in high values of its parameter n ∈ N and in variation of polymer
endpoints over compact regions. Just as significantly, they control variation in polymer
weight and geometry not merely in response to small n-independent changes in the
vertical coordinate as do [HS20] and [DOV22], but on any vertical scale down to the
microscopic separation n−1. A related local fluctuation result proved in [BSS17a] was
also a crucial ingredient in [BSS17b].

1.3.4 Slender excursions around the polymer are typically uncompetitive

The weight Z(M, 1/2) is realized by the maximum weight path on the route from (0, 0) to
(0, 1), namely the polymer ρ = ρ

[︁
(0, 0) → (0, 1)

]︁
. For z ∈ R small, the weight Z(M+z, 1/2)

is realized by a scaled path ϕ that begins from (0, 0) by following the course of ρ; that
departs this course at some height h1 ∈ (0, 1/2) to visit M + z at height one-half before
rejoining ρ at some height h2 ∈ (1/2, 1); and that then follows the course of ρ until (0, 1).
As such, [h1, h2] is an interval during which ϕ makes an excursion away from ρ. The KPZ
exponent of two-thirds for polymer geometry indicates that (h2 − h1)

2/3 has typical order
z. That is, we expect ϕ to make an excursion, on an interval that contains one-half, for a
duration h2 − h1 of order z3/2; to maintain a horizontal distance from ρ of order z during
much of the excursion’s duration; and, in view of the Gaussian-order increment of the
routed weight profile, to accrue a shortfall in weight relative to ρ of order z1/2.

We present a conclusion, Theorem 1.10, that validates this heuristic view. It considers
the maximum weight accrued by a path ϕ that makes an excursion of duration h ∈ (0, 1)

from the polymer ρ in such a way that the horizontal discrepancy between ρ and ϕ is at
most h2/3θ at most moments during the excursion’s lifetime. The parameter θ > 0 will
be chosen to be small, so that a slender excursion is being demanded, one that deviates
horizontally from the polymer by a factor of θ less than is expected. We will prove that the
weight of any such path ϕ is highly likely to fall short of the polymer weight by an order of
at least h1/3θ−1. When θ is of unit order, this shortfall is predicted by the KPZ exponent
of one-third for polymer weight; when θ ≪ 1, the factor of θ−1 represents a weight
penalty for the forcibly confined geometry endured by the excursion. While results of a
similar flavor have appeared before in [BGH18, BGHH20, BHS18, GH20b, BB21, DJP18],
all of them investigated energetic shortfalls of paths restricted to lie in deterministic
thin cylinders. In contrast, Theorem 1.10 offers a more robust setting treating paths
restricted to be in a random region determined by the polymer.

1.3.5 The polymer advances in a regular fashion microscopically

Our final main result, Theorem 1.11, concerns the microscopic structure of the tra-
jectory of the polymer in Brownian LPP, and is more vividly expressed in unscaled
coordinates. Consider then the Brownian LPP geodesic Γn that runs from (0, 0) to (n, n).
The geodesic’s progression is globally diagonal; we prove that, even on the shortest of
scales, this progression is manifest. A cliff in Γ is a subpath of Γ in which Γ advances
horizontally by one unit while advancing vertically by A units. We prove that, when
the positive parameter A is fixed at a high value, and except on an event of probability
that decays at an exponential rate in n, the proportion of Γ that is comprised of cliffs is
bounded away from one.
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1.4 Probabilistic and geometric inquiry into KPZ universality

The study of KPZ universality has advanced through physical insights, numerical
analysis, and several techniques of integrable or algebraic origin. Rather than hazard
a summary of literature to support this one sentence history, we refer to the reader
to [Cor12] for a KPZ survey from 2012; in fact, integrable and analytic approaches
to KPZ have attracted huge interest around and since that time. A recent wave of
KPZ research has brought probabilistic and geometric tools to the fore, making use
of integrable aspects of the models of study as occasional inputs in arguments, albeit
essential ones. Three examples are the solution [BSS16] of the slow bond problem, in
which the integrable model of exponential LPP is perturbed by altering the random
environment along a one-dimensional subspace, and the resulting geometry and energy
of geodesics is studied; the construction [CH14] of the Airy line ensemble, a KPZ
universal object encoding polymer weights in the narrow wedge case as a continuous
system of mutually avoiding random curves; and the construction [DOV22] of the Airy
sheet (or the directed landscape), a rich scaling limit for the weights of KPZ polymers in
which these weights are obtained as LPP values in an environment specified by the Airy
line ensemble after the subtraction of a parabola.

The present article pursues the study of problems in KPZ in a probabilistic and
geometric vein. In particular, our results Theorems 1.2 and 1.3 on Brownianity and twin
peaks’ rarity for the routed weight profile lie in the domain of Brownian Gibbs analysis
of LPP. The parabolic Airy line ensemble is in essence a mutually avoiding system of
Brownian motions, subject to suitable boundary conditions. As we will indicate more
clearly early in Section 2, this ensemble of random curves thus satisfies the Brownian
Gibbs property, a simple and attractive resampling property involving Brownian motion
and avoidance. The Brownian Gibbs technique led to the construction of the Airy line
ensemble in [CH14]. The technique has been pursued in [Ham22] and [CHH19] to yield
strong inferences regarding the similarity to Brownian motion of the Airy2 process,
which is, after a parabolic shift, the scaling limit of the narrow wedge polymer weight
profile in integrable LPP models.

Our results on Brownianity and twin peaks’ rarity develop this strand of research,
begun in [CH14], and pursued in [Ham22] and [CHH19], so that results such as Theo-
rems 1.2 and 1.3 pertinent to the LPP energy landscape now become available.

By means of a more algebraic approach that analyses representations involving
Fredholm determinants, strong Brownian comparison estimates have also been obtained
in [MQR17]. This work constructs a universal Markov process called the KPZ fixed
point that describes the evolution of geodesic energy profiles starting from rather
arbitrary initial data; an earlier result in [QR19] identified domains of attraction for
the one point fluctuations of the KPZ equation starting from general initial data. The
assertion that the Airy2 process closely resembles Brownian motion on the unit-order
scale, and counterpart results for scaled geodesic energy profiles in LPP models, have
been instrumental in several recent inquiries into geometric and fractal properties of the
KPZ fixed point. In [BG18, BGZ19, FO19], exponents governing temporal correlations
induced by various initial data have been determined, thereby settling conjectures
by Ferrari and Spohn from [FS+16]. (In [CGH19], an analogous result for the KPZ
equation is derived.) Profile Brownianity also drives the fractal geometry and Hausdorff
dimension results for exceptional sets found in the space-time Airy sheet that are the
subject of [?, BGH19].
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1.5 Stability and chaos in dynamical Brownian LPP

Control on polymer geometry and weight; on the excursion geometry of LPP paths
that in weight are competitive with the maximum; on the microscopic structure of
geodesics—these geometric inferences are, we believe, robust tools that will serve to
advance the analysis of LPP; its scaling limit; and its reaction to perturbation. Indeed,
this article’s results find application in a companion study [GH20a] of the stability, and
fragility, of Brownian LPP under dynamical perturbation. Very shortly, we will define
Brownian LPP; for now, we note merely that its noise environment is specified by a
countable system of independent Brownian motions. A dynamics may be introduced that
leaves Brownian LPP invariant, in which each of these constituent Brownian motions is
updated according to Ornstein-Uhlenbeck dynamics. In [GH20a] is identified the time-
scale that heralds the transition from stability to chaos for dynamical Brownian LPP—the
polymer from (0, 0) to (0, 1) is largely unperturbed in the stable zone and is profoundly
altered in the chaotic phase. This time-scale takes the form n−1/3+o(1) when a geodesic
of extension n ∈ N is considered; this corresponds to updating n2/3+o(1) bits along the
geodesic in a discrete LPP model. Every one of the results that we have indicated in
the preceding overview has a role to play in proving this transition in [GH20a]. The
robust probabilistic and geometric results and technique that we present undergird the
companion dynamical LPP analysis and, we believe, will find further application in the
study of scaled KPZ structure.

In the next two sections, we define Brownian LPP and introduce some of its basic
objects; and we specify the transformation that specifies the scaled coordinates in which
we couch our principal results and proofs. In the remaining introductory sections, we
then present the statements of our main results, in the same order in which we have just
summarized them.

1.6 Brownian last passage percolation

On a probability space equipped with a law labelled P, let B : R×Z→ R denote a
collection of independent two-sided standard Brownian motions B(·, k) : R→ R, k ∈ Z.
The indexing of the domain in the form R× Z is unusual, with the other choice Z×R
being more conventional. The choice of R×Z is made because it permits us to visualize
this index set for the ensemble B’s curves as a subset of R2 with the usual Cartesian
coordinate order being respected by the notation.

Let i, j ∈ Z with i ≤ j. Ji, jK will denote the integer interval {i, · · · , j}. For x, y ∈ R
with x ≤ y, consider the collection of non-decreasing lists

{︁
zk : k ∈ Ji+ 1, jK

}︁
of values

zk ∈ [x, y]. Adopting the convention that zi = x and zj+1 = y, we associate to any such
list the energy

∑︁j
k=i

(︁
B(zk+1, k)−B(zk, k)

)︁
. We then define the maximum energy to be

M
[︁
(x, i) → (y, j)

]︁
= sup

{︃ j∑︂
k=i

(︂
B(zk+1, k)−B(zk, k)

)︂}︃
,

where the supremum is taken over all such lists. The random process M
[︁
(0, 1) → (·, n)

]︁
:

[0,∞) → R was introduced by [GW91] and further studied in [OY02].

1.6.1 Staircases

Set N = {0, 1, · · · }. For i, j ∈ N with i ≤ j, and x, y ∈ R with x ≤ y, an energy has been
ascribed to any non-decreasing list

{︁
zk : k ∈ Ji+ 1, jK

}︁
of values zk ∈ [x, y]. In order to

emphasize the geometric aspects of this definition, we associate to each list a subset of
[x, y]× [i, j] ⊂ R2, that we call a staircase, which will be the range of a piecewise affine
path.
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To define the staircase above we again adopt the convention that zi = x and zj+1 = y.
The staircase will be specified as the union of certain horizontal planar line segments,
and certain vertical ones. The horizontal segments take the form [zk, zk+1] × {k} for
k ∈ Ji, jK. A vertical planar line segment of unit length connects the right and left
endpoints of each consecutive pair of horizontal segments. It is this collection of vertical
line segments that form the vertical segments of the staircase.

The resulting staircase may be depicted as the range of an alternately rightward and
upward moving path from starting point (x, i) to ending point (y, j). The set of staircases
with these starting and ending points will be denoted by SC

[︁
(x, i) → (y, j)

]︁
. Since

such staircases are in bijection with the collection of non-decreasing lists, any staircase
ϕ ∈ SC

[︁
(x, i) → (y, j)

]︁
is assigned an energy E(ϕ) =

∑︁j
k=i

(︁
B(zk+1, k)−B(zk, k)

)︁
via the

associated z-list.

1.6.2 Energy maximizing staircases are called geodesics.

A staircase ϕ ∈ SC
[︁
(x, i) → (y, j)

]︁
whose energy attains the maximum value M

[︁
(x, i) →

(y, j)
]︁

is called a geodesic from (x, i) to (y, j). That this geodesic exists for all choices
of x, y ∈ R with x ≤ y, is a simple consequence of the continuity of the constituent
Brownian paths B(k, ·). Further, for any given such choice of the pair (x, y), by [Ham19b,
Lemma A.1], there is an almost surely unique geodesic from (x, i) to (y, j). We denote it
by Γ

[︁
(x, i) → (y, j)

]︁
.

1.7 Scaled coordinates for Brownian LPP

Members of the KPZ universality class enjoy scalings represented by the characteris-
tic exponents of one-third and two-thirds. The one-third exponent governs the energetic
fluctuation of the geodesic between (0, 0) and (n, n), that is, if we write

M
[︁
(0, 0) → (n, n)

]︁
= 2n+ n1/3Wgtn

[︁
(0, 0) → (0, 1)

]︁
, (1.2)

then the term Wgtn
[︁
(0, 0) → (0, 1)

]︁
is a random, tight in n unit-order quantity. (See the

sixth paragraph of [CHH19, Subsection 3.2.1] for a discussion of this tightness.) This is
the scaled geodesic energy, which we will call weight. The exponent two-thirds appears
in the fact that when geodesic energy [0,∞) → R : x→M

[︁
(0, 0) → (x, n)

]︁
is varied from

x = n, it is changes of order n2/3 in x that result in non-trivial correlation.

Given the above, it is natural to work in scaled coordinates under which the journey
between (0, 0) and (n, n) corresponds to the unit vertical journey between (0, 0) and (0, 1),
while horizontal perturbation of the endpoint (n, n) by magnitude n2/3 corresponds to
unit-order scaled horizontal perturbation. This will lead to the notion of scaled energy,
or weight, associated to the image of any path in scaled coordinates. This is done
next, namely, we specify the scaling map Rn : R2 → R2 whose range specifies scaled
coordinates; introduce notation for scaled paths; and specify the form of scaled energy.

1.7.1 The scaling map.

For n ∈ N, consider the n-indexed scaling map Rn : R2 → R2 given by

Rn

(︁
v1, v2

)︁
=
(︂
2−1n−2/3(v1 − v2) , v2/n

)︂
. (1.3)

The scaling map naturally acts on subsets C of R2 with Rn(C) =
{︁
Rn(x) : x ∈ C

}︁
.
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1.7.2 Scaling transforms staircases to zigzags.

The image of any staircase under Rn will be called an n-zigzag. The starting and ending
points of an n-zigzag Z are defined to be the image under Rn of the corresponding points
for the staircase S such that Z = Rn(S).

Note that the set of horizontal lines is invariant under Rn, while vertical lines are
mapped to lines of gradient −2n−1/3. Thus, an n-zigzag is the range of a piecewise affine
path from the starting point to the ending point which alternately moves rightwards
along horizontal line segments and northwesterly along sloping line segments with
gradient −2n−1/3.

Note for example that, for given real choices of x and y, a journey which in the
original coordinates occurs between (2n2/3x, 0) and (n+ 2n2/3y, n) takes place in scaled
coordinates between (x, 0) and (y, 1). We may view the first coordinate as space and the
second as time, though the latter interpretation should not be confused with dynamic
time t; with this view in mind, the journey at hand is between x and y over the unit
lifetime [0, 1].

1.7.3 Compatible triples

Let (n, s1, s2) ∈ N×R2
≤, where we write R2

≤ =
{︁
(s1, s2) ∈ R2 : s1 ≤ s2

}︁
. Taking x, y ∈ R,

does there exist an n-zigzag from (x, s1) and (y, s2)? Two conditions must be satisfied for
an affirmative answer.

First: as far as the data (n, s1, s2) is concerned, such an n-zigzag may exist only if

s1 and s2 are integer multiplies of n−1 . (1.4)

We say that data (n, s1, s2) ∈ N×R2
≤ is a compatible triple if the above holds. We will

consistently impose this condition, whenever we seek to study n-zigzags whose lifetime
is [s1, s2]. The use of compatible triples should be thought of as a fairly minor detail. As
the index n increases, the n−1-mesh becomes finer, so that the space of n- zigzags better
approximates a field of functions, defined on arbitrary finite intervals of the vertical
coordinate, and taking values in the horizontal coordinate.

Associated to a compatible triple is the notation s1,2, which will denote the difference
s2 − s1. The law of the underlying Brownian ensemble B : R×Z→ R is invariant under
integer shifts in the latter, curve indexing, coordinate. This translates to an invariance in
law of scaled objects under vertical shifts by multiples of n−1, thus making the parameter
s1,2 of far greater relevance than the individual values s1 or s2.

Returning to the above posed question, the second needed condition is that the
horizontal coordinate of the unscaled counterpart of the latter endpoint must be at least
the former which translates to the condition

y − x ≥ −2−1n1/3s1,2 . (1.5)

1.7.4 Zigzag subpaths

Let ϕ denote an n-zigzag between elements (x, s1) and (y, s2) in R × n−1Z. Let (u, s3)
and (v, s4) be elements in ϕ ∩

(︁
[s1, s2] ∩ n−1Z

)︁
. Suppose that s3 ≤ s4 (and that u ≤ v if

equality here holds), so that (u, s3) is encountered before (v, s4) in the journey along ϕ.
The removal of (u, s3) and (v, s4) from ϕ results in three connected components. The
closure of one of these contains these two points and this closure will be denoted by
ϕ(u,s3)→(v,s4). This is the zigzag subpath, or sub-zigzag, of ϕ between (u, s3) and (v, s4).
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1.7.5 Staircase energy scales to zigzag weight.

Let n ∈ N and i, j ∈ N satisfy i < j. Any n-zigzag Z from (x, i/n) to (y, j/n) is ascribed a
scaled energy, which we will refer to as its weight, Wgt(Z) = Wgtn(Z), given by

Wgt(Z) = 2−1/2n−1/3
(︂
E(S)− 2(j − i)− 2n2/3(y − x)

)︂
(1.6)

where Z is the image under Rn of the staircase S.

1.7.6 Maximum weight.

Let n ∈ N. The quantity Wgtn
[︁
(0, 0) → (0, 1)

]︁
specified in (1.2) is simply the maximum

weight ascribed to any n-zigzag from (0, 0) to (0, 1).
Let (n, s1, s2) ∈ N × R2

≤ be a compatible triple. Suppose that x, y ∈ R satisfy y ≥
x−2−1n1/3s1,2. We will now define Wgtn

[︁
(x, s1) → (y, s2)

]︁
in a way such that this quantity

equals the maximum weight of any n-zigzag from (x, s1) to (y, s2). We must set

Wgtn
[︁
(x, s1) → (y, s2)

]︁
(1.7)

= 2−1/2n−1/3
(︂
M
[︁
(ns1 + 2n2/3x, ns1) → (ns2 + 2n2/3y, ns2)

]︁
− 2ns1,2 − 2n2/3(y − x)

)︂
.

The quantity Wgtn
[︁
(x, s1) → (y, s2)

]︁
may be expected to be, for given real choices of

x and y that differ by order s2/31,2 , a unit-order random quantity; this collection of random
variables is tight in the scaling parameter n ∈ N and in such choices of s1, s2 ∈ n−1Z

and x, y ∈ R.

1.7.7 Highest weight zigzags are called polymers.

An n-zigzag that attains the maximum weight given its endpoints will be called an n-
polymer, or, usually, simply a polymer. Thus, under the scaling map, geodesics map
to polymers. As we recalled in Subsection 1.6.2, the geodesic with any given pair of
endpoints is almost surely unique. For x, y ∈ R and (n, s1, s2) ∈ N × R2

≤ a compati-
ble triple, the almost surely unique n-polymer from (x, s1) to (y, s2) will be denoted
by ρn

[︁
(x, s1) → (y, s2)

]︁
; see Figure 2. The shorthand ρn = ρn

[︁
(0, 0) → (0, 1)

]︁
will be used.

Though not standard, since the term ‘polymer’ is often used to refer to typical
realizations of the path measure in LPP models at positive temperature, the above usage
of the term ‘polymer’ for ‘scaled geodesic’ is quite apt for our study, owing to the central
role played by these objects.

1.7.8 Zigzags as near functions of the vertical coordinate

Suppose again that ϕ is an n-zigzag between points (x, s1) and (y, s2) in R× n−1Z. For
s ∈ [s1, s2] ∩ n−1Z, we will write ϕ(s) for the supremum of values x ∈ R for which
(x, s) ∈ ϕ. This abuse of notation permits ϕ(s) to denote the horizontal coordinate of the
point of departure from vertical coordinate s in the journey along ϕ from (x, s1) to (y, s2).
This convention is adopted partly because it captures the notion that the typical zigzags ϕ
we will consider—polymers or concatenations thereof—are closely approximable by a
real-valued function of the vertical coordinate s ∈ [s1, s2], at least when n is high—indeed,
the maximum length of the horizontal line segments in an n-polymer is readily seen to
decay to zero in n with high probability. (Our few cliffs’ Theorem 1.11 quantifies this
assertion.)

Note that this notational device will be used alongside the shorthand ρn from the
preceding subsection, so that, for a ∈ n−1Z ∩ [0, 1], ρn(a) is the maximum x-coordinate
of a point at y-coordinate a on the polymer ρn

[︁
(0, 0) → (0, 1)

]︁
.
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ns1

ns2
ns2 + 2n2/3x ns2 + 2n2/3y

ns1 + 2n2/3x

s1
x

y
s2

Figure 2: Let (n, s1, s2) be a compatible triple and let x, y ∈ R. The endpoints of the
geodesic in the left sketch are such that, when the scaling map Rn is applied to produce
the right sketch, the result is the n-polymer ρn

[︁
(x, s1) → (y, s2)

]︁
from (x, s1) to (y, s2).

1.8 Brownianity and twin peaks’ rarity for the routed weight profile

To specify the routed weight profile for scaled Brownian LPP, let n ∈ N and a ∈
n−1Z∩ (0, 1). For x ∈ R, let Ψn(x, a) denote the set of n-zigzags ϕ that begin at (0, 0); end
at (0, 1); and for which x = sup

{︁
z ∈ R : (z, a) ∈ ϕ

}︁
. In other words, Ψn(x, a) comprises

those n-zigzags on the route from (0, 0) to (0, 1) whose point of departure from level
a occurs at (x, a). We set Zn(x, a) equal to the supremum of the weights of elements
of Ψn(x, a). In this way, the routed weight profile Zn(·, a) : R→ R records the maximum
weight of zigzags that are constrained to exit level a at a given horizontal location. We
did not allude to this exit constraint in the heuristic discussion of Subsection 1.3.1: in
the microscopic model, where n ∈ N is finite, this definition renders the maximizer
location M ∈ R at which Zn(M,a) = supx∈R Zn(x, a) unique, while maintaining that
Zn(M,a) = Wgtn

[︁
(0, 0) → (0, 1)

]︁
; in Lemma 2.1, we will moreover see that, in the

counterpart expression to (1.1), the two right-hand terms are independent, even when n
is finite, when the present definition is adopted.

Next we make precise the notion of comparison that we will make to Brownian
motion.

Definition 1.1. Let K ∈ R and d > 0. Let I denote the interval [K−d,K+d]. We denote
by C0,∗(I,R) the space of continuous functions f : I → R such that f(K − d) = 0. For
ν > 0, let Bν;I

0,∗ denote the law on this function space given by Brownian motion B : I → R,
B(K − d) = 0, of diffusion rate ν.

Let g and G be positive real parameters; and let m ∈ N. A continuous random
function X : I → R defined under a law P is said to be

(︁
g,G, d,m, ν

)︁
-Brownian if the

following holds. Let A denote a Borel measurable subset of C0,∗(I,R). Set η = Bν;I
0,∗ (A).

Then the condition that e−gm1/12 ≤ η ≤ g ∧ e−Gd6

implies that

P
(︂
I → R : x→ X(x)−X(K − d) belongs to A

)︂
≤ η ·G exp

{︂
Gd
(︁
log η−1

)︁5/6}︂
. (1.8)

In heuristic overview, we compared the routed weight profile to Brownian motion of
rate two on [−1, 1]. Our rigorous result crucially relying on the main result in [CHH19]
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makes the comparison on any compact interval: after the addition of the linear term
21/2

(︁
a(1− a)

)︁−1
Rx, the profile x → Zn(x, a) is very similar to Brownian motion of rate

two, in the locale of any given R ∈ R.

Theorem 1.2. There exist positive constants c, G and g such that the following holds.

Let n ∈ N and a ∈ n−1Z ∩ (0, 1). Suppose that |R| ≤ 2−1cn1/9
(︁
a ∧ (1 − a − n−1)

)︁7/9
.

Let ℓ ∈ R satisfy −2−1n1/3a ≤ R − ℓ and R + ℓ ≤ 2−1n1/3(1 − a − n−1). The process
Zn(·, a) : [R− ℓ, R+ ℓ] → R may be expressed in the form

Zn(x, a) = X(x)−
(︂
21/2

(︁
a(1− a)

)︁−1
R+ ε

)︂
x ,

where X : [R− ℓ, R+ ℓ] → R is
(︁
g,G′ℓ6, ℓ,min{a, 1−a}n, 2

)︁
-Brownian. Here, the constant

G′ is up to an absolute positive factor equal to G17/6g−5/6
(︁
a ∧ (1− a− n−1)

)︁−34/3
; and

ε = ε(a,R, n), given by ε = 21/2
(︁
(1 − a − n−1)(1 − a)

)︁−1
Rn−1, is an error term without

dependence on x.

Given the above quantitative comparison to Brownian motion, the next result presents
our conclusion regarding the rarity of twin peaks. The probability that there exists x ∈ R
such that Zn(x, a) rivals the maximum value of Zn(·, a), with Zn(x, a) being less than this

maximum by a small multiple σ of the square-root distance
(︁
x − ρn(a)

)︁1/2
is bounded

above by the product of σ and a lower-order correction exp
{︁
Θ(1)

(︁
log σ−1

)︁5/6}︁
; a further

factor of e−Θ(1)R2ℓ penalizes the maximizer for being of a large order R > 0.

Theorem 1.3. For K any compact interval of (0, 1), there exist positive constants H =

H(K) and h = h(K) and an integer n0 = n0(K) such that the following holds. Let n ∈ N,
R ∈ R, ℓ ≥ 1, ℓ′ > 0, a ∈ n−1Z ∩K, σ > 0 and ε > 0. Suppose that n ≥ n0, |R| ≤ hn1/9,
ℓ ∈ (3ε, hn1/1370) and ℓ′ ∈ (3ε, ℓ]. Denoting σ ∧ 1 by σ∗, we have that

P
(︂
M ∈ [R− ℓ/3, R+ ℓ/3] , sup

x∈R:|x−M |∈[ε,ℓ′/3]

(︁
Zn(x, a) + σ(x−M)1/2

)︁
≥ Zn(M,a)

)︂
≤ log

(︁
ℓ′ε−1

)︁
max

{︂
σ∗ · exp

{︁
− hR2ℓ+Hℓ19

(︁
1 +R2 + log σ−1

∗
)︁5/6}︁

, exp
{︁
− hn1/12

}︁}︂
,

where M denotes ρn(a), the almost surely unique maximizer of x→ Zn(x, a).

The right-hand factor of log
(︁
ℓ′ε−1

)︁
reflects a union bound indexed by dyadic scales

intersecting the interval [ε, ℓ′/3]. There is no non-smallness condition on the scale ε. The
probability upper bound exp

{︁
− hn1/12

}︁
becomes operative for extremely small values

of σ.

1.9 Robust modulus of continuity for the geometry and weight of polymers

The next result offers a quantified prelimiting expression for the z → z2/3
(︁
log z−1

)︁1/3
modulus of continuity for polymer geometry in a fashion that is uniform as the polymer’s
endpoints vary over a compact region and that holds on all scales above the microscopic
separation n−1.

Theorem 1.4.

1. There exist positive H, h and r0, and n0 ∈ N, such that, when n ∈ N satisfies n ≥ n0,
k ∈ N satisfies 2k ≤ hn and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability
at least 1 − H exp

{︁
− hr3k

}︁
that the following event occurs. Let x, y ∈ R be of

absolute value at most r. Let h1, h2 ∈ n−1Z ∩ [0, 1] satisfy h1,2 ∈ (2−k−1, 2−k] and
let u, v ∈ R be such that (u, h1) and (v, h2) belong to ρn

[︁
(x, 0) → (y, 1)

]︁
. Then⃓⃓

v − u
⃓⃓
≤ Hh

2/3
1,2

(︁
log(1 + h−1

1,2)
)︁1/3

r .

EJP 0 (2020), paper 0.
Page 13/80

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Near ground states for Gaussian polymers

2. There exist positive G, H, h and r0, and n0 ∈ N, such that, when n ∈ N satisfies
n ≥ n0, and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability at least 1−Hn−hr3

that the following event occurs. As above, let x, y ∈ R be of absolute value at
most r, and let u, v ∈ R be such that (u, h1) and (v, h2) belong to ρn

[︁
(x, 0) → (y, 1)

]︁
.

Consider any h1, h2 ∈ n−1Z ∩ [0, 1] that satisfy h1,2 < Hn−1. Then⃓⃓
v − u

⃓⃓
≤ Gn−2/3(log n)1/3r .

As a special case, we gain control on the maximum fluctuation of such polymers.

Corollary 1.5. There exist positive H, h and r0, and n0 ∈ N, such that, when n ∈ N
satisfies n ≥ n0, and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability at least
1−H exp

{︁
− hr3

}︁
that the following holds. Let x, y ∈ R be of absolute value at most r.

If (u, h′) ∈ R×
(︁
n−1Z ∩ [0, 1]

)︁
lies in ρn

[︁
(x, 0) → (y, 1)

]︁
, then |u| ≤ Hr.

A control, similar to that offered by Theorem 1.4, on the z → z1/3
(︁
log z−1

)︁2/3
modulus

of continuity for polymer weight is available.

Theorem 1.6.

1. There exist positive H, h and r0, and n0 ∈ N, such that, when n ∈ N satisfies
n ≥ n0; k ∈ N satisfies 2k ≤ hn; and r ∈ R satisfies r ≥ r0, it is with probability at
least 1−H exp

{︁
− hr3k

}︁
that the following occurs. Let h1, h2 ∈ n−1Z∩ [0, 1] satisfy

h1,2 ∈ (2−k−1, 2−k] and r ≤ (nh1,2)
1/64; let x, y ∈ R be of absolute value at most r;

and let u, v ∈ R be such that (u, h1) and (v, h2) belong to ρn
[︁
(x, 0) → (y, 1)

]︁
. Then⃓⃓

Wgtn
[︁
(u, h1) → (v, h2)

]︁⃓⃓
≤ H2r2 · h1/31,2

(︁
log h−1

1,2

)︁2/3
.

2. There exist positive G, H and r0, and n0 ∈ N, such that, when n ∈ N satisfies
n ≥ n0, and r ∈ R satisfies r ≥ r0, it is with probability at least 1 −Hn−hr3 that,
if h1,2 < Hn−1; x, y ∈ R have absolute value at most r; and u, v ∈ R are such that
(u, h1) and (v, h2) belong to ρn

[︁
(x, 0) → (y, 1)

]︁
; then

⃓⃓
Wgtn

[︁
(u, h1) → (v, h2)

]︁⃓⃓
≤

Gr2 · n−1/3(log n)2/3.

We present two further results, which emerge in the course of the proof of Theo-
rem 1.4. The former offers uniform control on the maximum fluctuation of polymers,
in which we permit to vary the polymer endpoints and the moment during the lifetime
of the polymer at which fluctuation is measured. The latter proves the rarity of short
polymers of extreme weight that begin and end in a unit-order region.

In order to state the first result, we specify a measure of the fluctuation of the
polymer ρn

[︁
(x, s1) → (y, s2)

]︁
at the intermediate moment h ∈ [s1, s2] ∩ n−1Z, measuring

the horizontal distance between the polymer at this height h relative to the height-h
location s2−h

s1,2
x+ h−s1

s1,2
y of the line that interpolates (x, s1) and (y, s2). We set

Flucn
[︁
(x, s1) → (y, s2);h

]︁
= sup

{︂⃓⃓
u− s2−h

s1,2
x−h−s1

s1,2
y
⃓⃓
: u ∈ R , (u, h) ∈ ρn

[︁
(x, s1) → (y, s2)

]︁}︂
.

(1.9)
The typical order of this quantity is λ2/3, where λ equals (h − s1) ∧ (s2 − h), with ∧
denoting minimum.

Theorem 1.7. Let K > 0, r ≥ r0, a ∈ (0, 1/4], n ∈ N and s1, s2 ∈ n−1Z ∩ [0, 1] satisfy
s1 ≤ s2; ns1,2a and ns1,2(1 − a) are at least Θ(1); Ka1/3 ≤ Θ(1); and |K| ≤ (ns1,2)

2/3.
Then

P
(︂
supFlucn

[︁
(x, h1) → (y, h2);h

]︁
≥ r(as1,2)

2/3
(︁
log a−1

)︁1/3)︂ ≤ Θ(1)K2a−10/3aΘ(1)r3 ,

(1.10)
where the supremum is taken over x, y ∈ [−K,K] · s2/31,2 , h1 ∈ n−1Z ∩ [s1, s1 + s1,2/3],

h2 ∈ n−1Z ∩ [s2 − s1,2/3, s2] and h ∈ n−1Z such that h−h1

h1,2
∈ [a, 2a] ∪ [1− 2a, 1− a].
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Near ground states for Gaussian polymers

To express our result on weights, let Wgt∪n
[︁
(x, h1) → (y, h2)

]︁
denote the parabolically

adjusted weight Wgtn
[︁
(x, h1) → (y, h2)

]︁
+2−1/2(y−x)2h−1

1,2. We denote by Lown(ζ, ℓ, L,M)

the event that
s
−1/3
1,2 Wgt∪n

[︁
(x, s1) → (y, s2)

]︁
is less than −ζ for some pair (x, s1), (y, s2) ∈ R × n−1Z ∩ [0, 1] with |x| ∨ |y| ≤ M ,
|x− y| ≤ 2−2ℓ/3L and s1,2 ∈ (2−ℓ−1, 2−ℓ]. Let Highn(ζ, ℓ, L,M) denote the event that the
displayed quantity exceeds ζ for some such pair.

Proposition 1.8. When n ≥ Θ(1)2ℓ, L ≤ Θ(1)(n2−ℓ)1/46, Θ(1) ≤ ζ ≤ Θ(1)(n2−ℓ)1/30 and
M > 0,

P
(︂
Lown

(︁
ζ, ℓ, L,M

)︁
∪ Highn

(︁
ζ, ℓ, L,M

)︁)︂
≤ Θ(1)25ℓ/3ML exp

{︁
−Θ(1)ζ3/2

}︁
.

1.10 Slim pickings for slender excursions

Here we present results asserting that zigzags constrained to stay close to a deter-
ministic path or the polymer are typically uncompetitive in weight.

Consider a given zigzag ϕ from (0, 0) to (0, 1). Let (x, s1), (y, s2) ∈ R × n−1Z ∩ [0, 1],
s1 < s2, be two points, neither of which necessarily lies in ϕ. A zigzag ψ from (x, s1) to
(y, s2) that is disjoint from ρn will be called an excursion, even though this name might
more properly be reserved for the case where ψ’s endpoints lie in ϕ. For an excursion ψ,
consider the set of s ∈ [s1, s2] ∩ n−1Z for which, to use the language of Subsection 1.7.8,

|ψ(s) − ϕ(s)| is at most s2/31,2 θ, where θ > 0 is given. If this set has cardinality at least
(1− χ)

⃓⃓
[s1, s2] ∩ n−1Z

⃓⃓
and contains the values s1 and s2, then the excursion ψ is called

(ϕ, θ, 1 − χ)-close. The parameter θ > 0 measures constraint in movement beyond the

factor s2/31,2 that is dictated by KPZ scaling, and our notion of closeness indicates that this
constraint is satisfied at a high percentage of levels in [s1, s2]. See Figure 3.

The supremum of the weights of (ϕ, θ, 1− χ)-close excursions will be denoted by

Wgtn
[︁
(x, s1) → (y, s2) ; (ϕ, θ, 1− χ)-close

]︁
.

For ℓ ∈ N and d0 > 0, let LowSlenderExcursion
(︁
ℓ, θ, 1− χ;ϕ

)︁
denote the event that

sup s
−1/3
1,2 Wgtn

[︁
(x, s1) → (y, s2) ; (ϕ, θ, 1− χ)-close

]︁
≤ −d0θ−1 ,

where the supremum is taken by varying the points (x, s1), (y, s2) ∈ R × [0, 1] ∩ n−1Z

over choices such that 2−1−ℓ ≤ s1,2 ≤ 2−ℓ.
Our first assertion of slender slim pickings concerns excursions about the polymer

ρn.

Theorem 1.9. There exist constants d0, C > 0 such that we may find χ0 ∈ (0, 1), d2 > 0

and n0 ∈ N for which χ ∈ (0, χ0) and n ≥ n0 imply that when θ−1/4 > C log n, and ℓ ∈ N
satisfies 2ℓ ≤ nθ40,

P
(︂
¬ LowSlenderExcursion(ℓ, θ, 1− χ; ρn)

)︂
≤ exp

{︂
− d2θ

−1/2
}︂
.

Theorem 1.9 will follow from our second assertion: any zigzag that is constrained
to stay close to a deterministic zigzag ϕ is typically uncompetitive in weight. To this
end, for ϕ any n-zigzag from (0, 0) to (0, 1), let Wgt∗n

[︁
(x, s1) → (y, s2) ; (ϕ, θ, 1− χ)-close

]︁
denote the supremum of the weights of (ϕ, θ, 1− χ)-close zigzags ψ. Note that ψ varies
over a class of zigzags; it is not assumed to be an excursion about ϕ, and may intersect
ϕ. The superscript asterisk in the new notation indicates this distinction.

Let LowSlenderWeight∗(ℓ, θ, 1 − χ;ϕ) denote the event specified above, with Wgtn
replaced by Wgt∗n.
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s
2/3
1,2 τ

(y, s2)

(x, s1)

Figure 3: The dashed zigzag ψ from (x, s1) to (y, s2) is an excursion around the bold
zigzag ϕ. The vertical double-arrowed line indicates the set of coordinates—an interval in
this instance—at which departures from vertical levels differ by more than the quantity
appearing in the definition of a slender excursion. Indeed, if such levels exclude s1
and s2 and constitute a fraction less than χ of all levels in [s1, s2], the excursion is
(ϕ, θ, 1− χ)-close.

The upcoming assertion, that LowSlenderWeight∗ is typical, will suppose a certain
regularity on ϕ.

We say that an n-zigzag ϕ from (0, 0) to (0, 1) is R-regular if, whenever h1, h2 ∈
n−1Z ∩ [0, 1] and u, v ∈ R satisfy (u, h1), (v, h2) ∈ ϕ, we have that⃓⃓

v − u
⃓⃓
≤ h

2/3
1,2 R . (1.11)

Theorem 1.10. There exist constants d0, C > 0 such that we may find χ0 ∈ (0, 1), d2 > 0

and n0 ∈ N for which χ ∈ (0, χ0) and n ≥ n0 imply that, when θ−1/4 > C log n and ℓ ∈ N
satisfies 2ℓ ≤ nθ40,

P
(︂
¬ LowSlenderWeight∗(ℓ, θ, 1− χ;ϕ)

)︂
≤ exp

{︁
− d2θ

−3/2
}︁

for any given zigzag ϕ from (0, 0) to (0, 1) which is θ−1/4-regular.

Theorem 1.9 will follow from Theorem 1.10 and an application of the FKG inequality
to the effect that conditioning on ρn is negative on the environment exterior to ρn. This
is why we consider excursions, namely zigzags that are disjoint from ρn. Theorem 1.10 is
then applicable because LowSlenderExcursion(ℓ, θ, 1− χ; ρn) is a decreasing event on this
exterior environment. Theorem 1.4 will show that ρn typically is suitably regular.

1.11 There are few cliffs along the geodesic

The geodesic Γn from (0, 0) to (n, n) progresses in a roughly diagonal fashion, even at
the microscopic scale. We now state this few cliffs’ assertion, using unscaled coordinates
because these are suited to discussing the microscopic scale.
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For n ∈ N, let Γn ⊂ [0, n]2 denote the almost surely unique staircase of maximum
energy with starting and ending points (0, 0) and (n, n) in static Brownian LPP. For
A ∈ N a positive integer, we divide the vertical coordinate interval [0, n] into consecutive
subintervals of lengths A, as well as a remaining subinterval of shorter length if need
be. We set m to be the greatest integer strictly less than n/A, so that there are m

subintervals of length A. There is also one remaining interval, whose length is at least
one and at most A.

We record a sequence
{︁
Xi : i ∈ J0,m+1K

}︁
of horizontal coordinates of departure of Γn

from the horizontal borders of the consecutive strips indexed by the vertical subintervals
that we have just defined. Formally, when i ∈ J0,mK, Xi is equal to the supremum of those
x ∈ [0, n] for which (x, iA) ∈ Γn; while for i = m + 1, Xi = sup

{︁
x ∈ [0, n] : (x, n) ∈ Γn

}︁
,

so that Xi = n.
Now set, for each such index i, Zi = ⌊Xi⌋. The sequence

{︁
Zi : i ∈ J0,m+1K

}︁
is a non-

decreasing list of integers lying in J0, nK that offers a unit-scale coarse-grained description
of the horizontal progress of the staircase Γn as consecutive vertical milestones at
separation A are passed. This description is equally captured by the difference function

Ψ : J0,mK → J0, nK , Ψ(i) = Zi+1 − Zi . (1.12)

Note that
∑︁m

i=0 Ψ(i) = Zm+1 −Z0 is at most n. We now specify a set I of indices marking
slow horizontal advance—cliffs in the graph of Γn; we set I(Γn) equal to the set of
i ∈ J0,mK for which Ψ(i) is at most two.

Theorem 1.11. There exist A > 0, α0 ∈ (1/2, 1), h > 0 and n0 ∈ N, such that, when
n ≥ n0 and α ≥ α0 satisfies αm ∈ N where m = ⌊n/A⌋,

P
(︂⃓⃓
I(Γn)

⃓⃓
< αm

)︂
≥ 1− e−hn .
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2 Brownian regularity and twin peaks

Here we prove the Brownianity and twin peaks’ rarity assertions Theorems 1.2
and 1.3 concerning the routed weight profile x → Zn(x, a). We begin by noting some
similiarities between the specification (1.1) of this profile in heuristic discussion and
the actual definition at the start of Section 1.8. Recall the notation ρn(a) that has been
specified in Subsections 1.7.7 and 1.7.8.

Lemma 2.1. Set a+ = a+ n−1 and x− = x− 2−1n−2/3.

1. The routed weight profile is given by a sum of independent weight profiles,

Zn(x, a) = Wgtn
[︁
(0, 0) → (x, a)

]︁
+ Wgtn

[︁
(x−, a+) → (0, 1)

]︁
. (2.1)

2. Almost surely, the maximizer of Zn(·, a), namely the value of x ∈ R for which
Zn(x, a) equals the supremum of Zn(z, a) over z ∈ R, is unique and equals ρn(a).

Proof: (1). Let ψ denote an n-zigzag that begins at (0, 0), ends at (0, 1), and for which
x = sup

{︁
z ∈ R : (z, a) ∈ ψ

}︁
. Let ψ− denote the initial zigzag of ψ that ends at (x, a).

Note that ψ reaches R× {a+ n−1} at (x−, a+). Let ψ+ denote the final sub-zigzag of ψ
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that begins at (x−, a+). Thus, Wgtn(ψ) = Wgtn(ψ
−) +Wgtn(ψ

+). By definition, Zn(x, a)

equals the supremum of Wgtn(ψ) over such ψ. We see that Zn(x, a) is at most the
right-hand side of (2.1). But equality may be obtained by varying (ψ−, ψ+) subject to the
endpoint constraints that specify this pair. Moreover, the two right-hand terms in (2.1)
are independent because they are respectively measurable with respect to randomness
indexed by the disjoint regions R× [0, a] and R× [a+ n−1, 1].
(2). The polymer ρn is almost surely unique by [Ham19b, Lemma 4.6(1)]. Since ρn(a) is
by definition the location of departure of the polymer ρn from R× {a}, we see that it is
the maximizer of x→ Zn(x, a).

The notation a+ and x− is adopted henceforth. It reflects the two denoted quantities
being merely microscopically perturbed copies of a and x.

The proof of Theorem 1.3 will harness Theorem 1.2. The derivation of the latter
result is comprised of four steps; two further steps will yield the former.

1. The two right-hand weights in the formula (2.1) for the routed weight profile may
be viewed as functions of the variable x ∈ R. In a simple a-dependent change
of coordinates, we will present normalized counterparts to these profiles. These
normalized profiles are Brownian of rate one on the unit scale in a sense that
is uniform in a and n; they are globally governed by the curvature of a shared
parabola, x→ −2−1/2x2.

2. We will recall from [Ham20] that any normalized profile may be embedded via the
Robinson-Schensted-Knuth correspondence as the uppermost curve of a regular
ensemble. The latter object is a random ordered system of continuous curves
which enjoy an attractive probabilistic resampling, the Brownian Gibbs property,
alongside certain boundary conditions.

3. We will recall from [CHH19] that the curves in a regular ensemble enjoy strong
similarity to Brownian motion of rate one, in the sense of Definition 1.1.

4. The profile x → Zn(x, a) is thus seen via (2.1) to be the sum of two independent
processes that bear a demanding comparison to standard Brownian motion; it would
thus seem—and we will prove—that this profile withstands such a comparison to
Brownian motion of rate two. In this way, we will obtain Theorem 1.2.

5. Twin peaks are rare for Brownian motion (of rate two).

6. Thus, and as Theorem 1.3 asserts, they are also rare for the profile x→ Zn(x, a).

The six ensuing subsections give rigorous renderings of these respective steps.

2.1 Forward and backward weight profiles

By the formula (2.1), the routed weight profile is exhibited as a sum of two indepen-
dent random processes. The first may be labelled ‘forward’, because the origin (0, 0) is
fixed, and the spatial variable x is attached to the more advanced height a ∈ (0, 1). The
latter process may be called ‘backward’, because the fixed point (0, 1) is more advanced
that the height a+ = a+ n−1 of the endpoint (x−, a+) that varies with x.

It is useful to discuss further the forward and backward processes, and we consider
a given compatible triple (n, s1, s2) ∈ N × R2

≤ in order to do so. Consider the forward
weight profile, given by

Wgtn
[︁
(0, s1) → (·, s2)] :

[︁
− 2−1n1/3s1,2,∞

)︁
→ R ;

and the backward profile,

Wgtn
[︁
(·, s1) → (0, s2)] :

(︁
−∞, 2−1n1/3s1,2

]︁
→ R .
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It is valuable to vividly picture these two profiles. Each locally resembles Brownian
motion but globally follows the contour of the parabola −2−1/2(y − x)2s−1

1,2 as a function

of y or x in the forward or backward case. Each profile adopts values of order s1/31,2 when

x and y differ by an order of s2/31,2 . More negative values, dictated by parabolic curvature,
are witnessed outside this region. This description holds sway in a region that expands
from the origin as the parameter n rises.

Clearly, then, our profiles have fundamental differences according to the value of s1,2:
sharply peaked ensemble curves when s1,2 is small, and much flatter curves when s1,2 is
large. A simple further parabolic transformation will serve to put the profiles on a much
more equal footing. Since the profiles are already scaled objects, we will use the term
‘normalized’ to allude to the newly transformed counterparts.

That is, we define the normalized forward profile

NrL↑;s2
n;(x,s1)

:
[︁
− 2−1(ns1,2)

1/3,∞
)︁
→ R ,

setting, for z ≥ −2−1n1/3s
−2/3
1,2 ,

NrL↑;s2
n;(x,s1)

(z) = s
−1/3
1,2 Wgtn

[︁
(x, s1) → (x+ s

2/3
1,2 z, s2)

]︁
. (2.2)

The normalized backward profile NrL↓;(y,s2)
n;s1 :

(︁
−∞, 2−1(ns1,2)

1/3
]︁
→ R is specified by

setting
NrL↓;(y,s2)

n;s1 (z) = s
−1/3
1,2 Wgtn

[︁
(y + s

2/3
1,2 z, s1) → (y, s2)

]︁
(2.3)

for z ≤ 2−1n1/3s
−2/3
1,2 .

The new curves locally resemble Brownian motion as before, but they have been
centred and squeezed so that now the parabola that dictates their overall shape is
−2−1/2z2. This picture is accurate in a region that expands as the parameter ns1,2 rises.

2.2 Brownian Gibbs line ensembles

The Robinson-Schensted-Knuth correspondence permits any given forward and back-
ward weight profile to be embedded as the uppermost curve in an ordered system—or
line ensemble—of random continuous curves that enjoy an attractive and valuable proba-
bilistic resampling called the Brownian Gibbs property. The notion of a Brownian Gibbs
line ensemble was introduced in [CH14] to capture a system of ordered curves that
arise by conditioning Brownian motions or bridges on mutual avoidance. The precise
definition is not logically needed in this article, but we offer an informal summary next,
and then indicate how our normalized profiles satisfy this definition.

2.2.1 An overview

Let n ∈ N and let I be a closed interval in the real line. A J1, nK-indexed line ensemble
defined on I is a random collection of continuous curves L : J1, nK × I → R specified
under a probability measure P. The ith curve is thus L(i, ·) : I → R. (The adjective
‘line’ has been applied to these systems perhaps because of their origin in such models
as Poissonian LPP, where the counterpart object has piecewise constant curves. We
will omit it henceforth.) An ensemble is called ordered if L(i, x) > L(i+ 1, x) whenever
i ∈ J1, n− 1K and x lies in the interior of I. The curves may thus assume a common value
at any finite endpoint of I. We will consider ordered ensembles that satisfy a condition
called the Brownian Gibbs property. Colloquially, we may say that an ordered ensemble
is called Brownian Gibbs if it arises from a system of Brownian bridges or Brownian
motions defined on I by conditioning on the mutual avoidance of the curves at all times
in I.
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2.2.2 Defining (c, C)-regular ensembles

We are interested in ensembles that are not merely Brownian Gibbs but that hew to
the shape of a parabola and have one-point distributions for the uppermost curve that
enjoy tightness properties. We will employ the next definition, which specifies a (ϕ̄, c, C)-
regular ensemble from [Ham22, Definition 2.4], in the special case where the vector ϕ̄
equals (1/3, 1/9, 1/3).

Definition 2.2. Consider a Brownian Gibbs ensemble of the form

L : J1, NK ×
[︁
− zL,∞

)︁
→ R ,

and which is defined on a probability space under the law P. The number N = N(L) of
ensemble curves and the absolute value zL of the finite endpoint may take any values in
N and [0,∞).

Let Q : R→ R denote the parabola Q(x) = 2−1/2x2.
Let C and c be two positive constants. The ensemble L is said to be (c, C)-regular if

the following conditions are satisfied.

1. Endpoint escape. zL ≥ cN1/3.

2. One-point lower tail. If z ∈ [−zL,∞) satisfies |z| ≤ cN1/9, then

P
(︂
L
(︁
1, z
)︁
+Q(z) ≤ −s

)︂
≤ C exp

{︁
− cs3/2

}︁
for all s ∈

[︁
1, N1/3

]︁
.

3. One-point upper tail. If z ∈ [−zL,∞) satisfies |z| ≤ cN1/9, then

P
(︂
L
(︁
1, z
)︁
+Q(z) ≥ s

)︂
≤ C exp

{︁
− cs3/2

}︁
for all s ∈ [1,∞).

We will call these conditions Reg(1), Reg(2) and Reg(3).
A Brownian Gibbs ensemble of the form

L : J1, NK ×
(︁
−∞, zL

]︁
→ R

is also said to be (c, C)-regular if the reflected ensemble L(·,−·) is. This is equivalent to
the above conditions when instances of [−zL,∞) are replaced by (−∞, zL].

2.2.3 The normalized forward and backward profiles may be embedded in reg-
ular ensembles

We say that a random function of the form L : [−zL,∞) → R or L : (−∞, zL] → R is
(c, C,m)-regular if there exists an m-curve (c, C)-regular ensemble of which it is the
lowest indexed curve.

Our reason for invoking the theory of regular Brownian Gibbs ensembles is that the
normalized Brownian LPP profiles are regular.

Proposition 2.3. There exist values for the positive parameters C and c such that, for
n ∈ N and a ∈ n−1Z ∩ (0, 1), the following hold.

1. The process NrL↑;a
n;(0,0) :

[︁
− 2−1(na)1/3,∞

)︁
→ R is

(︁
c, C, na+ 1

)︁
-regular.

2. The process NrL↓;(0,1)
n;a+ :

(︁
−∞, 2−1

(︁
n(1− a+)

)︁1/3]︁→ R is
(︁
c, C, n(1− a)

)︁
-regular.

Proof. Values of C and c that validate these two statements are offered by [Ham20,
Proposition 4.2].

The reader may consult the fifth paragraph of Section 5.8 of [Ham20] for a point of
departure to the proof of [Ham20, Proposition 4.2].
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2.3 The Brownianity of the narrow wedge weight profile

We now state the principal result of [CHH19], asserting the Brownianity of scaled
Brownian LPP polymer weight profiles in the narrow wedge case (recall the notion
of approximate Brownianity from Definition 1.1), when one endpoint is fixed, and the
other varies horizontally. This conclusion is expressed in terms of regular ensembles
in [CHH19]. Our concern is merely with the uppermost curve and we record the result
only in this case.

Theorem 2.4. Suppose that Lm is an m-curve (c, C)-regular ensemble for some m ∈ N
and C, c ∈ (0,∞). Let d ≥ 1 and K ∈ R satisfy [K − d,K + d] ⊂ c/2 · [−m1/9,m1/9]. There
exist values of the positive parameters g and G, chosen without dependence on m, K
or d, such that the random function [K − d,K + d] → R : x → Lm(1, x) + 21/2Kx is(︁
g,G, d,m, 1

)︁
-Brownian.

Proof. The result follows from [CHH19, Theorem 3.11] by considering the curve with
the lowest index k = 1 in the ensemble Lm. We now indicate conditions on the claimed
constants G and g that render valid the application of this theorem—a mundane check
phrased in terms of parameters D1 and C1 from the quoted result. We choose G to be at
least the value of this parameter as specified in [CHH19, Theorem 3.11] while satisfying
G ≥ 246D−3

1 and G ≥ 4932D
5/2
1 . We choose g > 0 to satisfy g ≤ e−1 ∧ (17)−1C−1

1 D−1
1 . We

further demand that g ≤
(︁
c/2∧21/2

)︁
D−1

1 ; and ensure that this parameter is small enough

that exp(−gm1/2
0 ) ≥ e−1 for m0 = (c/3)−18 ∨ 636, in order that the condition e−gm1/12 ≤ η

be impossible to satisfy unless m ≥ m0. We impose the lower bound of e−1 since the
upper bound that η is assumed to satisfy in Definition 1.1 implies that η ≤ e−1 in view of
G, d ≥ 1.

2.4 Brownianity for the routed weight profile

We now prove Theorem 1.2. We begin by rewriting the basic formula Lemma 2.1(1)
in normalized form:

Zn(x, a) = a1/3NrL↑;a
n;(0,0)

(︁
a−2/3x

)︁
+ (1− a+)

1/3NrL↓;(0,1)
n;a+

(︁
(1− a+)

−2/3x−
)︁
. (2.4)

Theorem 1.2 is concerned with the Brownian character of the profile x → Zn(x, a)

in a neighbourhood of a given R ∈ R. This profile is curved parabolically in a global
sense, so that a suitable drift must be identified for the Brownian motion with which we
seek to make comparison. We find the drift by determining the counterpart drifts for
the two right-hand terms in (2.4). We are thus led to make a further simple change of
coordinates.

Set ℓ : R2 → R to equal ℓ(x, y) = −2−1/2x2 − 21/2x(y − x); thus, y → ℓ(x, y) is the line
tangent at x ∈ R to the parabola z → −2−1/2z2.

Let s ∈ n−1Z ∩ (0, 1). For x ∈ R, define the shifted forward profile

NrLshift↑;s
n;x;(0,0) :

[︁
− 2−1(ns)1/3 − x,∞

)︁
→ R

by setting

NrLshift↑;s
n;x;(0,0)(z) = NrL↑;s

n;(0,0)(x+ z)− ℓ
(︁
x, x+ z

)︁
.

For y ∈ R, define the shifted backward profile NrLshift↓;(0,1)
n;y;a :

(︁
−∞, 2−1(ns1,2)

1/3−y
]︁
→ R

by setting

NrLshift↓;(0,1)
n;y;a (z) = NrL↓;(0,1)

n;a (y + z)− ℓ
(︁
y, y + z

)︁
.

Further set

Z↑
n(x, a) = a1/3NrLshift↑;a

n;a−2/3R;(0,0)

(︁
a−2/3(x−R)

)︁
(2.5)
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and

Z↓
n(x, a) = (1− a+)

1/3NrLshift↓;(0,1)
n;(1−a+)−2/3R;a+

(︂(︁
1− a+

)︁−2/3
(x− −R)

)︂
.

Since ℓ(x, y) = 2−1/2x2 − 21/2xy, we find then from (2.4) that

Zn(x, a) = Z↑
n(x, a) + Z↓

n(x, a) + Θ(x) + E(x) , (2.6)

where Θ(x) = 2−1/2
(︁
a(1− a)

)︁−1
R(R− 2x) and

E(x) = 2−1/2
(︁
(1− a+)(1− a)

)︁−1
R(R− 2x)n−1 + 2−1/2(1− a+)

−1Rn−2/3 .

In the next result, we see how shifted coordinates, which have made possible the
formula (2.6), put us in excellent shape to derive Theorem 1.2. Indeed, as we will argue
shortly, largely on the basis of the upcoming lemma and Theorem 2.4, the first two
right-hand terms of this formula are independent processes that are very similar to
Brownian motion of rate one; while the third term Θ records the drift inherited from
parabolic curvature that is manifest in the locale of the location R ∈ R.

Lemma 2.5. There exist values for the positive parameters C, c, G and g such that, for
n ∈ N and a ∈ n−1Z ∩ (0, 1), the following hold.

1. Suppose that |x| ≤ c/2 · (na+ 1)1/9. Then the process NrLshift↑;a
n;x;(0,0) :

[︁
− 2−1(na)1/3 −

x,∞
)︁
→ R is

(︁
c/2, C, na+ 1

)︁
-regular.

2. Suppose that |y| ≤ c/2 ·
(︁
n(1− a)

)︁1/9
. Then the process

NrLshift↓;(0,1)
n;y;a :

(︁
−∞, 2−1

(︁
n(1− a)

)︁1/3 − y
]︁
→ R

is
(︁
c/2, C, n(1− a)

)︁
-regular.

3. The processes Z↑
n(·, a), Z↓

n(·, a) : [R,R+ ℓ] → R are independent.

4. Suppose that |R| ≤ 2−1cn1/9a7/9. Let ℓ ∈ R satisfy ℓ − R ≤ 2−1n1/3a. Then the
process Z↑

n(·, a) : [R− ℓ, R+ ℓ] → R is
(︁
g,Ga−4, ℓ, an+ 1, 1

)︁
-Brownian.

5. Suppose that |R| ≤ 2−1cn1/9(1− a+)
7/9. Let ℓ ∈ R satisfy R+ ℓ ≤ 2−1n1/3(1− a+).

Then the process Z↓
n(·, a) : [R − ℓ, R + ℓ] → R is

(︁
g,G(1 − a+)

−4, ℓ, (1 − a)n, 1
)︁
-

Brownian.

Proof. (1,2). These are due to [Ham19a, Lemma 3.4] or [Ham22, Lemma 2.26].
(3). The regions R× [0, a] and R× [a+ n−1, 1] that respectively specify Z↑

n(·, a) and
Z↓
n(·, a) are disjoint, so that these processes are independent.

(4). By the third part of the lemma, and Theorem 2.4, there exist positive valuesG and
g such that NrLshift↑;a

n;a−2/3R;(0,0)
: [−a−2/3ℓ, a−2/3ℓ] → R is

(︁
g,G, a−2/3ℓ, an + 1, 1

)︁
-Brownian,

where we have used [−a−2/3ℓ, a−2/3ℓ] ⊂
[︁
− 2−1(na)1/3 − a−2/3R,∞

)︁
and a−2/3|R| ≤

2−1c(na + 1)1/9. The former condition is implied by a−2/3ℓ ≤ 2−1(na)1/3 + a−2/3R and
thus by our hypothesis that ℓ−R ≤ 2−1n1/3a. The latter is implied by |R| ≤ 2−1cn1/9a7/9.

In light of this, and (2.5), we may apply the next presented Lemma 2.6 with κ = a to
verify Lemma 2.5(6) holds.

(5). Invoking similarly the fourth part of the lemma,

NrLshift↓;(0,1)
n;(1−a+)−2/3R;a+

:
[︁
− (1− a+)

−2/3ℓ, (1− a+)
−2/3ℓ

]︁
→ R

is seen to be
(︁
g,G, (1− a+)

−2/3ℓ, (1− a+)n, 1
)︁
-Brownian. This time, we need[︁

− (1− a+)
−2/3ℓ, (1− a+)

−2/3ℓ
]︁
⊂
(︁
−∞, 2−1

(︁
n(1− a+)

)︁1/3 − (1− a+)
−2/3R

]︁
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and (1− a+)
−2/3|R| ≤ 2−1c(n(1− a+) + 1)1/9. The former condition is implied by R+ ℓ ≤

2−1n1/3(1− a+); the latter by |R| ≤ 2−1cn1/9(1− a+)
7/9.

The a-dependent spatial-temporal scaling in (2.5) respects Brownian motion; it is
unsurprising then that this scaling in essence leaves invariant a property of similarity to
Brownian motion. The next result is a rigorous interpretation of this notion.

Lemma 2.6. Let G, g, ℓ > 0, κ ∈ (0, 1), m ∈ N and R ∈ R. Suppose that the ran-
dom function L :

[︁
− κ−2/3ℓ, κ−2/3ℓ

]︁
→ R is

(︁
g,G, κ−2/3ℓ,m, 1

)︁
-Brownian. Set Lκ(x) =

κ1/3L
(︁
κ−2/3(x−R)

)︁
. Then Lκ : [R− ℓ, R+ ℓ] → R is

(︁
g,Gκ−4, ℓ,m, 1

)︁
-Brownian.

Proof. Recalling the notation of Definition 1.1, let B ⊆ C0,∗
(︁
[R− ℓ, R+ ℓ],R

)︁
. Set

B∗ =
{︂
f ∈ C0,∗

(︁
[−κ−2/3ℓ, κ−2/3ℓ],R

)︁
: x→ κ1/3f

(︁
κ−2/3(x−R)

)︁
∈ B

}︂
.

Then Brownian scaling implies that, when B is Borel measurable, B[0,κ−2/3ℓ]
0,∗ (B∗) =

B[R,R+ℓ]
0,∗ (B).

Taking I =
[︁
− κ−2/3ℓ, κ−2/3ℓ

]︁
, the process L :

[︁
− κ−2/3ℓ, κ−2/3ℓ

]︁
→ R meets the

condition on X : I → R in Definition 1.1 for the parameter quintet
(︁
g,G, κ−2/3ℓ,m, 1

)︁
. It

is our task to verify that Lκ : [R− ℓ, R+ ℓ] → R does so for the quintet
(︁
g,Gκ−4, ℓ,m, 1

)︁
.

The third parameter, which is one-half the length of the domain interval, has decreased,
by a factor of κ2/3. By the preceding paragraph, the value of the Brownian probability
η is shared in the definition as it applies to the processes L and Lκ. If we denote
the second element of the latter quintet by G′, we may note that we must demand
of it that G′ ≥ G

(︁
κ−2/3

)︁6
= Gκ−4—so that the hypothesis η ≤ e−G′ℓ6 is implied by

η ≤ exp
{︁
−G

(︁
κ−2/3ℓ

)︁6}︁
; and that G′ ≥ Gκ−2/3—so that G′ℓ ≥ Gκ−2/3ℓ may be applied

to obtain the right-hand side in the display in Definition 1.1. The choice G′ = Gκ−4

meets these two requirements. Since the three further parameters, g, G and m, transmit
unaltered, we obtain Lemma 2.6.

Each profile x→ Z↑
n(x, a) and x→ Z↓

n(x, a) will shortly be shown to be very similar to
standard Brownian motion by an argument that harnesses Lemmas 2.5 and 2.6 to the
fundamental estimate Theorem 2.4. The profile x → Zn(x, a), after linear adjustment,
will then be seen via (2.6) to resemble Brownian motion of rate two (as Theorem 1.2
asserts), provided that we argue that Brownianity in the sense of Definition 1.1 is stable
under addition of processes. After we establish this in Lemma 2.8, we will be ready
to give a short proof of Theorem 1.2. First, however, we present a result that permits
us to dispense with Definition 1.1’s inconsequential but practically irksome Brownian
probability hypothesis η ≤ g ∧ e−Gdd

.

Lemma 2.7. Under the circumstances of Definition 1.1, suppose on the parameter
η, instead of the condition e−gm1/12 ≤ η ≤ g ∧ e−Gd6

, that merely the lower bound
η ≥ e−gm1/12

holds. Suppose also that g ∈ (0, 1) and that G, d ≥ 1. Then

P
(︂
I → R : x→ X(x)−X(K − d) belongs to A

)︂
≤ η · exp

{︂
5G11/6d6g−5/6

}︂
exp

{︂
Gd
(︁
log η−1

)︁5/6}︂
.

Proof. Note that by Theorem 2.4 the condition e−gm1/12 ≤ η implies that

P
(︂
I → R : x→ X(x)−X(K − d) belongs to A

)︂
≤ η ·HG exp

{︂
Gd
(︁
log η−1

)︁5/6}︂
, (2.7)

where H =
(︁
max

{︁
g−1, eGd6}︁

+ 1
)︁
exp

{︂
Gd
(︁
logmax

{︁
g−1, eGd6}︁)︁5/6}︂

. The above follows

from Theorem 2.4 since H ≥ 1 and moreover for η ≥ g ∧ e−Gd6

, we have ηH ≥ 1 while

G exp
{︂
Gd
(︁
log η−1

)︁5/6}︂
is always at least 1 since G ≥ 1 by hypothesis.
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Since g ∈ (0, 1), note that

H ≤ 2g−1eGd6

exp
{︂
Gd
(︁
log(g−1eGd6

)
)︁5/6}︂ ≤ 2g−1eGd6

exp
{︂
G11/6d6g−5/6

}︂
,

where we have applied aex ≤ eax for a, x ≥ 1 with a = g−1 and x = Gd6. Thus,

GH ≤ 2g−1GeGd6

exp
{︂
G11/6d6g−5/6

}︂
≤ g−1e3Gd6

exp
{︂
G11/6d6g−5/6

}︂
≤ g−1 exp

{︂
4G11/6d6g−5/6

}︂
,

where we used G ≥ 1 ≥ g and d ≥ 1. Noting that g−1 ≤ exp
{︁
g−5/6

}︁
alongside G, d ≥ 1

completes the proof.
Recall Definition 1.1.

Lemma 2.8 (Additive stability for Brownian regularity). Let νi ∈ (0,∞); ni ∈ N for
i ∈ {1, 2}; g,G, ℓ > 0; and R ∈ R. Let the random functions X,Y : [R − ℓ, R+ ℓ] → R be
independent under the law P. Suppose that X is

(︁
g,G, ℓ,m1, ν1

)︁
-Brownian, and that Y is(︁

g,G, ℓ,m2, ν2
)︁
-Brownian. Then X + Y is

(︁
g,G′, ℓ,m1 ∧m2, ν1 + ν2

)︁
-Brownian, where G′

is a multiple of G17/6g−5/6ℓ6 by an absolute positive factor.

Proof. Write C = C0,∗
(︁
I,R

)︁
where I = [R − ℓ, R + ℓ]. Our argument will rely on

analysing the different values of the Radon-Nikodym derivative of X̂ := X(·)−X(R− ℓ)

with respect to Brownian motion. So we first apply the Lebesgue decomposition theorem
to obtain a Borel set X1 ⊂ C such that X̂ is absolutely continuous with respect to Bν1+ν2;I

0,∗
on X1 and Bν1+ν2;I

0,∗ (X c
1 ) = 0. Similarly for Ŷ , we define X2.

We first claim the following bounds:

P(X̂ ∈ X c
1 ) ≤ G exp

{︂
5Gℓg−5/6m

5/72
1

}︂
e−gm

1/12
1 (2.8)

P(Ŷ ∈ X c
2 ) ≤ G exp

{︂
5Gℓg−5/6m

5/72
2

}︂
e−gm

1/12
2 .

We only discuss the first bound since the argument for the second is similar. Note that
since Bν1+ν2;I

0,∗ (X c
1 ) = 0, one cannot directly appeal to the fact that X is

(︁
g,G, ℓ,m1, ν1

)︁
-

Brownian. However, a simple enlargement argument gives a Borel set S such that

X c
1 ⊂ S and Bν1+ν2;I

0,∗ (S) = e−gm
1/12
1 . Thus we get

P(X̂ ∈ X c
1 ) ≤ P(X̂ ∈ S) ≤ G exp

{︂
Gℓg5/6m

5/72
1

}︂
e−gm

1/12
1 .

Next, let A ⊂ C be Borel measurable. Set σ = Bν1+ν2;I
0,∗ (A), and suppose that σ is at

least the quantity exp
{︁
− g(m1 ∧m2)

1/12
}︁

. For f ∈ C, set Af =
{︁
g ∈ C ∩ X2 : f + g ∈ A

}︁
.

Now let F : C → [0,∞) denote the Radon-Nikodym derivative of the law of X̂ with
respect to the law Bν1;I

0,∗ on X1; and let G : C → [0,∞) denote the counterpart with the

replacements X̂ → Ŷ , ν1 → ν2 and X1 → X2 made.
For k ∈ N, write Dk =

{︁
f ∈ C : 2k ≤ G(f) < 2k+1

}︁
for k ≥ 1 and let D0 =

{︁
f ∈ C :

G(f) < 2
}︁

. Set ηk = Bν2;I
0,∗
(︁
∪∞
j=k Dj

)︁
.

Note that P
(︁
Ŷ ∈ ∪∞

j=kDj

)︁
≥ 2kηk. However, by Lemma 2.7, the condition

e−gm
1/12
2 ≤ ηk , (2.9)

implies that

P
(︁
Ŷ ∈ ∪∞

j=kDj

)︁
≤ exp

{︂
5G11/6ℓ6g−5/6

}︂
exp

{︂
Gℓ
(︁
log η−1

k

)︁5/6}︂
ηk . (2.10)
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Thus, when (2.9) holds, 2k ≤ Ĝ exp
{︁
Gℓ
(︁
log η−1

k

)︁5/6}︁
with Ĝ = exp

{︁
5G11/6ℓ6g−5/6

}︁
,

whence

ηk ≤ exp
{︁
− (Gℓ)−6/5

(︁
k log 2− log Ĝ

)︁6/5}︁
.

Hence, ηk ≤ exp
{︁
− (Gℓ)−6/5

(︁
k log 2− log Ĝ

)︁6/5}︁ ∨ e−gm
1/12
2 , whether or not (2.9) holds.

Set J ∈ N to be minimal such that exp
{︁
− (Gℓ)−6/5

(︁
J log 2 − log Ĝ

)︁6/5}︁ ≤ σ. Note

that J is at most 2Gℓ
(︁
log σ−1

)︁5/6
provided that Gℓ

(︁
log σ−1

)︁5/6 ≥ log Ĝ.

If ηJ ≥ e−gm
1/12
2 , then ηJ ≤ σ, so that

P
(︁
Ŷ ∈ ∪∞

j=JDj

)︁
≤ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ , (2.11)

where we used that σ ∈ (0, σ0) for σ0 > 0 small enough that (0, σ0) → R : x →
exp

{︁
Gℓ
(︁
log x−1

)︁5/6}︁
x is increasing. If ηJ < e−gm

1/12
2 , then, by an enlargement argument,

P
(︁
Ŷ ∈ ∪∞

j=JDj

)︁
≤ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︂
Gℓg5/6m

5/72
2

}︂
e−gm

1/12
2 .

Since σ ≥ e−gm
1/12
2 , we find that (2.11) holds, whether or not ηJ ≥ e−gm

1/12
2 .

Writing B : I → R, B(R− ℓ) = 0, to denote a Brownian motion of diffusion rate one
under the law P, independent of X, note that

P
(︁
X̂ + Ŷ ∈ A

)︁
= P

(︁
Ŷ ∈ AX̂

)︁
(2.12)

≤ P(X̂ ∈ X c
1 ) + P(Ŷ ∈ X c

2 ) +

J−1∑︂
k=0

P
(︁
Ŷ ∈ AX̂ ∩Dk, Ŷ ∈ X2, X̂ ∈ X1

)︁
+ P

(︁
Ŷ ∈ ∪∞

j=JDj , Ŷ ∈ X2

)︁
.

The first two terms will be bounded using (2.8). For the next two terms, observe that

J−1∑︂
k=0

P
(︁
Ŷ ∈ AX̂ ∩Dk, X̂ ∈ X1

)︁
+ P

(︁
Ŷ ∈ ∪∞

j=JDj

)︁
≤

J−1∑︂
k=0

2k+1P
(︁
B ∈ AX̂ ∩Dk, X̂ ∈ X1

)︁
+ exp

{︁
4G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ

≤ 2JP(B ∈ AX̂ , X̂ ∈ X1) + exp
{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ

≤ 22Gℓ(log σ−1)5/6P(B ∈ AX̂ , X̂ ∈ X1) + exp
{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ .

(2.13)

In a specification similar to that of Dk, set Ek =
{︁
f ∈ C : 2k ≤ F (f) < 2k+1

}︁
for k ≥ 1,

and E0 =
{︁
f ∈ C : F (f) ≤ 2

}︁
. By a verbatim argument that invokes σ ≥ e−gm

1/12
1 , we see

that P
(︁
X̂ ∈ ∪∞

j=JEj

)︁
is at most the right-hand side of (2.11).

Write B′ : I → R, B′(R− ℓ) = 0, for a further Brownian motion of diffusion rate one,
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defined under the law P and chosen independently of B. Note then that

P
(︁
B ∈ AX̂ , X̂ ∈ X1

)︁
=

J−1∑︂
k=0

P
(︁
B ∈ AX̂ , X̂ ∈ Ek

)︁
+ P

(︁
X̂ ∈ ∪∞

j=JEj

)︁
≤

J−1∑︂
k=0

2k+1P
(︁
B ∈ AB′ , B′ ∈ Ek

)︁
+ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ

≤ 2JP
(︁
B ∈ AB′

)︁
+ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ

= 22Gℓ(log σ−1)5/6P
(︁
B +B′ ∈ A

)︁
+ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log a−1

)︁5/6}︁
σ

=
(︂
exp

{︁
2 log 2 ·Gℓ

(︁
log σ−1

)︁5/6}︁
+ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁)︂
σ

≤ exp
{︁
2 · 5G11/6ℓ6g−5/6 · 2 log 2 ·Gℓ

(︁
log σ−1

)︁5/6}︁
σ

= exp
{︁
20 log 2 ·G17/6g−5/6ℓ7

(︁
log σ−1

)︁5/6}︁ · σ ,
where to get the inequality in the second line, for the term involving the sum, we simply
use the definition of Ek, and independence of B and X as well as of B and B′, to pass
from P

(︁
B ∈ AX̂ , X̂ ∈ Ek

)︁
to 2k+1P

(︁
B ∈ A′

B , B
′ ∈ Ek

)︁
. The second term is bounded using

the already stated bound on P
(︁
X̂ ∈ ∪∞

j=JEj

)︁
. The final inequality uses G, ℓ ≥ 1, g ≤ 1,

σ ≤ e−1 and 2ex ≤ e2x for x ≥ 1.
The preceding display and (2.13) yield

J−1∑︂
k=0

P
(︁
Ŷ ∈ AX̂ ∩Dk, X̂ ∈ X1

)︁
+ P

(︁
Ŷ ∈ ∪∞

j=JDj

)︁
≤ 22Gℓ(log σ−1)5/6 exp

{︁
20 log 2 ·G17/6g−5/6ℓ7

(︁
log σ−1

)︁5/6}︁ · σ
+ exp

{︁
5G11/6ℓ6g−5/6

}︁
exp

{︁
Gℓ
(︁
log σ−1

)︁5/6}︁
σ .

This, along with (2.12) and (2.8), implies that

P
(︁
X̂ + Ŷ ∈ A

)︁
≤ exp

{︁
Θ(1)G17/6g−5/6ℓ7

(︁
log σ−1

)︁5/6}︁
σ

and hence completes the proof of Lemma 2.8.
Proof of Theorem 1.2. If we set X(x) = Z↑

n(x, a) + Z↓
n(x, a), then (2.6) implies that

Zn(x, a) = X(x)−
(︂
21/2

(︁
a(1− a)

)︁−1
R+ ε

)︂
x+ c(a,R, n)

where ε = 21/2
(︁
(1− a− n−1)(1− a)

)︁−1
Rn−1 and c(a,R, n) is a constant. The process X

is found to be
(︁
g,G′,max{a−2/3, (1− a)−2/3}ℓ,min{a, 1− a}n, 2

)︁
-Brownian for the value

of G′ given in Theorem 1.2 by means of Lemma 2.5(3,4,5) and Lemma 2.8. It remains
only to remove the constant c(a,R, n) from the representation of Zn(x, a) in order to
complete the proof of Theorem 1.2. The stated Brownian property of X is unaltered by
the addition of a constant to this process; thus, we may absorb the constant by adding it
to X.

2.5 The rarity of twin peaks in the Brownian case

Here, we state and prove our Brownian twin peaks’ rarity result, Proposition 2.9.
Although the result is not new, we could not locate a reference; the following quantitative
form is suitable for our applications.
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The argument rests in part on Proposition 2.11, a near-return probability estimate
for Brownian meander, which is stated and proved in the later part of the section.

Let K and r be positive. Let B : [−r, r] → R, B(0) = 0, denote standard Brownian
motion under a law labelled P. Set W : [−r, r] → R, W (x) = B(x) +Kx. Let M ∈ [−r, r]
denote the almost surely unique point at which the process W attains its maximum.
Let Mid denote the middle-third event that M ∈ [−r/3, r/3]. For parameters ε ∈ (0, r/6)

and σ ∈ (0, 1), let NT = NT(B) denote the near-touch event that there exists a value of
z ∈ [−r, r] such that |z −M | ∈ [ε, 2ε] for which W (z) ≥ W (M) − σε1/2. The near-touch
event will be considered only when the middle-third event occurs, so that the condition
that z ∈ [−r, r] will be implied by the demand that |z −M | ≤ 2ε.

Proposition 2.9. For a constant D > 0 that is independent of K ≥ 0, r > 0, ε ∈ (0, r/6)

and σ ∈ (0, 1), we have that

P
(︁
NT ∩Mid

)︁
≤ DK−1r−1/2 exp

{︁
−K2r/18

}︁
min

{︁
σ, 1
}︁
,

as well as P
(︁
NT ∩Mid

)︁
≤ Dσ.

Proof. The case of general r > 0 may be reduced to that where r = 1 by considering
r−1/2W (rx) : [−1, 1] → R. Brownian scaling entails that the r = 1 result implies the
general result when the replacement of K by Kr1/2 is made. Thus, it suffices to prove
the lemma with r set equal to one, a choice which we now make.

We will first argue that

P(Mid) ≤ 3 · 23/2π−1/2K−1 exp
{︁
− K2

18

}︁
. (2.14)

Note that Mid entails that W (1) < W (M) with M ∈ [−1/3, 1/3], so that B(1) < B(M)−
2K/3, which forces one of B(1) and B(M) to exceed K/3 in absolute value. Thus,

Mid ⊆
{︂
sup

{︁
|B(x)| : x ∈ [−1, 1]

}︁
≥ K/3

}︂
.

By symmetry and the reflection principle, the probability of this right-hand event is at
most

2·2P
(︁
B(1) ≥ K/3

)︁
≤ 4(2π)−1/2(K/3)−1 exp

{︁
−2−1(K/3)2

}︁
= 3·23/2π−1/2K−1 exp

{︁
−K2

18

}︁
,

(2.15)
the displayed inequality by a standard upper bound on the tail of a Gaussian random
variable. Thus, we obtain (2.14).

The next result will be important as we turn to analysing the conditional probability
of NT given Mid. For r > 0 and y ≤ 0, we write B[0,r]

0,y for the law of Brownian bridge B of

diffusion rate one on [0, r] with B(0) = 0 and B(r) = y; thus, B[0,r]
0,y

(︁
·
⃓⃓
B < 0

)︁
is the law

resulting from conditioning B on B(x) < 0 for x ∈ (0, r].

Lemma 2.10. Under the conditional law P
(︁
·
⃓⃓
Mid

)︁
, consider the processes X− : [0,M +

1] → R and X+ : [0, 1 −M ] → R, given by X−(x) = B(M − x) − B(M) and X+(x) =

B(M + x)−B(M).

1. Conditionally on the value of M ∈ [−1/3, 1/3] and on X+(1−M) being any given

value y ≤ 0, the conditional distribution of X+ is given by the law B[0,1−M ]
0,y

(︁
·
⃓⃓
B < 0

)︁
.

2. Conditionally on the value of M ∈ [−1/3, 1/3] and on X−(M + 1) being any given

value y ≤ 0, the conditional distribution of X− is given by the law B[0,M+1]
0,y

(︁
·
⃓⃓
B < 0

)︁
.

Proof: (1). Under the stated conditioning, the process X+ : [0, 1−M ] → R is given
by [0, 1−M ] → R : x→ X(x), where X(x) = B(x)+Kx, with B being standard Brownian
motion, conditioned on X(1−M) = y and on X(x) < 0 for x ∈ (0, 1−M). Conditioning
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X as given by the preceding formula on X(1−M) = y results in the Brownian bridge

law B[0,1−M ]
0,y , as we may readily verify by decomposing B : [0, 1 −M ] → R as the sum

of a Brownian bridge and a linear term with an independent Gaussian coefficient. The
further conditioning X(x) < 0 results in the conditional distribution stated in the lemma.
(2). This almost verbatim argument is omitted.

We wish to apply the shortly upcoming Proposition 2.11 alongside Lemma 2.10 to
find that there exists D > 0 such that, for any y < 0,

B[0,1−M ]
0,y

(︁
NT
⃓⃓
B < 0

)︁
+ B[0,M+1]

0,y

(︁
NT
⃓⃓
B < 0

)︁
≤ Dσ.

Above, we are abusing notation a little in denoting by NT the event that there exists
a value of z ∈ [−ε, 2ε] such that for which B(z) ≥ −σε1/2.

We set the proposition’s parameters: r = ε and s = 1 ± M . The proposition’s
hypothesis s ≥ 3r is valid because because M ≤ 1/3 when Mid occurs, so that ε is merely
supposed to be at most a given positive constant. Equipped with the just stated outcome,
we find that

P
(︁
Mid ∩ NT

)︁
= P

(︁
Mid

)︁
P
(︁
NT
⃓⃓
Mid

)︁
≤ 3 · 23/2π−1/2K−1 exp

{︁
− K2

18

}︁
E
(︂
B[0,1−M ]
0,y

(︁
NT
⃓⃓
B < 0

)︁
+ B[0,M+1]

0,y

(︁
NT
⃓⃓
B < 0

)︁)︂
≤ 3 · 23/2π−1/2K−1 exp

{︁
− K2

18

}︁
Dσ .

It is in the second inequality that the conclusion of Proposition 2.11 is used. The first
inequality is due to (2.14), and the mean E on this inequality’s right-hand side is taken
over y and M . Note that the displayed assertion in Proposition 2.9 may be viewed as a
pair of bounds due to the right-hand factor of min{σ, 1}. The proof of the bound including
the factor of σ has just been completed, while the bound without this factor is implied
by (2.14). The latter assertion of Proposition 2.9 follows from P

(︁
NT
⃓⃓
Mid

)︁
≤ Dσ.

Proposition 2.11. Let s, r be positive, with s ≥ 3r; let y ≤ 0; and let ε > 0. Let
X : [0, s] → R be a random process specified under the law P whose law is B[0,s]

0,y

(︁
·
⃓⃓
B < 0

)︁
.

Let E = E(X, r, ε) denote the event that supx∈[r,2r]X(x) is at least −r1/2ε. There exists a
constant D > 0 such that, for any such s, r, y and ε, P(E) ≤ Dε.

Some preliminaries will be of aid in proving this proposition.
Let f : [u0, v0] → R denote a continuous function defined on a compact real interval.

For any closed subinterval [u, v] ⊆ [u0, v0], let f [u,v] : [u, v] → R denote the bridge—that
is, the continuous function with vanishing endpoint values—that is an affine translate of
f ’s restriction to [u, v]. Namely,

f [u,v](x) = f(x)− v−x
v−uf(u)−

x−u
v−uf(v) for x ∈ [u, v] .

Let x, y ∈ [u0, v0] satisfy x < y. We view the interval [x, y] as a union L ∪ R of a left
and a right subinterval, setting L = [x,m] and R = [m, y], where m = (x+ y)/2.

Note that the function f is characterized by the list of data:

• the restriction of f to [u0, x] ∪ [y, v0];

• the left bridge fL and the right bridge fR; and

• the relative midpoint value f
(︁
(x+ y)/2

)︁
−
(︁
f(x) + f(y)

)︁
/2.

Indeed, given the listed data, f may be reconstructed by recording its values on [u0, x] ∪
[y, v0]; by recording the value f

(︁
(x+y)/2

)︁
via the first and third items; and by recovering

its remaining values by adding to the affine interpolations of the endpoint values on L
and R the respective bridges fL and fR.
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Lemma 2.12. Let B : [u0, v0] → R have the law B[u0,v0]
0,∗ . The elements in the three-item

list for B are independent. The bridges in the second item have respective laws—BL
0,0

and BR
0,0—of Brownian bridge on L and R with vanishing endpoint values. The law of the

real random variable in the third item is Gaussian with mean zero and variance (y−x)/4.

Proof. Given the first element in the three item list for B, the third item takes the in-
dicated form by explicit computation. By Lévy’s construction of Brownian motion [MP10],
the two second item bridges are then independent standard Brownian bridges.

Proof of Proposition 2.11. For t > 0, set Xt : [0, s/t] → R, Xt(x) = t−1/2X(tx).
Note that Xt(s/t) = t−1/2y. By Brownian scaling, we note that Xr has the law of X
indexed by parameters (r/t, s/t, t−1/2y, ε) in place of (r, s, y, ε). Moreover, the spatial-
temporal scaling (x, y) →

(︁
tx, t1/2y

)︁
sends the event E(X, r, ε) to the event E(Xt, r/t, ε).

It is thus enough to prove the proposition for a given value of r > 0. We will do so with
r = 2.

Set L = [1, 3], R = [3, 5], and write N = X(3) −
(︁
X(1) + X(5)

)︁
/2. Consider the

three-item list that represents X in the case that [x, y] = [1, 5]. The two bridges in the
second item are XL and XR, and the relative value in the third item equals N .

We will prove the proposition by analysing a random experiment in which the process
X is sampled and then altered to produce a coupled process Xr. This resampled process
Xr will share the law of X. The discussion of the experiment will include four claims
each of whose proofs is given straight after the claim in question is stated.

In the experiment, X is first sampled and represented in the format of the three-item
list. The third element is discarded and resampled to equal Nr, a random variable that
is selected independently according to the standard Gaussian law. Let Xr : [0, s] → R

denote the process arising from the resampled three-item list.
Let S denote the event that Xr(x) < 0 for all x ∈ (0, s). If S occurs, we set Z = Xr.

In the other case, we sample an independent copy of the process X and repeat the
procedure. This process continues until Z : [0,∞) → R is specified.

Claim 1. The process Z : [0, s] → R has the law of X.
Proof. It is enough to argue that the conditional distribution of Xr given the occurrence
of S equals the law of X. We will establish the stronger assertion that, given the first
and second items in the three-item list that specifies X, the conditional distribution of
the third item that specifies X, and of the third item that specifies Xr given S, coincide.

Thus suppose given the first and second items that specify X. Let Y denote the
random height, measurable with respect to these items, such that setting the third
item value equal to Y ensures that X : [0, s] → R assumes the value zero in [1, 5], but
is never positive in this interval. Since the value (y − x)/4 in Lemma 2.12 equals one
in the present case, this lemma implies that, given the first and second items, the
conditional distribution of the third item in the specification of X is the law of a standard
Gaussian random variable conditioned to be less than Y . But the characterization of the
event S given the first and second items is simply that the standard Gaussian random
variable Nr be less than Y . This confirms the stronger assertion and completes the proof
of Claim 1.

In view of Claim 1, it suffices for the proof of Proposition 2.11 to argue that, for some
D > 0, the bound P

(︁
E(Z, 2, ε)

)︁
≤ Dε holds for all ε > 0.

Let K ∈ N+ denote the step at which the procedure terminates. Thus, S = {K = 1}.
Let F denote the σ-algebra generated by the first and second items in the three-item
list for X. Let H ⊂ R denote the F -measurable random set of h ∈ R such that the
specification of the third item value to h alongside the given first and second items
causes the event S ∩ E

(︁
Xr, 2, ε

)︁
to occur.

Claim 2. The random set H is an F -measurable interval whose length is almost surely
at most 23/2ε.
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Proof. Given F , the event S∩E
(︁
Xr, 2, ε

)︁
is characterized by the condition that sup

{︁
Xr(z) :

z ∈ [2, 4]
}︁
∈ (−21/2ε, 0). When Nr = Y , this supremum equals zero; let Z ∈ [2, 4] satisfy

Xr(Z) = 0 when Nr = Y . Then Xr(Z) = − 2−|Z−3|
2 λ ≤ −2−1λ when Nr = Y − λ, so

that the supremum is at most −21/2ε when λ ≥ 23/2ε. Thus, H ⊂ [Y − 23/2ε, Y ]. The
monotonicity of Xr in Nr implies that H is an interval, so that Claim 2 is validated.

Denoting by µ the standard Gaussian law, note that

P
(︁
E(Z, 2, ε)

⃓⃓
K = 1

)︁
=
P(Nr ∈ H)

P(S)
=
µ(H)

P(S)
. (2.16)

Claim 3. P(S) ≥ 4−1µ(1,∞)e−2.
Proof. Consider four independent events:

{︁
X(1) ≤ −1

}︁
∩
{︁
X(5) < X(1)

}︁
; the supremum

of the bridge X [1,3] is at most one; likewise for the bridge X [3,5]; and Nr < 0. Lower
bounds on the probabilities of these four events are: 2−1µ(1,∞); e−1; e−1; and 1/2.
Indeed, X(1) is stochastically dominated by a standard Gaussian random variable, as

is X(5) −X(1) conditionally on the value of X(1); B[1,3]
0,0

(︁
supx∈[1,3]B(x) ≥ r

)︁
= e−r2 for

r ≥ 0 by Brownian scaling and equation (3.40) in [KS88, Chapter 4]; while the third
bound follows similarly to the second, and the fourth is trivial. The four events ensure
that S occurs, whence Claim 3.

Claim 4. For x ∈ R and a > 0, µ
[︁
x, x+ a

]︁
≤
(︁
2π
)︁−1/2

a.
Proof. The standard Gaussian density is at most (2π)−1/2.

Applying Claims 2, 3 and 4 to (2.16), we learn that

P
(︁
E(Z, 2, ε)

⃓⃓
K = 1

)︁
≤ Dε

where D = 2π−1/2 · 4µ(1,∞)−1e2. Note then that

P
(︁
E(X, 2, ε)

)︁
= P

(︁
E(Z, 2, ε)

)︁
= P

(︁
E(Z, 2, ε)

⃓⃓
K = 1

)︁
,

so that P
(︁
E(X, 2, ε)

)︁
≤ Dε is seen to hold for the same choice of D > 0. Thus we obtain

Proposition 2.11.

2.6 The rarity of twin peaks for the routed weight profile

Theorem 1.3 would now seem to be readily at hand on the basis of Theorem 1.2 and
Proposition 2.9. There is a gap to be bridged, however. To explain this, let X = Y ⊥ mean
that ‘the random function X is very similar to the random function Y in the sense of
Definition 1.1’. By Theorem 1.2, Zn(·, a) : [R− ℓ, R+ ℓ] → R has (up to an additive shift)
the form B⊥ + ℓ, where B is Brownian motion of rate two and ℓ is the linear function
ℓ(x) = Kx, with K = 21/2

(︁
a(1− a)

)︁−1
R. Proposition 2.9 delivers pertinent information

about the process B + ℓ. The extra little element we thus need is to understand that a
random function that has the form B⊥ + ℓ also has the form (B + ℓ)⊥. This element is
furnished in the proof of the next result, which translates Proposition 2.9 into a form
which in unison with Theorem 1.2 will then readily deliver Theorem 1.3.

Corollary 2.13. Let R ∈ R, ℓ ≥ 1, a ∈ n−1Z ∩ (0, 1), σ > 0 and ε > 0. Let M denote the

maximizer of Zn(·, a) : [R−ℓ, R+ℓ] → R. Suppose that |R| ≤ 2−1cn1/9
(︁
a∧(1−a−n−1)

)︁7/9
,

where c appears in Theorem 1.2. Let ℓ > 0 satisfy −2−1n1/3a ≤ R − ℓ and R + ℓ ≤
2−1n1/3(1− a− n−1). Abbreviating Z = Zn(·, a), let Mid(Z) denote the event that M lies
in [R− ℓ/3, R+ ℓ/3]. Let NT(Z) denote the event that there exists x ∈ [R− ℓ, R+ ℓ] such
that |x−M | ∈ [ε, 2ε] and Z(x) ≥ Z(M)−σε1/2. When a lies in a compact interval in (0, 1),
then there exist constants H,h > 0 and n0 ∈ N determined by this compact interval such
that, if we further suppose that ℓ ≤ hn1/1370 and n ≥ n0, then

P
(︂
Mid(Z)∩NT(Z)

)︂
≤ max

{︂
σ∗·exp

{︁
−hR2ℓ+Hℓ19

(︁
1+R2+log σ−1

∗
)︁5/6}︁

, exp
{︁
−hn1/12

}︁}︂
,
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where we denote σ∗ = min{σ, 1}.

Proof. Set X∗ : [R − ℓ, R + ℓ] → R, X∗(R) = 0, to be Brownian motion of diffusion
rate two. Thus X∗ is the pure counterpart to the process X : [R − ℓ, R + ℓ] → R from
Theorem 1.2 which is

(︁
g,G′ℓ6, ℓ,min{a, 1− a}n, 2

)︁
-Brownian for G′ = Θ(1)G17/6g−5/6

(︁
a∧

(1− a− n−1)
)︁−34/3

.
Now define MidNT∗(X∗) to be the event that the process [R − ℓ, R + ℓ] → R : x →

X∗(x) +Kx realizes the event Mid ∩ NT. That is, MidNT∗ is the set of those continuous
functions f : [R− ℓ, R+ ℓ] → R that vanish at R and for which

the map [R− ℓ, R+ ℓ] → R : x→ f(x) +K(x−R) belongs to Mid ∩ NT .

Let Z∗ : [R − ℓ, R + ℓ] → R be given by Z∗(x) = X∗(x) + K(x − R), where K =

−21/2
(︁
a(1 − a)

)︁−1
R + ε, with ε specified by Theorem 1.2. Given the form of ε, we see

that, provided that n ≥ n0, we have d1|R| ≤ |K| ≤ D1|R|, where the positive constants d1
and D1 and the natural number n0 are determined by the compact interval in (0, 1) in
which a ∈ n−1Z is supposed to lie.

Note that, by definition,

P
(︂
Mid(Z∗) ∩ NT(Z∗)

)︂
= P

(︂
MidNT∗(X∗)

)︂
.

Let p ∈ (0, 1) denote this probability. Recalling from above that the process X : [R−ℓ, R+

ℓ] → R is
(︁
g,G′ℓ6, ℓ,min{a, 1 − a}n, 2

)︁
-Brownian for G′ = Θ(1)G17/6g−5/6(a ∧ (1 − a −

n−1))−34/3. By Lemma 2.7, we thus have that, when exp
{︁
− g
(︁
min{a, 1− a}n

)︁1/12}︁ ≤ p,

P
(︂
MidNT∗(X)

)︂
≤ q · exp

{︁
5(G′)11/6ℓ6+77/6g−5/6

}︁
exp

{︂
G′ℓ
(︁
log q−1

)︁5/6}︂
.

for any value q ∈ [p, 1]. This left-hand side equals P
(︁
Mid(Z)∩NT(Z)

)︁
by definition, while

the value of p satisfies

p ≤ DK−1ℓ−1/2 exp
{︁
−K2ℓ/18

}︁
min{σ, 1}

as well as p ≤ Dσ by Proposition 2.9. Choose q = DK−1ℓ−1/2 exp
{︁
−K2ℓ/18

}︁
min{σ, 1}.

Recalling the notation σ∗ = σ ∧ 1, we find that

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ DK−1ℓ−1/2 exp

{︁
−K2ℓ/18

}︁
σ∗ · g−1 exp

{︁
5(G′)11/6ℓ113/6g−5/6

}︁
× exp

{︂
G′ℓ
(︁
log
(︁
D−1Kℓ1/2 exp

{︁
K2ℓ/18

}︁
σ−1
∗
)︁)︁5/6}︂

.

Using d1|R| ≤ |K| ≤ D1|R|, and absorbing the D−1Kℓ1/2 factor in the third exponential
term into exp

{︁
K2ℓ/18

}︁
, we obtain, for positive constants H and h determined by the

compact interval in (0, 1) in which a is supposed to lie,

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ H exp

{︁
− hR2ℓ

}︁
exp

{︁
Hℓ19g−5/6

}︁
exp

{︁
Hℓ7

(︁
R2ℓ+ log σ−1

∗
)︁5/6}︁

σ∗ .

(The dependence on G and g has been absorbed by H.) Further note that, the factor
K−1ℓ−1/2, which is problematic for small Kℓ1/2 ≥ 0, has been omitted by making H large
enough; indeed, exp

{︁
− hR2ℓ

}︁
approaches one as Kℓ1/2 ↘ 0, while the other right-hand

exponential terms are at least one, and the left-hand side, being a probability, is at most
one.

Noting that ℓ ≥ 1, and suitably increasing H, this upper bound is at most

exp
{︂
− hR2ℓ+Hℓ19

(︁
1 +R2 + log σ−1

∗
)︁5/6}︂

σ∗ .
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This completes the proof of Corollary 2.13 in the case that exp
{︁
− g

(︁
min{a, 1 −

a}n
)︁1/12}︁ ≤ p. Suppose now that the opposing inequality holds. Choosing q = exp

{︁
−

g
(︁
min{a, 1− a}n

)︁1/12}︁
, we find that

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ exp

{︁
− g
(︁
min{a, 1− a}n

)︁1/12}︁ · g−1 exp
{︁
4(G′)11/6ℓ6g−5/6

}︁
× exp

{︂
G′ℓg5/6

(︁
min{a, 1− a}n

)︁5/72}︂
.

For positive constants H and h determined by the compact interval in (0, 1) in which a is
supposed to lie, we obtain

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ exp

{︁
− hn1/12 +Hℓ19 +Hℓ7n5/72

}︂
;

or, more simply,

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ exp

{︁
− hn1/12 +Hℓ19n5/72

}︂
.

Since we suppose that ℓ is at most a small constant multiple of n1/1370, we also have,
after a decrease in the value of h > 0,

P
(︁
Mid(Z) ∩ NT(Z)

)︁
≤ exp

{︁
− hn1/12

}︁
.

This completes the proof of Corollary 2.13.
Proof of Theorem 1.3. Corollary 2.13 implies that, when a ∈ n−1Z lies in a compact

interval in (0, 1), there exist constants H,h > 0 determined by this compact interval such
that, for ε ∈ (0, ℓ/3),

P
(︂
M ∈ [R− ℓ/3, R+ ℓ/3] , sup

x∈R:|x−M |∈[ε,2ε]

Zn(x, a) ≥ Zn(M,a)− σε1/2
)︂

≤ max
{︂
σ · exp

{︁
− hR2ℓ+Hℓ19

(︁
1 +R2 + log σ−1

)︁5/6}︁
, exp

{︁
− hn1/12

}︁}︂
.

Summing this bound over dyadic scales [2jε, 2j+1ε] from that indexed by j = 0 until a
final truncated scale of the form [2jε, ℓ′], we learn that

P
(︂
M ∈ [R− ℓ/3, R+ ℓ/3] , sup

x∈R:|x−M |∈[ε,ℓ/3]

(︁
Zn(x, a) + σ2−1/2(x−M)1/2

)︁
≥ Zn(M,a)

)︂
≤ ⌈log2

(︁
ℓ′ε−1

)︁
⌉max

{︂
σ · exp

{︁
− hR2ℓ+Hℓ19

(︁
1 +R2 + log σ−1

)︁5/6}︁
, exp

{︁
− hn1/12

}︁}︂
.

Relabelling σ and adjusting the values of H and h, we obtain Theorem 1.3.

3 Fluctuation in polymer weight and geometry

Here we prove our robust modulus of continuity assertions Theorem 1.4, which
concerns polymer geometry, and Theorem 1.6, which concerns polymer weight. As a
consequence, we will prove Corollary 1.5, which addresses the maximum fluctuation of
polymers. We further prove Theorem 1.7, a result which offers control on the fluctuation
of polymers that is uniform in compact endpoint variation and in variation on a given
dyadic scale for the polymer lifetime proportion at which fluctuation is measured.

There are eight subsections. The first introduces some basic tools needed on sev-
eral later occasions in this article. Four sets of preliminaries that are needed for the
proofs of Theorems 1.4 and 1.6 are respectively treated in the ensuing four subsections:
the assertion of a strong form of invariance for parabolic weight in Brownian LPP; a
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result, in the style of Corollary 1.5, concerning the maximum fluctuation of polymers;
control on polymer weight that is uniform in compact endpoint variation; and control
on large local fluctuations in unscaled geodesic energy. The sixth subsection proves
Theorems 1.4 and 1.6 and Corollary 1.5. The seventh proves Theorem 1.7 and the eighth
Proposition 1.8.

3.1 Some basics

3.1.1 The scaling principle

Write R2
< =

{︁
(x, y) ∈ R2 : x < y

}︁
. Let (n, s1, s2) ∈ N × R2

< be a compatible triple.
The quantity ns1,2 is a positive integer, in view of the defining property (1.4). The
scaling map Rk : R2 → R2 has been defined whenever k ∈ N+, and thus we may
speak of Rn and Rns1,2 . The map Rn is the composition of Rns1,2 and the transform

Ss−1
1,2

given by R2 → R2 : (a, b) →
(︁
as

−2/3
1,2 , bs−1

1,2

)︁
. That is, the system of ns1,2-zigzags

is transformed into the system of n-zigzags by an application of Ss−1
1,2

. Note that

Wgtn
[︁
(x, s1) → (y, s2)

]︁
= s

1/3
1,2 Wgtns1,2

[︁
(xs

−2/3
1,2 , κ) → (ys

−2/3
1,2 , κ + 1)

]︁
, where κ = s1s

−1
1,2;

indeed this weight transformation law is valid for all zigzags, rather than just polymers,
in view of (1.6).

We may summarise these inferences by saying that the system of ns1,2-zigzags, in-
cluding their weight data, is transformed into the n-zigzag system, and its accompanying
weight data, by the transformation

(︁
a, b, c

)︁
→
(︁
as

−1/3
1,2 , bs

−2/3
1,2 , cs−1

1,2

)︁
, where the compo-

nents refer to the changes suffered in weight, and horizontal and vertical coordinates.
This fact leads us to what we call the scaling principle.
The scaling principle. Let (n, s1, s2) ∈ N × R2

< be a compatible triple. Any statement
concerning the system of n-zigzags, including weight information, is equivalent to the
corresponding statement concerning the system of ns1,2-zigzags, provided that the
following changes are made:

• the index n is replaced by ns1,2;

• any time is multiplied by s−1
1,2;

• any weight is multiplied by s1/31,2 ;

• and any horizontal distance is multiplied by s−2/3
1,2 .

3.1.2 Tail bounds on one-point polymer weight

Recall from Section 1.9 that Wgt∪n
[︁
(x, h1) → (y, h2)

]︁
denotes the parabolically adjusted

weight Wgtn
[︁
(x, h1) → (y, h2)

]︁
+2−1/2(y−x)2h−1

1,2. We will have need on several occasions
for control on the upper and lower tail of this random variable.

Lemma 3.1. There exist positive constants C and c, and n0 ∈ N, such that the following
holds. Let n ∈ N and x, y ∈ R satisfy n ≥ n0 and |x− y| ≤ cn1/9.

1. For t ≥ 0,

P
(︂
Wgt∪n

[︁
(x, 0) → (y, 1)

]︁
≥ t
)︂
≤ C exp

{︁
− ct3/2

}︁
.

2. For t ≥ 0,

P
(︂
Wgt∪n

[︁
(x, 0) → (y, 1)

]︁
≤ −t

)︂
≤ C exp

{︁
− ct3/2

}︁
.

Proof. This result follows from [CHH19, Proposition 3.6] and translation invariance
of Brownian LPP.
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3.1.3 Polymer uniqueness and ordering

A polymer with given endpoints is almost surely unique.

Lemma 3.2. [Ham19b, Lemma 4.6(1)] Let x, y ∈ R. There exists an n-zigzag from (x, 0)

to (y, 1) if and only if y ≥ x− n1/3/2. When the last condition is satisfied, there is almost
surely a unique n-polymer from (x, 0) to (y, 1).

A rather simple sandwiching fact about polymers will also be needed. Let (x1, x2), (y1, y2) ∈
R2 and consider a zigzag Z1 from (x1, s1) to (y1, s2) and another Z2 from (x2, s1) to (y2, s2).
We declare that Z1 ⪯ Z2 if ‘Z2 lies on or to the right of Z1’: formally, if Z2 is contained in
the union of the closed horizontal planar line segments whose left endpoints lie in Z1.

Lemma 3.3. [Ham20, Lemma 5.7] Let (n, s1, s2) be a compatible triple, and let (x1, x2)
and (y1, y2) belong to R2

≤. Suppose that there is a unique n-polymer from (xi, s1) to
(yi, s2), both when i = 1 and i = 2. (This circumstance occurs almost surely, and the
resulting polymers have been labelled ρn

[︁
(x1, s1) → (y1, s2)

]︁
and ρn

[︁
(x2, s1) → (y2, s2)

]︁
.)

Now let ρ denote any n-polymer that begins in [x1, x2]× {s1} and ends in [y1, y2]× {s2}.
Then

ρn
[︁
(x1, s1) → (y1, s2)

]︁
⪯ ρ ⪯ ρn

[︁
(x2, s1) → (y2, s2)

]︁
.

3.1.4 Boldface notation for parameters in statement applications

Some later used outside results come equipped with parameters that must be set in any
given application. When such applications are made, we employ a boldface notation to
indicate the parameter labels of the results being applied. This device permits occasional
reuse of symbols and disarms notational conflict.

3.2 Invariance of the polymer weight field

Given two collections of real-valued random variables M1 and M2 indexed by pairs
(x, h1), (y, h2) ∈ R×Z, we write M1 ≡M2 to indicate that the two collections have the
same law. This notation will be applied in the unscaled picture, when the fields of random
variables are energies of geodesics, such as M

[︁
(x, h1) → (y, h2)

]︁
. Thus, the conditions

x ≤ y and h1 ≤ h2 must be imposed, to ensure that these energies are well defined. We
abuse notation by setting values such as M

[︁
(x, h1) → (y, h2)

]︁
equal to zero when they

are not well defined, so that the indexing by (x, h1), (y, h2) ∈ R×Z is admissible. The ≡
notation will also be adopted in the scaled picture, where two collections of real-valued
random variables W 1 and W 2 indexed by pairs (x, h1), (y, h2) ∈ R × n−1Z are said to
satisfy W 1 ≡W 2 when they have the same law, and where a similar extension of domain
is applied to permit this choice of domain for the two collections.

For K ∈ R, let τK : R2 → R2 denote the shear map

τ(x, y) = (x+Ky, y) (3.1)

The shear map will permit us to straighten sharply sloping corridors. Our invariance
result asserts that parabolic weight is statistically almost unchanged under application of
the shear map. Later, when we prove Proposition 3.16(2,3), it will permit us to propagate
control on polymer weights from roughly square rectangles to much wider ones.

Proposition 3.4. Suppose given two disjoint compact real intervals I1 and I2. For n ∈ N
and K > 0, let Kn(K) denote the set of quadruples (x, y, h1, h2) ∈ R4, where the real
values x and y vary over [−2K, 2K] and where h1 and h2 respectively vary over elements
of n−1Z lying in I1 and I2. Suppose that n ≥ Θ(1) and Θ(1) ≤ K ≤ Θ(1)n1/18. Then

Wgt∪n
[︁
τK(x, h1) → τK(y, h2)

]︁
≡ Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
+ E(x, y, h1, h2)
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where the error terms E(x, y, h1, h2) are random but small, satisfying the uniform tail
bound

P

(︃
sup

{︂⃓⃓
E(x, y, h1, h2)

⃓⃓
: (x, y, h1, h2) ∈ Kn(K)

}︂
≥ Θ(1)n−1/9

)︃
≤ Θ(1)n2+2/3K−2 exp

{︁
−Θ(1)n1/12K−3/2

}︁
+Θ(1)K2 exp

{︁
−Θ(1)n1/12

}︁
. (3.2)

The Θ(1) terms may depend on the pair (I1, I2) and on no other parameter.

The parameters h1 and h2 vary subject to h1,2 = Θ(1) in this result. During the
upcoming derivation, we will monitor dependence on h1,2 more closely, with a view to
the potential for applications where h1,2 ≪ 1, and will impose h1,2 = Θ(1) as we close
out the proof of Proposition 3.4.

The first element on our route to proving the proposition is the assertion of a strong
form of energetic invariance that is enjoyed by Brownian LPP.

Lemma 3.5. For κ > 0, M
[︁
(x, h1) → (y, h2)

]︁
≡ κ1/2M

[︁
(x, h1) → (x+ κ−1(y − x), h2)

]︁
.

Proof. The law of the Brownian motions B : R× Z → R that constituent the noise
environment of Brownian LPP is invariant under the scaling B(z, n) → κ1/2B(x+κ−1(z−
x), n).

By the definition of the shear map τK and the specification (1.7) of weight in terms of
its unscaled counterpart, energy, we see that Wgtn

[︁
τK(x, h1) → τK(y, h2)

]︁
is equal to

2−1/2n−1/3
(︂
M
[︁(︁
nh1+2n2/3(x+Kh1), h1

)︁
→
(︁
nh1+2n2/3(y+Kh2), h2

)︁]︁
−(2n+K)h1,2−2n2/3(y−x)

)︂
.

(3.3)
Set x′ = x

(︁
1+2n−1/3K

)︁−1
and y′ = y

(︁
1+2n−1/3K

)︁−1
. Applying Lemma 3.5, we see that

M
[︁(︁
nh1 + 2n2/3(x+Kh1), h1

)︁
→
(︁
nh1 + 2n2/3(y +Kh2), h2

)︁]︁
≡

(︁
1 + 2n−1/3K

)︁1/2
M
[︁(︁
nh1 + 2n2/3x′, h1

)︁
→
(︁
nh1 + 2n2/3y′, h2

)︁]︁
,

where note that, in the usage of the notation ≡, the two fields are viewed as functions of
the variables (x, h1) and (y, h2), with the dependence on x and y being communicated
via x′ and y′ in the right-hand case. Translating to scaled coordinates, we see that
Wgtn

[︁
τK(x, h1) → τK(y, h2)

]︁
takes the form(︁

1 + 2n−1/3K
)︁1/2

Wgtn
[︁
(x′, h1) → (y′, h2)

]︁
+R1 +R2 +R3 ,

where

R1 = 21/2n2/3h1,2
(︁(︁
1 + 2n−1/3K

)︁1/2 − 1
)︁
;

R2 = 21/2n1/3(y − x)
(︁(︁
1 + 2n−1/3K

)︁−1/2 − 1
)︁
; and

R3 = −21/2n1/3Kh1,2 .

The term R1 is seen to take the form 21/2n1/3h1,2K − 2−1/2h1,2K
2 + Θ(n−1/6)h1,2,

where the Θ(n−1/6) term is due to |K| ≤ Θ(1)n1/18. We have that

R2 = −21/2(y − x)K + 2−1/23n−1/3(y − x)K2 +Θ
(︁
n−2/3K3

)︁
|y − x| .

Thus, R2 = −21/2(y − x)K +Θ(n−1/6), since |x− y| ≤ 2K and |K| ≤ Θ(1)n1/18.
Considering now the parabolically adjusted weight Wgt∪n

[︁
τK(x, h1) → τK(y, h2)

]︁
that

is the subject of Proposition 3.4, we see that it has the form

Wgtn
[︁
τK(x, h1) → τK(y, h2)

]︁
+ 2−1/2

(︁
y − x+Kh1,2

)︁2
h−1
1,2 .
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We expand the right-hand square (a+ b)2, a = y − x and b = Kh1,2, and make use of the
noted forms for R1, R2 and R3, to find that Wgt∪n

[︁
τK(x, h1) → τK(y, h2)

]︁
equals (in the

sense of the relation ≡)(︁
1 + 2n−1/3K

)︁1/2
Wgtn

[︁
(x′, h1) → (y′, h2)

]︁
+ 2−1/2(y − x)2h−1

1,2 + Θ(1)n−1/6h1,2 .

Since x′ and y′ are small perturbations of x and y, we can already recognise the desired
weight Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
in this display. We next summarise our progress by

stating and proving a lemma that clarifies the form of the discrepancy between the
obtained and desired terms. A second lemma offers control on the tail of the discrepancy,
so that the two lemmas will directly yield Proposition 3.4. We employ the shorthand
Wgt∪∆(x, y;x′, y′) to denote the parabolically adjusted weight difference

Wgt∪nh1,2

[︁(︁
x′h

−2/3
1,2 , 0

)︁
→
(︁
y′h

−2/3
1,2 , 1

)︁]︁
−Wgt∪nh1,2

[︁(︁
xh

−2/3
1,2 , 0

)︁
→
(︁
yh

−2/3
1,2 , 1

)︁]︁
.

Lemma 3.6. We have that

Wgt∪n
[︁
τK(x, h1) → τK(y, h2)

]︁
≡ Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
+Θ(1)n−1/6h1,2 + Error1(x, y) + Error2(x, y) ,

where

Error1(x, y) ≡
(︁
1 + Θ(n−5/18)

)︁(︂
h
1/3
1,2 Wgt∪∆(x, y;x′, y′) + Θ(1)h

−4/3
1,2 K3n−1/3

)︂
;

and
Error2(x, y) ≡ Θ(n−5/18)Wgtn

[︁
(x, h1) → (y, h2)

]︁
.

Proof. Setting E = Wgtn
[︁
(x′, h1) → (y′, h2)

]︁
−Wgtn

[︁
(x, h1) → (y, h2)

]︁
, and recalling

that |K| is at most Θ(1)n1/18, we find that

Wgt∪n
[︁
τK(x, h1) → τK(y, h2)

]︁
≡

(︁
1 + Θ(n−5/18)

)︁(︂
Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
+ E

)︂
= Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
+ Error ,

with Error = Error1 + Error2 + Θ(1)n−1/6h1,2, where Error2 has the form asserted in
the lemma; and where Error1 =

(︁
1 + Θ(n−5/18)

)︁
E, for a system E that by the scaling

principle is seen to satisfy

E ≡ h
1/3
1,2

(︂
Wgtnh1,2

[︁(︁
x′h

−2/3
1,2 , 0

)︁
→
(︁
y′h

−2/3
1,2 , 1

)︁]︁
−Wgtnh1,2

[︁(︁
xh

−2/3
1,2 , 0

)︁
→
(︁
yh

−2/3
1,2 , 1

)︁]︁)︂
;

and thus

E ≡ h
1/3
1,2 Wgt∪∆(x, y;x′, y′) − 2−1/2(x′ − y′)2h

−4/3
1,2 + 2−1/2(x− y)2h

−4/3
1,2 .

Note that 2−1/2(x′ − y′)2h
−4/3
1,2 − 2−1/2(x − y)2h

−4/3
1,2 equals 2−1/2h

−4/3
1,2 Θ

(︁
|y − x|(|x| +

|y|)
)︁
n−1/3K, since x′ = x

(︁
1 + Θ(n−1/3K)

)︁
and y′ = y

(︁
1 + Θ(n−1/3K)

)︁
. Note that Θ

(︁
|y −

x|(|x| + |y|)
)︁
= Θ(K2) since |x| and |y| are at most 2K; we have obtained the desired

form for Error1 and thus Lemma 3.6.

Lemma 3.7. Recall that x, y ∈ R are in absolute value at most 2K.

1. Suppose that h1,2 ≤ Θ(1), nh1,2 ≥ Θ(1) and Θ(1)h
−1/18
1,2 ≤ K ≤ Θ(1)n1/18h

13/18
1,2 .

Then

P
(︂

sup
|x|,|y|≤K

⃓⃓
Error1(x, y)

⃓⃓
≥ Θ(n−1/9)

)︂
≤ Θ(1)n2/3K−2 exp

{︁
−Θ(1)n1/12K−3/2

}︁
.
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2. Suppose that n ≥ Θ(1), K ≤ Θ(1)n1/18 and h1,2 = Θ(1). Then

P
(︂

sup
|x|,|y|≤K

⃓⃓
Error2(x, y)

⃓⃓
≥ Θ(n−1/6)

)︂
≤ Θ(1)K2 exp

{︁
−Θ(1)n1/12

}︁
.

Proof of Proposition 3.4. Following directly from the two preceding lemmas is a
form of the sought result in which h1 and h2 are given; the factor of Θ(1)n2 is absent
from line (3.2) in this version. When a sum indexed by h1 ∈ n−1Z∩ I1 and h2 ∈ n−1Z∩ I2
is performed, the factor of Θ(1)n2 enters the right-hand side.

Proof of Lemma 3.7:(1). Our argument principally rests on establishing that

P

(︃
sup

{︂⃓⃓
Wgt∪∆(x, y;x′, y′)

⃓⃓
: |x|, |y| ≤ K

}︂
≥ Θ(1)h

−1/3
1,2 n−1/9

)︃
(3.4)

≤ Θ(1)n2/3K−2 exp
{︁
−Θ(1)n1/12K−3/2

}︁
.

Indeed, Error1(x, y) is a sum of two terms, and the displayed bound controls the first.

The second, Θ(1)h
−4/3
1,2 K3n−1/3, is at most Θ(n−1/9) because the needed condition K ≤

Θ(1)h
4/9
1,2 n

2/27 is implied by the hypotheses of Lemma 3.7(1); thus, it indeed suffices to
prove (3.4).

The difference Wgt∪∆(x, y;x′, y′) of parabolic weights will be addressed by [Ham19a,
Theorem 1.1]. Indeed, if we denote by I and J two compact real intervals, and set, for
r > 0, the quantity pI,J(r) equal to

P

(︃
sup

{︂
Wgt∪nh1

[︁
(u1, 0) → (v1, 1)

]︁
−Wgt∪nh1

[︁
(u2, 0) → (v2, 1)

]︁
: u1, u2 ∈ I, v1, v2 ∈ J

}︂
≥ r

)︃
,

then [Ham19a, Theorem 1.1] will shortly provide an upper bound on pI,J(r). To make a
choice of the interval-pair (I, J) for which such a bound will aid our derivation of (3.4),
we begin by noting that

max
{︁
|x′ − x|, |y′ − y|

}︁
≤ 4K2n−1/3 .

Indeed, |x′−x| = |x|
(︁
1−(1+2n−1/3K)−1

)︁
≤ 8K2n−1/3 since |x| ≤ 2K and 2n−1/3K ≤ 1/2;

and similarly for |y′−y|. In considering, as we do, Wgt∪∆(x, y;x′, y′), we see that the pair

of starting endpoints x′h−2/3
1,2 and xh−2/3

1,2 are at distance at most 8K2n−1/3h
−2/3
1,2 and have

absolute value at most 2Kh−2/3
1,2 . As such, we may find a set I of compact intervals, each

contained in
[︁
− 2Kh

−2/3
1,2 , 2Kh

−2/3
1,2

]︁
and of length 16K2n−1/3h

−2/3
1,2 , in such a way that

|I| ≤ Θ(1)n1/3K−1 while, for every x ∈ [−K,K], there exists I ∈ I for which x, x′ ∈ I.
This of course implies that, for any x, y ∈ R in absolute value at most 2K, we may

find (I, J) ∈ I2 such that x, x′ ∈ I and y, y′ ∈ J . By a union bound indexed by I2, we see
that the left-hand side of (3.4) is at most

Θ(1)n2/3K−2 · pI,J
(︂
Θ(1)h

−1/3
1,2 n−1/9

)︂
, (3.5)

where (I, J) is some element of I2. Thus we see that our usage of [Ham19a, Theorem 1.1]

should be made so as to find an upper bound on pI,J
(︁
Θ(1)h

−1/3
1,2 n−1/9

)︁
. We set this

result’s parameters so that n = nh1,2; x and y are the left endpoints of the intervals

I and J in (3.5); ε equals the interval length 8K2n−1/3h
−2/3
1,2 ; and with R chosen so

that ε1/2R = Θ(1)h
−1/3
1,2 n−1/9—which is to say, R = Θ(1)n1/18K−1. What we learn

from this application of [Ham19a, Theorem 1.1] is that the pI,J term in (3.5) is at most
exp

{︁
− Θ(1)n1/12K−3/2

}︁
. Thus are (3.4) and Lemma 3.7(1) obtained. It remains only

EJP 0 (2020), paper 0.
Page 37/80

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Near ground states for Gaussian polymers

to verify that the hypotheses of Lemma 3.7(1) are adequate to permit the application
of [Ham19a, Theorem 1.1]. The application requires five conditions:

[1] K2n−1/3h
−2/3
1,2 ≤ Θ(1) ; [2] nh1,2 ≥ Θ(1), ; [3] Kh

−2/3
1,2 ≤ Θ(1)n1/18h

1/18
1,2 ;

[4] n1/18K−1 ≥ Θ(1) ; and [5] n1/18K−1 ≤ Θ(1)n1/18h
1/18
1,2 .

We consider the further conditions

[6] K ≤ n1/6h
1/3
1,2 Θ(1) ; [7] K ≤ Θ(1)n1/18h

13/18
1,2 ; [8] h1,2 ≤ 1 ; and [9] K ≥ Θ(1)h

−1/18
1,2

Denoting equivalence and implication by ↔ and →, note that [1] ↔ [6]; [3] ↔ [7]; [7] → [6];
[7, 8] → 4; and [5] ↔ [9]. Thus [2, 7, 8, 9] → [1, 2, 3, 4, 5]. Since [2, 7, 8, 9] are the hypotheses
of Lemma 3.7(1) and [1, 2, 3, 4, 5] permit its proof, this completes the needed hypothesis
verification for this result.

(2). The tail of the parabolically shifted weight Wgt∪n
[︁
(x, h1) → (y, h2)

]︁
is addressed

by [Ham19a, Proposition 1.5]. Indeed, when this result is applied via the scaling principle,
and with parameter settings n = nh1,2, x = xh

−2/3
1,2 , y = yh

−2/3
1,2 and t = R, the outcome

is the bound

P

(︃
sup

{︂⃓⃓
Wgt∪n

[︁
(x+ u, h1) → (y + v, h2)

]︁⃓⃓
: u ∈ h

2/3
1,2 · [0, 1], v ∈ h

2/3
1,2 · [0, 1]

}︂
≥ h

1/3
1,2R

)︃
≤ exp

{︁
−Θ(1)R3/2

}︁
,

where we should bear in mind for the upcoming selection of R > 0 that this application
demands that R ≤ Θ(1)n1/18h

1/18
1,2 . A union bound over a mesh of order

(︁
Kh

−2/3
1,2

)︁2
points

(x, y) ∈ [−K,K]2 then yields that

P

(︃
sup

{︂⃓⃓
Wgt∪n

[︁
(x, h1) → (y, h2)

]︁⃓⃓
: x, y ∈ [−K,K]

}︂
≥ h

1/3
1,2R

)︃
≤ Θ(1)K2h

−4/3
1,2 exp

{︁
−Θ(1)R3/2

}︁
.

If we set h1/31,2R equal to Θ(1)n1/18—a choice made so that the needed upper bound on R
is satisfied, provided that h1,2 has unit order Θ(1), as we impose that it does—then this

right-hand side takes the form Θ(1)K2h
−4/3
1,2 exp

{︁
−Θ(1)n1/12h

−1/2
1,2

}︁
. Since h1,2 = Θ(1),

this has the form of the right-hand quantity in the bound maintained by Lemma 3.7(2);
thus, if the superscript ∪ for Wgtn were omitted from the preceding display—so that
weight without parabolic shift were instead addressed—we would obtain the result
that we seek. This alteration is permitted because the parabolic term (y − x)2h−1

1,2,

being at most 4K2h−1
1,2, is at most Θ(1)n2/9, in view K ≤ Θ(1)n1/9 (which is implied

by our hypothesis on K) and h1,2 = Θ(1). Thus, we obtain Lemma 3.7(2), subject to
verifying that the hypotheses of this result are enough to permit usage of inputs during
its proof. These inputs are the application of [Ham19a, Proposition 1.5], which requires
the conditions

[1] nh1,2 ≥ Θ(1); [2] |x−y|h−2/3
1,2 ≤ Θ(1)n1/18h

2/3
1,2 ; [3] R ≥ Θ(1); and [4] R ≤ Θ(1)n1/18h

1/18
1,2 ;

and control on a parabolic term, which requires [5] K ≤ n1/9h
1/2
1,2 . Recall that |x−y| ≤ 2K,

since |x| and |y| are at most K. In the preceding proof, we have set R = Θ(1)n1/18h
−1/3
1,2 .

The hypotheses of Lemma 3.7(2), namely that K ≤ Θ(1)n1/18, n ≥ Θ(1) and h1,2 = Θ(1),
are readily seen to imply [1, 2, 3, 4, 5]; so the needed hypothesis verification has been
carried out for the proof of Lemma 3.7(2).
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3.3 Local energetic fluctuation

In this short section, we offer control in Proposition 3.9 on the tail of large local
fluctuation in the unscaled geodesic energy, relying on oscillation estimates for Brownian
motion which constitutes the underlying noise.

Definition 3.8. Let n ∈ N and K,σ > 0. Let ∆n(K,σ) ⊆
(︁
R×Z

)︁2
denote the set of pairs

(x1, s1), (x2, s2) ∈ R×Z with x1 ≤ x2 ≤ x1 + σ; s1 ≤ s2 ≤ s1 + σ; and with each of x1, x2,
s1 and s2 at most nK in absolute value.

Proposition 3.9. For K,σ > 0 and r ≥ 0,

P

(︃
sup

{︂⃓⃓
M
[︁
(x1, s1) → (x2, s2)

]︁⃓⃓
:
(︁
(x1, s1), (x2, s2)

)︁
∈ ∆n(K,σ)

}︂
≥ r

)︃
≤ n · 25π−1/2Kσ−1/2(σ + 1)r−1 exp

{︁
− 2−4r2(σ + 1)−2σ−1

}︁
.

Let L > 0, and let f : [0, L] → R. For I ⊆ [0, L] and r ∈ (0, L], set

ωI(f, r) = sup
{︂
|f(y)− f(x)| : 0 ≤ x ≤ y ≤ x+ r ≤ L , x ∈ I

}︂
.

In this way, (0, L] → R : r → ω[0,L](f, r) is the modulus of continuity of the function f .

Lemma 3.10. For L > 0, let B : [0, L] → R have the law of standard Brownian motion.
For r ∈ (0, L] and x > 0,

P
(︂
ω[0,L]

(︁
B, r

)︁
≥ x

)︂
≤ 24π−1/2Lr−1/2x−1 exp

{︁
− 2−4x2r−1

}︁
.

Proof. Set I = rZ ∩ [0, L]. It is readily verified that ωI

(︁
B, 2r

)︁
≥ ω[0,L]

(︁
B, r

)︁
/2. This

enables the first of the next displayed bounds,

P
(︂
ω[0,L]

(︁
B, r

)︁
≥ x

)︂
≤ P

(︂
ωI

(︁
B, 2r

)︁
≥ x/2

)︂
≤ |I| · P

(︂
sup

{︁
|B(z)| : −1 ≤ z ≤ 1

}︁
≥ 2−3/2xr−1/2

)︂
≤ 2Lr−1 · 23π−1/2Lr−1/2x−1 exp

{︁
− 2−4x2r−1

}︁
,

where the second bound is due to Brownian translation and scaling symmetries and,
in whose third, L ≥ r is used to bound |I| above by 2L/r, and the reasoning in (2.15)
bounds above the probability term.

Proof of Proposition 3.9. The concerned supremum is at most(︁
σ + 1

)︁
· sup

{︂
ω[−nK,nK]

(︁
x→ B(x, s), σ

)︁
: s ∈ Z ∩ [−K,K]

}︂
,

where recall that the constituent curves B : R × Z → R in the Brownian LPP noise
environment are independent two-sided standard Brownian motions. The displayed
supremum thus has probability of being at least r/(σ + 1) given by the bound offered by
Lemma 3.10 with L = 2nK, r = σ and x = r/(σ + 1). The result is Proposition 3.9.

3.4 Global polymer fluctuation

In this section, we present and prove the next result, which concerns the location at
which the polymer ρn = ρn

[︁
(0, 0) → (x, 1)

]︁
departs a level a ∈ n−1Z∩ (0, 1). This theorem

is in essence a weaker form of Corollary 1.5; it will be needed for our principal proofs.
In a shorthand usage, ρxn will denote ρn

[︁
(0, 0) → (x, 1)

]︁
(a polymer that is almost

surely unique for given x ∈ R, by Lemma 3.2). By the convention of Subsection 1.7.8,
ρxn(a) thus denotes the concerned location, at which a forward-in-time tracing of this
polymer departs from the horizontal line R× {a}.
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Theorem 3.11. For K any compact interval of (0, 1), there exist positive constants
H = H(K) and h = h(K) and an integer n0 = n0(K) such that, if n ∈ N, R ∈ R,
a ∈ n−1Z ∩K and x ∈ R satisfy n ≥ n0, |R| ≤ hn1/9 and |x| ≤ n2/3, then

P
(︂⃓⃓
ρxn(a)− xa

⃓⃓
≥ R

)︂
≤ H exp

{︁
− hR3

}︁
.

Next is a result that includes an important special case of Theorem 3.11. We write ρn
for ρ0n = ρn

[︁
(0, 0) → (0, 1)

]︁
.

Proposition 3.12. For K any compact interval of (0, 1), there exist positive constants
H = H(K) and h = h(K) and an integer n0 = n0(K) such that, if n ∈ N, R ∈ R and
a ∈ n−1Z ∩K satisfy n ≥ n0 and |R| ≤ hn1/9, then

P
(︂
ρn(a) ∈ [R− 1, R+ 1]

)︂
≤ H exp

{︁
− hR3

}︁
and

P
(︂⃓⃓
ρn(a)

⃓⃓
≥ hn1/9

)︂
≤ H exp

{︁
− hn1/3

}︁
.

Proof. Recall from Lemma 2.1(2) that ρn(a) is the almost surely unique maximizer of
the random function x→ Zn(x, a), and recall the formula (2.4) for the latter process.

To prove the first bound, we first note from (2.4) that the event that Zn(x, a) ≥ −r for
given x, r ∈ R entails that either a1/3NrL↑;a

n;(0,0)

(︁
a−2/3x

)︁
≥ −2−1r or

(1− a+)
1/3NrL↓;(0,1)

n;a+

(︁
(1− a+)

−2/3x−
)︁
≥ −2−1r .

Thus, the event
{︁
supx∈[R−1,R+1] Zn(x, a) ≥ −R2

}︁
is contained in{︃

sup
x∈a−2/3·[R−1,R+1]

NrL↑;a
n;(0,0)(x) ≥ −2−1a−1/3R2

}︃
∪

{︃
sup

x∈(1−a+)−2/3·[R−1,R+1]

NrL↓;(0,1)
n;a+

(x−) ≥ −2−1(1− a+)
−1/3R2

}︃
.

We now apply the regularity of normalized ensembles expressed in Proposition 2.3(1,2),
and a tail bound [Ham22, Proposition 2.28] for the deviation of regular ensemble top
curves relative to parabolic curvature. Indeed, using the boldface notation, we choose
the latter result’s parameter n equal to na and to n(1 − a+), and thus find that the
probability of each event in the above union is at most

Hmax
{︂
exp

{︁
− hR3

}︁
, exp

{︁
− hn1/2

}︁}︂
,

where the existence of positive constants H and h is ensured because we may select the
lower bound n0(K) so that na and n(1− a+) are at least the lower bound on n demanded
in [Ham22, Proposition 2.28].

Since |R| ≤ hn1/9, we find that

P

(︃
sup

x∈[R−1,R+1]

Zn(x, a) ≥ −R2

)︃
≤ 2H exp

{︁
− hR3

}︁
.

However, supx∈R Zn(x, a) equals Wgtn
[︁
(0, 0) → (0, 1)

]︁
and thus has probability to exceed

−R2 which is seen to be least 1− C exp
{︁
− cR3

}︁
provided that R ≤ hn1/3 (with h = c1/2)

by Lemma 3.1(2).
From these inferences, the former assertion of Proposition 3.12 follows after a

relabelling of H and h.
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To prove the latter bound, we first note from (2.4) that the event that Zn(x, a) ≥
−gn2/9 for given x ∈ R entails that either NrL↑;a

n;(0,0)

(︁
a−2/3x

)︁
≥ −2−1gn2/9 or

(1− a+)
1/3NrL↓;(0,1)

n;a+

(︁
(1− a+)

−2/3x−
)︁
≥ −2−1gn2/9 .

By Proposition 2.3(1,2), and [Ham22, Proposition 2.30], for any g′ > 0, there exist
positive G and g > 0, such that, for a ∈ n−1Z ∩K, the probabilities

P
(︂
∃ y ∈ R : |y| ≥ a−2/3g′n1/9 , NrL↑;a

n;(0,0)(y) ≥ −2−1gn2/9
)︂

and
P
(︂
∃ y ∈ R : |y| ≥ (1− a+)

−2/3g′n1/9 , NrL↓;(0,1)
n;a+

(y) ≥ −2−1gn2/9
)︂

are at most G exp
{︁
− gn1/3

}︁
. Thus, the probability that Zn(x, a) attains a value of at

least −gn2/9 for x ∈ R satisfying |x| ≥ g′n1/9 is at most 2G exp
{︁
− gn1/3

}︁
. However,

supx∈R Zn(x, a) equals Wgtn
[︁
(0, 0) → (0, 1)

]︁
and thus has probability to exceed −gn2/9

which is seen by Lemma 3.1(2) to be at least 1 − C exp
{︁
− cg3/2n1/3

}︁
. From these

inferences, the latter assertion of Proposition 3.12 follows.
To obtain Theorem 3.11 from Proposition 3.12, we need to reach a comparable

conclusion about polymers of route (0, 0) → (x, 1) as we have in the case x = 0. In this
task, we benefit from the strong invariance property of Brownian LPP that we indicated
in Lemma 3.5, but which is now presented in a scaled guise in the next lemma. Recall
that ρxn(a) denotes the location of departure ρn

[︁
(0, 0) → (x, 1)

]︁
(a) of this polymer from

the horizontal line R×{a}.

Lemma 3.13.

1. Let x > −2n2/3. The random processes n−1Z ∩ [0, 1] → R that map a to ρxn(a)− xa

and
(︁
1 + 2−1n−2/3x

)︁
ρn(a) are equal in law.

2. Let b > −2n2/3. Let τb : R2 → R2 denote the shear map τ(x, y) = (x + yb, y). The
field of polymers ρn is indexed by starting and ending points in R× n−1Z (with a
formal empty-set value for inadmissible choices of index). The image under τb of
this field is equal in law to the field of polymers

(︁
1 + 2−1n−2/3b

)︁
ρn.

Proof: (1). The geodesics Γn

[︁
(0, 0) → (n + 2n2/3x, n)

]︁
and Γn

[︁
(0, 0) → (n, n)

]︁
are

mapped to ρxn and ρn by the scaling map Rn in (1.3). We claim that the former geodesic
is mapped to a distributional copy of the latter by applying the transformation R×Z→
R × Z, (z, h) →

(︁
z, (1 + 2−1n−2/3x)−1h

)︁
. Indeed, the image of the noise environment

of static Brownian LPP under this transformation is a copy of Brownian LPP in which
the constituent Brownian motions have rate 1 + 2−1n−2/3x. The energy of any given

staircase is thus simply the product of
(︁
1+2−1n−2/3x

)︁1/2
and the energy of the staircase

in Brownian LPP where the motions have the standard rate of one. Since this factor is
present in computing the energy of all staircases, its presence does not affect the status
of the geodesic, so that the claim is confirmed. Given the claim, we apply the scaling
map Rn to obtain Lemma 3.13(1).

(2). The above inferences apply equally when we instead consider the (z1, z2)-
indexed fields of geodesics Γn

[︁
(2n2/3z1, 0) → (n+2n2/3(z2+x), n)

]︁
and Γn

[︁
(2n2/3z1, 0) →

(2n2/3n+ z2, n)
]︁

where z1, z2 ∈ R.
Allying Proposition 3.12 with Lemma 3.13 leads to the next result, which equips us to

give a short proof of Theorem 3.11.

Corollary 3.14. For K any compact interval of (0, 1), there exist positive constants
H = H(K) and h = h(K) and an integer n0 = n0(K) such that, if n ∈ N, R ∈ R,
a ∈ n−1Z ∩K and x ∈ R satisfy n ≥ n0, |R| ≤ hn1/9 and |x| ≤ n2/3, then

P
(︂
ρxn(a)− xa ∈ [R− 1, R+ 1]

)︂
≤ H exp

{︁
− hR3

}︁
,
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and
P
(︂⃓⃓
ρxn(a)− xa

⃓⃓
≥ hn1/9

)︂
≤ H exp

{︁
− hn1/3

}︁
.

Proof. The dilation factor 1 + 2−1n−2/3x in Lemma 3.13 lies on the interval [1/2, 3/2]
under the present hypothesis that |x| ≤ n2/3. Denote this factor by d. When the
probabilities in Corollary 3.14 are addressed by Proposition 3.12 via Lemma 3.13, the
proposition is applied with R = d−1R, d−1R − 1 and d−1R + 1 in alliance with a simple
union bound. Thus we obtain the corollary by suitably adjusting the values of the
constants H and h.

Proof of Theorem 3.11. Note that the set R \ (−R,R) is a subset of the union of
intervals:

(︁
−∞,−hn1/9

]︁
∪
[︁
hn1/9,∞

)︁
∪

⌊hn1/9⌋⋃︂
i=⌈R⌉

(︂[︁
− i− 1,−i+ 1

]︁
∪
[︁
i− 1, i+ 1

]︁)︂
.

By the latter assertion of Corollary 3.14, the probability that ρxn(a) − xa takes a value
in the union of the first two displayed intervals is bounded above by H exp

{︁
− hn1/3

}︁
.

Let i ∈ N satisfy i ≤ hn1/9. By this corollary’s former assertion applied with R equal
to either i or −i, the probability that ρxn(a) − xa assumes a value in [i − 1, i + 1], or in
[−i− 1,−i+ 1], is at most H exp

{︁
− hi3

}︁
. Summing these bounds over i ∈ J⌈R⌉, ⌊hn1/9⌋K,

and employing the first inference alongside |R| ≤ hn1/9, we obtain Theorem 3.11 after a
relabelling of H and h.

3.5 Compact uniform control on polymer weight

In this section, we present a further tool needed for the proofs of Theorems 1.4
and 1.6. Control is gained on the tail of the maximum absolute value of the parabolic
weight of polymers whose endpoints are varied over compact regions.

Proposition 3.15. For n ≥ Θ(1), Θ(1) ≤ R ≤ n1/30 and 0 < K ≤ n1/46,

P

⎛⎜⎝ sup
(x,h1)∈[−K,K]×[−3,−1]
(y,h2)∈[−K,K]×[1,3]

⃓⃓⃓
Wgt∪n

[︁
(x, h1) → (y, h2)

]︁⃓⃓⃓
≥ R

⎞⎟⎠ ≤ Θ(1)K2 exp
{︁
−Θ(1)R3/2

}︁
.

The argument that we will give for Proposition 3.15 mimics that of [BSS16, Proposi-
tions 10.1 and 10.5].
Proof of Proposition 3.15. The next presented proposition is sufficient to prove this
assertion. Indeed, Proposition 3.16(2) and (3) imply it.

Proposition 3.16. For n ≥ Θ(1) and Θ(1) ≤ R ≤ Θ(1)n4/9(log n)−2, the following hold.

1. The probability that

inf
{︂
Wgt∪n

[︁
(0, 0) → (y, h)

]︁
: y ∈ [−1, 1], h ∈ [1, 3]

}︂
≤ −R (3.6)

is at most Θ(1) exp
{︁
−Θ(1)R3/2

}︁
.

2. For K ≤ Θ(1)n1/18, the probability that the condition

inf
{︂
Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
: x, y ∈ [−K,K], h1 ∈ [−3,−1], h2 ∈ [1, 3]

}︂
≤ −R

holds is at most Θ(1)K2 exp
{︁
−Θ(1)R3/2

}︁
+Θ(1)n3K4 exp

{︁
−Θ(1)n1/12K−3/2

}︁
.

3. Likewise for the condition

sup
{︂
Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
: x, y ∈ [−K,K], h1 ∈ [−3,−1], h2 ∈ [1, 3]

}︂
≥ R .
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Proof. We will starting by proving the proposition’s first part; and then the later
parts when K = 1. Note that the parabolic discrepancy Wgt∪n

[︁
(x, h1) → (y, h2)

]︁
−

Wgtn
[︁
(x, h1) → (y, h2)

]︁
is uniformly bounded in absolute value over all concerned routes

(0, 0) → (y, h) or (x, h1) → (y, h2) in these cases. Thus, we may prove these assertions
with Wgtn in place of Wgt∪n .

(1). We start by defining an infinite tree T = (V,E), embedded in the plane and
rooted at (0, 0), each of whose vertices has four offspring. The children of each vertex
will be called left-low, left-high, right-low and right-high. The root is the unique vertex in
generation zero. Its left-low child is at (−1/2, 1/2); its left-high child at (−1/2, 1/2 + 1);
its right-low child at (1/2, 1/2); and its right-high child at (1/2, 1/2 + 1). Let w denote
the four-vector of planar points whose coordinates are these respective locations. The
offspring of any child c of the root lie at c+ w/2. Iteratively, suppose that the locations
of any vertex in T of generation at most m ∈ N have been determined. Vertices in
generation m+ 1 are placed in locations in the set

{︁
v + 2−mw : v ∈ Vn

}︁
, with an edge

running from parent to child.
It is straightforward that the closure of the vertex set V contains [−1, 1]× [1, 2]. Let

(y, h) be an element in the latter set for which h ∈ n−1Z. In order to find a lower bound
on Wgtn

[︁
(0, 0) → (y, h)

]︁
, we aim to consider the sum of the weights of polymers that

interpolate the endpoints of the edges in T along the end of the tree that runs from (0, 0)

to the element (y, h) of the closure of V . However, such endpoints lie in the plane, rather
than in R× n−1Z; we begin by finding a nearby path through the latter index set. This
path P will follow the tree end until its distance from the destination (y, h) is a large
multiple (of order log n) of the microscopic spacing n−1; then it will jump directly to
(y, h), so that the approximating path is of finite length.

To any planar point (z, s) ∈ R2, we associate (z, s)↓, the element of R× n−1Z that is
first encountered on a journey due south that commences at (z, s).

We now specify j ∈ N to denote the smallest integer such that 2−j ≤ K0n
−1 log n,

where K0 is a large constant.
Let

{︁
(xi, si) : i ∈ N

}︁
denote a sequence of adjacent elements of V with (x0, s0) =

0 whose limit equals (y, h). Set
(︁
xi(n), si(n)

)︁
= (xi, si)

↓. Respecify
(︁
xj(n), sj(n)

)︁
to

equal (y, h). The path P has elements
(︁
xi(n), si(n)

)︁
for i ∈ J0, jK, with edges between

consecutively indexed elements.
The path P indeed offers a lower bound on the polymer weight from (0, 0) to (y, h).

Namely,

Wgtn
[︁
(0, 0) → (y, h)

]︁
≥

j−1∑︂
i=0

Wgtn
[︁(︁
xi(n), si(n)

)︁
→
(︁
xi+1(n), si+1(n)

)︁]︁
. (3.7)

An edge in T that connects a vertex (u, h1) in generation m ∈ N to one of its chil-
dren (v, h2) satisfies h1,2 ∈ 21−m · {1, 3} and |v − u| = 2−1−m. Let R > 0. The edge is
called R-typical if

2(m+1)/3
⃓⃓⃓
Wgtn

[︁
(u, h1)

↓ → (v, h2)
↓]︁⃓⃓⃓ ≤ R(m+ 1)2/3 . (3.8)

The left-hand quantity is a normalized weight—it is random but of unit order, satisfying
tail bounds that are uniform over edges in the tree T . Indeed, the scaling principle from
Section 3.1.1 and Lemma 3.1 imply that any given edge crossing between generations m
and m+1 such that n2−(m+1) ≥ n0—a condition verified when m ≤ j—fails to be R-typical
with probability that is at most C exp

{︁
− cR3/2(m+ 1)

}︁
. The parabolic curvature term in

Lemma 3.1 has been discarded because it takes the form h
−4/3
1,2 (u− v)2 = h

−4/3
1,2 · h21,2 =

h
2/3
1,2 ≤ 1.
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We now specify the event Typical = Typical(R) that every edge in the tree between
generations m and m+ 1 with m ∈ J0, j − 1K is R-typical. We see that

P
(︁
¬Typical

)︁
≤

j−1∑︂
m=0

4mC exp
{︁
− cR3/2(m+ 1)

}︁
,

whose right-hand side is at most 2C exp
{︁
− 2−1cR3/2

}︁
provided that R ≥ Θ(1).

In its final step
(︁
xj−1(n), sj−1(n)

)︁
→
(︁
xj(n), sj(n)

)︁
, P departs from the path beaten

along T . In this regard, we claim that

P

(︃⃓⃓⃓
Wgtn

[︁(︁
xj−1(n), sj−1(n)

)︁
→
(︁
xj(n), sj(n)

)︁]︁⃓⃓⃓
≥ 1

)︃
(3.9)

≤ Θ(1)n2/3(log n)1/2K
1/2
0 exp

{︁
− 2−5n2/3(K0 log n+ 2)−3

}︁
.

The differences xj(n) − xj−1(n) and sj(n) − sj−1(n) are at most K0n
−1 log n + n−1 in

absolute value; and the four coordinates xj−1(n), sj−1(n), xj(n) and sj(n) are at most two
in this sense. Merely an order of log nmicroscopic levels separate the vertical coordinates
sj−1(n) and sj(n), making the unscaled picture a suitable context for proving the claim.
Indeed, specifying weight in terms of energy via (1.7), and applying Proposition 3.9 with
K = 3, σ = K0 log n+ 1 and r = 2−1/2n1/3, we obtain the claimed (3.9).

Applying (3.8) and (3.9) to (3.7), we find that, when Θ(1) ≤ R ≤ Θ(1)K−2
0 n4/9(log n)−2,

P

⎛⎜⎝ inf
y∈[−1,1]
h∈[1,2]

Wgtn
[︁
(0, 0) → (y, h)

]︁
≤ −κR

⎞⎟⎠ ≤ Θ(1) exp
{︁
−Θ(1)R3/2

}︁

for suitable positive d, H and h; here, we set κ = 1 +
∑︁∞

m=0(m + 1)2/32−(m+1)/3. The
appearance of κ may be absorbed by the usage of Θ(1) notation. The result is Proposi-
tion 3.16(1) with the instance of [1, 3] in (3.6) replaced by [1, 2]. We need to obtain the
counterpart statement where the interval in question is [2, 3]. We move the tree T up-
wards by one unit and add to it the edge that connects (0, 0) to (0, 1). We treat this edge
in the preceding analysis as if it connects vertices of generation zero and one, and follow
the rest of the analysis unchanged. This completes the proof of Proposition 3.16(1).
(2) for K = 1. We prove this assertion in the stronger form where the probability upper
bound is Θ(1)K2 exp

{︁
−Θ(1)R3/2

}︁
.

Let x, y ∈ [−1, 1] and note that Wgtn
[︁
(x, h1) → (y, h2)

]︁
is at least the sum of Wgtn

[︁
(x, h1) →

(0, 0)
]︁

and Wgtn
[︁
(0, 0) → (y, h2)

]︁
. Since

{︁
Wgtn

[︁
(x, h1) → (0, 0)

]︁
: (x, h1) ∈ [−K,K] ×

[−3,−1]
}︁

has the law of
{︁
Wgtn

[︁
(0, 0) → (y, h2)

]︁
: (y, h2) ∈ [−K,K] × [1, 3]

}︁
when the

identification of (x, h1) with (−x,−h1) is made, two applications of Proposition 3.16(1)
and a union bound yield Proposition 3.16(2), up to a relabelling of the constants H and
h.
(3) for K = 1. We also prove this assertion in the above mentioned stronger form.

Note that the occurrence of the condition

sup
{︂
Wgtn

[︁
(x,−1) → (y, 1)

]︁
: (x, h1) ∈ [−K,K]× [−3,−1] , (y, h2) ∈ [−K,K]× [1, 3]

}︂
> R ,

alongside the conditions

min

{︄
inf

x∈[−K,K]
h1∈[−3,1]

Wgtn
[︁
(0,−4) → (x,−1)

]︁
, inf
y∈[−K,K]
h2∈[1,3]

Wgtn
[︁
(y, h2) → (0, 4)

]︁}︄
≥ −R/4 ,

(3.10)
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entails that

Wgt
(0,4)
n;(0,−4) > R/2 . (3.11)

Bounds on the failure probabilities of the two conditions (3.10) arise by applying Proposi-
tion 3.16(2) in light of simple scaling properties. The one-point upper tail control offered
by Lemma 3.1(1) via the scaling principle provides an upper bound on the probability
of (3.11). Thus we obtain Proposition 3.16(3).

(2,3) for general K. Proposition 3.4 permits us to reduce this derivation to the
just obtained stronger form of the special case where K = 1, at the expense of the
appearance of the additive term Θ(1)n3K4 exp

{︁
−Θ(1)n1/12K−3/2

}︁
. Indeed, this further

term takes the form of a multiple Θ(1)K2 of an upper bound on the probability appearing
in Proposition 3.4. The reason for this form is that the indexing set-pair

(︁
[−K,−K] ×

[−3,−1], [−K,K] × [1, 3]
)︁

may be covered by a union of at most Θ(1)K2 sets that are
distortions of the standard set-pair

(︁
[−1,−1]× [−3,−1], [−1, 1]× [1, 3]

)︁
. By distortion, we

mean that both elements in the pair are the image of their standard counterpart by an
application of a given shear map of the form τκ, where |κ| ≤ Θ(K), composed with a
horizontal translation. Proposition 3.4 with K = κ offers control over weights indexed
by pairs (x, h1) and (y, h2) lying in a given image in this sense, and a union bound is
then taken over the Θ(1)K2 distortions, so that the general K result is obtained with the
indicated additive term. Note that it is these applications of Proposition 3.4 which are
responsible for the imposition of the hypothesis that K = Θ(1)n1/18 in Proposition 3.16.
This completes the proof of this proposition.

3.6 Modulus of continuity for polymer weight and geometry

Here we prove Theorems 1.4 and 1.6, and Corollary 1.5. To survey the route ahead,
it is perhaps helpful to recall first that the two theorems are expressed via a parameter
k ∈ N, and that they control polymer fluctuation and subpath weights uniformly along
stretches of vertical extension at most 2−k. Theorem 3.11 offers control on the mid-life
fluctuation of a polymer that traverses between given endpoints. By use of polymer
ordering, a uniform form of this control may be gained for the fluctuation at height
one-half of all polymers on routes (x, 0) → (y, 1) for x, y ∈ R of absolute value at most r.
A mesh of points in a rectangular pattern with heights zero, one-half and one—and with
horizontal distance between adjacent points shrunk in essence by a factor of 22/3 from the
level zero value of order r—may thus be constructed such that polymers progress without
sudden left or right movements between consecutive levels in the mesh. Theorem 3.11
may be applied to mesh endpoints at adjacent vertical levels, so that, in view of polymer
sandwiching, control on polymer fluctuation is gained at heights one-quarter and three-
quarters. The construction proceeds iteratively, down to a dyadic scale that we will label
j ∈ N. The outcome is that Lemmas 3.18 and 3.19 assert that, with a high probability
indicated in Lemma 3.17(3), polymer fluctuation between consecutive mesh heights at
level j—at distance 2−j—is controlled as Theorem 1.4 asserts, with an upper bound
of the form Θ(1)2−2j/3(log j)1/3. For Theorem 1.4 to be obtained, what remains is to
give the Kolmogorov continuity criterion argument, in which a sum over dyadic scales
j at least k is performed to find a similar fluctuation upper bound between generic
heights at displacement of order 2−k. There is a slight twist: the mesh construction
becomes unmanageable at close to the microscopic scale, and a separate but simple
device, Lemma 3.21, is used to handle the very short scale. This apparatus also delivers
Theorem 1.6, which concerns polymer subpath weight. The aspect ratio of rectangles
whose consecutive corners are vertically or horizontally adjacent in the mesh at scale j
respects the two-thirds KPZ exponent up to a factor that is polylogarithmic in j. We may
thus apply (via the scaling principle) the uniform control gained in Proposition 3.15 on
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κ1κ
−1

Figure 4: The graph structure Gi on vertex set Vi, in which edges in Ei connect elements
that are vertically adjacent and horizontally close. The rightmost depicted edge is closed
on account of fluctuation of the polymer away from the midpoint of the straight line
representing the edge, while the vertical edge is open.

weights for polymers crossing rectangles to derive Theorem 1.6.

We begin, then, by constructing the meshes. Let n ∈ N. For each i ∈ N for which
2i ≤ n − 1, let Yi denote a subset of n−1J0, nK of cardinality 2i + 1 such that, for each
k ∈ J0, 2iK, there exists y ∈ Yi satisfying

⃓⃓
y − k2−i

⃓⃓
≤ 2−1n−1. For example, we take

Y0 = {0, 1} and Y1 = {0, n−1⌊n/2⌋, 1}. Note further that this set sequence may be
constructed so that each set Yi for i ∈ N+ contains its predecessor, with the set Yi \ Yi−1

of newcomers interlacing the set Yi−1 of existing members.

Let r and κ be positive. Set X0 = {−r, r}. For i ∈ N+ and j ∈ N, set Xi = Xi(r)

according to

Xi(r) = 2−2i/3(j + 1)1/3κrZ ∩ (−2r, 2r) .

The parameter r appears in Theorem 1.4. The just introduced κ is presently unspecified;
it will shortly be joined by two further positive parameters κ1 and κ2, with the triple
being specified when the relation that is demanded of them is derived.

Suppose given j ∈ N. Let i ∈ J0, jK. We consider the graph Gi = Gi(j) =
(︁
Vi, Ei

)︁
whose vertex set Vi equals Xi × Yi. Note that two dyadic scale parameters i and j (with
i ≤ j) are implicated in this definition, because, although we omit reference to j from the
notation Xi, this parameter enters via this object. What we called the mesh of scale j in
overview is Gj = Gj(j)—in our inductive gaining of control on polymer fluctuation, we
will treat the parameter j ∈ N as fixed, with a view to controlling fluctuation at vertical
displacement Θ(1)2−j; we will descend through the scales 2−i, considering the Gi(j) as
i increases to its final value of j.

Two elements v, w ∈ Vi are vertically adjacent if their vertical coordinates v2 and
w2 differ, and no element of Yi lies in the open interval delimited by u2 and v2. The
elements v and w are horizontally close if their horizontal coordinates differ by at most
κ12

−2i/3(j +1)1/3r, where κ1 is a parameter that is at least κ. The edge between v and w
belongs to the edge-set Ei precisely when the vertices v and w are vertically adjacent
and horizontally close. Note that Vi may be identified with a rectangle in the lattice Z2

and that, when this identification is made, an element of Ei is an edge between vertices
that differ by one vertical unit and by at most κ1κ−1 horizontal units. See Figure 4.

We now assign a status of open, or closed, to each edge in each of the graphs Gi. The
assignation of this status will be random, and determined by a common realization of
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static Brownian LPP, governed by a law labelled P in a manner we now specify.
Let e ∈ Ei be an edge of the graph Gi that connects the vertices (x1, h1) and (x2, h2),

with h1 < h2. The distance h1,2 = h2 − h1 satisfies |h1,2 − 2−i| ≤ n−1. There is a unique
element h+ of Yi+1 in (h1, h2), and its distance from both h1 and h2 differs from 2−i−1 by
at most n−1.

Let ℓ
[︁
(x1, h1) → (x2, h2)

]︁
denote the planar line segment with endpoints (x1, h1)

and (x2, h2). Extending the notational abuse introduced in Subsection 1.7.8, we write
ℓ
[︁
(x1, h1) → (x2, h2)

]︁
(h) for the horizontal coordinate at which this line segment visits

the vertical coordinate h ∈ [h1, h2].
Let κ2 > 0 be a further parameter. The edge e ∈ Ei will be declared to be r-open if⃓⃓⃓
ρn
[︁
(x1, h1) → (x2, h2)

]︁
(h+)− ℓ

[︁
(x1, h1) → (x2, h2)

]︁
(h+)

⃓⃓⃓
≤ κ22

−2i/3
(︁
j + 1

)︁1/3
r . (3.12)

An edge e ∈ Ei that is not r-open is r-closed.

Lemma 3.17. There exist positive h, g1, g2, g3 and r0, and n0 ∈ N, such that, when
n ∈ N and j ∈ N satisfy n ≥ n0 and 2j ≤ hn, and r ∈ R satisfies r0 ≤ r ≤ n1/10, the
following hold.

1. Let i ∈ J0, jK. The P-probability that a given edge e ∈ Ei is (j + 1)1/3r-closed is at
most exp

{︁
− g1r

3(j + 1)
}︁

.

2. Let i ∈ J0, jK. The P-probability that a (j +1)1/3r-closed edge in Ei exists is at most
exp

{︁
− g2r

3(j + 1)
}︁

.

3. The P-probability that there exist i ∈ J0, jK and an edge in Ei that is
(︁
j + 1

)︁1/3
r-

closed is at most exp
{︁
− g3r

3(j + 1)
}︁

.

The various constants in this result may depend on κ, κ1 and κ2.
Proof of Lemma 3.17: (1). By the scaling principle from Section 3.1.1, the proba-

bility P
(︁
e is closed

)︁
takes the form

P
(︂⃓⃓
ρm
[︁
(0, 0) → (x, 1)

]︁
(a)− xa

⃓⃓
≥
(︁
j + 1

)︁1/3
r
(︁
1 + ε

)︁)︂
where m ∈ N satisfies

⃓⃓
m− 2−in

⃓⃓
< 1; a ∈ m−1Z ∩ (0, 1) satisfies |a− 1/2| ≤ m−1; x ∈ R

satisfies |x| ≤
(︁
j + 1

)︁1/3
r; and ε is a small error term, satisfying |ε| ≤ m−1.

Since |ε| ≤ 1/2, the displayed probability is bounded above by Theorem 3.11 with

n = m and R = 3/2 ·
(︁
j + 1

)︁1/3
r. The theorem implies that the probability in question is

at most the quantity exp
{︁
− h(3/2)3r3(j + 1)

}︁
. Setting g1 = h(3/2)3 yields the lemma’s

first part.
(2). By the preceding part and a union bound, the probability in question is found to

be at most 25i/3r exp
{︁
− g1r

3(j + 1)
}︁

. Since i ≤ j and r ≥ r0, the desired bound results
by making suitable positive choices for g2 and r0.

(3). The second part of the lemma is summed over i ∈ J0, jK to obtain this result.
Let i ∈ J0, jK. A horizontal piece of scale i is a closed horizontal planar interval whose

endpoints are consecutive elements in Xi × Yi. (This means that the concerned elements
of Xi differ by 2−2i/3(j + 1)1/3r.) If the vertical coordinates of two horizontal pieces are
vertically adjacent, we apply the latter term to the pair of pieces.

Let ϕ be an n-zigzag from (x, 0) to (y, 1) where |x| and |y| are at most r. Let P denote
the set of horizontal pieces of scale i that contain a point of departure of ϕ from a
horizontal planar line segment (of the form R× {h} for some h ∈ n−1Z∩ [0, 1]). Consider
any pair χ =

{︁
[x1, x2] × {h1}, [y1, y2] × {h2}

}︁
of vertically adjacent horizontal pieces in

P . The pair χ is called good if two conditions are met. First, |y1 − x1|, which equals
|y2 − x2|, must be at most κ1 · 2−2i/3(j + 1)1/3r. Second, |x1| and |y1| must be at most
(j + 1)1/3r

(︁
4− 2−2i/3(1− 2−2/3)−1κ

)︁
.
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We call ϕ viable at scale i if every pair of vertically adjacent horizontal pieces of
scale i in P is good. In a viable zigzag, fluctuation on a vertical mesh of scale 2−i is
consistently controlled; and the global horizontal location is also controlled via the upper
bounds on |x1| and |y1|, which contain a negative term with a factor of 2−2i/3 in order to
facilitate the induction on i that will deliver the next result.

Lemma 3.18. Let j ∈ N satisfy 2j ≤ hn, where the constant h > 0 is furnished by
Lemma 3.17. Suppose that every edge in Ei is open for all i ∈ J0, jK. Let x and y be two
reals of absolute value at most r. When n ≥ 239, the polymer ρn

[︁
(x, 0) → (y, 1)

]︁
is viable

at scale j.

Proof. We will prove by induction on i ∈ J0, jK that, under the hypothesis of the
lemma, any polymer of the given form is viable at scale i. First take i = 0. The edges
with endpoint pairs

{︁
(−r, 0), (−r, 1)

}︁
and

{︁
(r, 0), (r, 1)

}︁
have elements whose horizontal

coordinates are shared by members of a pair and which are in absolute value equal to r.
Thus these pairs are good, and the concerned polymer is viable at scale zero.

Now consider i ∈ J1, jK, and assume that the inductive hypothesis holds for values
of the index that are lower than i. Write ρ = ρn

[︁
(x, 0) → (y, 1)

]︁
. Let [x1, x2]× {h1} and

[y1, y2] × {h2} be two vertically adjacent horizontal pieces of scale i with h1 < h2 that
contain the point of departure of ρ(h) at the respective heights h ∈ {h1, h2}. Thus h1 and
h2 are elements of Yi.

In order to demonstrate that this pair of vertically adjacent horizontal pieces is good,
and thus complete the proof of the inductive step, we must show that⃓⃓

y1 − x1
⃓⃓
≤ κ1 · 2−2i/3(j + 1)1/3r ; (3.13)⃓⃓

y2 − x2
⃓⃓
≤ κ1 · 2−2i/3(j + 1)1/3r ; (3.14)

and
max

{︁
|x2|, |y2|

}︁
≤ (j + 1)1/3r

(︁
4− 2−2i/3λκ

)︁
, (3.15)

where we set λ = (1− 2−2/3)−1.
We will argue that y1 − x1 ≥ −κ1 · 2−2i/3(j + 1)1/3r. Indeed, the bound y2 − x2 ≤

κ1 · 2−2i/3(j + 1)1/3r follows from an almost identical argument to the one that we are
about to give. These two bounds imply (3.13) and (3.14) because y2 − x2 is in fact equal
to y1 − x1.

Since a horizontal piece of scale i has length 2−2i/3(j + 1)1/3κr, we see that

y1 ≥ ρ(h2)− 2−2i/3(j + 1)1/3κr . (3.16)

One or other of h1 and h2 also belongs to Yi−1. Suppose that h1 ∈ Yi−1; the other case
entails no further complication. Let h3 denote the lowest element of Yi−1 that exceeds
h1.

Let [u1, u2] × {h1} be the horizontal piece of scale i − 1 that contains ρ(h1). Let
[v1, v2]× {h3} be a horizontal piece of scale i− 1 that contains ρ(h3).

By the inductive hypothesis, |u1| ≤ (j + 1)1/3r
(︁
4− 2−2(i−1)/3λκ

)︁
. Note that

|u1 − x1| ≤ 2−2(i−1)/3(j + 1)1/3κr (3.17)

because ρ(h1) lies in [u1, u2] and [x1, x2], so that the distance between x1 and u1 may be
at most the length u2 − u1, which is the longer of these two intervals. Thus,

|x1| ≤ (j + 1)1/3r
(︁
4− 2−2(i−1)/3λκ+ 2−2(i−1)/3κ

)︁
.

This implies that |x1| ≤ (j + 1)1/3r
(︁
4 − 2−2i/3λκ

)︁
because 22/3(λ − 1) is equal to λ. A

symmetric argument furnishes the same bound for |x2|. Thus do we obtain (3.15).
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The planar intervals [u1, u2] × {h1} and [v1, v2] × {h3} are vertically consecutive
horizontal intervals of scale i − 1 that ϕ intersects. By the inductive hypothesis, the
edge with endpoints (u1, h1) and (v1, h3) is thus seen to belong to Ej−1. By the lemma’s
hypothesis, this edge is open. By (3.12), we learn that

ρ(h2)− ℓ
[︁
(u1, h1) → (v1, h3)

]︁
(h2) ≥ −κ22−2(i−1)/3(j + 1)1/3r . (3.18)

The levels h1, h2 and h3 each differ by at most n−1 from the respective elements of
a three-term arithmetic progression of real numbers with consecutive difference 2−j .
Thus,

⃓⃓
h2 − (h1 + h3)/2

⃓⃓
≤ 21−jn−1 ≤ 2|h3 − h1|n−1. We know by the inductive hypothesis

that u1 and v1 have absolute value at most 2(j + 1)1/3r. We thus see that

ℓ
[︁
(u1, h1) → (v1, h3)

]︁
(h2) ≥ u1+v1

2 − 2n−1 · 4(j + 1)1/3r . (3.19)

By (3.16), (3.18) and (3.19),

y1 ≥ u1 − u1−v1
2 − 8n−1(j + 1)1/3r − 2−2(i−1)/3(j + 1)1/3κ2r − 2−2i/3(j + 1)1/3κr .

Note that v1 − u1 ≥ −κ1 · 2−2(i−1)/3(i+ 1)1/3r because, as we have noted, the edge with
endpoints (u1, h1) and (v1, h3) lies in Ei−1. Also using (3.17), we find that

y1 ≥ x1 − 2−2i/3(j + 1)1/322/3κr − 2−1κ1 · 2−2(i−1)/3(j + 1)1/3r

− 8(j + 1)1/3n−1r − 2−2(i−1)/3(j + 1)1/3κ2r − 2−2i/3(j + 1)1/3κr

and, since 2i ≤ n,

y1 − x1 ≥ −2−2i/3(j + 1)1/3r
(︂
(22/3 + 1)κ+ 2−1/3κ1 + 22/3κ2 + 8n−1/3

)︂
.

We now choose κ, κ1 and κ2 positive so that (22/3 + 1)κ+ 2−1/3κ1 + 22/3κ2 < κ1 − 2−10,
alongside the already supposed κ1 ≥ κ. We find then that, for n ≥ 239,

y1 − x1 ≥ −κ12−2i/3(j + 1)1/3r .

This is the bound that we sought to show in order to verify (3.13) and (3.14). Since
we already obtained (3.15), the proof of the inductive step in deriving Lemma 3.18 is
complete.

Lemma 3.19. Let j ∈ N, and let x, y ∈ R be such that |x| and |y| are at most r. For
i ∈ J0, jK, let ϕ be an n-zigzag between (x, 0) and (y, 1) that is viable at scale i for each
i ∈ J0, jK. For any such i, let s1, s2 ∈ n−1Z ∩ (0, 1) denote consecutive elements of Yi.
Then ⃓⃓

ϕ(s2)− ϕ(s1)
⃓⃓
≤
(︁
κ1 + κ

)︁
2−2i/3(j + 1)1/3r . (3.20)

Proof. The horizontal pieces of scale i to which
(︁
ϕ(s1), s1

)︁
and

(︁
ϕ(s2), s2

)︁
belong

have length 2−2i/3(j+1)1/3κr and are bordered on the left by a pair of points forming the
endpoints of an edge in Ei; thus, these left-hand endpoints have horizontal separation of
at κ1 · 2−2i/3(j + 1)1/3r. From this, Lemma 3.19 is seen to hold.

Corollary 3.20. There exist positive H, h and r0, and n0 ∈ N, such that, when n ∈ N and
j ∈ N satisfy n ≥ n0 and 2j ≤ hn, and r ∈ R satisfies r0 ≤ r ≤ n1/10, it is with probability
at least 1−H exp

{︁
− hr3(j + 1)

}︁
that, for every x, y ∈ R of absolute value at most r, and

for any consecutive elements h1, h2 ∈ n−1Z ∩ [0, 1] of Yj ,⃓⃓⃓
ρn
[︁
(x, 0) → (y, 1)

]︁
(h1)− ρn

[︁
(x, 0) → (y, 1)

]︁
(h2)

⃓⃓⃓
≤ Hh

2/3
1,2 (j + 1)1/3r .

Proof. This statement follows from Lemma 3.17(3), and Lemmas 3.18 and 3.19.
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Lemma 3.21. Let ϕ be an n-zigzag. Let (x, s1) and (y, s2) be elements in
(︁
R×n−1Z

)︁
∩ ϕ

with s1 < s2. Let (z, s) denote an element of ϕ that is encountered after (x, s1) but before
(y, s2) as ϕ is traced in the sense of increasing height. Then |z− x| and |z− y| are at most
|y − x|+ 2−1n1/3s1,2.

Proof. By the deterministic properties of an n-zigzag outlined in Section 1.7.2, the
leftmost position that z may adopt is x − 2−1n1/3s1,2. The rightmost such position is
y + 2−1n1/3s1,2.

Proof of Theorem 1.4:(1). This argument is in the style of the derivation of the
Kolmogorov continuity criterion.

Recall that the statement we seek to verify comes equipped with a parameter k ∈ N
that satisfies 2k ≤ hn for a small constant h > 0. The statement claims the existence of
an event of probability at least 1−H exp

{︁
− hr3k

}︁
on which the conclusion holds. We

choose this event to be the intersection over indices j ∈ N satisfying k ≤ j ≤ log2(hn) of
the event in Corollary 3.20, modifying the values of H and h so that this lower bound on
probability holds. In deriving the inequality in the conclusion of Theorem 1.4(1), we are
thus permitted to invoke the conclusion of this corollary for any such index j.

Recall further that we suppose h1,2 ∈ (2−k−1, 2−k]. Let [s1, s2] be an interval of
maximum length among those that are contained in [h1, h2] and whose endpoints s1 and
s2 are consecutive elements of Yi for some index i. We denote by k∗ the index i thus
selected; note that k∗ is one among k, k + 1 or k + 2. We select in the interval [h1, s1] an
interval of maximum length delimited by a pair (s3, s4) of consecutive elements of some
mesh Yi; necessarily, s4 = s1, with the concerned value of i being at least k∗. Likewise,
an interval is selected within [s2, h2], with the resulting endpoint pair (s5, s6) satisfying
s5 = s2. We write K∗ for the maximum index i ∈ N for which 2−i ≥ hn, where the
positive constant h is contributed by Corollary 3.20. The selection of intervals is iterated,
both to the left and to the right. It runs upwards through dyadic scales, and is stopped
when all intervals of scale i at most K∗ have been selected.

Among the closed intervals obtained in the procedure, the represented scales i satisfy
k∗ ≤ i ≤ K∗, withK∗ = ⌊log2(hn)⌋, and with each such scale appearing at most twice; the
union [s1, s2] of the intervals satisfies 0 ≤ s1 − h1 ≤ 2h−1n−1 and 0 ≤ h2 − s2 ≤ 2h−1n−1.

Recall that we consider elements (u, h1) and (v, h2) of ρ, where here we denote
ρ = ρn

[︁
(x, 0) → (y, 1)

]︁
for given x, y ∈ R with max{|x|, |y|} ≤ r. To obtain the sought

upper bound on |u− v|, we write

|u− v| ≤ |u− ρ(s1)|+ |ρ(s2)− ρ(s1)|+ |ρ(s2)− v| , (3.21)

whose middle right-hand term is seen to be at most 2H
∑︁K∗

i=k∗ 2−2i/3(i+1)1/3, and thus at
most H2−2k/3(k+1)1/3 after increase of H, by the form of the procedure that constructed
[s1, s2] alongside Corollary 3.20. After an increase of H, this upper bound is seen to take

the form H2−2k/3(k+1)1/3; or equally the form Hh
2/3
1,2

(︁
log h−1

1,2

)︁1/3
. Thus, Theorem 1.4(1)

will be obtained, provided that we verify that the first and third right-hand terms in (3.21)
are smaller than the middle term. Seeking to prove this, we let s0 denote the greatest
element of YK∗ that is less than s1, and let s3 be the least element of this set that exceeds
s2. Since s0 < h1 ≤ s1, (u, h1) lies on the subpath of ρ between

(︁
ρ(s0), s0

)︁
and

(︁
ρ(s1), s1

)︁
.

Similarly, (v, h2) lies on the subpath of ρ between
(︁
ρ(s2), s2

)︁
and

(︁
ρ(s3), s3

)︁
. Lemma 3.21

thus implies that |u− ρ(s1)| is at most |ρ(s0)− ρ(s1)|+ 2−1n1/3s0,1; and that |ρ(s2)− v| is
at most |ρ(s2)− ρ(s3)|+ 2−1n1/3s2,3. The pairs (s0, s1) and (s2, s3) comprise consecutive
elements of YK∗ , where recall that K∗ = ⌊log2(hn)⌋; so that s0,1 and s2,3 are at most
(2h−1 + 1)n−1. By the conclusion of Corollary 3.20, |ρ(s0)− ρ(s1)| and |ρ(s2)− ρ(s3)| are

thus seen to be at most of order n−2/3
(︁
log n

)︁1/3
r after suitable adjustment to H. The

sought upper bound, of order 2−2k/3(k + 1)1/3, holds because 2k ≤ n. This completes the
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proof of Theorem 1.4(1).
(2). Recall that instead we suppose that h1,2 < Hn−1. Let [s0, s3] denote an interval

containing [h1, h2] whose endpoints are consecutive elements of the mesh YK∗ ; here, K∗

continues to denote ⌊log2(hn)⌋, with h now decreased from its value in Corollary 3.20
suitably to ensure the existence of such s0 and s3. The notation s0 and s3 is used to
indicate the similarity of these quantities with the usage in the preceding case. Now,
however, s0,3 is at most 2n−1. Thus, Corollary 3.20 with j chosen so that 2j = Θ(n)

yields that, on an event of probability at least 1 - n−hr3 , the bound |ρ(s0) − ρ(s3)| ≤
Gn−2/3

(︁
log n

)︁1/3
r for suitably high G and for all concerned choices of h1 and h2. Since

(u, h1) and (v, h2) lie on the subpath of ρ between
(︁
ρ(s0), s0

)︁
and

(︁
ρ(s3), s3

)︁
, Lemma 3.21

thus implies that |u − ρ(s0)| and |v − ρ(s0)| are at most Gn−2/3
(︁
log n

)︁1/3
r + n−2/3H.

Applying the triangle inequality, we learn that Theorem 1.4(2) holds with a suitably
increased value of G.

Proof of Corollary 1.5. Take j = 0, u = x, h1 = 0, v = u and h2 = h in Theorem 1.4.
Since |x| ≤ r, the corollary follows by increasing H > 0.

Proof of Theorem 1.6: (1). The mooted event of probability at least 1−H exp
{︁
−

hr3k
}︁

will be chosen to ensure that the conclusions of Theorem 1.4 and Corollary 1.5
hold.

We have h1,2 ∈ (2−k−1, 2−k]. By the conclusion of Theorem 1.4,

|v − u| ≤ Hh
2/3
1,2

(︁
log(1 + h−1

1,2)
)︁1/3

r . (3.22)

By the conclusion of Corollary 1.5, |u| ≤ Hr.
Let R ⊂ R2 denote the rectangle

[︁
0, Y

]︁
×
[︁
0, 2−k

]︁
, where Y denotes H2−2k/3k1/3r.

The lower-third R− of R is [0, Y ]×
[︁
0, 2−k/3

]︁
; its upper-third R+ is [0, Y ]×

[︁
2/3 ·2−k, 2−k

]︁
.

To any translate T = R+ (x, y) indexed by (x, y) is evidently associated a lower-third T−

and an upper-third T+.
In light of the noted bounds, we may find a collection C of translates of R by vectors in

R×n−1Z such that |C| is at most a constant multiple of 25k/3k−1/3 such that (u, h1) ∈ T−

and (v, h2) ∈ T+ for some element T of C.
We apply Proposition 3.15 with K of order k1/3r, R = K and n = 6n2−k via the

scaling principle, and use a union bound, to find that, for K sufficiently high,

P
(︂
sup

⃓⃓
Wgtn

[︁
(u, h1) → (v, h2)

]︁⃓⃓
≥ Θ(1)(K +H2k2/3r2)2−k/3

)︂
≤ |C| · k2/3r2G exp

{︁
− dK3/2

}︁
,

where the supremum is taken over all choices (u, h1) and (v, h2) with h1, h2 ∈ n−1Z∩ [0, 1]

and h1,2 ∈ (2−k−1, 2−k] that belong to ρn
[︁
(x, 0) → (y, 1)

]︁
where x and y vary over real

values of absolute value at most r. Because Proposition 3.15 treats parabolically adjusted
weight, we need to take account of parabolic curvature, and, in view of (3.22), we do so
by means of the above term H2k2/3r22−k/3. The upper bounds on K and R hypothesised
by the proposition are satisfied in view of the assumption that r ≤ (nh1,2)

1/50.

By choosing K to be a large multiple of
(︁
log(r2k)

)︁2/3
, the right-hand factors of |C|k2/3,

which grows as a power of 2k, and of r2, may be removed, at the expense of a decrease
in the value of d > 0. The form of Theorem 1.6(1) entails that we desire this failure
probability upper bound exp

{︁
− dK3/2

}︁
be at most H exp

{︁
− hr3k

}︁
. This condition

is ensured if we adjust K so that it equals a large constant multiple of r2k2/3. This
adjustment is an increase to the value of K: indeed, since r is supposed to be high,
and h1,2 ≤ 1, the adjusted value of K is at least the maximum of r2 and the given

large multiple of
(︁
log(r2k)

)︁2/3
. (The choice K = Θ(1)r2k2/3 imposes the constraint

rk1/3 ≤ Θ(1)(n2−k)1/60 to admit the above usage of Proposition 3.15. The upper bound
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on r in Theorem 1.6(1) implies this constraint.) Since the adjusted value of K may be
absorbed into the preceding display’s term H2k2/3r2 that arose from parabolic curvature,
we complete the derivation of Theorem 1.6(1) by decreasing h > 0 if need be.

(2). Suppose instead that h1,2 < Hn−1. The points (u, h1) and (v, h2) lie on a polymer
of the form ρ

[︁
(x, 0) → (y, 1)

]︁
where |x| and |y| are at most r. In this case, we will rely on

control on Brownian oscillation and adopt the unscaled perspective to finish the proof.
By Theorem 1.4(2), with probability at least 1−Hn−hr3 ,⃓⃓

v − u
⃓⃓
≤ G1n

−2/3(log n)1/3r .

Thus, recalling (1.7), it suffices to prove that, with probability at least 1−Hn−hr3 ,

M
[︁
(u, i) → (v, j)

]︁
≤ G

10
r2 · (log n)2/3

for all 1 ≤ i ≤ j ≤ n, with j − i ≤ H, u ≤ v, |u − v| ≤ G1(log n)
1/3r, and |u| ≤

O
(︁
n(log n)1/3r

)︁
. To prove this bound, we will simply bound the probability that

M
[︁
(u, i) → (v, i+ 1)

]︁
≥ G

H
r2 · (log n)2/3 ,

for some u, v as above. Since we may suppose that G ≥ 2H, simple Brownian oscillation
estimates, relying on the reflection principle, yield that this probability is at most

O
(︂
n exp

{︁
− r4(log n)4/3/r(log n)1/3

}︁)︂
≤ exp

{︁
− 2−1r3 log n

}︁
= n−2−1r3 ,

for all large enough r. Thus the proof of Theorem 1.6(2) is complete.

3.7 Polymer fluctuation tails, uniform in variation of endpoints and lifetime
fraction

In this section, we prove Theorem 1.7.
Let a ∈ (0, 1) and r > 0. Define the lower zone Z−

n (a, r) to be the product of

[−1, 1] · ra2/3
(︁
log a−1

)︁1/3
and n−1Z ∩ [0, a/4]; and the upper zone Z+

n (a, r) to be the

product of [−1, 1] · ra2/3
(︁
log a−1

)︁1/3
and n−1Z ∩ [1− a/4, 1].

Recall Flucn
[︁
·, ·
]︁

from (1.9).

Lemma 3.22. There exist positive constants C1, C2, C3 and C4 such that, for r ≥ C1,
a ∈ (0, 1/16] and n ∈ N for which min

{︁
na, n(1− a)

}︁
≥ C2,

P
(︂
supFlucn

[︁
(x, h1) → (y, h2);h

]︁
≥ 3ra2/3

(︁
log a−1

)︁1/3)︂ ≤ C4a
C3r

3

,

where the supremum is taken over (x, h1) in the lower zone Z−
n (a, r); (y, h2) in the upper

zone Z+
n (a, r); and h ∈ n−1Z ∩

(︁
[a/2, 4a] ∪ [1− 4a, 1− a/2]

)︁
.

Proof. Let z ∈ R. Define the event Narrown(z, a, r) that

ρn
[︁
(z, 0) → (z, 1)

]︁
∩
(︃
R×

(︂
n−1Z ∩

(︁[︁
0, 4a

]︁
∪
[︁
1− 4a, 1

]︁)︁)︂)︃
(3.23)

⊆
[︁
z − α(a, r), z + α(a, r)

]︁
×
[︁
0, 1
]︁
,

where α(a, r) = 4−1ra2/3
(︁
log a−1

)︁1/3
.

To argue that this event is typical, we make two sets of applications of Theorem 1.4,
first with h1 = 0 and then with h2 = 1. In each, we apply Theorem 1.4(1) with k ranging
upwards from the maximal i ∈ N for which 2−i ≥ a/4; and then use Theorem 1.4(2) to
treat the smallest scale. We take r = r in these applications. Since a ≥ Θ(1)n−1, what
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we learn by doing so is that it is with probability at least 1−Θ(1)aΘ(1)r3 that (3.23) holds
when α(a, r) is multiplied by a large constant. By replacing r by a small constant multiple
of this quantity, and relabelling, we find that, for z ∈ R,

P
(︂
¬Narrown(z, a, r)

)︂
≤ Θ(1)aΘ(1)r3 . (3.24)

Set z− = −5/4·ra2/3
(︁
log a−1

)︁1/3
and z+ = 5/4·ra2/3

(︁
log a−1

)︁1/3
. When Narrown

(︁
z−, a, r

)︁
and Narrown

(︁
z+, a, r

)︁
occur, every polymer of the form ρn

[︁
(x, h1) → (y, h2)

]︁
, with (x, h1)

in the lower zone Z−
n (a, r) and (y, h2) in the upper zone Z+

n (a, r), has the property that
its endpoint locations (x, h1) and (y, h2) are bounded on the left by ρn

[︁
(z−, 0) → (z−, 1)

]︁
,

and on the right by ρn
[︁
(z+, 0) → (z+, 1)

]︁
. By polymer ordering Lemma 3.3, every

point in ρn
[︁
(x, h1) → (y, h2)

]︁
is also thus bounded. However, ρn

[︁
(z−, 0) → (z−, 1)

]︁
and

ρn
[︁
(z+, 0) → (z+, 1)

]︁
remain in vertical strips[︁

z − α(a, r), z + α(a, r)
]︁
×
[︁
0, 1
]︁
,

with z equal to z− or z+, during
[︁
0, 4a

]︁
∪
[︁
1− 4a, 1

]︁
as indicated in (3.23). We learn that

ρn
[︁
(x, h1) → (y, h2)

]︁
remains in the strip

[︁
− 3

2ra
2/3
(︁
log a−1

)︁1/3
, 32ra

2/3
(︁
log a−1

)︁1/3]︁
dur-

ing
[︁
0, 4a

]︁
∪
[︁
1−4a, 1

]︁
. This implies that the quantity Flucn

[︁
(x, h1) → (y, h2);h

]︁
appearing

in Lemma 3.22 is for h ∈ n−1Z ∩
(︁
[a/2, 4a] ∪ [1− 4a, 1− a/2]

)︁
at most 3ra2/3

(︁
log a−1

)︁1/3
,

since (x, h1) ∈ Z−
n (a, r) and (y, h2) ∈ Z+

n (a, r).

Thus the proof of Lemma 3.22 is complete, because, the upper bound Θ(1)aΘ(1)r3

in this result is in light of (3.24) a bound on the probability that Narrown

(︁
z−, a, r

)︁
∪

Narrown

(︁
z+, a, r

)︁
fails to occur.

Proof of Theorem 1.7. By the scaling principle, it suffices to treat that case that
s1 = 0 and s2 = 1. Specify the starting region S equal to the product of [−K,K] and
n−1Z∩[0, 1/3]; and the ending region E equal to the product of [−K,K] and n−1Z∩[2/3, 1].
We are concerned with journeys between (x, h1) and (y, h2), where (x, h1) lies in the
starting region S and (y, h2) in the ending region E. We plan to argue that typically such
journeys simultaneously have the desired property of fluctuation by applying Lemma 3.22
via the scaling principle and using a union bound. We first construct a family of maps
which will map any pair of points in S ×E to a pair of points in Z−

n (a, r)× Z+
n (a, r) as in

Lemma 3.22, which then will allow us to finish the proof by applying the lemma.

For K ∈ R, recall from (3.1) the shear map τK : R2 → R2, τ(x, y) = (x + Ky, y).
Further, define a KPZ dilation to be a map of the form R2 → R2 : (x, y) → (ζ2/3x, ζy)

which sends the line R×{1} to a line of the form R×{y} for y ∈ n−1N with y > 0; that is,
we ask that ζ ∈ n−1N+. A vertical shift is a map of the form R2 → R2 : (x, y) → (x, y+h),
where h ∈ n−1Z. A horizontal shift is a map of the form R2 → R2 : (x, y) → (x + u, y),
where u ∈ R.

Let Θ denote the class of maps from R2 to R2 that take the form ϕh ◦ ϕv ◦ ϕd ◦ ϕs,
where ϕs is a shear map τκ with |κ| ≤ n2/3; ϕd is a KPZ dilation; ϕv is a vertical shift; and
ϕh is a horizontal shift.

A basic covering pair for the product set S ×E is a pair (B−, B+), where there exists
an element θ ∈ Θ for which B− is the image under θ of the lower zone Z−

n (a, r); B+ is
the image under θ of the upper zone Z+

n (a, r) where a and r are as in the statement
of Theorem 1.7, with B− ∩ S ̸= ∅; and B+ ∩ E ̸= ∅. The covering number is defined
to be the minimum cardinality of a set of basic covering pairs for S × E such that
S × E ⊆

⋃︁(︁
B− ×B+

)︁
where the union ranges over pairs (B−, B+) in the set.

Lemma 3.23. Suppose that Ka1/3 is bounded above. The covering number is at most a
constant multiple of a−10/3K2.
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Proof. Let (x, h1) ∈ S and (y, h2) ∈ E. We want to locate a basic covering pair
(B−, B+) with (x, h1) ∈ B− and (y, h2) ∈ B+. Associated to (B−, B+) is the composition
of a shear, a KPZ dilation, a vertical shift and a horizontal shift. We attempt to recover
these operations by undoing them.

1. The inverse horizontal shift. Shift the two points horizontally by a common dis-
placement that is a multiple of 3−3/2a2/3 so that the resulting points (x′, h1) and
(y′, h2) satisfy the condition that |x′| ≤ 3−3/2a2/3.

2. Next is the inverse vertical shift. Shift the two new points down by the maximum
multiple of n−1⌊na/12⌋ so that the resulting points (x′, h′1) and (y′, h′2) lie in the
upper half-plane. Note that 0 ≤ h′1 < a/12 and 1/3 < h′2 ≤ 1.

3. Next the inverse KPZ dilation. We map (x′, h′1) and (y′, h′2) to (x̂, ĥ1) and (ŷ, ĥ2)

via an inverse KPZ dilation (x, y) → (ζ−2/3x, ζ−1y), where ζ−1 ∈ [1, 3] is chosen to
ensure that 0 ≤ ĥ1 ≤ a/4 and 1− a/4 ≤ ĥ2 ≤ 1. This choice of ζ may be made from
a set of cardinality of order a−1, where this entropy factor is adequate to ensure
the desired bounds on ŷ.

4. Now, we undo the shear map. Let (x̂1, ĥ1) and (ŷ1, ĥ2) denote the image of (x̂, ĥ1)
and (ŷ, ĥ2) under an inverse shear map τ−κ, selected to ensure that |ŷ1 − x̂1| ≤ a2/3.
Since 0 ≤ x̂ ≤ a2/3 ≤ 1 ≤ K and |ŷ| ≤ 3K, the value of κ may be chosen among a
constant multiple of Ka−2/3 options to guarantee this outcome.

5. A final shift. Having undone the several maps, we hoped to obtain (x̂1, ĥ1) ∈ Z−
n (a, r)

and (ŷ1, ĥ2) ∈ Z+
n (a, r). The vertical coordinates satisfy the desired conditions

ĥ1 ∈ [0, a/4] and ĥ2 ∈ [1− a/4, 1]; and the horizontal displacement |ŷ1 − x̂1|, being
at most a2/3, is consistent with our aim. But a final horizontal shift is needed, to
ensure that the horizontal coordinates are both at most ra2/3

(︁
log a−1

)︁1/3
. Since

|x̂1| is readily seen to have order at most Ka, and r ≥ 1 as well as a ≤ e−1, we
see that this final shift may be chosen from among an order of Ka1/3 choices.
However, since we hypothesise that Ka1/3 is most a large constant, the entropic
term associated to this final step is bounded.

The product of upper bounds neglecting bounded factors on the number of choices for
the maps employed in the respective steps is equal to

Ka−2/3 × a−1 × a−1 ×Ka−2/3 × 1 = K2a−10/3 .

If we apply the inverses of our inverse maps—in reverse order!—to the lower and upper
zones Z−

n (a, r) and Z+
n (a, r), we will obtain B− and B+, elements of a basic covering

pair that respectively contain the given points (x, h1) ∈ S and (y, h2) ∈ E. Since the
constructed map is one among a collection whose cardinality is at most the displayed
quantity up to a bounded factor, we have completed the proof of Lemma 3.23.

In seeking to obtain Theorem 1.7 in the case that s1 = 0 and s2 = 1, it is enough, in
view of h1,2 ≤ 1, to bound above the probability of the event—that we will denote by
A—that there exist (x, h1) ∈ S and (y, h2) ∈ E for which

there exists a moment h at which a fraction lying in [a, 2a] ∪ [1− 2a, 1− a]

of the lifetime [h1, h2] has elapsed such that

h
−2/3
1,2

⃓⃓
ρn
[︁
(x, h1) → (y, h2)

]︁
(h)− ℓ

[︁
(x, h1) → (y, h2)

]︁
(h)
⃓⃓

is at least Ra2/3
(︁
log a−1

)︁1/3
,

when R = 5r, where the positive parameter R is displayed to permit convenient later
reference to the display, and where the choice of a multiple of five—or, indeed, of any
given multiple, but five will work for our purpose—is admissible via the absorptive
proclivity of Θ(1) terms in the theorem. We cover E × S by a union indexed by i ∈ C of
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basic covering boxes (B−
i , B

+
i ) which by Lemma 3.23 we know may be chosen so that |C|

is at most a constant multiple of K2a−10/3.
Fix a given index i ∈ C and consider the event that there exist (x, h1) ∈ B−

i and
(y, h2) ∈ B+

i such that the displayed circumstance takes place with R = r. We have
constructed a composite function that maps B−

i into Z−
n (a, r) and B+

i into Z+
n (a, r). The

composite is the outcome of a five-step composition. After each step, the given points
(x, h1) ∈ B−

i and (y, h1) ∈ B+
i have been mapped to certain locations; we may consider

the probability that there exist (x, h1) ∈ B−
i and (y, h2) ∈ B+

i such that the last displayed
event occurs when (x, h1) and (y, h2) are replaced by these locations. For the step
indexed by j ∈ J0, 5K, we denote this probability by pj(R, i).

Note that the probability P(A) that we seek to bound in order to obtain Theorem 1.7
when s1 = 0 and s2 = 1 is bounded above by a constant multiple ofK2a−10/3 supi∈C p0(5r, i).

Thus, if we can show that p0(5r, i) is at most adr
3

for each i ∈ C, we will have proved this
theorem.

On the other hand, p5(34/3r, i) for any given i ∈ C is at most the probability that the
last displayed event occurs with R = 34/3r and when (x, h1) and (y, h2) are respectively
replaced by certain given elements of Z−

n (a, r) and Z+
n (a, r). As such, p5(34/3r, i) is

bounded above by Lemma 3.22: indeed, this result implies that p5
(︁
34/3r, i

)︁
≤ Θ(1)aΘ(1)r3

because h1,2 ≥ 1/3 (since h1 ≤ 1/3 and h2 ≥ 2/3) and because, if h ∈ [0, 1] satisfies h−h1

h1,2
∈

[a, 2a]∪[1−2a, 1−a] for h1 ∈ [0, a/4] and h2 ∈ [1−a/4, 1], then h ∈ [a/2, 4a]∪[1−4a, 1−a/2].
To close out the proof of Theorem 1.7 , it suffices to show that p0(5r, i) ≤ p5

(︁
34/3r, i

)︁
.

Indeed, this bound proves this result when the left-hand instance of r in (1.10) is replaced
by 5r; but, as we have noted, the stated form may then be obtained since Θ(1) notation
is used. We seek then to obtain the just stated bound. Of the five maps involved in
the composition, four are shifts or a KPZ dilation. For each index advance j → j + 1

in which one of these maps is involved, the scaling principle shows that pj(s, i) equals
pj+1(s, i). The remaining map is the fourth—the inverse shear map τ−κ—involved in the
index change 3 → 4. Since the value of the parameter κ specifying this map is at most a
constant multiple of K, and |K| is at most a small constant multiple of n2/3, κ itself is at
most a small multiple of n2/3; thus, Lemma 3.13(2) and 5 > 34/3 imply that p3

(︁
5r, i

)︁
is

at most p4
(︁
34/3r, i

)︁
. This confirms that p0(5r, i) ≤ p5

(︁
34/3r, i

)︁
and completes the proof of

Theorem 1.7.

3.8 Polymer weight tails, uniform in variation of endpoints

In this section, we prove Proposition 1.8.
Proof of Proposition 1.8. Proposition 3.15 is concerned with the tail of parabolic

weight for polymers that begin in the lower third and end in the upper third of the
rectangle [−K,K] × n−1Z ∩ [−3, 3]. With ν = 6−1 · 5/4 · 2−ℓ, this rectangle is mapped
under the transformation (x, y) → (ν2/3x, νy) and a vertical shift to the rectangle

[−K,K] · 6−2/3(5/4)2/32−2ℓ/3 × m−1Z ∩
[︁
0, 5/4 · 2−ℓ

]︁
,

where m = n · 4/5 · 2ℓ. Consider the collection of translates of the displayed rectangle by
vectors of the form

(︁
K ·6−2/3(5/4)2/32−2ℓ/3 ·j, 2−ℓ ·1/12 ·k

)︁
, with (j, k) ∈ Z2. Let Ψ denote

the subcollection indexed by those (j, k) for which the translation vector has horizontal
component lying in [−M,M ] and vertical component lying in [0, 1]. Set K > 0 so that
L = K · 6−2/3(5/4)2/3. Then Ψ is a set of cardinality Θ(1)MK−125ℓ/3 such that any pair
of elements (x, s1) and (y, s2) implicated in the definition in the events Lown

(︁
ζ, ℓ, L,M

)︁
and Highn

(︁
ζ, ℓ, L,M

)︁
belongs to some element of Ψ. What we learn from this is that we

may apply Proposition 3.15 with n = n · 5/4 · 2−ℓ, K = K and R = (4/5)1/32−1/3ζ via
translation invariance and the scaling principle, and use a union bound, to conclude that
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the probability in Proposition 1.8 is at most Θ(1)MK−125ℓ/3Θ(1)K2 exp
{︁
− Θ(1)ζ3/2

}︁
.

(That the selection of R is satisfactory depends on s1,2 ≥ 2−ℓ−1.) Since the obtained
bound takes the desired form, and the hypotheses on n, L and ζ in Proposition 1.8 enable
this application of Proposition 3.15, the proof of Proposition 1.8 is complete.

4 Slim pickings for slender excursions

Here we prove our result Theorem 1.10 asserting the significant shortfall in weight
accrued by zigzags that are constrained to follow excursions relative to a given zigzag
that are narrower than the width dictated by the KPZ scaling exponent of two-thirds.

More precisely, but still in summary, this theorem concerns the maximum weight
that may be accrued by an n-zigzag ψ that is constrained to pursue a slender excursion
relative to a given zigzag ϕ of duration of order 2−ℓ. By slender, we mean that, at a high
but fixed proportion 1 − χ of heights along the excursion, the width between ψ and ϕ

is at most a small multiple θ of the characteristic separation 2−2ℓ/3. There is a degree
of choice in the levels, of proportion χ, at which ψ is not bound by this slenderness
constraint. Proposition 4.5 is a result en route to Theorem 1.10 in which a counterpart
conclusion is reached when this set of levels is instead fixed.

There are four subsections. In the first, we give a brief LPP-based proof of a result that
we will need: the mean of the GUE Tracy-Widom distribution is negative. (See [BGHH20,
Lemma A.4] for another proof pointed out by Ivan Corwin.) In the second section, we
record two needed results, including a form of [Ham19a, Theorem 1.1] that concerns
variation of polymer weight under endpoint perturbation. In the third section, we prove
Proposition 4.5. In the fourth, we sum out over the levels fixed in this proposition in
order to obtain Theorem 1.10.

4.1 The negative mean of the GUE Tracy-Widom distribution

Proposition 4.1. There exist d > 0 and n0 ∈ N such that, for n ≥ n0 and |x| ≤ 2−1cn1/19,

EWgtn
[︁
(0, 0) → (x, 1)

]︁
≤ −d .

It is Proposition 4.1 that we will later employ, but this result has the following
interesting consequence.

Corollary 4.2. The mean of the GUE Tracy-Widom distribution is negative.

Proof. The limit in law as n → ∞ of Wgtn
[︁
(0, 0) → (0, 1)

]︁
has the distribution of

21/3X, where, by [TW94, Bar01], X has the GUE Tracy-Widom law. Thus the result
follows from Proposition 4.1.

The next result is the principal component of Proposition 4.1.

Lemma 4.3. There exist d1 > 0 and n0 ∈ N such that, for n ≥ n0 and |x| ≤ 2−1cn1/19,

E
[︂
Wgtn

[︁
(0, 0) → (x, 1)

]︁
∨Wgtn

[︁
(0, 0) → (x+ 1, 1)

]︁]︂
≥ EWgtn

[︁
(0, 0) → (x, 1)

]︁
+ d1 (4.1)

provided that x ≤ 0 while, if x > 0, the same inference holds when x+ 1 is replaced by
x− 1.

Proof. We will give a Brownian Gibbs argument. The random profile x→ Wgtn
[︁
(0, 0) →

(x, 1)
]︁

is (c, C, n+ 1)-regular in the sense of Subsection 2.2.3 by Proposition 2.3(1) (with
a = 1) therein. We will write L for the (n+ 1)-curve regular ensemble whose uppermost
curve L(1, x) equals Wgtn

[︁
(0, 0) → (x, 1)

]︁
.

Suppose first that x ∈ [−1/2, 1/2]. For D > 0, let N = N(D) denote the event that the
weight Wgtn

[︁
(0, 0) → (x, 1)

]︁
is at most D, and that Wgtn

[︁
(0, 0) → (x + 2, 1)

]︁
is at least

−D. We make two claims.
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Claim 1. There exist D1 > 0, d2 ∈ (0, 1) and n1 ∈ N such that, when n ≥ n1, it is with
probability at least d2 that N(D1) occurs.

Claim 2. For n ∈ N and D > 0, the conditional probability of

Wgtn
[︁
(0, 0) → (x+ 1, 1)

]︁
≥ Wgtn

[︁
(0, 0) → (x, 1)

]︁
+ 1

given N(D) is at least ν0,1/2
(︁
D + 1,∞

)︁
, where ν0,1/2 denotes the Gaussian law of mean

zero and variance one-half. The same statement holds when the displayed left-hand side
is replaced by Wgtn

[︁
(0, 0) → (x− 1, 1)

]︁
.

Proof of Claim 1. The ensemble L satisfies Reg(2) and Reg(3) in Definition 2.2, and
from this, the result follows.

Proof of Claim 2. The event on which we condition in this claim is that L(1, x) ≤ D

and L(1, x+ 2) ≥ −D. If we further condition on the value (u, v) of
(︁
L(1, x),L(1, x+ 2)

)︁
,

and on the form f of L(2, ·) : [x, x+ 2] → R, then the conditional distribution of L(1, ·) :
[x, x + 2] → R is given by Brownian bridge B : [x, x + 2] → R, with B(x) = u and

B(x+ 2) = v—whose law we label B[x,x+2]
u,v —conditioned on B(z) ≥ f(z) for z ∈ [x, x+ 2].

Note that

B[0,2]
u,v

(︁
B(1) ≥ u+1

⃓⃓
B > f

)︁
≥ B[0,2]

u,v

(︁
B(1) ≥ u+1

)︁
≥ B[0,2]

0,0

(︁
B(1) ≥ D+1

)︁
= ν0,1/2

(︁
D+1,∞

)︁
,

the first inequality by the monotonicity offered in [Ham22, Lemma 2.18] (a result
originally proved in [CH14]); the second by the affine scaling property of Brownian
bridge; and the third by the law of the midpoint value of standard Brownian bridge. This
completes the proof of the first assertion of Claim 2. The second assertion has an almost
identical proof.

The two claims show that, for x ∈ [−1/2, 1/2],

E
[︂
Wgtn

[︁
(0, 0) → (x, 1)

]︁
∨Wgtn

[︁
(0, 0) → (x+1, 1)

]︁]︂
≥ EWgtn

[︁
(0, 0) → (x, 1)

]︁
+d2 , (4.2)

as well as the bound after we replace x + 1 by x − 1. This proves Lemma 4.3 in the
case that x ∈ [−1/2, 1/2]. By [Ham22, Lemma 2.26]—a tool of near parabolic invariance
that propagates spatial information from unit-order to much broader intervals—we learn
from (4.2) that, for |x| ≤ 2−1cn1/19,

E
[︂
Wgt∪n

[︁
(0, 0) → (x, 1)

]︁
∨Wgt∪n

[︁
(0, 0) → (x+ 1, 1)

]︁]︂
≥ EWgt∪n

[︁
(0, 0) → (x, 1)

]︁
+ d2 ,

where recall that Wgt∪n
[︁
(0, 0) → (x, 1)

]︁
is a shorthand that denotes the parabolically

adjusted weight Wgtn
[︁
(0, 0) → (x, 1)

]︁
+ 2−1/2x2. Subtracting 2−1/2x2 yields (4.1) for

x ≤ −1/2. We obtain (4.1) for x ≥ 1/2 by the same argument, with the role of (4.2)
played by its counterpart where x − 1 replaces x + 1. This completes the proof of
Lemma 4.3.

Proof of Proposition 4.1. We will prove this result by showing that EWgtn
[︁
(0, 0) →

(x, 1)
]︁

is at most −d1, where Lemma 4.3 furnishes d1 > 0. To verify this, suppose first
that x ≤ 0. We claim that

lim inf sup
z∈R

K−1Wgtn
[︁
(0, 0) → (z,K)

]︁
≥ n

n+ 1

(︂
EWgtn

[︁
(0, 0) → (z, 1)

]︁
+ d1

)︂
, (4.3)

where the limit infimum is taken as K → ∞ through K ∈ N. This claim is substantiated
by constructing an n-zigzag that begins at (0, 0). It travels first either to (x, 1) or to
(x+ 1, 1), the choice being made so that more weight is captured along the way. After
arrival, the zigzag makes an immediate microscopic jump, moving by

(︁
− 2n−2/3, n−1

)︁
.

Zigzag formation continues as if the point of arrival plays the role that (0, 0) did at the
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outset. That is, the zigzag continues by travelling to one of the points whose displacement
from its present location is (x, 1) or (x+ 1, 1), the selection made to maximize weight;
then a further microscopic jump is made; and the process iterates indefinitely. If an
arbitrarily small constant is subtracted from the right-hand side of (4.3), the left-hand
supremum is seen to exceed the right-hand side for all sufficiently high K. Thus, we
obtain (4.3).

However, the left-hand side of (4.3) is at most zero almost surely. Indeed, by the
scaling principle, supz∈RK

−1Wgtn
[︁
(0, 0) → (z,K)

]︁
equals K−2/3 supz∈RWgtnK

[︁
(0, 0) →

(z, 1)
]︁

in law; and the latter supremum converges as K → ∞ in law to the Tracy-Widom
GOE distribution ν, because the process z → Wgtm

[︁
(0, 0) → (z, 1)

]︁
converges in law as

m→ ∞ in a compact uniform topology to the parabolic Airy process, whose maximum
has the law ν (see e.g. [BFPS07]).

Thus, the mean of Wgtn
[︁
(0, 0) → (z, 1)

]︁
is at most −d1. This completes the proof of

Proposition 4.1.

4.2 Two tools

4.2.1 Gaussian increments for weight profiles

For a shortly upcoming use, we record a result bounding the tail of increments for the
weight of polymers subject to horizontal endpoint perturbation. The result is better
expressed using parabolically adjusted weight, so that a slope arising from a difference
of parabolas is eliminated and much higher choices of horizontal endpoint discrepancy
may be treated. The parabolic weight notation Wgt∪n was specified in Subsection 3.1.2.
We now specify a variant notation in order to describe differences in parabolic weight.
Let (x1, x2) and (y1, y2) belong to R2

≤. The parabolically adjusted weight difference

∆∪ Wgtn
[︁
({x1, x2}, s1) → ({y1, y2}, s2)

]︁
denotes (︃

Wgtn
[︁
(x2, s1) → (y2, s2)

]︁
+ 2−1/2 (y2 − x2)

2

s2 − s1

)︃
−

(︃
Wgtn

[︁
(x1, s1) → (y1, s2)

]︁
+ 2−1/2 (y1 − x1)

2

s2 − s1

)︃
,

Proposition 4.4. Positive constants C and c exist for which the following holds. Let
a ∈ (0, 2−4]. Let (n, s1, s2) ∈ N × R2

≤ be a compatible triple for which ns1,2 ≥ 1032c−18

and let x, y ∈ R satisfy
⃓⃓
x − y

⃓⃓
s
−2/3
1,2 ≤ 2−23−1c(ns1,2)

1/18. Let K ∈
[︁
104 , 103(ns1,2)

1/18
]︁
.

Then

P

⎛⎜⎜⎜⎝ sup
x1,x2∈[x,x+as

2/3
1,2 ] , x1<x2

y1,y2∈[y,y+as
2/3
1,2 ] , y1<y2

⃓⃓⃓
∆∪ Wgtn

[︁
({x1, x2}, s1) → ({y1, y2}, s2)

]︁⃓⃓⃓
≥ Ka1/2s

1/3
1,2

⎞⎟⎟⎟⎠
is at most C exp

{︁
− c2−24K2

}︁
.

Proof. The special case that s1 = 0 and s2 = 1 is implied by [Ham19a, Theorem 1.1].
(The upper bound in the latter result is 10032C exp

{︁
−c12−21R3/2

}︁
. But c1 = 2−5/2c∧1/8,

where c > 0 is a constant that is at most one, so that we obtain the upper bound in
Proposition 4.4. We also relabel 10032C to C to obtain the form stated above in the
special case.) The scaling principle from Section 3.1.1 then yields the proposition from
this special case.
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4.2.2 A control on weight that is uniform as endpoints vary.

Here we record a consequence of Proposition 1.8. Recall that we used Lown(ζ, ℓ, L,M)

to denote the event that

s
−1/3
1,2 Wgt∪n

[︁
(x, s1) → (y, s2)

]︁
is less than −ζ for some pair (x, s1), (y, s2) ∈ R × n−1Z ∩ [0, 1] with |x| ∨ |y| ≤ M ,
|x−y| ≤ 2−2ℓ/3L and s1,2 ∈ (2−ℓ−1, 2−ℓ]. Similarly, Highn(ζ, ℓ, L,M) denotes the event that
the displayed quantity exceeds ζ for some such pair. For M = n1/20 and L = (n2−ℓ)1/47,
specify the uniform boundedness event

UnifBddn(ζ) =
⋂︂
ℓ

(︂
¬Lown

(︁
ζ, ℓ, L,M

)︁
∩ ¬Highn

(︁
ζ, ℓ, L,M

)︁)︂
,

where the intersection ranges over ℓ such that ζ20n−1 ≤ 2−ℓ ≤ 1.
From Proposition 1.8 and a union bound, it follows that, for ζ ≥ Θ

(︁
(log n)2/3

)︁
,

P
(︁
UnifBddn(ζ)

)︁
≥ 1− e−Θ(1)ζ3/2

. (4.4)

4.3 Excursions constrained at given heights are uncompetitive

Let r ∈ N, and let κ > 0 satisfy

κ3/2 ∈ r−1N and κ−3/2 ∈ N . (4.5)

The parameter κ will be positive but small, and these conditions are then ensured if
need be by slight adjustment to its value. They ensure that an r-zigzag ϕ of lifetime [0, 1]

begins and ends at moments that are multiples of κ3/2, and that every intervening such
multiple, being an element of r−1N, is the vertical coordinate of a horizontal interval
in ϕ. Further let b ∈ (0, 1). A segment is a horizontal planar line segment of length bκ

whose height is an integer multiple of κ3/2. The role of b, which will be taken to be a
small enough absolute constant, is elucidated in the discussion following the statement
of Proposition 4.5.

Let χ ∈ (0, 1). A plentiful segment collection is a set of segments that numbers at
least (1 − χ)κ−3/2 whose elements have distinct heights that include 0 and 1 and that
belong to [−r1/20, r1/20]× [0, 1]. Let C denote the set of plentiful segment collections.

Let c ∈ C. A c-path is an r-zigzag from an element (z1, 0) in the lowest of c’s segments
to an element (z2, 1) in its highest that intersects every segment in c. Let Wgtr

[︁
c-path

]︁
denote the supremum of the weights of c-paths.

Proposition 4.5. There exist positive parameters κ0, b, d1, d2, and χ0 ∈ (0, 1/2] such that,
if r ∈ N and κ ∈ (0, κ0) satisfy (4.5); if χ ∈ (0, χ0) satisfies χ ≥ 2κ3/2 and 2χκ−3/2 ∈ N;
and if c ∈ C; then

P
(︂
Wgtr

[︁
c-path

]︁
≥ −d1κ−1

)︂
≤ exp

{︁
− d2κ

−3/2
}︁
.

To derive this result, our task is to show that typically Wgtr
[︁
c-path

]︁
is a large negative

number. To argue this, let ψ be a c-path. A value of the form jκ3/2 for j ∈ J0, κ−3/2 − 1K
is said to be ψ-useful—but we will simply say ‘useful’—if ψ intersects a segment in c
of height jκ3/2 and another of height (j + 1)κ3/2. We will write Wgtr(ψ) in the form
Wu(ψ) +Wo(ψ) in a sense that we now explain. We divide ψ into sub-zigzags by splitting
at points of departure of ψ from levels that are integer multiples of κ3/2 lying in (0, 1).
Each sub-zigzag is called useful, or otherwise, according to whether the height of its
starting point is useful or not. Then Wu(ψ) and Wo(ψ) are the respective sums of the
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weights of the useful, or otherwise, sub-zigzags. We aim to carry out the needed task by
finding bounds on the upper tail of the two right-hand terms in the inequality

Wgtr
[︁
c-path

]︁
≤ sup

{︁
Wu(ψ) : ψ a c-path

}︁
+ sup

{︁
Wo(ψ) : ψ a c-path

}︁
. (4.6)

We will first analyse the useful weight sum supremum sup
{︁
Wu(ψ) : ψ a c-path

}︁
; and

then do likewise for the otherwise counterpart. The resulting bounds will then permit a
quick proof of Proposition 4.5.

Analysing the useful sum is the principal component in the proof of this proposition,
and a few words in summary of this analysis will, we hope, be helpful. There are
two elements: we will show that weights of the sub-zigzags that contribute to Wu(ψ)

have negative mean; and we will then appeal to concentration inequalities for sums of
independent random variables.

Regarding the first element, it follows from Proposition 4.1 and the scaling principle
that the weight of a useful sub-zigzag with fixed endpoints has mean at most −d1κ1/2.
However, the endpoints of useful sub-zigzags are not fixed, but in fact vary over horizontal
segments of length bκ. An effect of Brownian oscillation for polymer weight that will
be controlled in Lemma 4.12 causes our upper bound on the mean to rise by an order
of (bκ)1/2. It is at this moment that we will select the value of b > 0. By choosing
this parameter to be small enough, the mean supremum weight of useful sub-zigzags
traversing between vertically consecutive elements of c will be shown to be at most
−d1

2 κ
1/2.

In consecutive subsections, we analyse the useful sum; and the otherwise sum; and
give the proof of Proposition 4.5.

4.3.1 The useful sum

Definition 4.6. Let I and J be compact intervals in [−r1/20, r1/20] of length bκ. Set

YI,J = κ−1/2 sup
u∈I,v∈J

Wgtr
[︁
(u, 0) → (v, κ3/2)

]︁
.

Let U denote the set of useful values. A useful sub-zigzag starts in a segment
belonging to c and intersects that segment only at this starting point. Its ending point
is κ3/2 higher than its starting point. The law of the weight of a useful sub-zigzag with
given starting height is at most the supremum of weights of r-zigzags that begin and
end in two given segments and whose lifetime has duration κ3/2. Since the sub-zigzag
immediately departs from its starting height, the weights of distinct sub-zigzags in our
partition are independent. Thus, we find that the useful weight sum supremum

sup
{︁
Wu(ψ) : ψ a c-path

}︁
is stochastically dominated by

|U|∑︂
i=1

Ui , (4.7)

where the latter quantity is a sum of independent random variables, Ui having the law
of κ1/2YI,J , where YI,J has been specified in Definition 4.6, and where the pair (I, J)

satisfies the hypothesis in that definition.
The next result is our conclusion regarding the useful sum; indeed, with Ui = κ1/2Xi,

it will permit analysis of the right-hand sum in (4.7).

Proposition 4.7. Let j ∈ N satisfy κ−3/2/2 ≤ j ≤ κ−3/2. Let
{︁
Xi : i ∈ J1, jK

}︁
be an

independent sequence of random variables, where Xi has the law of YI,J for a possibly
i-dependent pair (I, J) satisfying the hypothesis in Definition 4.6. Then

P

(︃ j∑︂
i=1

Xi ≥ −Θ(1)κ−3/2

)︃
≤ exp

{︁
−Θ(1)κ−3/2

}︁
.
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To derive this result, we will need the second element to which we alluded in summary
of the useful sum analysis: a concentration result for independent random variables.

Proposition 4.8. [Ver18, Theorem 2.8.1] Let
{︁
Xi : i ∈ N

}︁
be a sequence of independent

real-valued random variables of zero mean. For any C > 0, there exist positive c1 and c2
such that, for k ∈ N and t ≥ 0,

1. if E exp
{︁
|Xi|/C

}︁
≤ 2 then

P

(︃⃓⃓⃓ k∑︂
i=1

Xi

⃓⃓⃓
≥ t

)︃
≤ exp

{︂
−min

{︁
c1t

2k−1, c2t
}︁}︂

;

2. and if E exp
{︁
X2

i /C
}︁
≤ 2, then

P

(︃⃓⃓⃓ k∑︂
i=1

Xi

⃓⃓⃓
≥ t

)︃
≤ exp

{︁
− c1t

2k−1
}︁
.

The variables satisfying the hypotheses in (1) and (2) are known to be sub-exponential
and sub-Gaussian variables respectively. Now let (u′, v′) ∈ I × J satisfy

|v′ − u′| = inf
{︁
|v − u| : u ∈ I, v ∈ J

}︁
. (4.8)

Write YI,J = ZI,J + EI,J , where ZI,J = κ−1/2Wgtr
[︁
(u′, 0) → (v′, κ3/2)

]︁
and

EI,J = κ−1/2 sup
u∈I,v∈J

(︂
Wgtr

[︁
(u, 0) → (v, κ3/2)

]︁
−Wgtr

[︁
(u′, 0) → (v′, κ3/2)

]︁)︂
.

This decomposition reflects the argument promised in the first element in our summary:
ZI,J is a point-to-point weight (normalized to be of unit-order by the factor κ−1/2), and
the error term EI,J is a weight difference due to horizontal endpoint perturbation. We
offer a Gaussian form of control on the latter next. In a usage also found later in this
section, C0 and c0 denote positive constants whose value may change from line to line.

Lemma 4.9. There exist positive constants C0 and c0 such that, for r ≥ C0κ
−195 and

0 < b ≤ 2−4, the following holds. For all I and J as above, there exists an event EI,J such
that

P
(︁
EI,J

)︁
≤ C0 exp

{︁
− c0r

1/9κ1/6
}︁

(4.9)

and that
P
(︂
EI,J1Ec

I,J
≥ b1/2h

)︂
≤ C0 exp

{︁
− c0h

2
}︁

(4.10)

for h ≥ 0.

Proof. Note that, for u ∈ I and v ∈ J ,

Wgtr
[︁
(u, 0) → (v, κ3/2)

]︁
−Wgtr

[︁
(u′, 0) → (v′, κ3/2)

]︁
= ∆∪ Wgtr

[︁
({u′, u}, 0) → ({v′, v}, κ3/2)

]︁
+ 2−1/2 (v

′ − u′)2

κ3/2
− 2−1/2 (v − u)2

κ3/2

≤ ∆∪ Wgtr
[︁
({u′, u}, 0) → ({v′, v}, κ3/2)

]︁
,

where the inequality is due to (4.8). Thus, EI,J ≤ κ−1/2∆∪ Wgtr
[︁
({u′, u}, 0) → ({v′, v}, κ3/2)

]︁
.

We now apply Proposition 4.4 with parameter settings n = r, s1,2 = κ3/2, a = b and
K = h, and with x and y equal to the left endpoints of I and J . Note that the hypothesis
a ≤ 2−4 holds due to b ≤ 2−4. The hypothesis

⃓⃓
x−y

⃓⃓
s
−2/3
1,2 ≤ 2−23−1c(rs1,2)

1/18 holds due

to |x|, |y| ≤ r1/20, which follows by hypothesis on I and J ; and to the hypothesised lower
bound on r.
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The hypothesis n s1,2 ≥ 1032c−18 is due to rκ3/2 ≥ 1032c−18, a consequence of the
hypothesised lower bound on r alongside c < 1 and κ < 1. The hypothesis K ∈[︁
104 , 103(rκ3/2)1/18

]︁
holds provided that we impose this condition on h. This application

of Proposition 4.4 yields that

P
(︁
EI,J ≥ b1/2h

)︁
≤ C exp

{︁
− c2−24h2

}︁
for h ∈

[︁
104 , 103r1/18κ1/12

]︁
. Define the error event EI,J =

{︁
EI,J ≥ h0(bκ)

1/2
}︁

where h0
equals the maximal value 103r1/18κ1/12 for the range of h. We obtain (4.9), and (4.10) for
h ≥ 0.

To address the point-to-point normalized weight ZI,J , we introduce a parabolically
adjusted version:

Z̄I,J = ZI,J + 2−1/2 (v
′ − u′)2

κ2
. (4.11)

By Lemma 3.1 with parameter setting n = rκ3/2, and the scaling principle, it follows
that, for t ≥ 0,

P
(︂
|Z̄I,J | ≥ t

)︂
≤ C exp

{︁
− ct3/2

}︁
, and hence P

(︂
|Z̄I,J |1Ec

I,J
≥ t
)︂
≤ C exp

{︁
− ct3/2

}︁
.

(4.12)
This implies that

P
(︂ ⃓⃓⃓
Z̄I,J1Ec

I,J
− E[Z̄I,J1Ec

I,J
]
⃓⃓⃓
≥ t
)︂
≤ C exp

{︁
− ct3/2

}︁
. (4.13)

Concentration of the sums
∑︁j

i=1 Z̄I,J and
∑︁j

i=1 ZI,J will be related by means of

j∑︂
i=1

Z̄I,J1Ec
I,J

− E[Z̄I,J1Ec
I,J

] (4.14)

=

j∑︂
i=1

[︁
ZI,J1Ec

I,J
− E[ZI,J1Ec

I,J
]
]︁
+

j∑︂
i=1

2−1/2 (v
′ − u′)2

κ2
[1Ec

I,J
− E(1Ec

I,J
)]

with the next result offering control on the latter parabolic term.

Lemma 4.10. With probability at least 1− C0κ
−3/2 exp

{︁
− c0r

1/9κ1/6
}︁
,

j∑︂
i=1

2−1/2 (v
′ − u′)2

κ2
[1Ec

I,J
− E(1Ec

I,J
)] ≤ C0r

1/10κ−4 exp
{︁
− c0r

1/9κ1/6
}︁
,

Note that, by our hypothesis on κ, the right-hand side is less than one when r is large
enough.

Proof. Since by (4.9), E(1Ec
I,J

) ≥ 1−C0 exp
{︁
− c0r

1/9κ1/6
}︁
, on the event 1Ec

I,J
= 1 we

have

2−1/2 (v
′ − u′)2

κ2
[1Ec

I,J
− E(1Ec

I,J
)] ≤ C0r

1/10κ−2 exp
{︁
− c0r

1/9κ1/6
}︁
,

since |v′ − u′| ≤ r1/20. A union bound over i ∈ J1, jK now implies the lemma.
We now note that the tail bound (4.13) allows us to invoke Proposition 4.8(1). For

brevity’s sake, let WI,J = Z̄I,J1Ec
I,J

−E[Z̄I,J1Ec
I,J

]. By this proposition, we may find d > 0

so that

P

(︃ j∑︂
i=1

WI,J ≥ d

10
κ−3/2

)︃
≤ exp

{︁
− c0dκ

−3/2
}︁
.
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Now, by our assumptions on r and κ, (4.14) and Lemma 4.10, it follows that

P

(︃ j∑︂
i=1

ZI,J1Ec
I,J

− E[ZI,J1Ec
I,J

] ≥ d

8
κ−3/2

)︃
≤ exp

{︁
− c0dκ

−3/2
}︁
. (4.15)

Here we used C0κ
−3/2 exp

{︁
−c0r1/9κ1/6

}︁
≤ e−c0κ

−3/2

, which follows from our hypotheses
on r and κ.

In the last display, we see, in a mildly truncated form, the point-to-point mean weight
that was the mainstay of our overview of the first element of useful sum analysis. Indeed,
we next argue that this truncated mean is suitably negative.

Lemma 4.11. There exists d > 0 such that, for r ≥ Θ(1),

j∑︂
i=1

E[ZI,J1Ec
I,J

] ≤ −d
4
κ−3/2 .

Proof. Since Proposition 4.1 and the scaling principle imply that E[ZI,J ] ≤ −d,
it suffices to show that

∑︁j
i=1E[ZI,J1EI,J

] ≤ d
10κ

−3/2. Now note that E[ZI,J1EI,J
] ≤(︁

E(Z2
I,J)P(EI,J)

)︁1/2
. Since r is assumed to be large enough, we are now done by

(4.9), and
√︂
E(Z2

I,J) ≤ O( r
1/10

κ2 ), the latter due to Lemma 3.1, which implies that, in the

decomposition (4.11), the first term is O(1), and hence the above bound arises from the
maximum value of the parabolic term.

A final result needed to deliver Proposition 4.7 concerns the error terms EI,J .

Lemma 4.12. There exist positive constants C1 and c1 such that, for small enough b and
κ,

P

(︃ j∑︂
i=1

EI,J1Ec
I,J

≥ b1/2C1κ
−3/2

)︃
≤ exp

{︁
− c1κ

−3/2
}︁
.

Proof. Note that, by definition, the random variables b−1/2EI,J1Ec
I,J

are independent.
Further, by (4.10), they are sub-Gaussian. Thus, Proposition 4.8(2)’s hypotheses are
satisfied, and the lemma is obtained.

Proof of Proposition 4.7. By (4.15) and the two just stated lemmas, we find that,
for a suitably small choice of b > 0, it is with probability at least 1− e−c0κ

−3/2

that

j∑︂
i=1

Xi =

j∑︂
i=1

Xi1Ec
I,J

=

j∑︂
i=1

ZI,J1Ec
I,J

+

j∑︂
i=1

EI,J1Ec
I,J

=

j∑︂
i=1

E[ZI,J1Ec
I,J

] +

j∑︂
i=1

[ZI,J1Ec
I,J

− E[ZI,J1Ec
I,J

] +

j∑︂
i=1

EI,J1Ec
I,J

≤ −d
4
κ−3/2 +

d

8
κ−3/2 + b1/2C1κ

−3/2 ≤ −d
16
κ−3/2 .

The first equality follows from (4.9) and a union bound.

4.3.2 The otherwise sum

Our upper bound on the otherwise sum, namely on the latter right-hand term in (4.6), will
depend partly on there being few otherwise summands. To this end, we begin by stating
and proving a simple claim giving a lower bound on the number of useful summands.
Recall that it is hypothesised in Proposition 4.5 that 2χκ−3/2 ∈ N and 2χ < 1.
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We claim that,

for at least (1− 2χ)κ−3/2 − 2 indices j ∈ J0, κ−3/2 − 1K, the value jκ3/2 is useful ,
(4.16)

where the notion of usefulness was specified after Proposition 4.5. In verifying this, we
will describe two segments in c as being vertically consecutive if their heights differ
by κ3/2. Consider the set formed from Nκ3/2∩ [0, 1] by the removal of those elements that
are the heights of members of c. This set has cardinality at most χκ−3/2+1. Any element
jκ3/2 in the set forbids the values (j − 1)κ3/2 and jκ3/2 from being useful. Cumulatively,
at most 2χκ3/2 + 2 elements of κ3/2J0, κ−3/2 − 1K are thus forbidden. The remainder,
numbering at least κ−3/2 − 2χκ−3/2 − 2, are useful. This is as we claimed.

We now present a bound on the upper tail of the otherwise weight sum supremum
sup

{︁
Wo(ψ) : ψ a c-path

}︁
. Let ψ again denote a given c-path. Let O ∈ N denote the

number of otherwise sub-zigzags of ψ. Recalling that U denotes the set of useful values,
with U = |U|, we have (U +O)κ3/2 ≤ 1, because every sub-zigzag, useful or otherwise,
has height at least κ3/2; so that (4.16) implies that

O ≤ 2χκ−3/2 + 2 . (4.17)

The expression Wo(ψ) is the sum of weights of the otherwise sub-zigzags of ψ. Each
otherwise sub-zigzag begins, but immediately leaves, a given segment in c, and ends
in another such segment. The two segments may be called the starting and finishing
segments of the sub-zigzag. Labelling the otherwise sub-zigzags

{︁
Zi : i ∈ J1, OK

}︁
in

order of increasing height, we denote by Si and Fi the starting and ending segments
of Zi. The respective heights of Si and Fi will be denoted by si and fi. Note that
si < fi ≤ si+1 < fi+1 for i ∈ J1, O − 1K.

For i ∈ J1, OK, let (ui, si) ∈ Si and (vi, fi) ∈ Fi be chosen so that the gradient of the
line segment connecting (ui, si) and (vi, fi) is maximal given that these endpoints lie in
Si and Fi. This implies that

|vi − ui| = inf
{︂
|v − u| : u, v ∈ R, (u, si) ∈ Si, (v, si+1) ∈ Fi

}︂
. (4.18)

We find then that the otherwise weight sum supremum

sup
{︁
Wo(ψ) : ψ a c-path

}︁
is stochastically dominated by

O∑︂
i=1

(︁
Wi + Ei

)︁
, (4.19)

where
{︁
Wi : i ∈ J1, OK

}︁
is an independent sequence whose term Wi has the distribution

of Wgtr
[︁
(ui, si) → (vi, fi)

]︁
; and where

{︁
Ei : i ∈ J1, OK

}︁
is an independent sequence of

error terms given by

Ei = sup
u,v∈R:

(u,si)∈Si

(v,fi)∈Fi

(︂
Wgtr

[︁
(u, si) → (v, fi)

]︁
−Wgtr

[︁
(ui, si) → (vi, fi)

]︁ )︂
.

Reminiscently of useful sum analysis, the right-hand quantity in (4.19) is a sum of a
point-to-point W -sum and an error E-sum. The next two lemmas, which provide tail
bounds on these two sums, are the outcomes of otherwise sum analysis that will be
needed to prove Proposition 4.5.

Lemma 4.13. There exist y ∈ R and s ∈ [0, 1] that satisfy |y| ≤ r1/20 + 2χbκ−1/2 and s ≤
2χ such that the random variable

∑︁O
i=1 Wi is stochastically dominated by Wgtr

[︁
(0, 0) →

(y, s)
]︁
.
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Proof. Set s =
∑︁O

i=1(fi − si) and y =
∑︁O

i=1(vi − ui). Set S equal to the set of

planar points pj =
(︁∑︁j

i=1(vi − ui),
∑︁j

i=1(fi − si)
)︁

where j varies over J1, OK. The value
Wgtr

[︁
(0, 0) → (y, s)

]︁
is the supremum of the weights of r-zigzags from (0, 0) to (y, s). This

value is at least the supremum W of weights of r-zigzags with these endpoints but that
also contain the set S. Note that W has the law of

∑︁O
i=1 Wi, because, if Z denotes the

maximizer zigzag in the optimization that specifies W , the weight of the sub-zigzag of
Z between pi and pi+1 equals Wi in law, and the various sub-zigzags have independent
weights.

Lemma 4.14. There exist C0, c0 > 0 such that the following holds. Suppose that r ≥
C0κ

−195, h ∈
[︁
104 , 103(rsi,i+1)

1/18
]︁

and b ≤ 2−4.

1. For i ∈ J1, OK,
P
(︂
Ei ≥ h(bκ)1/2

)︂
≤ C0 exp

{︁
− c0h

2
}︁
.

2. Suppose that χ ≥ 2κ3/2. There exist h0 > 0 and an error event E satisfying

P
(︁
E
)︁
≤ C0χκ

−3/2 exp
{︁
− c0r

1/9κ1/6
}︁

(4.20)

such that, for h ≥ h0,

P
(︂ O∑︂

i=1

Ei1Ec ≥ hχb1/2κ−1
)︂
≤ C0 exp

{︁
− c0χκ

−3/2h2
}︁
. (4.21)

Proof: (1). Note that, for u, v ∈ R with (u, si) ∈ Si and (v, si+1) ∈ Si+1,

Wgtr
[︁
(u, si) → (v, si+1)

]︁
−Wgtr

[︁
(ui, si) → (vi+1, si+1)

]︁
= ∆∪ Wgtn

[︁
({ui, u}, s1) → ({vi, v}, s2)

]︁
+ 2−1/2 (vi − ui)

2

s2 − s1
− 2−1/2 (v − u)2

s2 − s1

≤ ∆∪ Wgtn
[︁
({ui, u}, s1) → ({vi, v}, s2)

]︁
,

where the inequality is due to (4.18). Thus, Ei ≤ ∆∪ Wgtn
[︁
({ui, u}, s1) → ({vi, v}, s2)

]︁
.

We now apply Proposition 4.4 with parameter settings n = r, s1,2 = si,i+1, a = s
−2/3
i,i+1bκ

and K = h, and with x and y equal to the left endpoints of Si and Si+1. Note that the

hypothesis a ≤ 2−4 holds due to b ≤ 2−4 and si,i+1 ≥ κ3/2. The hypothesis
⃓⃓
x− y

⃓⃓
s
−2/3
i,i+1 ≤

2−23−1c(rsi,i+1)
1/18 holds due to |x|, |y| ≤ r1/20, which follows from S1, S2 ∈ c; to si,i+1 ≥

κ3/2; and to the hypothesised lower bound on r. The hypothesis n s1,2 ≥ 1032c−18 is
due to rκ3/2 ≥ 1032c−18, a consequence of the hypothesised lower bound on r alongside
c < 1 and κ < 1. The hypothesis K ∈

[︁
104 , 103(ns1,2)

1/18
]︁

holds because this condition is
imposed on h. Lemma 4.14(1) follows from this application of Proposition 4.4.

(2). Set the error event E by defining E = ∩i∈J0,O−1KEi, where

Ei =
{︂
Ei ≥ (bκ)1/2103

(︁
rsi,i+1

)︁1/18}︂
.

Since χ ≥ 2κ3/2, (4.17) implies that |O| ≤ 3χκ−3/2. From this bound, and since si,i+1 ≥
κ3/2 for all concerned indices i, we obtain (4.20), from the conclusion of Lemma 4.14(1)
and a union bound.

The random variables Ei1Ec
i

verify the conclusion of Lemma 4.14(1) for all h ≥ 104;
that is, even after the removal of the upper bound on h hypothesised in that result.
Hence, they are, after scaling by the factor (bκ)−1/2, sub-Gaussian variables as in
Proposition 4.8(2). Since (4.17) holds, (4.21) is implied by the bound P

(︁∑︁K
i=1E

′
i ≥ hK

)︁
≤

e−Θ(1)Kh2

for all large h, where K = ⌈2χκ−2/3⌉+ 2 and E′
i = (bκ)−1/2Ei1Ec

i
. Since the E′

i

are by definition independent, the desired bound follows from Proposition 4.8(2).
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4.3.3 Proof of Proposition 4.5

We are ready to return to the bound (4.6) in order to prove the upper tail bound stated
by this proposition. Indeed, by (4.6), (4.7) and (4.19),

P
(︂
Wgtr

[︁
c-path

]︁
≥ −d1κ−1

)︂
≤ A1 +A2 +A3 ,

where here we set A1 = P
(︁∑︁|U|

i=1 Ui ≥ −2d1κ
−1
)︁
, A2 = P

(︁∑︁O
i=1 Wi ≥ 2−1d1κ

−1
)︁

and

A3 = P
(︁∑︁O

i=1Ei ≥ 2−1d1κ
−1
)︁
.

To find an upper bound on A1, note that
∑︁|U|

i=1 Ui ≥ −2d1κ
−1 entails that

∑︁κ−3/2

i=1 Ui ≥
−2d1κ

−1, where on the right-hand side, further Ui-terms have been introduced consis-
tently with the conditions on this sequence. Provided that b ≤ b0 and d1 ≤ d/8, we may
apply Proposition 4.7 with j = κ−3/2 to find that

A1 ≤ exp
{︁
− dκ−3/2

}︁
.

Let the parameters y ∈ R and s ∈ [0, 1] satisfy the hypotheses of Lemma 4.13. This
result implies that A2 ≤ P

(︁
Wgtr

[︁
(0, 0) → (y, s)

]︁
≥ 2−1d1κ

−1
)︁
. From s ≤ 2χ, and the

one-point upper tail bound P
(︁
Wgtr

[︁
(0, 0) → (y, s)

]︁
≥ hs1/3

)︁
≤ C exp

{︁
− ch3/2

}︁
offered

by Lemma 3.1(1) via the scaling principle, we see that

A2 ≤ C exp
{︁
− 2−2cχ−1/2d

3/2
1 κ−3/2

}︁
.

In the notation of Lemma 4.14(2), A3 ≤ P
(︁∑︁O

i=1Ei1Ec ≥ 2−1d1κ
−1
)︁
+ P

(︁
E
)︁
. Choose

h in Lemma 4.14(2) so that hχb1/2 = 2−1d1; we ensure the needed condition that
h ≥ h0 by insisting that χ > 0 be small enough (as we do by demanding that χ ≤ χ0 in
Proposition 4.5). From Lemma 4.14(2), we thus learn that

A3 ≤ C0 exp
{︁
− c0κ

−3/2χ−1b−12−2d21
}︁
+ C0χκ

−3/2 exp
{︁
− c0r

1/9κ1/6
}︁
.

Applying r ≥ κ−15/2 in the guise r1/9κ1/6 ≥ κ−2/3, we obtain Proposition 4.5 by choosing
(or adjusting) the positive parameters κ0, d1 and d2 to be suitably small.

4.4 Deriving Theorem 1.10

Throughout this section, we suppose that θ−1/4 > C log n and that ℓ ∈ N satisfies
2ℓ ≤ nθ40, since these conditions are hypothesised by the result that we seek to show.

To apply Proposition 4.5, let κ > 0 satisfy κ3/2 ∈ n−1Z, κ−3/2 ∈ N and bκ/8 ∈
2−2ℓ/3θ · [1, 2], where b appears in the statement of the proposition. Let κ also satisfy
κ3/2 ≤ 2−1−ℓχ.

As we derive Theorem 1.10, we will define the terms segments, plentiful segment
collection and c-path. In doing so, we abuse the notation employed in Proposition 4.5.
However, as we will explain shortly, the different usages coincide when suitable parame-
ters are specified and a simple change of coordinates is made.

Suppose given an n-zigzag ϕ from (0, 0) to (0, 1). For now, we take an arbitrary such
ϕ, though we later impose the condition, seen in Theorem 1.10, that ϕ be θ−1/40 regular.

Further suppose given s1, s2 ∈ n−1Z ∩ [0, 1] for which 2−1−ℓ ≤ s1,2 ≤ 2−ℓ; Recall that
our choice of κ ensures that κ3/2 ≤ χs1,2. Let r0 ∈ n−1J0, nκ3/2 − 1K. An r0-segment is a
horizontal planar interval of the form

Ij/n+ r0 :=
[︁
ϕ
(︁
j/n+ r0

)︁
− bκ/2, ϕ

(︁
j/n+ r0

)︁
+ bκ/2

]︁
× {jn−1 + r0}

where j/n ∈ κ3/2Z and j/n+ r0 ∈ n−1Jns1, ns2K: see Figure 5.
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(x, s1)

(y, s2)

r0-segment

κ3/2

Figure 5: The solid zigzag is ϕ and the dashed zigzag is a c-path which passes through
the elements of c, denoted by the black horizontal planar lines of length bκ, a plentiful r0-
segment collection. Such segments occur regularly at vertical separation being integer
multiples of κ3/2.

A plentiful r0-segment collection is a subset of
{︁
Ij/n+r0 : j/n ∈ κ3/2Z , j/n + r0 ∈

n−1Jns1, ns2K
}︁

whose cardinality is at least (1−χ)s1,2κ−3/2, where note that the quantity
s1,2κ

−3/2 differs from the cardinality of the set
{︁
j/n ∈ κ3/2Z : j/n+ r0 ∈ n−1Jns1, ns2K

}︁
by at most one. If v− and v+ denote the lowest and highest vertical coordinates assumed
by elements in a plentiful r0-segment collection, note that⃓⃓

v− − s1
⃓⃓
∨
⃓⃓
v+ − s2

⃓⃓
≤ 2χs1,2 . (4.22)

Indeed, the left-hand side is at most χs1,2 + κ3/2, and κ3/2 ≤ χs1,2.
Let Cr0 denote the set of plentiful r0-segment collections. Set C equal to the union

of Cr0 as r0 varies over n−1J0, nκ3/2 − 1K. For given such r0, let c ∈ Cr0 . A c-path is
an n-zigzag whose starting moment is the lowest height of an element of c; whose
ending moment is the greatest such height; and that intersects every element of c. Let
Wgtn

[︁
c-path

]︁
denote the supremum of the weights of c-paths.

Define

HighSlenderWeight
(︁
s1, s2, 1− χ;ϕ

)︁
:=
⋃︂
c∈C

{︂
Wgtn

[︁
c-path

]︁
≥ −2−1d0κ

−1s1,2

}︂
.

Recall the event UnifBddn(·) from Subsection 4.2.2. The argument to prove Theorem
1.10 proceeds by showing that, on the event UnifBddn(·)—with a choice of this event’s
parameter that will make it typical—the non-occurrence of LowSlenderWeight∗(ℓ, θ, 1−χ;ϕ)
implies the occurrence of HighSlenderWeight

(︁
s1, s2, 1− χ;ϕ

)︁
for some s1 and s2. The latter

event is then shown to be rare, implying the desired rarity of LowSlenderWeight∗(ℓ, θ, 1−
χ;ϕ).
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Recall the notion of regularity from (1.11). and that the definition of the quantity
LowSlenderWeight∗(ℓ, θ, 1− χ;ϕ) involves a constant d0.

Lemma 4.15. Suppose that χ1/3 ≤ 2−11/3d0. Then, for any zigzag ϕ from (0, 0) to (0, 1)

that is θ−1/4-regular,

UnifBdd
(︁ b
10
θ−1
)︁
∩ ¬ LowSlenderWeight∗(ℓ, θ, 1− χ;ϕ)

⊆
⋃︂

0≤s1≤s2≤1

s1,2∈[2−1−ℓ,2−ℓ]

HighSlenderWeight(s1, s2, 1− χ;ϕ) .

Proof. When ¬ LowSlenderWeight∗(ℓ, θ, 1 − χ;ϕ) occurs, there exist (x, s1), (y, s2) ∈
R× n−1Z for which 2−1−ℓ ≤ s1,2 ≤ 2−ℓ, and a (ϕ, θ, 1− χ)-close zigzag ψ from (x, s1) to
(y, s2) that satisfies

Wgtn(ψ) > −d0κ−1s1,2 . (4.23)

By our choice of b and κ, the zigzag ψ satisfies the bound⃓⃓
ψ(s)− ϕ(s)

⃓⃓
≤ bκ/2 (4.24)

for at least (1 − χ)
⃓⃓
[s1, s2] ∩ n−1Z

⃓⃓
values of s ∈ [s1, s2] ∩ n−1Z. When elements of

[s1, s2] ∩ n−1Z are identified if they differ by a multiple of κ3/2, they are partitioned
into classes which are naturally indexed by r0. Since s1,2 ≥ κ3/2, the number of classes
equals nκ3/2. At least one of these classes—call it Dr0—contains at least n−1κ−3/2(1−
χ)
⃓⃓
[s1, s2] ∩ n−1Z

⃓⃓
= κ−3/2(1− χ)

(︁
s1,2 + n−1

)︁
elements s that satisfy (4.24). Let c denote

the set of Ij/n+r0 indexed by those j/n + r0 ∈ Dr0 such that (4.24) is satisfied with
s = j/n+ r0 (where note that j/n ∈ κ3/2Z and j/n+ r0 ∈ n−1Jns1, ns2K).

Note that |c| ≥ κ−3/2(1− χ)s1,2. Thus, c is a plentiful r0-segment collection; so that
c ∈ C. We claim that

Wgtn
[︁
c-path

]︁
≥ −2−1s1,2d0κ

−1 . (4.25)

To verify this, let ψ0 denote the sub-zigzag of ψ from the entry of ψ to the lowest vertical
coordinate v− in Dr0 to its departure from the highest such coordinate v+. Note that
Wgtn

[︁
c-path

]︁
is at least Wgtn(ψ

0). To bound below the latter weight, we write ψ as a
concatenation ψ− ◦ ψ0 ◦ ψ+.

We now claim that, since ϕ is regular, the occurrence of the event UnifBddn
(︁
bθ−1

)︁
entails that Wgtn(ψ

−) and Wgtn(ψ
+) are at most

2
(︁
4χs1,2

)︁1/3
s
2/3
1,2 κ

−1 = 25/3χ1/3s1,2κ
−1.

Admitting the claim, note that, by weight additivity, Wgtn(ψ
0) equals Wgtn(ψ) −

Wgtn(ψ
−)−Wgtn(ψ

+); by (4.23), and the claim, this weight is thus seen to be at least
−s1,2d0κ−1 + 28/3χ1/3s1,2κ

−1. Since 28/3χ1/3 ≤ 2−1d0, we have verified (4.25) for all n
high enough. In view of the definition of the HighSlenderWeight event, this reduces the
proof of Lemma 4.15 to deriving the claim.

To this end, note first that bounds on Wgtn(ψ
−) and Wgtn(ψ

+) cannot be obtained
directly from Proposition 1.8, since the duration of these zigzags may be too small for
this result to offer a meaningful bound. This said, the claimed bounds follow easily
from superadditivity. We will provide only the argument for ψ−. Let (x1, s1) and (x2, v−)

denote this zigzag’s endpoints (recall from (4.22), that v− − s1 ≤ 2χs1,2). Now consider
the point (x2, v− + χs1,2). We then have

Wgtn(ψ−) ≤ Wgtn
[︁
(x1, s1) → (x2, v− + χs1,2)

]︁
−Wgtn

[︁
(x2, v−) → (x2, v− + χs1,2)

]︁
.
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Now, recall that, when ϕ is θ−1/4-regular, we have that, for any (u, h1), (v, h2) ∈ ϕ,⃓⃓
v − u

⃓⃓
≤ h

2/3
1,2 θ

−1/4 ≤ h
2/3
1,2 max(θ−50/4, nh1,2)

1/50.

In particular, this means that x1 and x2 are at most n1/50 in absolute value, and |x1−x2| ≤
(4χs1,2)

2/3(n4χs1,2)
1/50. Note that this last deduction needs 4χs1,2 ≥ θ−50/4

n for all fixed χ
and all large enough n, which condition is implied by our stronger standing assumption
that 2−ℓ ≥ θ−40

n .

We can now conclude that the event UnifBddn
(︁

b
10θ

−1
)︁

implies that the quantities
Wgtn

[︁
(x1, s1) → (x2, v− + χs1,2)

]︁
and Wgtn

[︁
(x2, v−) → (x2, v− + χs1,2)

]︁
are at most(︁

4χs1,2
)︁1/3

( b8θ
−1). We prove only the claim that this bound holds for the first term,

because a similar argument works for the second. The occurrence of UnifBddn
(︁

b
10θ

−1
)︁

entails that the parabolically adjusted weight satisfies

Wgt∪n
[︁
(x1, s1) → (x2, v− + χs1,2)

]︁
≤ b

10
θ−1 ,

while the parabolic correction term 2−1/2(x1 − x2)
2(v− + χs1,2 − s1)

−1 is bounded above

by O(
(︁
4χs1,2

)︁1/3
θ−1/2) ≤

(︁
4χs1,2

)︁1/3 b
100θ

−1 for all large enough n, since θ is assumed to
satisfy θ−1/4 ≥ C log n throughout this section.

Since bκ ≤ 8s
2/3
1,2 θ, we find that the above bound is at most

(︁
4χs1,2

)︁1/3
s
2/3
1,2 κ

−1, finishing
the proof of the claim that we sought to show.

Lemma 4.16. There exists χ0 ∈ (0, 1) such that, when χ ∈ (0, χ0), s1, s2 satisfy 0 ≤ s1 ≤
s2 ≤ 1, and s1,2 ∈ [2−1−ℓ, 2−ℓ] and ϕ is a θ−1/4-regular n-zigzag from (0, 0) to (0, 1),

P
(︂
HighSlenderWeight

(︁
s1, s2, 1− χ;ϕ

)︁)︂
≤ exp

{︁
− d2κ

−3/22−ℓ
}︁
.

Proof. Note that

|C| ≤ nκ3/2
⌈χs1,2κ−3/2⌉∑︂

k=0

(︃
⌈s1,2κ−3/2⌉

k

)︃
≤ nκ3/2 · s1,2κ−3/2

(︃
⌈s1,2κ−3/2⌉
⌈χs1,2κ−3/2⌉

)︃
,

where the latter bound invokes χ ≤ 1/4.
Now let c ∈ C. We now proceed to express our present circumstance in the notation

of Proposition 4.5. Given c, let r = n(v+ − v−), where v− and v+ are the lowest and
highest vertical coordinates assumed by elements in the plentiful r0-segment collection
given by c. Note that, when χ0 is small enough, 1

2ns1,2 ≤ r ≤ ns1,2. We will now apply

Proposition 4.5 with r = r and κ = κ
(︁
n
r

)︁2/3 ∈ b−1θ · [8, 16]. In a detail to ensure
formal accuracy of the application, we apply a vertical translation that sends v− to zero.
Furthermore, given the collection of horizontal segments of length bκ forming c, let c∗
be the collection obtained by multiplying each of them by the factor

(︁
n
r

)︁2/3
, and their

vertical heights by n
r . Now, by the scaling principle, we conclude that

(︁
r
n

)︁1/3
Wgtn

[︁
c-path

]︁
is equal in law to Wgtr

[︁
c∗-path

]︁
. Note that, by the assumed regularity of ϕ, the horizontal

segments of c are confined in an interval of length s1,2
2/3(ns1,2)

1/30 ≤
(︁
rn−1

)︁2/3
r1/20,

and hence the elements of c∗ are contained in a horizontal interval of length r1/20. Thus,
by Proposition 4.5, we learn that

P
(︂
Wgtn

[︁
c-path

]︁
≥ −s1,2d1κ−1

)︂
≤ exp

{︁
− d2κ

−3/22−ℓ
}︁
.

Hence, if 2−1d0 ≥ d1,

P
(︂
HighSlenderWeight

(︁
s1, s2, 1−χ;ϕ

)︁)︂
≤ nκ3/2·s1,2κ−3/2

(︃
⌈s1,2κ−3/2⌉
⌈χs1,2κ−3/2⌉

)︃
exp

{︁
−d2κ−3/22−ℓ

}︁
.
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Since κ ∈ 2−2ℓ/3b−1θ · [8, 16], s1,2 ∈ [2−1−ℓ, 2−ℓ], θ−1/4 ≥ C(log n) and b > 0 is given, we
may choose χ0 ∈ (0, 1) small enough that this right-hand side is at most the quantity
exp

{︁
− 2−1d2κ

−3/2
}︁

. Lemma 4.16 follows by relabelling d2 > 0.

Proof of Theorem 1.10. By Lemmas 4.15 and 4.16,

P
(︂
UnifBdd

(︁ b
10
θ−1
)︁
∩ ¬ LowSlenderWeight∗(ℓ, θ, 1− χ;ϕ)

)︂
≤ (n+ 1)2 exp

{︁
− d2(b

−1θ)−3/2
}︁

≤ exp
{︁
− d2

2
(b−1θ)−3/2

}︁
.

The factor (n+ 1)2 arises from the union bound taken over values of s1 and s2 in Lemma
4.15; it is absorbed during the second inequality in view of θ−1/4 ≥ C(log n). Further, by
(4.4),

P
(︂
¬UnifBdd

(︁ b
10
θ−1
)︁)︂

≤ exp
{︁
− Cθ−3/2

}︁
.

For a suitably high choice of n0 ∈ N, the theorem is obtained from Proposition 1.8 by
assembling the preceding estimates and by adjusting the constant d2 > 0.

We are ready to prove Theorem 1.9. Alongside the result just proved, the main
ingredients are Theorem 1.4, which asserts that the polymer ρn is typically regular with
high probability; and the FKG inequality. Indeed, from the latter, we will learn that
conditioning on ρn has a negative effect, so that the proof will be completed by invoking
Theorem 1.10 and the observation that LowSlenderExcursion(ℓ, θ, 1−χ; ρn) is a decreasing
event in the remaining environment.

Proof of Theorem 1.9. We start by recording some notation in order to state a
stochastic domination lemma. A noise field will be viewed as a random function sending
R × n−1Z to R. Let X and Y denote two such. For any subset A of R × n−1Z, Y
stochastically dominatesX on A if there exists a coupling ofX and Y such that, whenever
(j, u, v) ∈ Z×R2 satisfies u < v and {j/n}× [u, v] ⊂ A, the bound Y (v, j/n)−Y (u, j/n) ≥
X(v, j/n)−X(u, j/n) holds. An event E that is measurable with respect to the natural
σ-algebra generated by the increments of the Brownian motion on A is called decreasing
on A if P(Y ∈ E) ≤ P(X ∈ E) whenever Y stochastically dominates X on A.

For a given n-zigzag ϕ, let the exterior Ext(ϕ) of ϕ denote
(︁
R × n−1Z

)︁
\ ϕ. Recall

from Sections 1.6 and 1.7 that our scaled noise environment is given by an ensemble of
independent two-sided Brownian motions, thought of as a function R× 1

nZ→ R.

Lemma 4.17. Given a zigzag ϕ, and two independent noise environments Ω and Ω̃, the
restriction of ˜︁Ω to Ext(ρn) stochastically dominates Ω on this set.

Proof. Consider the noise environment that is given by Ω on ρn and by ˜︁Ω on Ext(ρn).
When this environment is conditioned on the event that there exists no n-zigzag from
(0, 0) to (0, 1) whose weight determined by this environment exceeds that of ρn, the result
is a distributional copy of Ω. The event in the conditioning is negative for Ω on Ext(ρn).
The system Ω on Ext(ρn) is a countable collection of Brownian motions whose domains
are either copies of the real line or semi-infinite real intervals; indeed, to each height
in y ∈ n−1Z are associated one or two intervals, formed by the sometimes vacuous
removal from R× {y} of this set’s intersection with ρn. The FKG inequality for products
of independent Brownian motions is implied by [Bar05, Theorems 3 and 4]. Applying it,
we obtain the lemma.

The next lemma says that the polymer is typically regular.

Lemma 4.18. Given C > 0, there exists c > 0 such that, for all large n, and for θ with
C log n < θ−1/4 < Cn

1
10 , with probability at least 1 − exp(−cθ−1/2), the polymer ρn is

θ−1/4-regular.
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Proof. By Theorem 1.4 and a union bound over all h1, h2 ∈ 1
nZ ∩ [0, 1], we get

P
(︁
ρn is θ−1/4-regular

)︁
≥ 1− exp

{︁
− cθ−3/4/ log n)

}︁
≥ 1− exp

{︁
− cθ−1/2

}︁
,

using the upper bound on θ.

Note that θ in the hypothesis of Theorem 1.9 satisfies C log n < θ−1/4 < n
1

160 since
2ℓ ≥ 1. Theorem 1.9 now follows from Theorem 1.10; the just noted bound; Lemma
4.17; the event LowSlenderExcursion(ℓ, θ, 1− χ; ρn) being decreasing on Ext(ρn); and that
LowSlenderExcursion(ℓ, θ, 1− χ; ρn) implies LowSlenderExcursion∗(ℓ, θ, 1− χ; ρn).

We finish with a brief discussion regarding the point that Theorem 1.10 bounds
the probability of LowSlenderExcursion∗(ℓ, θ, 1− χ;ϕ) for a fixed zigzag ϕ while Theorem
1.9 only bounds the probability of LowSlenderExcursion(ℓ, θ, 1 − χ; ρn). In short, this is
because ϕ is deterministic and hence independent of the noise environment, while
ρn is highly correlated with the latter. Namely, notice that the proof of Theorem 1.9
uses Theorem 1.10, along with an FKG inequality; the latter implies that the noise
environment off ρn is stochastically smaller than a typical environment, this rendering
LowSlenderExcursion(ℓ, θ, 1 − χ; ρn) more likely. However, the same cannot be said for
LowSlenderExcursion∗(ℓ, θ, 1−χ; ρn), since the environment on ρn is, in fact, stochastically
larger than a typical one—indeed, it is easily seen that the path ρn itself obstructs the
event LowSlenderExcursion∗(ℓ, θ, 1− χ; ρn) from occurring.

5 There are few cliffs along the geodesic

Here we derive Theorem 1.11. In a first subsection, we reduce to a principal compo-
nent, Proposition 5.1; and, in a second, we prove this proposition. Theorem 1.11 will
find application in the investigation of Brownian LPP under dynamical perturbation in
[GH20a]. This study is undertaken in scaled coordinates, and uses a scaled counterpart
to Theorem 1.11. In the third and final subsection, the counterpart, Proposition 5.6, is
presented and proved.

5.1 Proving Theorem 1.11, a main component admitted

Let γ ⊂ [0, n]2 denote any staircase between (0, 0) and (n, n). We may associate to γ
the index set I(γ) (that is specified before the theorem), just as we did to the geodesic
staircase Γn.

For now, let α be any given value in (1/2, 1) for which αm ∈ N; the lower bound
α0 > 1/2 on this parameter’s value will be set later in the proof of Theorem 1.11.
Consider the class Θ of difference functions Ψ : J0,mK → J0, nK that are associated to
staircases γ ⊂ [0, n]2 with (0, 0), (n, n) ∈ γ and

⃓⃓
I(γ)

⃓⃓
≥ αm.

Let Γ(Ψ) ⊂ [0, n]2 denote the staircase of maximum energy that contains (0, 0) and
(n, n) and whose Z-difference function as specified by (1.12) is equal to Ψ.

Our approach to proving Theorem 1.11 is governed by the bound

P
(︁⃓⃓
I
⃓⃓
≥ αm

)︁
≤
∑︂
Ψ∈Θ

P
(︂
E
(︁
Γ(Ψ)

)︁
≥ E(Γn)

)︂
.

This right-hand side is in fact equal to
∑︁

Ψ∈ΘP
(︂
E
(︁
Γ(Ψ)

)︁
= E(Γn)

)︂
.

The next two results form the backbone of the proof of Theorem 1.11.

Proposition 5.1. There exist positive constants H and h such that, for A high enough
and Ψ ∈ Θ,

P
(︂
E
(︁
Γ(Ψ)

)︁
≥ E(Γn)

)︂
≤ H exp

{︁
− hn

}︁
. (5.1)
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The quantity Θ grows at a rate that is exponential in n/A when α is close to one.

Lemma 5.2. ⃓⃓
Θ
⃓⃓
≤ 3αm

(︃
m+ 1

αm

)︃(︃
n+ 1

(1− α)m+ 1

)︃
. (5.2)

We close out the proof of Theorem 1.11 before deriving these two inputs.

Proof of Theorem 1.11. By Proposition 5.1 and Lemma 5.2, we see that

P
(︁⃓⃓
I
⃓⃓
≥ αm

)︁
≤ 3αm

(︃
m+ 1

αm

)︃(︃
n+ 1

(1− α)m+ 1

)︃
·H exp

{︁
− hn

}︁
.

Since m ∈ [n/A, n/A+ 1), the right-hand factor arising from Lemma 5.2 is at most

3α(A
−1n+1) · (n/A+ 1) · exp

{︁
(nA−1 + 1)K(α)

}︁
· (n+ 1) exp

{︁
(n+ 1)K

(︁
(1− α)A−1

)︁}︁
,

where K : (0, 1) → R denotes the entropy rate K(p) = p log p + (1 − p) log(1 − p). Our
choice of A ∈ N made so that (5.1) holds as well as 3α(A

−1n+1) ≤ ehn/4, we specify
α0 ∈ (1/2, 1) to be high enough that the last display with any α ∈ [α0, 1] is less than ehn/2

when n is supposed to be sufficiently high. We obtain Theorem 1.11 by further relabelling
the parameter h > 0 to be one-half of its present value.

Proof of Lemma 5.2. For any staircase γ that offers a function Ψ belonging to Θ, let
J(γ) denote the set of the αm lowest elements of I(γ). Further set Jc(γ) = J0,mK \ J(γ).
The element Ψ of Θ associated to γ may be surmised from three pieces of data:

• the set J(γ);

• the values Ψ(j) indexed by j ∈ J(γ);

• and the remaining values, namely Ψ(i) for i ∈ Jc(γ).

The number of choices for J(γ) is equal to
(︁
m+1
αm

)︁
. For each index j ∈ J(γ), Ψ(j) is valued

in {0, 1, 2}, so that there are at most 3αm choices for the second piece of data. The
remaining values, in the third piece of data, are indexed by i ∈ Jc(γ); to each such
index i is associated the partial sum p(i) of Ψ(j) over j ∈ Jc(γ) with j ≤ i. The index
set Jc(γ) has cardinality m + 1 − αm and may be identified with the integer interval
J0, (1 − α)mK via an increasing map I : J0, (1 − α)mK → Jc(γ). The third item data is
specified by the function mapping J0, (1 − α)mK to J0, nK given by i → (p ◦ I)(i). This
function is increasing, so that it is determined by its values; thus, the number of such
functions is at most

(︁
n+1

(1−α)m+1

)︁
.

The right-hand side of (5.2) is a product of three factors. These factors have been
verified to offer respective upper bounds on the cardinality of the set of choices for
the second, first and third pieces of displayed data. Thus, the proof of Lemma 5.2 is
complete.

5.2 Energy near a given cliff-strewn route is unlikely to attain the maximum

To complete the proof of Theorem 1.11, it remains to give the next derivation.

Proof of Proposition 5.1. Let Ψ ∈ Θ. Let P denote the set of points of the form(︁∑︁i
j=0 Ψ(j), iA

)︁
for i ∈ J0,mK. Let Γ0(Ψ) denote the almost surely unique staircase

between (0, 0) and (n, n) that has maximum energy among those that visit every element
in P and that, on arrival at any such element, immediately jump upwards by one unit.
The staircase Γ0(Ψ) offers a coarse-grained description of any staircase specifying Ψ,
including the staircase Γ(Ψ) among these of maximum energy.

The plan of attack for proving Proposition 5.1 has three steps:
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1. We wish to argue that the energies of Γ(Ψ) and its coarse-grained cousin Γ0(Ψ)

are typically similar. Indeed, we will find positive constants H and h such that, for
r ≥ 0,

P
(︂
E
(︁
Γ(Ψ)

)︁
− E

(︁
Γ0(Ψ)

)︁
≥ (5 + r)nA−1/2

)︂
≤ H exp

{︁
− hnr2

}︁
. (5.3)

2. We will then need to analyse E
(︁
Γ0(Ψ)

)︁
. This is the maximum energy of a staircase

from (0, 0) to (n, n) that visits every point
(︁∑︁i

j=0 Ψ(j), iA
)︁

for i ∈ J0,mK. We will
argue that this maximum energy is unchanged in law if the vector of differences
between consecutively visited points is reordered so that these vectors are pre-
sented in decreasing order of gradient. Because Ψ ∈ Θ, the reordered collection
of points-to-be-visited contains an element whose distance from the diagonal has
order n.

3. Thus, E
(︁
Γ0(Ψ)

)︁
has the law of the maximum energy of a staircase from (0, 0) and

(n, n) that visits a given point at a distance of order n from the diagonal. We will
exploit this information to argue that there exist positive constants K and κ such
that

P
(︂
E
(︁
Γ0(Ψ)

)︁
≥ (2− κ)n

)︂
≤ K exp

{︁
− κn

}︁
. (5.4)

The sought bound (5.1) will then emerge directly from (5.3) and (5.4).

In three subsections, we accomplish these respective steps.

5.2.1 The coarse-grained energetic approximation: deriving (5.3)

To derive (5.3), we split the staircases Γ(Ψ) and Γ0(Ψ) into pieces that traverse consecu-
tive strips of height A. The staircase Γ(Ψ) is divided into pieces by splittling at its points
of entry to the levels {iA} × R indexed by i ∈ J0,mK. The coarse-grained counterpart
Γ0(Ψ) is partitioned by splitting at the points

(︁∑︁i
j=0 Ψ(j), iA

)︁
indexed by the same set.

The elements of the two partitions may be paired according to which strip of height A
they cross. If the difference in energy between the fragment of Γ(Ψ) crossing the ith strip

and its counterpart for Γ0(Ψ) is denoted by Ei, then E
(︁
Γ(Ψ)

)︁
− E

(︁
Γ0(Ψ)

)︁
=
∑︁⌈n/A⌉

i=1 Ei.
The pair of fragments involved in specifying Ei each begin with a unit vertical movement,
from level (i − 1)A to level (i − 1)A + 1. With h1 = (i − 1)A + 1 and h2 = iA, note thus
that, for i ∈ J1, ⌊n/A⌋K, Ei takes the form M

[︁
(u, h1) → (v, h2)

]︁
−M

[︁
(x, h1) → (y, h2)

]︁
for

a choice of (u, v, x, y) that satisfy the hypotheses of the next result.

Lemma 5.3. Let u, v ∈ N and x, y ∈ R satisfy u ≤ v, x ≤ y, x ∈ [u, u+1] and y ∈ [v, v+1].
Let h1, h1 ∈ N satisfy h1 ≤ h2. Writing h1,2 = h2 − h1, we have that

P

(︄
sup

x∈[u,u+1]
y∈[v,v+1]

⃓⃓⃓
M
[︁
(u, h1) → (v, h2)

]︁
−M

[︁
(x, h1) → (y, h2)

]︁⃓⃓⃓
≥ 4
(︁
h1,2+1

)︁1/2
+
(︁
h1,2+1

)︁−1/6
r

)︄
(5.5)

is at most C exp
{︂
− c r2

(h1,2+1)1/3

}︂
.

The tail of the remainder term indexed by i = ⌈n/A⌉ is also treated by Lemma 5.3
with h1,2 assuming a value in J0, A− 1K. We derive (5.3) and then prove this lemma.

Proof of (5.3). We rely on the bound

E
(︁
Γ(Ψ)

)︁
− E

(︁
Γ0(Ψ)

)︁
≤

⌊n/A⌋∑︂
i=1

Ei +R ≤ (R− 4A1/2) + 4A1/2 +

⌊n/A⌋∑︂
i=1

[︁
4A1/2 + (Ei − 4A1/2)+

]︁
≤ (4n+A)A−1/2 + (R− 4A1/2)+

⌊n/A⌋∑︂
i=1

(Ei − 4A1/2)+,
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where R is the remainder term (and a = max(a, 0)). By Lemma 5.3, the random variables
Xi = (Ei − 4A1/2)+ are independent and satisfy the uniform tail bound P(Xi ≥ r) ≤
Ce−cr2 . This tail bound is also satisfied by R̂ = (R− 4A1/2)+. By Proposition 4.8(2), we
thus see that, for t ≥ c⌈n/A⌉,

P

(︃ ⌈n/A⌉∑︂
i=1

Xi + R̂ ≥
⌈n/A⌉∑︂
i=1

E(Xi) + t

)︃
≤ e−Ct2An−1

.

Observing that E(Xi) = O(1), we see that, for a large enough A, and for all large n,

P
(︂
E
(︁
Γ(Ψ)

)︁
− E

(︁
Γ0(Ψ)

)︁
≥ (5 + r)nA−1/2

)︂
≤ e−hnr2 ,

for some constant h > 0.
Proof of Lemma 5.3. The argument is simple and relies on using superadditivity to

bound the expression on the left-hand side of (5.5) by a linear combination of passage
times between deterministic points, which is then easy to bound using the well-known
correspondence between passage time in Brownian LPP between fixed points and the
largest eigenvalue of a matrix drawn from a suitable Gaussian unitary ensemble.

We now carry out the first part of the above strategy. Suppose first that v ≥ u + 1.
Note that

M
[︁
(x, h1) → (u+ 1, h1)

]︁
+M

[︁
(u+ 1, h1) → (v, h2)

]︁
+M

[︁
(v, h2) → (y, h2)

]︁
≤ M

[︁
(x, h1) → (y, h2)

]︁
≤ M

[︁
(x, h1) → (u+ 1, h2)

]︁
+M

[︁
(u+ 1, h1) → (v, h2)

]︁
+M

[︁
(v, h1) → (y, h2)

]︁
.

These bounds hold also when the replacements x→ u and y → v are made. Thus,⃓⃓⃓
M
[︁
(x, h1) → (y, h2)

]︁
−M

[︁
(u, h1) → (v, h2)

]︁⃓⃓⃓
≤ M

[︁
(x, h1) → (u+ 1, h2)

]︁
−M

[︁
(x, h1) → (u+ 1, h1)

]︁
+M

[︁
(v, h1) → (y, h2)

]︁
−M

[︁
(v, h2) → (y, h2)

]︁
≤ M

[︁
(u, h1) → (u+ 1, h2)

]︁
−M

[︁
(u, h1) → (u+ 1, h1)

]︁
(5.6)

+M
[︁
(v, h1) → (v + 1, h2)

]︁
−M

[︁
(v, h2) → (v + 1, h2)

]︁
.

Here, the latter inequality depended on

M
[︁
(u, h1) → (u+ 1, h2)

]︁
≥M

[︁
(u, h1) → (x, h1)

]︁
+M

[︁
(x, h1) → (u+ 1, h2)

]︁
and

M
[︁
(u, h1) → (u+ 1, h1)

]︁
=M

[︁
(u, h1) → (x, h1)

]︁
+M

[︁
(x, h1) → (u+ 1, h1)

]︁
as well as

M
[︁
(v, h1) → (v + 1, h2)

]︁
≥M

[︁
(v, h1) → (y, h2)

]︁
+M

[︁
(y, h2) → (v + 1, h2)

]︁
and

M
[︁
(v, h2) → (v + 1, h2)

]︁
=M

[︁
(v, h2) → (y, h2)

]︁
+M

[︁
(y, h2) → (v + 1, h2)

]︁
.

Note that the right-hand expression in (5.6) does not depend on x or y, so that the
upper bound on the left-hand term is valid when the supremum over x ∈ [u, u+ 1] and
y ∈ [v, v+ 1] is taken. For n ∈ N and s ≥ 0, let Gn(s) denote the uppermost eigenvalue of
an n× n random matrix drawn from the Gaussian unitary ensemble with entry variance
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s. Viewing the right-hand expression in (5.6) as a sum of four terms, we see that the first
and third are independent and have the law of Gh12+1(1), and the second and fourth are
independent and have the law of G1(1). The latter two clearly have Gaussian tails. We
also use the following tail estimate of Gh12+1(1), which is the content of [Aub05, (5),(6)].
For all r ≥ 0,

P
(︂
Gh12+1(1)− 2(h12 + 1)1/2 ≥ r

(h12 + 1)1/6

)︂
≤ C exp

{︃
− cmax

(︂
r3/2,

r2

(h1,2 + 1)1/3

)︂}︃
.

(5.7)
The lemma in the case that v ≥ u+ 1 now follows by a simple union bound over the

possibilities that one of the four quantities is bigger than r
4(h12+1)1/6

.

Suppose then that v < u + 1. Since u, v ∈ N and v ≥ u, we have v = u. Thus,
M
[︁
(u, h1) → (v, h2)

]︁
= 0. Note that

M
[︁
(u, h1) → (u+ 1, h2)

]︁
(5.8)

≥ M
[︁
(u, h1) → (x, h1)

]︁
+M

[︁
(x, h1) → (y, h2)

]︁
+M

[︁
(y, h2) → (u+ 1, h2)

]︁
and that

M
[︁
(u, h1) → (u+ 1, h2)

]︁
(5.9)

≤ M
[︁
(u, h1) → (x, h2)

]︁
+M

[︁
(x, h1) → (y, h2)

]︁
+M

[︁
(y, h1) → (u+ 1, h2)

]︁
.

Hence, by rearranging, we obtain

M
[︁
(x, h1) → (y, h2)

]︁
≥ M

[︁
(u, h1) → (u+ 1, h2)

]︁
−M

[︁
(u, h1) → (x, h2)

]︁
−M

[︁
(y, h1) → (u+ 1, h2)

]︁
.

Note further that

M
[︁
(u, h1) → (x, h2)

]︁
+M

[︁
(x, h2) → (u+ 1, h2)

]︁
≤M

[︁
(u, h1) → (u+ 1, h2)

]︁
,

and that

M
[︁
(u, h1) → (y, h1)

]︁
+M

[︁
(y, h1) → (u+ 1, h2)

]︁
≤M

[︁
(u, h1) → (u+ 1, h2)

]︁
.

Applying the two preceding bounds, we find that

M
[︁
(x, h1) → (y, h2)

]︁
≥ −M

[︁
(u, h1) → (u+ 1, h2)

]︁
+M

[︁
(x, h2) → (u+ 1, h2)

]︁
+M

[︁
(u, h1) → (y, h1)

]︁
.

From this bound, and (5.8), we see that

−M
[︁
(u, h1) → (u+ 1, h2)

]︁
+M

[︁
(x, h2) → (u+ 1, h2)

]︁
+M

[︁
(u, h1) → (y, h1)

]︁
≤ M

[︁
(x, h1) → (y, h2)

]︁
≤ M

[︁
(u, h1) → (u+ 1, h2)

]︁
−M

[︁
(u, h1) → (x, h1)

]︁
−M

[︁
(y, h2) → (u+ 1, h2)

]︁
.

If the first line takes the form A1 + A2 + A3, then A1 has the law of Gh1,2+1(1), while
the suprema of |A2| and |A3| over x ∈ [u, u + 1] and y ∈ [v, v + 1] are stochastically
dominated by the supremum of standard Brownian motion on the interval [0, 1]. This
statement is equally true of the third line. Since M

[︁
(u, h1) → (v, h2)

]︁
= 0, Lemma 5.3

when v = u follows from (5.7) and an upper tail bound on the supremum of Brownian
motion obtained from the reflection principle and a standard bound on the Gaussian tail.
This completes the proof of Lemma 5.3.
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5.2.2 Reordering the trajectory of the coarse-grained cousin

We now analyse E
(︁
Γ0(Ψ)

)︁
. We first argue that the path Γ0(Ψ) may be reordered in order

to visit a point far away from the diagonal without a change to the law of its energy. We
will present notation and a general form Lemma 5.4 for such a rearrangement result
before discussing the energy E

(︁
Γ0(Ψ)

)︁
.

Let P denote a collection of points in J0, nK2 with distinct y-coordinates, which lie
in the range of a staircase that begins at (0, 0) and ends at (n, n). We write Mn[P ] for
the supremum of the energies of staircases that begin at (0, 0); end at (n, n); that visit
every element of P ; and that, on visiting any element (m1,m2) of P for which m2 < n,
immediately jump upwards by one step, to (m1,m2 +1). When P is a singleton set whose
element is (m1,m2), we abuse notation, and denote Mn[P ] by Mn[m1,m2].

Suppose that (u, 0) ∈ P for some u ∈ J0, nK. Thus, the staircases involved in specifying
Mn[P ] begin at (0, 0); remain on the x-axis until (u, 0); and end at (n, n).

To the collection P , we may add the point (n, n). The resulting set of points may be
ordered so that each successive element lies strictly upwards, and to the right, of its
predecessor. To each consecutive pair in this sequence, we may associate the rectangle
whose lower-left corner is the former element in the pair and whose upper-right corner
is the latter. Any staircase from (u, 0) to (n, n) that visits every element of P crosses
all of these rectangles, passing out of the upper-right corner of one into the lower-left
corner of the next.

The rectangles may be placed in increasing order of width, and translated so that the
lower-left corner of the lowest rectangle equals (0, 0), and the upper-right corner of one
rectangle is the lower-left corner of the next one. Note that the upper-right corner of
the last rectangle is (n− u, n).

Let P→ denote the collection of upper-right corners of the rectangles when so placed.

Lemma 5.4. Let u ∈ J0, nK. Let P denote a collection of points in J0, nK2 which satisfies
the condition in the second paragraph of this section and which contains (u, 0). Then
Mn[P ] and Mn[P

→] are equal in law.

Proof. The quantity Mn[P ] equals A1+A2, where A1 = B(0, u)−B(0, 0) is the energy
accrued along (0, 0) → (u, 0) and where A2 is the sum over the rectangles associated to
P of the maximum energy available in a staircase that crosses the rectangle from its
lower-left to its upper-right corner. The quantity Mn[P

→] equals A1 +B2, where B2 is
the sum, counterpart to A2, over rectangles associated to P→. The two collections of
rectangles are disjoint, except for endpoint intersections, and one is a rearrangement of
the other given by translations applied to the elements. So A2 and B2 are equal in law,
conditionally on the value of A1. This proves the lemma.

We now employ Lemma 5.4 to find an upper bound on the energy E
(︁
Γ0(Ψ)

)︁
of the

coarse-grained staircase. In the notation of Lemma 5.4, this energy takes the form

E
(︁
Γ0(Ψ)

)︁
=Mn[P ] , (5.10)

where P =
{︁(︁∑︁i

j=0 Ψ(j), iA
)︁
: i ∈ J0,mK

}︁
∪
{︁
(n, n)

}︁
. By this lemma, Mn[P ] and Mn[P

→]

are equal in law. Note that if α ≥ 1/2 then P→ contains a point of the form
(︁
κm/2, Am/2

)︁
where κ ≤ 2 is determined by the given element Ψ ∈ Θ that we are considering. Thus,

Mn[P
→] ≤Mn

[︁(︁
κm/2, Am/2

)︁]︁
. (5.11)

5.2.3 The energetic penalty for highly off-diagonal travel: deriving (5.3)

In this third step, we present a tool indicating how Mn

[︁
(καm,Aαm)

]︁
typically falls far

below the typical energy maximum 2n for the route (0, 0) → (n, n). We will then promptly
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be able to obtain (5.4). Finally, from (5.3) and (5.4), we will obtain (5.1), the derivation
of which is the final step in proving Theorem 1.11.

Lemma 5.5. Let µ ∈ (0, 1). Letm1,m2 ∈ J0, nK satisfym2 ∈
[︁
µn, (1−µ)n

]︁
and

⃓⃓
m2−m1

⃓⃓
≥

µn. Then there exist positive µ-dependent K and κ such that

P
(︁
Mn[m1,m2] ≥ (2− κ)n

)︁
≤ Ke−κn .

Proof. Note that Mn[m1,m2] = Mn

[︁
(0, 0) → (m1,m2)

]︁
+Mn

[︁
(m1,m2) → (n, n)

]︁
is a

sum of two independent terms having the respective distributions m1/2
1 Gm2+1(1) and

(n−m1)
1/2Gn−m2+1(1). In an expression for this sum arising by writing the two G terms

as a sum of a leading order term and a random fluctuation, the deterministic part is

2
(︁
m

1/2
1 (m2 + 1)1/2 + (n−m1)

1/2(n−m2 + 1)1/2
)︁
.

This term falls short of 2n by a quantity that grows linearly in n under the hypotheses
of the lemma. The fluctuation term in the sum equals m

1/2
1 (m2 + 1)−1/6R1 + (n −

m1)
1/2(n −m2 + 1)−1/6R2 where the R-terms are independent random variables that

satisfy P
(︁
R ≥ r

)︁
≤ Ce−cr3/2 for r ≥ 0. By our hypothesis on m2, the fluctuation term is

at most a constant multiple of n1/3(R1 +R2). Thus the fluctuation term exceeds one-half
of the shortfall of the leading term with probability at most Ke−κn for suitable positive
K and κ. Decreasing the value of κ > 0 completes the proof of Lemma 5.5.

From Lemma 5.5, we learn that for κ,A as in (5.11),

P
(︂
Mn

[︁
(κm/2, Am/2)

]︁
≥ (2− κ)n

)︂
≤ K exp

{︁
− κn

}︁
for suitable positive K and κ not depending on A. Thus, we confirm (5.4) via (5.10).

From (5.3) and (5.4), we find that

P
(︂
E
(︁
Γ(Ψ)

)︁
≥
(︁
(2− κ) + (5 + r)A−1/2

)︁
n
)︂
≤ H exp

{︁
− hnr2

}︁
+K exp

{︁
− κn

}︁
.

Setting r = 1 and choosing A high enough that 6A−1/2 ≤ κ/2, we learn that

P
(︂
E
(︁
Γ(Ψ)

)︁
≥ (2− κ/2)n

)︂
≤ H exp

{︁
− hn

}︁
,

where we have relabelled the positive constants H and h.
Using the bound Lemma 3.1(2) on the lower tail of the uppermost GUE eigenvalue,

we have
P
(︂
E(Γn) ≤ 2n− xn1/3

)︂
≤ C exp

{︁
− cx3/2

}︁
for x ≥ 0. Setting x equal to (c ∧ κ/4)n2/3, we confirm from the two preceding displays
that (5.1) holds, after suitable adjustment to the positive values of H and h. This bound
derived, the proof of Proposition 5.1 is complete, and, with it, the derivation of the
elements needed for Theorem 1.11.

5.3 Few cliffs in scaled coordinates

In [GH20a], use is made of a scaled counterpart to Theorem 1.11. We finish by
presenting the notation needed to express this result; by stating it as Proposition 5.6;
and by deriving it from Theorem 1.11.

We start by recalling some notation: ρn denotes the polymer ρn
[︁
(0, 0) → (0, 1)

]︁
.

For i ∈ J0, nK, ρn(i/n) equals the supremum of the set
{︁
x ∈ R : (x, i/n) ∈ ρn

}︁
. The

sequence
{︁
ρn(i/n) : i ∈ J0, nK

}︁
records the horizontal coordinates of departures of the

polymer ρn from the consecutive horizontal intervals that it traverses. Indeed, the
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projections to R of the horizontal intervals of ρn take the form [0, ρn(0)] and
[︁
ρn
(︁
(i −

1)/n
)︁
− 2−1n−2/3, ρn(i/n)

]︁
for i ∈ J1, nK. Thus, by writing ω0 = ρn(0) and ωi = ρn(i/n)−

ρn
(︁
(i− 1)/n

)︁
+ 2−1n−2/3 for i ∈ J1, nK, the lengths of the consecutive horizontal intervals

of ρn are recorded in the sequence
{︁
ωi : i ∈ J0, nK

}︁
. The unscaled preimage R−1

n (ρn) of
ρn has endpoints with horizontal coordinates zero and n, so the form (1.3) of the scaling
map Rn : R2 → R2 implies that

∑︁n
i=0 ωi = 2−1n1/3.

Let β1 > 0 and β2 ∈ (0, 1). The polymer ρn is said to advance horizontally with
(β1, β2)-steadiness if the cardinality of the set of i ∈ J0, nK for which ωi ≥ β1n

−2/3 is at
least β2n.

Proposition 5.6. There exist β1 > 0, β2 ∈ (0, 1), h > 0 and n0 ∈ N such that, for n ≥ n0,
the probability that ρn fails to advance horizontally with (β1, β2)-steadiness is at most
e−hn.

Proof. For i ∈ J0, nK, let Wi denote the length of the horizontal interval at which
Γn intersects R × {i}. The geodesic Γn maps to the polymer ρn under the scaling
map Rn from Subsection 1.7.1. Recall that ωi denotes the length of the horizontal
interval at which ρn intersects R× {i/n}. The form of the scaling map thus dictates that
ωi = 2−1n−2/3Wi.

Suppose that, for some i ∈ J0,m− 1K, Ψ(i) ≥ 2. The sum
∑︁(i+1)A−1

j=iA Wj is readily seen
to be at least two. Thus, there is at least one j ∈ JiA, (i+ 1)A− 1K for which Wj ≥ 2A−1.

If
⃓⃓
I(Γn)

⃓⃓
≤ αm, then the cardinality of the set of i ∈ J0,mAK for which ωi ≥

2A−1n−2/3 is thus seen to be at least (1 − α)m. In the language of Theorem 1.11, the
event that

⃓⃓
I(Γn)

⃓⃓
≤ αm entails that ρn advances horizontally with (β1, β2)-steadiness,

for β1 = 2A−1, β2 = (1−α)
A , and for n at least a level n0 determined by β2.

Thus Theorem 1.11 implies Proposition 5.6.
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