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Abstract

The energy and geometry of maximizing paths in integrable last passage percolation
models are governed by the characteristic KPZ scaling exponents of one-third and
two-thirds. When represented in scaled coordinates that respect these exponents, this
random field of paths may be viewed as a complex energy landscape. We investigate
the structure of valleys and connecting pathways in this landscape. The routed
weight profile R — R associates to z € R the maximum scaled energy obtainable
by a path whose scaled journey from (0, 0) to (0, 1) passes through the point (z, 1/2).
Developing tools of Brownian Gibbs analysis from [Ham22] and [CHH19], we prove
an assertion of strong similarity of this profile for Brownian last passage percolation
to Brownian motion of rate two on the unit-order scale. A sharp estimate on the rarity
that two macroscopically different routes in the energy landscape offer energies close
to the global maximum results. We prove robust assertions concerning modulus of
continuity for the energy and geometry of scaled maximizing paths, that develop the
results and approach of [HS20], delivering estimates valid on all scales above the
microscopic. The geometry of excursions of near ground states about the maximizing
path is investigated: indeed, we estimate the energetic shortfall of scaled paths forced
to closely mimic the geometry of the maximizing route while remaining disjoint from it.
We also provide bounds on the approximate gradient of the maximizing path, viewed
as a function, ruling out sharp steep movement down to the microscopic scale. Our
results find application in a companion study [GH20a] of the stability, and fragility, of
last passage percolation under a dynamical perturbation.
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1 Introduction

1.1 KPZ universality, last passage percolation models, and scaled coordinates

The 1 + 1 dimensional Kardar-Parisi-Zhang [KPZ] universality class includes many
microscopic models in which a random interface is suspended over a one-dimensional
domain, whose growth in a direction normal to the surface competes with a smoothening
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surface tension in the presence of a local force that randomly roughens the surface.
Many planar last passage percolation [LPP] models exhibit these characteristics. In a
planar LPP model, directed paths, moving in directions in the first quadrant, are assigned
energy via a random environment, which is independent in disjoint regions. This energy
is assigned by integrating the environment’s value along the path. For a given pair of
planar points, the directed path between them attaining the maximum energy is called a
geodesic.

For LPP models lying in the KPZ class, a geodesic moving in a non-axial direction,
crossing a large distance n has an energy that is typically linear in n with a standard
deviation of order n'/3. The associated random interface mentioned at the outset is
the function obtained when the lower geodesic endpoint is held fixed, and the geodesic
energy is a function of the other endpoint varying horizontally. In this particular case,
where the first endpoint is fixed, the energy profile is termed ‘narrow wedge’. Non-trivial
correlations in the interface occur between points with separation of order n2/3. The
same exponent governs the related notion of transversal fluctuation of the geodesic from
the straight line joining its endpoints. Despite the predicted universality, these assertions
have been rigorously demonstrated for only a few LPP models with certain exactly
solvable features: the seminal work of Baik, Deift and Johansson [BD]J99] established
the one-third exponent, and the GUE Tracy-Widom distributional limit, for the case of
Poissonian last passage percolation, while Johansson [Joh0O0] derived the two-thirds
power law for maximal transversal fluctuation for this model.

In view of these facts, it is natural to represent the field of geodesics in a scaled
system of coordinates. Under this scaling, a northeasterly displacement of order n
becomes a vertical displacement of one unit, while a horizontal displacement of order
n?/3 becomes a unit horizontal displacement. The system of energies also transfers to
scaled coordinates, with the scaled geodesic energy being specified by centring about
the mean value and normalizing by the typical scale of n'/3.

In this way, the LPP geodesic that begins at (0,0) and ends at (n,n) has a scaled
counterpart, which we will refer to as a polymer and label p[(0,0) — (0,1)], that travels
between (0,0) and (0,1). This polymer has a scaled energy, or weight, that we denote
by Wgt[(0,0) — (0,1)], which in the high n limit is distributed according to the GUE
Tracy-Widom distribution. In the scaled LPP description more generally, a polymer
p[(z,s) — (y,t)] is associated to each pair of planar points (z, s) and (y,¢) with s < ¢.
The polymer’s weight is denoted by Wgt|[(z, s) = (y,t)].

1.2 The energy landscape of scaled LPP and the structure of its valleys

Many statistical mechanical systems may be described by a probability measure
whose density e~ #(*) with respect to a background measure u, supported on a space X,
is specified by a Hamiltonian H : X — R which may be viewed as an energy landscape
over X. Such a system may be viewed as a particle that dwells randomly in X; the
system is held at equilibrium by a Markovian dynamics in which the present state
evolves locally according to a Metropolis rule governed by the relative values of the
function e H(*), The present state is thus a snapshot of a particle wandering in the
energy landscape, which is typically attracted into the landscape’s local valleys; its
long-term behaviour is governed by the structure of valleys—their number; depths; and
the heights and geometry of mountain passes that connect them. For Gaussian models
of disorder, including Gaussian polymers, [Chal4] proved via an interpolation method
that certain strong concentration properties exhibited by such systems are equivalent to
an abundance of well-separated valleys—which abundance entails chaotic behaviour of
observables when the system is slightly perturbed. The landscape geometry of several
models has since then been studied. Landscapes of general smooth Gaussian functions
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on the sphere in high dimensions as well as those related to spin-glass models have been
studied in [AAC13, ABA13]. More recently, refined results for the number of valleys for
spin-glasses have been obtained in [DEZ15, CHL18, E1d20].

In this article, we investigate the structure of the energy landscape of Brownian last
passage percolation, a semi-discrete polymer wandering through Gaussian noise, in its
scaled coordinate description. This will find application in a companion study [GH20a]
of the transition from stability to chaos of this model subject to a dynamical perturba-
tion. Brownian LPP model will be recalled shortly; its noise environment is comprised
of Brownian randomness. The model carries a parameter n € IN which in rising ap-
proximates a limiting scaled description; in our present heuristic purpose, we omit
mention of it; indeed we already did so, in indicating the meaning of the field of weights
Wgt[(z, s) = (y,1)].

Letz € Rand a € (0,1). Set Z(x,a) equal to the supremum of weights of scaled paths
on the route from (0, 0) to (0, 1) that pass through (z, a). That is,

Z(z,a) = Wgt[(0,0) = (z,a)| + Wgt[(z,a) — (0,1)] . (1.1)

We refer to the random process R — R : © — Z(z,a) as the routed weight profile at
height a, because this process records weights of paths that are routed through a given
location at this height. This profile is a cross-section of the LPP energy landscape that
is pertinent for understanding the geometry of the polymer p[(O, 0) — (0, 1)} and how
effectively scaled paths that share the polymer’s endpoints but that take alternative
routes compete in weight with the polymer. For example, the horizontal location at which
p[(0,0) — (0,1)] traverses height a is the maximizer M of the random function R —
R: 2 — Z(z,a) (an almost surely unique location, as we will indicate in Lemma 2.1(2)).
For z € R, the quantity Z(M,a) — Z(z,a) > 0 is the shortfall in weight relative to the
polymer’s of a scaled LPP path from (0,0) to (0,1) that is constrained to pass via the
point (z, a).

1.3 Principal conclusions and themes in overview

In this article, we will prove several conclusions concerning the energy landscape
of scaled Brownian LPP. As we informally summarise them now, we continue to omit
mention of the scaling parameter n € IN: roughly, our assertions should be understood
uniformly in high choices of this parameter.

1.3.1 Brownianity of the routed weight profile

On scales larger the unit scale, the profile © — Z(z,a) is curved, following the parabola
x — —27Y2¢71(1 — a)~'22. On the unit scale, however, it resembles Brownian motion.
Building on a Brownian comparison result for narrow wedge weight profiles from
[CHH19], our first result, Theorem 1.2, offers a strong attestation of this resemblance.
For a € (0,1), the profile x — Z(xz, a) enjoys a strong similarity with Brownian motion
B of rate two. Indeed, if A denotes a collection of continuous functions on [—1, 1] that
vanish at —1 for which the probability that [-1,1] — R : x — B(z) — B(—1) belongs to A
is denoted by 7, then the probability that the profile [-1,1] - R: 2z — Z(z,a) — Z(—1,a)
belongs to A is at most an expression of the form 7 - exp {©(1)(logn~1)*/¢}. The latter,
correction, term grows much more slowly than any inverse power of n in the limit of
7\ 0. The constant implied by use of the notation ©(1) may be chosen uniformly as a
varies over any given compact set in (0,1). In general, the notation ©(1) will be used
to refer to positive constants that are bounded away from zero and infinity in a manner
that is independent of variable parameters in the context in question.
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1.3.2 The rarity of twin peaks

If the maximizer M of x — Z(z,1/2) lies to the right of the origin, so that say the positive
probability event M € [1, 3] is satisfied, the random variable

Z(M,1/2) — sup{Z(z,1/2) 1z € [-3,-1]} >0

equals the shortfall in weight relative to the polymer’s along those scaled paths from
(0,0) to (0, 1) that instead pass on the left, via locations in [—3, —1], at the mid-life time
one-half. If this random variable is less than a given small quantity ¢ > 0, the profile
x — Z(x,1/2) resembles a pair of peaks, with the left hill’s height rivalling the right
hill’s to within a distance of 0. When this twin peaks’ event occurs, a local valley in
the LPP energy landscape lies at a significant remove from the global valley while
succeeding to rival the latter’s depth. An upper bound on this event’s probability thus
sheds light on the landscape’s geometry. Given the strong resemblance of the profile
to Brownian motion, the probability of the twin peaks’ event is inherited from the
counterpart Brownian probability. Our second principal conclusion, Theorem 1.3, asserts
that twin peaks with discrepancy o arise in the routed weight profile with probability
at most o - exp {©(1)(logo~!)*/®}. Figure 1 offers a guide to twin peaks in the energy
landscape via the equivalent notion of near touch for a natural decomposition of the
routed weight profile.

-3 -1 1 3

1

v — Z(2,1/2)

==qT=====1

x— Z (x)

Figure 1: Left: The routed weight profile x — Z(z,1/2) realizes the twin peaks’ event.
Middle: Let Z~(z) = Wgt, [(0,0) — (2,1/2)]; and let z — Z*(z) denote the vertical
translate of # — —Wagt,, [(x,1/2) — (0,1)] such that the graphs of Z~ and Z™ touch, but
do not cross. The horizontal coordinate of the point of touch is M, the maximizer of
Z(-,1/2); the occurrence of twin peaks is now represented by a near touch on the part
of the two graphs in the strip [-3, —1] x R. Right: The bold polymer p[(0,0) — (0,1)]
has horizontal coordinate M € [1,3] at height one-half. The rival path, following the
bold-dashed-bold route, attains a weight within ¢ of the polymer’s while swinging left,
into [—3, —1], at the mid-life time one-half.

1.3.3 Robust assertions of modulus of continuity for geometry and weight of
polymers

Polymers such as p = p[(0,0) — (0,1)] may be viewed as functions of the vertical
coordinate; in this way, we interpret p : [0,1] — R as a random real-valued function. A
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modulus of continuity for this function is known by [HS20, DOV22] to take the form of

a large constant multiple of z — 22/3(logz~!) /% The weight of the polymer restricted
to [0,¢] may also be viewed as a function of ¢t € [0, 1]; these same references prove a

modulus of continuity for this weight profile of order z — 2!/3(log z‘l)Q/ ®_ We provide
robust forms of such assertions in Theorems 1.4 and 1.6. These results are valid in
Brownian LPP uniformly in high values of its parameter n € IN and in variation of polymer
endpoints over compact regions. Just as significantly, they control variation in polymer
weight and geometry not merely in response to small n-independent changes in the
vertical coordinate as do [HS20] and [DOV22], but on any vertical scale down to the
microscopic separation n~!. A related local fluctuation result proved in [BSS17a] was
also a crucial ingredient in [BSS17b].

1.3.4 Slender excursions around the polymer are typically uncompetitive

The weight Z (M, 1/2) is realized by the maximum weight path on the route from (0,0) to
(0,1), namely the polymer p = p[(0,0) — (0,1)]. For z € R small, the weight Z(M +z,1/2)
is realized by a scaled path ¢ that begins from (0, 0) by following the course of p; that
departs this course at some height h; € (0,1/2) to visit M + z at height one-half before
rejoining p at some height hy € (1/2,1); and that then follows the course of p until (0,1).
As such, [hq, hs] is an interval during which ¢ makes an excursion away from p. The KPZ
exponent of two-thirds for polymer geometry indicates that (ho — hl)z/ 3 has typical order
z. That is, we expect ¢ to make an excursion, on an interval that contains one-half, for a
duration hs — hy of order 23/2; to maintain a horizontal distance from p of order z during
much of the excursion’s duration; and, in view of the Gaussian-order increment of the
routed weight profile, to accrue a shortfall in weight relative to p of order z'/2.

We present a conclusion, Theorem 1.10, that validates this heuristic view. It considers
the maximum weight accrued by a path ¢ that makes an excursion of duration h € (0,1)
from the polymer p in such a way that the horizontal discrepancy between p and ¢ is at
most h%/30 at most moments during the excursion’s lifetime. The parameter 6 > 0 will
be chosen to be small, so that a slender excursion is being demanded, one that deviates
horizontally from the polymer by a factor of § less than is expected. We will prove that the
weight of any such path ¢ is highly likely to fall short of the polymer weight by an order of
at least h!'/30~!. When @ is of unit order, this shortfall is predicted by the KPZ exponent
of one-third for polymer weight; when § < 1, the factor of §~! represents a weight
penalty for the forcibly confined geometry endured by the excursion. While results of a
similar flavor have appeared before in [BGH18, BGHH20, BHS18, GH20b, BB21, DJP18],
all of them investigated energetic shortfalls of paths restricted to lie in deterministic
thin cylinders. In contrast, Theorem 1.10 offers a more robust setting treating paths
restricted to be in a random region determined by the polymer.

1.3.5 The polymer advances in a regular fashion microscopically

Our final main result, Theorem 1.11, concerns the microscopic structure of the tra-
jectory of the polymer in Brownian LPP, and is more vividly expressed in unscaled
coordinates. Consider then the Brownian LPP geodesic I',, that runs from (0, 0) to (n,n).
The geodesic’s progression is globally diagonal; we prove that, even on the shortest of
scales, this progression is manifest. A cliffin I' is a subpath of I' in which I advances
horizontally by one unit while advancing vertically by A units. We prove that, when
the positive parameter A is fixed at a high value, and except on an event of probability
that decays at an exponential rate in n, the proportion of I' that is comprised of cliffs is
bounded away from one.
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1.4 Probabilistic and geometric inquiry into KPZ universality

The study of KPZ universality has advanced through physical insights, numerical
analysis, and several techniques of integrable or algebraic origin. Rather than hazard
a summary of literature to support this one sentence history, we refer to the reader
to [Corl2] for a KPZ survey from 2012; in fact, integrable and analytic approaches
to KPZ have attracted huge interest around and since that time. A recent wave of
KPZ research has brought probabilistic and geometric tools to the fore, making use
of integrable aspects of the models of study as occasional inputs in arguments, albeit
essential ones. Three examples are the solution [BSS16] of the slow bond problem, in
which the integrable model of exponential LPP is perturbed by altering the random
environment along a one-dimensional subspace, and the resulting geometry and energy
of geodesics is studied; the construction [CH14] of the Airy line ensemble, a KPZ
universal object encoding polymer weights in the narrow wedge case as a continuous
system of mutually avoiding random curves; and the construction [DOV22] of the Airy
sheet (or the directed landscape), a rich scaling limit for the weights of KPZ polymers in
which these weights are obtained as LPP values in an environment specified by the Airy
line ensemble after the subtraction of a parabola.

The present article pursues the study of problems in KPZ in a probabilistic and
geometric vein. In particular, our results Theorems 1.2 and 1.3 on Brownianity and twin
peaks’ rarity for the routed weight profile lie in the domain of Brownian Gibbs analysis
of LPP. The parabolic Airy line ensemble is in essence a mutually avoiding system of
Brownian motions, subject to suitable boundary conditions. As we will indicate more
clearly early in Section 2, this ensemble of random curves thus satisfies the Brownian
Gibbs property, a simple and attractive resampling property involving Brownian motion
and avoidance. The Brownian Gibbs technique led to the construction of the Airy line
ensemble in [CH14]. The technique has been pursued in [Ham22] and [CHH19] to yield
strong inferences regarding the similarity to Brownian motion of the Airys process,
which is, after a parabolic shift, the scaling limit of the narrow wedge polymer weight
profile in integrable LPP models.

Our results on Brownianity and twin peaks’ rarity develop this strand of research,
begun in [CH14], and pursued in [Ham?22] and [CHH19], so that results such as Theo-
rems 1.2 and 1.3 pertinent to the LPP energy landscape now become available.

By means of a more algebraic approach that analyses representations involving
Fredholm determinants, strong Brownian comparison estimates have also been obtained
in [MQR17]. This work constructs a universal Markov process called the KPZ fixed
point that describes the evolution of geodesic energy profiles starting from rather
arbitrary initial data; an earlier result in [QR19] identified domains of attraction for
the one point fluctuations of the KPZ equation starting from general initial data. The
assertion that the Airys; process closely resembles Brownian motion on the unit-order
scale, and counterpart results for scaled geodesic energy profiles in LPP models, have
been instrumental in several recent inquiries into geometric and fractal properties of the
KPZ fixed point. In [BG18, BGZ19, FO19], exponents governing temporal correlations
induced by various initial data have been determined, thereby settling conjectures
by Ferrari and Spohn from [FS*16]. (In [CGH19], an analogous result for the KPZ
equation is derived.) Profile Brownianity also drives the fractal geometry and Hausdorff
dimension results for exceptional sets found in the space-time Airy sheet that are the
subject of [?, BGH19].
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1.5 Stability and chaos in dynamical Brownian LPP

Control on polymer geometry and weight; on the excursion geometry of LPP paths
that in weight are competitive with the maximum; on the microscopic structure of
geodesics—these geometric inferences are, we believe, robust tools that will serve to
advance the analysis of LPP; its scaling limit; and its reaction to perturbation. Indeed,
this article’s results find application in a companion study [GH20a] of the stability, and
fragility, of Brownian LPP under dynamical perturbation. Very shortly, we will define
Brownian LPP; for now, we note merely that its noise environment is specified by a
countable system of independent Brownian motions. A dynamics may be introduced that
leaves Brownian LPP invariant, in which each of these constituent Brownian motions is
updated according to Ornstein-Uhlenbeck dynamics. In [GH20a] is identified the time-
scale that heralds the transition from stability to chaos for dynamical Brownian LPP—the
polymer from (0,0) to (0, 1) is largely unperturbed in the stable zone and is profoundly
altered in the chaotic phase. This time-scale takes the form n~'/3t°(1) when a geodesic
of extension n € N is considered; this corresponds to updating n2/3t°(1) bits along the
geodesic in a discrete LPP model. Every one of the results that we have indicated in
the preceding overview has a role to play in proving this transition in [GH20a]. The
robust probabilistic and geometric results and technique that we present undergird the
companion dynamical LPP analysis and, we believe, will find further application in the
study of scaled KPZ structure.

In the next two sections, we define Brownian LPP and introduce some of its basic
objects; and we specify the transformation that specifies the scaled coordinates in which
we couch our principal results and proofs. In the remaining introductory sections, we
then present the statements of our main results, in the same order in which we have just
summarized them.

1.6 Brownian last passage percolation

On a probability space equipped with a law labelled P, let B : R x Z — R denote a
collection of independent two-sided standard Brownian motions B(-,k) : R — R, k € Z.
The indexing of the domain in the form R x Z is unusual, with the other choice Z x R
being more conventional. The choice of R x Z is made because it permits us to visualize
this index set for the ensemble B’s curves as a subset of R? with the usual Cartesian
coordinate order being respected by the notation.

Let i,j € Z with ¢ < j. [i, ] will denote the integer interval {i,--- ,j}. Forz,y € R
with x <y, consider the collection of non-decreasing lists {zk ckei+1, jﬂ} of values
2k € [z, 9] Adopting the convention that z; = x and z;,; = y, we associate to any such
list the energy > 7 _. (B(zk41,k) — B(2k, k)). We then define the maximum energy to be

M) = ()] = s { S (Blewersb) - Blawh) 3

k=i

where the supremum is taken over all such lists. The random process M [(0,1) — (-,n)] :
[0,00) — R was introduced by [GW91] and further studied in [OY02].

1.6.1 Staircases

SetIN={0,1,---}. Fori,j € Nwith i < j, and z,y € R with < y, an energy has been
ascribed to any non-decreasing list {2, : k € [i + 1, j]} of values z; € [z, y]. In order to
emphasize the geometric aspects of this definition, we associate to each list a subset of
[z,y] x [i,j] C R?, that we call a staircase, which will be the range of a piecewise affine
path.
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To define the staircase above we again adopt the convention that z; =  and z;4; = ¥.
The staircase will be specified as the union of certain horizontal planar line segments,
and certain vertical ones. The horizontal segments take the form [z, zx41] X {k} for
k € [i,j]. A vertical planar line segment of unit length connects the right and left
endpoints of each consecutive pair of horizontal segments. It is this collection of vertical
line segments that form the vertical segments of the staircase.

The resulting staircase may be depicted as the range of an alternately rightward and
upward moving path from starting point (x,4) to ending point (y, j). The set of staircases
with these starting and ending points will be denoted by SO[(a:,i) — (y,j)] Since
such staircases are in bijection with the collection of non-decreasing lists, any staircase
¢ € SC|[(z,i) = (y,j)] is assigned an energy E(¢) = Y7 _, (B(zk+1, k) — B(zi, k)) via the
associated z-list.

1.6.2 Energy maximizing staircases are called geodesics.

A staircase ¢ € SC|[(x,i) — (y,j)] whose energy attains the maximum value M [(z,i) —
(y,j)] is called a geodesic from (z,%) to (y,j). That this geodesic exists for all choices
of z,y € R with z < y, is a simple consequence of the continuity of the constituent
Brownian paths B(k, ). Further, for any given such choice of the pair (z,y), by [Ham19b,
Lemma A.1], there is an almost surely unique geodesic from (z,4) to (y,j). We denote it

by I'[(z,i) = (y,7)].

1.7 Scaled coordinates for Brownian LPP

Members of the KPZ universality class enjoy scalings represented by the characteris-
tic exponents of one-third and two-thirds. The one-third exponent governs the energetic
fluctuation of the geodesic between (0,0) and (n, n), that is, if we write

M[(0,0) = (n,n)] = 2n +n*/*Wgt, [(0,0) — (0,1)] , (1.2)

then the term Wgt, [(0,0) — (0,1)] is a random, tight in n unit-order quantity. (See the
sixth paragraph of [CHH19, Subsection 3.2.1] for a discussion of this tightness.) This is
the scaled geodesic energy, which we will call weight. The exponent two-thirds appears
in the fact that when geodesic energy [0,00) — R : & — M [(0,0) — (x,n)] is varied from
x = n, it is changes of order n2/3 in x that result in non-trivial correlation.

Given the above, it is natural to work in scaled coordinates under which the journey
between (0,0) and (n,n) corresponds to the unit vertical journey between (0, 0) and (0, 1),
while horizontal perturbation of the endpoint (n,n) by magnitude n?/3 corresponds to
unit-order scaled horizontal perturbation. This will lead to the notion of scaled energy,
or weight, associated to the image of any path in scaled coordinates. This is done
next, namely, we specify the scaling map R,, : R? — R? whose range specifies scaled
coordinates; introduce notation for scaled paths; and specify the form of scaled energy.

1.7.1 The scaling map.

For n € N, consider the n-indexed scaling map R,, : R?> — R? given by
Ry (v1,v2) = (2_171_2/3(111 —vg), Ug/n) . (1.3)
The scaling map naturally acts on subsets C' of R with R,,(C) = {R,(z) : z € C}.
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1.7.2 Scaling transforms staircases to zigzags.

The image of any staircase under R,, will be called an n-zigzag. The starting and ending
points of an n-zigzag Z are defined to be the image under R,, of the corresponding points
for the staircase S such that Z = R, (95).

Note that the set of horizontal lines is invariant under R,,, while vertical lines are
mapped to lines of gradient —2n~'/3. Thus, an n-zigzag is the range of a piecewise affine
path from the starting point to the ending point which alternately moves rightwards
along horizontal line segments and northwesterly along sloping line segments with
gradient —2n~1/3,

Note for example that, for given real choices of x and y, a journey which in the
original coordinates occurs between (2n?/3z,0) and (n + 2n?/3y, n) takes place in scaled
coordinates between (z,0) and (y, 1). We may view the first coordinate as space and the
second as time, though the latter interpretation should not be confused with dynamic
time t; with this view in mind, the journey at hand is between x and y over the unit
lifetime [0, 1].

1.7.3 Compatible triples

Let (n,s1,s2) € N x R%, where we write RZ = {(s1,s2) € R? : 51 < s5}. Taking z,y € R,
does there exist an n-zigzag from (z,s1) and (y, s2)? Two conditions must be satisfied for
an affirmative answer.

First: as far as the data (n, s1, s2) is concerned, such an n-zigzag may exist only if

s1 and so are integer multiplies of nt. (1.4)

We say that data (n, s1,s2) € IN x RZ is a compatible triple if the above holds. We will
consistently impose this condition, whenever we seek to study n-zigzags whose lifetime
is [s1, s2]. The use of compatible triples should be thought of as a fairly minor detail. As
the index n increases, the n~!'-mesh becomes finer, so that the space of n- zigzags better
approximates a field of functions, defined on arbitrary finite intervals of the vertical
coordinate, and taking values in the horizontal coordinate.

Associated to a compatible triple is the notation s; 5, which will denote the difference
so — s1. The law of the underlying Brownian ensemble B : R x Z — R is invariant under
integer shifts in the latter, curve indexing, coordinate. This translates to an invariance in
law of scaled objects under vertical shifts by multiples of n~!, thus making the parameter
s1,2 of far greater relevance than the individual values s; or ss.

Returning to the above posed question, the second needed condition is that the
horizontal coordinate of the unscaled counterpart of the latter endpoint must be at least
the former which translates to the condition

Yy—x > 7271111/35172 . (1.5)

1.7.4 Zigzag subpaths

Let ¢ denote an n-zigzag between elements (z,s1) and (y, s2) in R x n=*Z. Let (u, s3)
and (v, s4) be elements in ¢ N ([s1, s2] "'n~'Z). Suppose that s3 < s4 (and that u < v if
equality here holds), so that (u, s3) is encountered before (v, s4) in the journey along ¢.
The removal of (u, s3) and (v, s4) from ¢ results in three connected components. The
closure of one of these contains these two points and this closure will be denoted by
®(u,s3)—(v,54)- 1his is the zigzag subpath, or sub-zigzag, of ¢ between (u, s3) and (v, s4).
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1.7.5 Staircase energy scales to zigzag weight.

Letn € N and i, € N satisfy ¢ < j. Any n-zigzag Z from (z,i/n) to (y,j/n) is ascribed a
scaled energy, which we will refer to as its weight, Wgt(Z) = Wgt,,(Z), given by

Wgt(Z) = 27 /2 1/3 (E(S) —2(j — i) — 2023 (y — a:)) (1.6)

where 7 is the image under R,, of the staircase S.

1.7.6 Maximum weight.

Let n € IN. The quantity Wgt, [(0,0) — (0,1)] specified in (1.2) is simply the maximum
weight ascribed to any n-zigzag from (0,0) to (0, 1).

Let (n,s1,52) € IN x R2 be a compatible triple. Suppose that z,y € R satisfy y >
x—27'n'/3s; 5. We will now define Wgt,, [(z, s1) — (y, s2)] in a way such that this quantity
equals the maximum weight of any n-zigzag from (z, s1) to (y, s2). We must set

Wet, [(2,51) = (,52)] (1.7)
=2 V28 (M[(n81 + 20232, ns1) = (nsy + 2n2/3y,n52)] —2ns19 — 2023 (y — x)) .

The quantity Wgt,, [(z, s1) — (y, s2)] may be expected to be, for given real choices of

x and y that differ by order 53/23 , a unit-order random quantity; this collection of random
variables is tight in the scaling parameter n € IN and in such choices of 51,5, € n™'Z
and z,y € R.

1.7.7 Highest weight zigzags are called polymers.

An n-zigzag that attains the maximum weight given its endpoints will be called an n-
polymer, or, usually, simply a polymer. Thus, under the scaling map, geodesics map
to polymers. As we recalled in Subsection 1.6.2, the geodesic with any given pair of
endpoints is almost surely unique. For x,y € R and (n, s, s2) € N x R2 a compati-
ble triple, the almost surely unique n-polymer from (z,s;) to (y,ss) will be denoted
by pn [(z,s1) = (y,s2)]; see Figure 2. The shorthand p,, = p,[(0,0) — (0,1)] will be used.

Though not standard, since the term ‘polymer’ is often used to refer to typical
realizations of the path measure in LPP models at positive temperature, the above usage
of the term ‘polymer’ for ‘scaled geodesic’ is quite apt for our study, owing to the central
role played by these objects.

1.7.8 Zigzags as near functions of the vertical coordinate

Suppose again that ¢ is an n-zigzag between points (, s1) and (y, s2) in R x n~'Z. For
s € [s1,82] N n~1Z, we will write ¢(s) for the supremum of values z € R for which
(x,s) € ¢. This abuse of notation permits ¢(s) to denote the horizontal coordinate of the
point of departure from vertical coordinate s in the journey along ¢ from (z, s1) to (y, s2).
This convention is adopted partly because it captures the notion that the typical zigzags ¢
we will consider—polymers or concatenations thereof—are closely approximable by a
real-valued function of the vertical coordinate s € [s1, s3], at least when n is high—indeed,
the maximum length of the horizontal line segments in an n-polymer is readily seen to
decay to zero in n with high probability. (Our few cliffs’ Theorem 1.11 quantifies this
assertion.)

Note that this notational device will be used alongside the shorthand p,, from the
preceding subsection, so that, for a € n=*Z N [0,1], p,(a) is the maximum z-coordinate
of a point at y-coordinate a on the polymer p, [(0,0) — (0,1)].

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 11/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

nsy + 2n?3x

Figure 2: Let (n, s1, s2) be a compatible triple and let z,y € R. The endpoints of the
geodesic in the left sketch are such that, when the scaling map R,, is applied to produce
the right sketch, the result is the n-polymer p, [(z,s1) — (y, s2)] from (z, s1) to (y, s2).

1.8 Brownianity and twin peaks’ rarity for the routed weight profile

To specify the routed weight profile for scaled Brownian LPP, let n € IN and a €
n~17ZN(0,1). For x € R, let ¥,,(z, a) denote the set of n-zigzags ¢ that begin at (0, 0); end
at (0,1); and for which ¢ = sup {z € R : (z,a) € ¢}. In other words, ¥, (z,a) comprises
those n-zigzags on the route from (0,0) to (0,1) whose point of departure from level
a occurs at (x,a). We set Z,(x,a) equal to the supremum of the weights of elements
of U, (z, a). In this way, the routed weight profile Z,,(-,a) : R — R records the maximum
weight of zigzags that are constrained to exit level a at a given horizontal location. We
did not allude to this exit constraint in the heuristic discussion of Subsection 1.3.1: in
the microscopic model, where n € IN is finite, this definition renders the maximizer
location M € R at which Z,(M,a) = sup,cy Z»(z,a) unique, while maintaining that
Zn(M,a) = Wgt, [(0,0) — (0,1)]; in Lemma 2.1, we will moreover see that, in the
counterpart expression to (1.1), the two right-hand terms are independent, even when n
is finite, when the present definition is adopted.

Next we make precise the notion of comparison that we will make to Brownian
motion.

Definition 1.1. Let K € R and d > 0. Let I denote the interval [K — d, K +d]. We denote
by Cy (I, R) the space of continuous functions f : I — R such that f(K — d) = 0. For
v>0,let B’O’i denote the law on this function space given by Brownian motion B : [ — R,
B(K — d) = 0, of diffusion rate v.

Let g and G be positive real parameters; and let m € IN. A continuous random
function X : I — R defined under a law P is said to be (g, G,d,m, 1/) -Brownian if the

following holds. Let A denote a Borel measurable subset of Cy .(I,R). Setn = B(’jjf(A).

Then the condition that e~ 9™"""* < n < g A eG4 implies that
]P(I —R:z — X(z) — X(K — d) belongs to A) < n-Gexp {Gd(logyfl)"’/ﬁ} . (1.8)
In heuristic overview, we compared the routed weight profile to Brownian motion of

rate two on [—1,1]. Our rigorous result crucially relying on the main result in [CHH19]
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makes the comparison on any compact interval: after the addition of the linear term
242 (a(1 — a))_le, the profile z — Z,,(x, a) is very similar to Brownian motion of rate
two, in the locale of any given R € R.

Theorem 1.2. There exist positive constants ¢, G and g such that the following holds.
Letn € N and a € n™'Z N (0,1). Suppose that |R| < 27'en'/?(a A (1 —a — nfl))”g.
Let { € R satisfy —2~'n'/3a < R—¢and R+ ¢ < 27'n'/3(1 — a — n~'). The process
Zn(-,a) : [R— ¢, R+ {] = R may be expressed in the form

Z(,a) = X(z) — (21/2 (a(1—a)) 'R+ s)x,
where X : [R—{, R+{] — Ris (g,G'(5, ¢, min{a, 1 — a}n, 2)-Brownian. Here, the constant
—34/3
; and

e =¢(a,R,n), given by e = 2Y/2((1 —a —n~1)(1 — a))fanfl, is an error term without
dependence on z.

G’ is up to an absolute positive factor equal to G*"/5¢g=5/6(a A (1 —a —n~1))

Given the above quantitative comparison to Brownian motion, the next result presents
our conclusion regarding the rarity of twin peaks. The probability that there exists z € R
such that Z,,(z, a) rivals the maximum value of Z,, (-, a), with Z,,(z, a) being less than this

maximum by a small multiple o of the square-root distance (z — pn(a))l/ ? is bounded

above by the product of o and a lower-order correction exp {©(1)( log 0_1)5/ 6} ; a further

—O(1)R?¢

factor of e penalizes the maximizer for being of a large order R > 0.

Theorem 1.3. For K any compact interval of (0,1), there exist positive constants H =
H(K) and h = h(K) and an integer ng = ng(K) such that the following holds. Letn € IN,

RER,(>1,0>0,acn'ZNK, o >0ande > 0. Suppose thatn > ng, |R| < hn'/?,
¢ € (3¢, hn'/1379) and ¢’ € (3¢, (). Denoting o A 1 by o,, we have that
JP(M €[R—(/3,R+10/3], sup (Za(@,a) + o(x — M)/?) > Z,(M, a))

z€R:|lx—M|€[e, b’ /3]
< log (e 1) max{a* cexp{ — hR*(+ H("(1+ R* + loga;1)5/6},exp{ — hn1/12}} )

where M denotes p,(a), the almost surely unique maximizer of x — Z,(x,a).

The right-hand factor of log (E’ 5_1) reflects a union bound indexed by dyadic scales
intersecting the interval [e, ¢'/3]. There is no non-smallness condition on the scale €. The
probability upper bound exp { — hn'/1?} becomes operative for extremely small values
of 0.

1.9 Robust modulus of continuity for the geometry and weight of polymers

The next result offers a quantified prelimiting expression for the z — 2%/3(log 2™ !) 13
modulus of continuity for polymer geometry in a fashion that is uniform as the polymer’s
endpoints vary over a compact region and that holds on all scales above the microscopic

separation n!.

Theorem 1.4.

1. There exist positive H, h and o, and ng € IN, such that, whenn € N satisfies n > nq,
k € NN satisfies 2¥ < hn and r € R satisfies ro < r < n'/19, it is with probability
at least 1 — H exp { — hrk} that the following event occurs. Let z,y € R be of
absolute value at most r. Let hi,ha € n=1Z.N [0, 1] satisfy h1 o € (27%71,27*] and
let u,v € R be such that (u, h) and (v, hy) belong to p, [(z,0) — (y,1)]. Then

o= ul < R (tog(1 + i)
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2. There exist positive G, H, h and ro, and ng € IN, such that, when n € IN satisfies
n > no, and r € R satisfies ro < r < n/10, it is with probability at least 1 — Hn=""°
that the following event occurs. As above, let z,y € R be of absolute value at
most r, and let u,v € R be such that (u, h1) and (v, h) belong to p,, [(z,0) = (y,1)].
Consider any hi,hy € n™'Z N |0, 1] that satisfy hy » < Hn~'. Then

‘v — u‘ < Gn_2/3(logn)1/3r.

As a special case, we gain control on the maximum fluctuation of such polymers.

Corollary 1.5. There exist positive H, h and rg, and ng € IN, such that, when n € IN
satisfies n > ng, and r € R satisfies 1o < r < n'/19, it is with probability at least
1 — Hexp{ — hr®} that the following holds. Let z,y € R be of absolute value at most r.
If (u, ') € R x (n7'ZN0,1)) lies in p,, [(x,0) — (y,1)], then |u| < Hr.

A control, similar to that offered by Theorem 1.4, on the z — z1/3 (logz™1) 2/3 modulus
of continuity for polymer weight is available.

Theorem 1.6.

1. There exist positive H, h and ry, and ng € IN, such that, when n € IN satisfies
n > ng; k € IN satisfies 2* < hn; and r € R satisfies r > r, it is with probability at
least 1 — H exp { — hr®k} that the following occurs. Let hy, hy € n™*ZN [0, 1] satisfy
hio € (27571 27%] and r < (nh;2)'/%; let 2,y € R be of absolute value at most r;
and let u,v € R be such that (u, h1) and (v, ho) belong to p,[(x,0) = (y,1)]. Then

Wat, [(u, ) = (v, ha)]| < H2r% - /s (log hy )™

2. There exist positive G, H and ry, and ng € IN, such that, whenn € IN satisfies
n > ng, and r € R satisfies r > rq, it is with probability at least 1 — Hn~* that,
ifhig < Hn™'; 2,y € R have absolute value at most r; and u,v € R are such that
(u,h1) and (v, hy) belong to p,[(z,0) — (y,1)]; then |Wgt, [(u,h1) — (v, h2)]| <
Gr? -n~3(logn)?/3.

We present two further results, which emerge in the course of the proof of Theo-
rem 1.4. The former offers uniform control on the maximum fluctuation of polymers,
in which we permit to vary the polymer endpoints and the moment during the lifetime
of the polymer at which fluctuation is measured. The latter proves the rarity of short
polymers of extreme weight that begin and end in a unit-order region.

In order to state the first result, we specify a measure of the fluctuation of the
polymer p, [(z,s1) — (y, s2)| at the intermediate moment h € [s1, s3] N n~'Z, measuring
the horizontal distance between the polymer at this height h relative to the height-h
location %x + }:—i}y of the line that interpolates (z, s1) and (y, s2). We set

%x—%ﬂ cu€eR, (u,h) € pn[(m,sl) — (y,sz)]}
(1.9)

The typical order of this quantity is A\*/3, where \ equals (h — s1) A (sy — h), with A

denoting minimum.

Theorem 1.7. Let K > 0, r > 19, a € (0,1/4], n € N and s1,s2 € n~'Z N [0,1] satisfy

s1 < s2; sy 0a and nsy »(1 — a) are at least O(1); Ka'/® < ©(1); and |K| < (ns12)%/3.

Then

IP(sup Fluc, [(m, hi) = (y, ho); h} > 7"((18172)2/3<10g a_1)1/3) < @(1)K2a_10/3a9(1)’“3 7
(1.10)
where the supremum is taken over z,y € [—K, K] - sf/zg, hy € n=YZN [s1,51 + s51.2/3],
hy € n"YZ N [sy — s1.2/3, 2] and h € n~'Z such that hh’lzl € [a,2a] U[1 —2a,1 —a.

Flucn[(x,sl) — (y,SQ);h] = sup {’u—
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To express our result on weights, let Wgt") [(x, hi) = (y, hg)] denote the parabolically
adjusted weight Wgt,, [(z, h1) — (y, h2)] +27/2(y — x)?h 3. We denote by Lowy (¢, ¢, L, M)
the event that

52 "Wety [(z,51) = (4, 52)]

is less than —( for some pair (z,s1),(y,s2) € R x n'Z N [0,1] with |z| V |y| < M,
lv —y| <272/3L and s; 5 € (2771, 277). Let High, (¢, ¢, L, M) denote the event that the
displayed quantity exceeds ¢ for some such pair.

Proposition 1.8. When n > 0(1)2¢, L < O(1)(n2-%)/%6, ©(1) < ¢ < ©(1)(n27%)/3% and
M >0,

P(Lown(g,z,L,M) U Highn(C,é,L,M)) < ()2 BM Lexp { — ©(1)¢%2}.

1.10 Slim pickings for slender excursions

Here we present results asserting that zigzags constrained to stay close to a deter-
ministic path or the polymer are typically uncompetitive in weight.

Consider a given zigzag ¢ from (0,0) to (0,1). Let (z, s1), (y,52) € R x n='Z N 0,1],
s1 < s2, be two points, neither of which necessarily lies in ¢. A zigzag + from (z, s1) to
(y, s2) that is disjoint from p,, will be called an excursion, even though this name might
more properly be reserved for the case where v’s endpoints lie in ¢. For an excursion 1,
consider the set of s € [s1, s3] N n~'Z for which, to use the language of Subsection 1.7.8,
[(s) — @(s)| is at most 33/239 where 0 > 0 is given. If this set has cardinality at least
(1= x)|[s1,s2] Nn~'Z| and contains the values s; and s, then the excursion 1 is called
(¢,0,1 — x)-close. The parameter f > 0 measures constraint in movement beyond the
factor sf/ ? that is dictated by KPZ scaling, and our notion of closeness indicates that this
constraint is satisfied at a high percentage of levels in [s, s2]. See Figure 3.

The supremum of the weights of (¢, 6,1 — x)-close excursions will be denoted by

Wegt, [(z,51) = (y,s2); (¢,6,1 — x)-close] .

For ¢ € N and dy > 0, let LowSlenderExcursion (¢, 6,1 — x; ¢) denote the event that
sup s;5 “Wet, [(2,51) = (y.52); (¢,6,1 — y)-close] < —dof !,

where the supremum is taken by varying the points (z, s1), (y,52) € R x [0,1] Nn~'Z
over choices such that 2717¢ < 51, < 274

Our first assertion of slender slim pickings concerns excursions about the polymer
Pn-
Theorem 1.9. There exist constants dy, C' > 0 such that we may find xo € (0,1), d> > 0
and ng € N for which x € (0, xo) and n > ng imply that when §=/* > C'logn, and ¢ € IN
satisfies 2¢ < n64o,

IP(—\ LowSlenderExcursion(¢,6,1 — x; pn)) < exp { — d29*1/2} .

Theorem 1.9 will follow from our second assertion: any zigzag that is constrained
to stay close to a deterministic zigzag ¢ is typically uncompetitive in weight. To this
end, for ¢ any n-zigzag from (0,0) to (0, 1), let Wgt; [(z, s1) = (y, s2); (¢,6,1 — x)-close]
denote the supremum of the weights of (¢, 0,1 — x)-close zigzags . Note that ¢ varies
over a class of zigzags; it is not assumed to be an excursion about ¢, and may intersect
¢. The superscript asterisk in the new notation indicates this distinction.

Let LowSlenderWeight™(¢,0,1 — x;¢) denote the event specified above, with Wgt,,
replaced by Wgt; .
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Figure 3: The dashed zigzag 1 from (z,s1) to (y,s2) is an excursion around the bold
zigzag ¢. The vertical double-arrowed line indicates the set of coordinates—an interval in
this instance—at which departures from vertical levels differ by more than the quantity
appearing in the definition of a slender excursion. Indeed, if such levels exclude s;
and s; and constitute a fraction less than y of all levels in [s1, s2|, the excursion is
(¢,0,1 — x)-close.

The upcoming assertion, that LowSlenderWeight™ is typical, will suppose a certain
regularity on ¢.

We say that an n-zigzag ¢ from (0,0) to (0,1) is R-regular if, whenever hy, hy €
n~17 N 0,1] and u,v € R satisfy (u, h1), (v, h2) € ¢, we have that

o —u| < BIFR. (1.11)

Theorem 1.10. There exist constants dg, C' > 0 such that we may find xo € (0,1), ds > 0
and ng € N for which x € (0, o) and n > ng imply that, when §~'/* > C'logn and £ € IN
satisfies 2¢ < n6*o,

P(ﬁ LowSlenderWeight* (£, 6,1 — y: ¢)) < exp{ —dp0~3/2}

for any given zigzag ¢ from (0,0) to (0,1) which is —1/4

-regular.

Theorem 1.9 will follow from Theorem 1.10 and an application of the FKG inequality
to the effect that conditioning on p,, is negative on the environment exterior to p,,. This
is why we consider excursions, namely zigzags that are disjoint from p,,. Theorem 1.10 is
then applicable because LowSlenderExcursion(¢, 0,1 — x; p,,) is a decreasing event on this

exterior environment. Theorem 1.4 will show that p,, typically is suitably regular.

1.11 There are few cliffs along the geodesic

The geodesic I',, from (0, 0) to (n,n) progresses in a roughly diagonal fashion, even at
the microscopic scale. We now state this few cliffs’ assertion, using unscaled coordinates
because these are suited to discussing the microscopic scale.

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 16/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

For n € N, let I',, C [0,7n]? denote the almost surely unique staircase of maximum
energy with starting and ending points (0,0) and (n,n) in static Brownian LPP. For
A € NN a positive integer, we divide the vertical coordinate interval [0, n] into consecutive
subintervals of lengths A, as well as a remaining subinterval of shorter length if need
be. We set m to be the greatest integer strictly less than n/A, so that there are m
subintervals of length A. There is also one remaining interval, whose length is at least
one and at most A.

We record a sequence {Xi 21 € [0,m+ lﬂ} of horizontal coordinates of departure of I',,
from the horizontal borders of the consecutive strips indexed by the vertical subintervals
that we have just defined. Formally, when i € [0, m], X, is equal to the supremum of those
z € [0,n] for which (z,iA) € T',; while fori = m+1, X; =sup{z € [0,n] : (z,n) € T},
so that X; = n.

Now set, for each such index i, Z; = | X;|. The sequence {Zi 21 e [0,m+ 1]]} is a non-
decreasing list of integers lying in [0, n] that offers a unit-scale coarse-grained description
of the horizontal progress of the staircase I',, as consecutive vertical milestones at
separation A are passed. This description is equally captured by the difference function

U [0,m] — [0,n], ©(i) = Ziy1 — Zi. (1.12)

Note that Z;’;O U (i) = Zy+1 — Zo is at most n. We now specify a set Z of indices marking
slow horizontal advance—cliffs in the graph of T',,; we set Z(I',,) equal to the set of
i € [0, m] for which ¥ (¢) is at most two.

Theorem 1.11. There exist A > 0, ap € (1/2,1), h > 0 and ng € NN, such that, when
n > no and a > «aq satisfies am € IN where m = |[n/A|,

P(|Z(T,)| <am) =1 -
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2 Brownian regularity and twin peaks

Here we prove the Brownianity and twin peaks’ rarity assertions Theorems 1.2
and 1.3 concerning the routed weight profile x — Z,(z,a). We begin by noting some
similiarities between the specification (1.1) of this profile in heuristic discussion and
the actual definition at the start of Section 1.8. Recall the notation p,(a) that has been
specified in Subsections 1.7.7 and 1.7.8.

Lemma 2.1. Seta, =a+n'andz™ =2z — 2 'n"2/3,
1. The routed weight profile is given by a sum of independent weight profiles,

Zn(z,a) = Wgt, [(0,0) — (z,a)] + Wegt, [(z7,a4) = (0,1)]. (2.1)

2. Almost surely, the maximizer of Z,(-,a), namely the value of x € R for which
Zn(x,a) equals the supremum of Z,,(z,a) over z € R, is unique and equals p,(a).

Proof: (1). Let ¢ denote an n-zigzag that begins at (0,0), ends at (0, 1), and for which
z=sup{z € R: (z,a) € ¥}. Let ¢~ denote the initial zigzag of > that ends at (z,a).
Note that ) reaches R x {a +n~'} at (x7,ay). Let ¢yT denote the final sub-zigzag of ¢
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that begins at (z~, ay). Thus, Wgt,, (v) = Wgt,,(¢¥~) + Wgt,,(¢"). By definition, Z,(z,a)
equals the supremum of Wgt,, (1)) over such . We see that Z,(z,a) is at most the
right-hand side of (2.1). But equality may be obtained by varying (), ™) subject to the
endpoint constraints that specify this pair. Moreover, the two right-hand terms in (2.1)
are independent because they are respectively measurable with respect to randomness
indexed by the disjoint regions R x [0,a] and R x [a +n~!, 1].
(2). The polymer p,, is almost surely unique by [Ham19b, Lemma 4.6(1)]. Since p,(a) is
by definition the location of departure of the polymer p,, from R x {a}, we see that it is
the maximizer of x — Z,(z,a). O

The notation a and x~ is adopted henceforth. It reflects the two denoted quantities
being merely microscopically perturbed copies of a and x.

The proof of Theorem 1.3 will harness Theorem 1.2. The derivation of the latter
result is comprised of four steps; two further steps will yield the former.

1. The two right-hand weights in the formula (2.1) for the routed weight profile may
be viewed as functions of the variable x € R. In a simple a-dependent change
of coordinates, we will present normalized counterparts to these profiles. These
normalized profiles are Brownian of rate one on the unit scale in a sense that
is uniform in a and n; they are globally governed by the curvature of a shared
parabola, z — —271/222,

2. We will recall from [Ham20] that any normalized profile may be embedded via the
Robinson-Schensted-Knuth correspondence as the uppermost curve of a regular
ensemble. The latter object is a random ordered system of continuous curves
which enjoy an attractive probabilistic resampling, the Brownian Gibbs property,
alongside certain boundary conditions.

3. We will recall from [CHH19] that the curves in a regular ensemble enjoy strong
similarity to Brownian motion of rate one, in the sense of Definition 1.1.

4. The profile z — Z,(z,a) is thus seen via (2.1) to be the sum of two independent
processes that bear a demanding comparison to standard Brownian motion; it would
thus seem—and we will prove—that this profile withstands such a comparison to
Brownian motion of rate two. In this way, we will obtain Theorem 1.2.

5. Twin peaks are rare for Brownian motion (of rate two).

6. Thus, and as Theorem 1.3 asserts, they are also rare for the profile x — Z,(z, a).

The six ensuing subsections give rigorous renderings of these respective steps.

2.1 Forward and backward weight profiles

By the formula (2.1), the routed weight profile is exhibited as a sum of two indepen-
dent random processes. The first may be labelled ‘forward’, because the origin (0, 0) is
fixed, and the spatial variable x is attached to the more advanced height a € (0,1). The
latter process may be called ‘backward’, because the fixed point (0, 1) is more advanced
that the height a™ = a + n~! of the endpoint (x~,a™) that varies with z.

It is useful to discuss further the forward and backward processes, and we consider
a given compatible triple (n, s1, s2) € IN x R2 in order to do so. Consider the forward
weight profile, given by -

Wgtn[(O,sl) = (-, 82)] [f 2*1711/35172, oo) —R;
and the backward profile,

Wgtn[(-, s1) = (0,82)] : (— 00,2_1711/381’2] —R.
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It is valuable to vividly picture these two profiles. Each locally resembles Brownian
motion but globally follows the contour of the parabola —27/2(y — x)2s; } as a function

of y or z in the forward or backward case. Each profile adopts values of order 517/23 when

x and y differ by an order of sf/ % More negative values, dictated by parabolic curvature,

are witnessed outside this region. This description holds sway in a region that expands
from the origin as the parameter n rises.

Clearly, then, our profiles have fundamental differences according to the value of s o:
sharply peaked ensemble curves when s; 5 is small, and much flatter curves when s;  is
large. A simple further parabolic transformation will serve to put the profiles on a much
more equal footing. Since the profiles are already scaled objects, we will use the term
‘normalized’ to allude to the newly transformed counterparts.

That is, we define the normalized forward profile

NrLlis2 y [— 27 (ns12)"/3,00) = R,

n;(w,s1

setting, for z > _2_1n1/38£§/3,

NrLlis2

n;(z,s1)

(2) = sl_é/g Wet, [(z,s1) = (z + sf/;z, s2)] . (2.2)
The normalized backward profile Nr£y Y2 (— 00,27 (ns12)'/3] — R is specified by
setting

Nrﬁ}j;(s?i)”)(z) = sil/g Waet,, [(y + sf/;z, s1) = (y, 82)] (2.3)

for z < 2’1n1/351_’3/3.

The new curves locally resemble Brownian motion as before, but they have been
centred and squeezed so that now the parabola that dictates their overall shape is
—271/2,2_ This picture is accurate in a region that expands as the parameter nsi 2 rises.

2.2 Brownian Gibbs line ensembles

The Robinson-Schensted-Knuth correspondence permits any given forward and back-
ward weight profile to be embedded as the uppermost curve in an ordered system—or
line ensemble—of random continuous curves that enjoy an attractive and valuable proba-
bilistic resampling called the Brownian Gibbs property. The notion of a Brownian Gibbs
line ensemble was introduced in [CH14] to capture a system of ordered curves that
arise by conditioning Brownian motions or bridges on mutual avoidance. The precise
definition is not logically needed in this article, but we offer an informal summary next,
and then indicate how our normalized profiles satisfy this definition.

2.2.1 An overview

Let n € IN and let I be a closed interval in the real line. A [1,n]-indexed line ensemble
defined on I is a random collection of continuous curves £ : [1,n] x I — R specified
under a probability measure P. The i*" curve is thus £(i,-) : I — R. (The adjective
‘line’ has been applied to these systems perhaps because of their origin in such models
as Poissonian LPP, where the counterpart object has piecewise constant curves. We
will omit it henceforth.) An ensemble is called ordered if L(i,z) > L(i + 1, x) whenever
i € [1,n — 1] and « lies in the interior of I. The curves may thus assume a common value
at any finite endpoint of /. We will consider ordered ensembles that satisfy a condition
called the Brownian Gibbs property. Colloquially, we may say that an ordered ensemble
is called Brownian Gibbs if it arises from a system of Brownian bridges or Brownian
motions defined on I by conditioning on the mutual avoidance of the curves at all times
inI.

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 19/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

2.2.2 Defining (¢, C)-regular ensembles

We are interested in ensembles that are not merely Brownian Gibbs but that hew to
the shape of a parabola and have one-point distributions for the uppermost curve that
enjoy tightness properties. We will employ the next definition, which specifies a (¢, ¢, C)-
regular ensemble from [Ham22, Definition 2.4], in the special case where the vector ¢
equals (1/3,1/9,1/3).

Definition 2.2. Consider a Brownian Gibbs ensemble of the form
L:[1,N]x[—z,00) =R,

and which is defined on a probability space under the law P. The number N = N (L) of
ensemble curves and the absolute value z, of the finite endpoint may take any values in
N and [0, c0).

Let Q : R — R denote the parabola Q(x) = 2~ /222,

Let C and ¢ be two positive constants. The ensemble L is said to be (¢, C)-regular if
the following conditions are satisfied.

1. Endpoint escape. z; > ¢N/3.
2. One-point lower tail. If z € [—z., 00) satisfies |z| < ¢N'/?, then

IP<£(1,Z) +Q(2) < 75) <Cexp{-— 053/2}

forall s € [1,N'/3].
3. One-point upper tail. If z € [—z,, o) satisfies |z| < ¢N'/9, then

P(ﬁ(l,z) +Q(2) > 5) < Cexp{ —cs*?}

for all s € [1,0).

We will call these conditions Reg(1), Reg(2) and Reg(3).
A Brownian Gibbs ensemble of the form

L:]1,N] x (700,25] - R

is also said to be (c, C)-regular if the reflected ensemble L(-, —-) is. This is equivalent to
the above conditions when instances of [—z.,00) are replaced by (—oo, z.].

2.2.3 The normalized forward and backward profiles may be embedded in reg-
ular ensembles

We say that a random function of the form £ : [—zz,00) = Ror £ : (—o0,22] — R is
(¢, C,m)-regular if there exists an m-curve (¢, C)-regular ensemble of which it is the
lowest indexed curve.

Our reason for invoking the theory of regular Brownian Gibbs ensembles is that the
normalized Brownian LPP profiles are regular.

Proposition 2.3. There exist values for the positive parameters C and c such that, for
n € N anda € n='Zn(0,1), the following hold.

1. The process Nrﬁlﬁoyo) : [

2. The process NrL;{") (—o00,27(n(1 - a+))1/3] — R is (¢, C,n(1 — a))-regular.

—27Y(na)'/3,00) = R is (¢, C,na + 1)-regular.

Proof. Values of C and c that validate these two statements are offered by [Ham20,
Proposition 4.2]. O

The reader may consult the fifth paragraph of Section 5.8 of [Ham20] for a point of
departure to the proof of [Ham20, Proposition 4.2].
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2.3 The Brownianity of the narrow wedge weight profile

We now state the principal result of [CHH19], asserting the Brownianity of scaled
Brownian LPP polymer weight profiles in the narrow wedge case (recall the notion
of approximate Brownianity from Definition 1.1), when one endpoint is fixed, and the
other varies horizontally. This conclusion is expressed in terms of regular ensembles
in [CHH19]. Our concern is merely with the uppermost curve and we record the result
only in this case.

Theorem 2.4. Suppose that L,, is an m-curve (¢, C)-regular ensemble for some m € IN
and C,c € (0,00). Letd > 1 and K € R satisfy [K —d, K +d] C ¢/2- [-m'/°,m'/°]. There
exist values of the positive parameters g and G, chosen without dependence on m, K
or d, such that the random function [K —d, K +d] — R : z — L,,(1,z) + 2'/?Kz is
(9,G,d,m,1)-Brownian.

Proof. The result follows from [CHH19, Theorem 3.11] by considering the curve with
the lowest index k = 1 in the ensemble £,,,. We now indicate conditions on the claimed
constants GG and g that render valid the application of this theorem—a mundane check
phrased in terms of parameters D, and C from the quoted result. We choose G to be at
least the value of this parameter as specified in [CHH19, Theorem 3.11] while satisfying
G > 245D;® and G > 4932D}/?. We choose g > 0 to satisfy g < e A (17)72C; ' Dy t. We
further demand that g < (c/ 272V Q)Dl_ !; and ensure that this parameter is small enough
that exp(—gmg/?) > e~ for mg = (¢/3)~18 v 636, in order that the condition e=9™"""* <5
be impossible to satisfy unless m > my. We impose the lower bound of e~! since the
upper bound that 7 is assumed to satisfy in Definition 1.1 implies that < e~! in view of
G,d>1. O

2.4 Brownianity for the routed weight profile

We now prove Theorem 1.2. We begin by rewriting the basic formula Lemma 2.1(1)

in normalized form:
Zn(x,a) = al/gNrLZ(zO’O) (aiZ/ggL’) +(1- a_,_)l/gNrﬁfj;(aOf) (1- a+)72/3x7) . (2.4)

Theorem 1.2 is concerned with the Brownian character of the profile + — Z,,(z,a)
in a neighbourhood of a given R € R. This profile is curved parabolically in a global
sense, so that a suitable drift must be identified for the Brownian motion with which we
seek to make comparison. We find the drift by determining the counterpart drifts for
the two right-hand terms in (2.4). We are thus led to make a further simple change of
coordinates.

Set /: R> — R to equal /(z,y) = —2~ /222 — 2Y/22(y — z); thus, y — £(z,v) is the line
tangent at « € R to the parabola z — —271/222,

Let s € n=1Z N (0,1). For z € R, define the shifted forward profile

shiftt;s | — :
Nrﬁn;x;t(To,o) (-2 Yns)t/3 — 2, ) - R
by setting
shift1; ;S
Nr‘cvz;x:(T():SO)(Z) = Nrﬁl;(op)(a: +2z) — K(x, x+ z) )
Fory € R, define the shifted backward profile Nr i (D) (—00,27 (ns12)3—y] = R
by setting
Nr LRl () = NrcEOD (y + 2) — £(y,y + 2) -

n;y;a n;a
Further set

shift1;a _
Zie) = NI (@ ) @5
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and
shift;(0, —2/3, _
ZH(x,a) = (1 — a+)1/3Nr£n};’(f1tf (0.2) ((1 —ay) / (7 — R)) .

ay)"2/3Riay

Since /(z,y) = 2~ /22% — 21/2zy, we find then from (2.4) that
Zn(x,a) = Z) (x,0) + Z}(x,a) + O(x) + E(z), (2.6)

where ©(z) = 271/2(a(1 — a))flR(R — 2z) and

_1R(R —2z)n "t 427121 —ay )" Rn 3.

E(x) = 2_1/2((1 —ay)(1—a))

In the next result, we see how shifted coordinates, which have made possible the

formula (2.6), put us in excellent shape to derive Theorem 1.2. Indeed, as we will argue

shortly, largely on the basis of the upcoming lemma and Theorem 2.4, the first two

right-hand terms of this formula are independent processes that are very similar to

Brownian motion of rate one; while the third term © records the drift inherited from
parabolic curvature that is manifest in the locale of the location R € R.

Lemma 2.5. There exist values for the positive parameters C, ¢, G and g such that, for
n € N anda € n='Zn(0,1), the following hold.

1. Suppose that |z| < ¢/2- (na + 1)'/°. Then the process Nrﬁilsz(g%) [— 27 (na)t/? -

z,00) — R is (¢/2,C,na + 1)-regular.
2. Suppose that [y| < ¢/2- (n(1 — a))l/g. Then the process

Nrﬁf;’;tj?(o’l) :(—o00,27 (n(1 - a))1/3 -y =R
is (¢/2,C,n(1 — a))-regular.

3. The processes Z)(-,a), Z+(-,a) : [R, R+ {] — R are independent.

4. Suppose that |R| < 27 'en'/%a"/°. Let ¢ € R satisfy { — R < 2~ 'n'/3a. Then the
process Z}(-,a) : [R— €, R+ (] = Ris (9,Ga™*,¢,an + 1,1)-Brownian.

5. Suppose that |R| <2 'en'/?(1 —ay)™/°. Let £ € R satisfy R+ < 27 'n'/3(1 —ay).
Then the process Z}(-,a) : [R —(, R+ (] - Ris (¢9,G(1 — ay)™,¢,(1 — a)n,1)-
Brownian.

Proof. (1,2). These are due to [Ham19a, Lemma 3.4] or [Ham22, Lemma 2.26].

(3). The regions R x [0,a] and R x [a + n~!, 1] that respectively specify Z!(-,a) and
Z+(-,a) are disjoint, so that these processes are independent.

(4). By the third part of the lemma, and Theorem 2.4, there exist positive values G and
¢ such that Nrﬁil?;ffzﬂ,&(o’o) t[—a=¥30,a72/30) - R is (9,G,a"*3¢,an + 1,1)-Brownian,
where we have used [—a~%/3(,a=%/3(] C [ — 27 (na)'/® — a=*?R,o0) and a~?/3|R| <
271¢(na + 1)'/°. The former condition is implied by a=%/3¢ < 27 (na)'/? + a=2/3R and
thus by our hypothesis that £ — R < 2-'n'/3a. The latter is implied by |R| < 2~ 'en'/2a7/9.

In light of this, and (2.5), we may apply the next presented Lemma 2.6 with x = a to
verify Lemma 2.5(6) holds.

(5). Invoking similarly the fourth part of the lemma,

Ny SPifs(0.1) -1 —ay) (1 —ay) ] 5 R

ni(l1—a4)~2/3Rjay

is seen to be (g, G, (1 — a;)~2/3¢,(1 — a;)n, 1)-Brownian. This time, we need

[-(1- ay )20, (1 - a+)_2/34 C (—o0, 27 (n(1- a+))1/3 —(1- a+)_2/3R}
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and (1 —a;)"?/3|R| <27 ¢(n(1 —ay )+ 1)'/9. The former condition is implied by R + ¢ <
2-n1/3(1 — ay); the latter by |R| < 2 ten/?(1 — ay)"/°. O

The a-dependent spatial-temporal scaling in (2.5) respects Brownian motion; it is
unsurprising then that this scaling in essence leaves invariant a property of similarity to
Brownian motion. The next result is a rigorous interpretation of this notion.

Lemma 2.6. Let G,g9,¢ > 0, K € (0,1), m € N and R € R. Suppose that the ran-
dom function L : [ — k=2/30,k=%/3(] — R is (g, G, k= %3¢, m,1)-Brownian. Set L"(z) =
K'3L(k~%3(x — R)). Then L* : [R — {,R+ (] — R is (g, Gx*,{, m, 1)-Brownian.

Proof. Recalling the notation of Definition 1.1, let B C Co . ([R — ¢, R+ {],R). Set

B* = {f € C07*([—/@_2/3€7/€_2/3£],R) tx— nl/sf(/i_Q/?’(x —R)) € B} .

-2/
Then Brownian scaling implies that, when B is Borel measurable, B([)? > ’ 3Z](B*) =

B([)Ii,R-i—é] (B).

Taking I = [ — k=2/3¢,x72/3(], the process L : [ — k=2/3¢,k=?/3(] — R meets the
condition on X : I — R in Definition 1.1 for the parameter quintet (g, G, x~2/3¢,m,1). It
is our task to verify that £ : [R — ¢, R + (] — R does so for the quintet (g, Gr~*,¢,m,1).
The third parameter, which is one-half the length of the domain interval, has decreased,
by a factor of x%/3. By the preceding paragraph, the value of the Brownian probability
1 is shared in the definition as it applies to the processes £ and L". If we denote
the second element of the latter quintet by G’, we may note that we must demand
of it that G/ > G(H*2/3)6 = Gr~*—so that the hypothesis n < e~¢* is implied by
n<exp{-— G(m‘2/3£)6}; and that G’ > Gk~2/3>—so that G'¢ > Gx~2/3¢ may be applied
to obtain the right-hand side in the display in Definition 1.1. The choice G’ = Gr~*
meets these two requirements. Since the three further parameters, g, G and m, transmit
unaltered, we obtain Lemma 2.6. O

Each profile x — Z)(x,a) and x — Z}(z, a) will shortly be shown to be very similar to
standard Brownian motion by an argument that harnesses Lemmas 2.5 and 2.6 to the
fundamental estimate Theorem 2.4. The profile x — Z,(x,a), after linear adjustment,
will then be seen via (2.6) to resemble Brownian motion of rate two (as Theorem 1.2
asserts), provided that we argue that Brownianity in the sense of Definition 1.1 is stable
under addition of processes. After we establish this in Lemma 2.8, we will be ready
to give a short proof of Theorem 1.2. First, however, we present a result that permits
us to dispense with Definition 1.1’s inconsequential but practically irksome Brownian
probability hypothesis 7 < g A e=¢4".

Lemma 2.7. Under the circumstances of Definition 1.1, suppose on the parameter
7, instead of the condition 6*9’”1/12 <n<gA e~ Gd° , that merely the lower bound
n > e=9m"""* holds. Suppose also that g € (0,1) and that G,d > 1. Then

]P(I —R:z— X(z) — X(K — d) belongs to A)
< 7n-exp {5G11/6d6g_5/6} exp {Gd( logn_1)5/6} .
Proof. Note that by Theorem 2.4 the condition e—gm'/*? < 7 implies that

IP(I—>R:x—>X(x)—X(K—d) belongs to A) < n-HGexp{Gd(logn_1)5/6}7 2.7)

where H = (max {g7,e%} + 1) exp {Gd(log max {g~*, eGd5})5/6}. The above follows

from Theorem 2.4 since H > 1 and moreover forn > g A e‘Gdﬁ, we have nH > 1 while

G exp {Gd(log n‘l)s/ﬁ} is always at least 1 since G > 1 by hypothesis.
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Since g € (0,1), note that
H< 29’166‘16 exp {Gd(log(gfleGdG))WG} < 297166116 exp {G11/6d6975/6} 7
where we have applied ae® < e for a,z > 1 with a = ¢~' and z = Gd°. Thus,
GH < 27 1Ge% exp {G”/Gdﬁg*f’/ﬁ}

g—163Gd5 exp {G11/6d69—5/6} < g lexp {4G11/6d69—5/6}’

IN

where we used G > 1 > g and d > 1. Noting that g~ < exp {¢°/} alongside G,d > 1
completes the proof. O

Recall Definition 1.1.

Lemma 2.8 (Additive stability for Brownian regularity). Let v; € (0,00); n; € N for
i€{1,2};9,G,¢ > 0; and R € R. Let the random functions X,Y : [R—{,R+ {] — R be
independent under the law P. Suppose that X is (g, G, 0 my, ul)-Browm'an, and thatY is
(9,G. ¢, m2,v2)-Brownian. Then X +Y is (9,G’,¢,m1 A'mg,v1 + v2)-Brownian, where G’
is a multiple of G17/64=5/6¢% by an absolute positive factor.

Proof. Write C = Co.(I,R) where I = [R — ¢, R + {]. Our argument will rely on
analysing the different values of the Radon-Nikodym derivative of X := X (-) — X(R — {)
with respect to Brownian motion. So we first apply the Lebesgue decomposition theorem
to obtain a Borel set X; C C such that X is absolutely continuous with respect to ngj”z?’
on X; and BS}:"”I(Xf) = 0. Similarly for Y, we define X;.

We first claim the following bounds:

1/12

P(X € Xf) < Gexp {5@59*5/%?/ 72}6*97"1 2.8)

1/12

P(Y € X5) < Gexp {5G£g_5/6mg/72}6_9m2

We only discuss the first bound since the argument for the second is similar. Note that
since BS}:”’Q;I(XIC) = 0, one cannot directly appeal to the fact that X is (g, G, ¢, my,11)-
Brownian. However, a simple enlargement argument gives a Borel set S such that
Xf C Sand Bg}j”Q;I(S) = e=9m" Thus we get

1/12

P(X € X7) <P(X € 5) < Gexp {G€g5/6m?/72}e*9m1

Next, let A C C be Borel measurable. Set o = Bg}*+”2;I(A), and suppose that o is at
least the quantity exp { — g(m1 Amg)'/12}. For f €C,set Ay = {geCNXy: f+g€ A}

Now let F' : C — [0, 00) denote the Radon-Nikodym derivative of the law of X with
respect to the law BS};I on X;; and let G : C — [0,00) denote the counterpart with the
replacements XY, V1 — 9 and X; — X5 made.

For k € N, write Dy, = {f € C: 2 < G(f) < 2¥"1} for k > 1 and let Dy = {f € C:
G(f) < 2}. Setmp = By (U, D;).

Note that ]P(Y’ € U2, D;) > 2¥n;.. However, by Lemma 2.7, the condition

1/12

e I <y, (2.9)

implies that
P (Y € U?‘;ij) < exp {5G11/6£6g_5/6} exp {Gﬂ( log 77,:1)5/6 }nk . (2.10)
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Thus, when (2.9) holds, 2¢F < Gexp{GE(logn,zl)S/ﬁ} with G = exp{5G11/6€6g_5/6},
whence

ne < exp{ — (GE)_6/5(k;10g2 — 1ogé)6/5} .

Hence, 1, < exp { — (G£)~%/5(klog 2 — log G)*'°} v e=9m:"", whether or not (2.9) holds.

Set J € IN to be minimal such that exp { — (G¢)=%/5(Jlog2 — log G)*'°} < o. Note
that J is at most 2G/(log 0_1)5/6 provided that G/¢(log 0‘1)5/6 > 1ogG.

Ifn; > e_gm;/”' then n; < o, so that
P(Y € U2, D;) < exp {5G1/505g75/5) exp {GL(log o) }ar, (2.11)

where we used that ¢ € (0,0¢) for o9 > 0 small enough that (0,00) - R : = —
exp {G/(log 1:*1)5/6}x is increasing. If n; < e=972"" then, by an enlargement argument,

1/12
My

P(V € U2, D;) < exp {5G1/0¢5g~5/5} exp {Gggg,/gmg/m}e,g

Since o > e‘gmim, we find that (2.11) holds, whether or not n; > e—gm;/lz'

Writing B: I — R, B(R — ¢) =0, to denote a Brownian motion of diffusion rate one
under the law P, independent of X, note that

P(X+Y e€A)=P(Y € Ag) (2.12)
J-1
SPXeX)+P(Y eXs)+ Y P(Y €Ay NDy, Y € Xy, X € Xy)
k=0

+P(Y €U, D, Y € As).

The first two terms will be bounded using (2.8). For the next two terms, observe that

J—1
Z]P(Y/ c Aj( ﬂDk,X S Xl) +IP(}A/ c U;‘;JDJ')
k=0
J-1 .
< Z 2k+1IP(B €cAgN Dy, X € Xl) + exp {4G11/6€6975/6} exp {Gf(logafl)om}a
k=0
< 2JIP(B € AX,X € X)) + exp {5G11/6€6g_5/6}eXp{GE(logU_l)s/ﬁ}o

< 22Gz(log”71)5/GIP(B € AX,X € X1) + exp {5G11/6ﬁﬁg_5/6} exp {Gf(loga‘1)5/6}a.
(2.13)

In a specification similar to that of Dy, set B, = {f € C: 2" < F(f) < 2"} for k > 1,

and Fy = {f €EC:F(f) < 2}. By a verbatim argument that invokes o > efgm}/lz, we see
that IP(X S Uj:JE]—) is at most the right-hand side of (2.11).

Write B’ : I = R, B'(R — ¢) = 0, for a further Brownian motion of diffusion rate one,
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defined under the law P and chosen independently of B. Note then that

P(BeAg, X € &)
J-1
= Y P(BeAg, X € Er) + P(X € U2 E))
k=0
J—1
Z 2k+1IP(B € Ap,B' € Ek) + exp {5G11/6£69_5/6} exp {G€(10g0_1)5/6}0
k=0
2’P(B € Ap/) + exp{5G11/6€6975/6}exp{Gé(logail)s/G}a
= 22G£(loga_1)s/GIP(B +B' ¢ A) + exp {5G11/6€6975/6} exp {Gf(log a*1)5/6}a

= (e {21082+ Ge(loo )"} + exp {56104} exp {Ge(log o)} ) o

IA

IN

< exp {2 . 5G11/6£6g—5/6 2log 2 - G£(10g0—1)5/6} o
_ exp{2010g2 . G17/69—5/6€7(10g0_—1)5/6} o,

where to get the inequality in the second line, for the term involving the sum, we simply
use the definition of E}, and independence of B and X as well as of B and B’, to pass
from P(B € Ay, X € Ej) to 28+'P(B € Ay, B' € Ey). The second term is bounded using
the already stated bound on IP(X € UJ‘?';JEj). The final inequality uses G,/ > 1, g <1,
o< e !and2e® < e2® forz > 1.

The preceding display and (2.13) yield

T
L

IP(Y € AX ﬂDk,X € Xl) —‘FIP(Y € UJO».;JDJ')

o~

;=0
< 92Gt(log o™ 1)/° exp {20log2 ) G17/6g75/6£7(log0_71)5/6} o
+ exp {5G11/6€6975/6} exp {Gé(log 071)5/6}0.
This, along with (2.12) and (2.8), implies that
IP(X +Ye A) <exp {@(1)G17/6g_5/6£7(10g 0_1)5/6}0

and hence completes the proof of Lemma 2.8. O
Proof of Theorem 1.2. If we set X(z) = Z}(x,a) + Z}(x,a), then (2.6) implies that

Zn(x,a) = X(z) — (21/2(a(1 - a))_1R+ e)x +c(a, R,n)

where e = 21/2((1 —a —n~1)(1 - a))fan*1 and c(a, R,n) is a constant. The process X
is found to be (g, G, max{a~%?, (1 — a)~?/3}¢,min{a, 1 — a}n,2)-Brownian for the value
of G’ given in Theorem 1.2 by means of Lemma 2.5(3,4,5) and Lemma 2.8. It remains
only to remove the constant c(a, R,n) from the representation of Z,(z,a) in order to
complete the proof of Theorem 1.2. The stated Brownian property of X is unaltered by
the addition of a constant to this process; thus, we may absorb the constant by adding it
to X. O

2.5 The rarity of twin peaks in the Brownian case

Here, we state and prove our Brownian twin peaks’ rarity result, Proposition 2.9.
Although the result is not new, we could not locate a reference; the following quantitative
form is suitable for our applications.
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The argument rests in part on Proposition 2.11, a near-return probability estimate
for Brownian meander, which is stated and proved in the later part of the section.

Let K and r be positive. Let B : [-r,r] — R, B(0) = 0, denote standard Brownian
motion under a law labelled P. Set W : [-r,r] = R, W(z) = B(z) + Kz. Let M € [—r, ]
denote the almost surely unique point at which the process W attains its maximum.
Let Mid denote the middle-third event that M € [—r/3,r/3]. For parameters ¢ € (0,7/6)
and o € (0,1), let NT = NT(B) denote the near-touch event that there exists a value of
z € [—r,7] such that |z — M| € [g,2¢] for which W (z) > W (M) — oc'/2. The near-touch
event will be considered only when the middle-third event occurs, so that the condition
that z € [—r,r] will be implied by the demand that |z — M| < 2e.

Proposition 2.9. For a constant D > 0 that is independent of K > 0, r > 0, £ € (0,7/6)
and o € (0,1), we have that

P(NT N Mid) < DK'r~"2exp { — K?r/18} min {0, 1},

as well as P(NT N Mid) < Do.

Proof. The case of general » > 0 may be reduced to that where » = 1 by considering
r~12W(rx) : [-1,1] — R. Brownian scaling entails that the » = 1 result implies the
general result when the replacement of K by Kr!/? is made. Thus, it suffices to prove
the lemma with r set equal to one, a choice which we now make.

We will first argue that

P(Mid) < 3-23/27 12K Lexp { — K21, (2.14)

Note that Mid entails that W (1) < W (M) with M € [-1/3,1/3], so that B(1) < B(M) —
2K /3, which forces one of B(1) and B(M) to exceed K/3 in absolute value. Thus,

Mid C {sup{\B(x)\ zel-1,1)} > K/3} .

By symmetry and the reflection principle, the probability of this right-hand event is at
most

22P(B(1) > K/3) < 4(2m) " V2(K/3) Vexp {—271(K/3)?} = 3-2%/ 27~ /2 K Vexp { - &2

(2.15)
the displayed inequality by a standard upper bound on the tail of a Gaussian random
variable. Thus, we obtain (2.14).

The next result will be important as we turn to analysing the conditional probability
of NT given Mid. For r > 0 and y < 0, we write Bg?f for the law of Brownian bridge B of
diffusion rate one on [0, r] with B(0) = 0 and B(r) = y; thus, B,[J?;f]( -|B < 0) is the law
resulting from conditioning B on B(z) < 0 for = € (0,7]. ‘

Lemma 2.10. Under the conditional law P( - |Mid), consider the processes X~ : [0, M +
1] - Rand X+ :[0,1 — M| = R, given by X~ (z) = B(M — z) — B(M) and X" (x) =
B(M + z) — B(M).

1. Conditionally on the value of M € [—1/3,1/3] and on X+ (1 — M) being any given
value y < 0, the conditional distribution of X is given by the law B([f;/l_M] ( ]B < 0).
2. Conditionally on the value of M € [-1/3,1/3] and on X~ (M + 1) being any given

value y < 0, the conditional distribution of X ~ is given by the law B([)%Mﬂ] (-|B <0).

Proof: (1). Under the stated conditioning, the process X* : [0,1 — M] — R is given
by [0,1-M] — R : 2z — X(z), where X (z) = B(z)+ Kx, with B being standard Brownian
motion, conditioned on X(1 — M) =y and on X(x) < 0 for z € (0,1 — M). Conditioning
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X as given by the preceding formula on X (1 — M) = y results in the Brownian bridge
law B[[S;_M], as we may readily verify by decomposing B : [0,1 — M] — R as the sum
of a Brownian bridge and a linear term with an independent Gaussian coefficient. The
further conditioning X (z) < 0 results in the conditional distribution stated in the lemma.
(2). This almost verbatim argument is omitted. O

We wish to apply the shortly upcoming Proposition 2.11 alongside Lemma 2.10 to

find that there exists D > 0 such that, for any y < 0,
B MUNT|B < 0) + By T(NT|B < 0) < Do.

Above, we are abusing notation a little in denoting by NT the event that there exists
a value of z € [—¢, 2¢] such that for which B(z) > —oe!/2.

We set the proposition’s parameters: » = € and s = 1 +£ M. The proposition’s
hypothesis s > 3r is valid because because M < 1/3 when Mid occurs, so that ¢ is merely
supposed to be at most a given positive constant. Equipped with the just stated outcome,
we find that

P(Mid "NT) = P(Mid)P(NT|Mid)

32320 12KV exp { — %}E(BQJ‘M](NT|B <0) +BYM I (NT|B < 0)>

IA

< 3. 23/2,—1/2 g1 exp{ — %}Da.

It is in the second inequality that the conclusion of Proposition 2.11 is used. The first
inequality is due to (2.14), and the mean IE on this inequality’s right-hand side is taken
over y and M. Note that the displayed assertion in Proposition 2.9 may be viewed as a
pair of bounds due to the right-hand factor of min{c, 1}. The proof of the bound including
the factor of ¢ has just been completed, while the bound without this factor is implied
by (2.14). The latter assertion of Proposition 2.9 follows from IP(NT| Mid) < Do. O

Proposition 2.11. Let s, r be positive, with s > 3r; let y < 0; and let ¢ > 0. Let
X :[0,s] — R be a random process specified under the law P whose law is Bg));f] (-|B <0).
Let E = E(X,r,¢) denote the event that sup,|, ,,) X (z) is at least —r'/?c. There exists a
constant D > 0 such that, for any such s, r, y and ¢, P(E) < De.

Some preliminaries will be of aid in proving this proposition.
Let f : [ug,v9] — R denote a continuous function defined on a compact real interval.
For any closed subinterval [u,v] C [ug, vo], let f“* : [u,v] — R denote the bridge—that

is, the continuous function with vanishing endpoint values—that is an affine translate of
f’s restriction to [u,v]. Namely,

o2y = fa) — L2 f(y) — =2 f(v) for z € [u,v].

Let z,y € [ug, vo] satisfy < y. We view the interval [x,y] as a union L U R of a left
and a right subinterval, setting L = [z, m]| and R = [m, y], where m = (x + y)/2.
Note that the function f is characterized by the list of data:

* the restriction of f to [ug,z] U [y, vo];
+ the left bridge f” and the right bridge f%; and
* the relative midpoint value f((z +y)/2) — (f(z) + f(y))/2.

Indeed, given the listed data, f may be reconstructed by recording its values on [ug, 2] U
[y, vo]; by recording the value f ((x +y)/ 2) via the first and third items; and by recovering
its remaining values by adding to the affine interpolations of the endpoint values on L
and R the respective bridges f” and f%.
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Lemma 2.12. Let B : [ug, vo] — R have the law B([;ff’”"]. The elements in the three-item
list for B are independent. The bridges in the second item have respective Iaws—B(ﬁ0
and B(Ifo—of Brownian bridge on L and R with vanishing endpoint values. The law of the
real random variable in the third item is Gaussian with mean zero and variance (y — x)/4.

Proof. Given the first element in the three item list for B, the third item takes the in-
dicated form by explicit computation. By Lévy’s construction of Brownian motion [MP10],
the two second item bridges are then independent standard Brownian bridges. O

Proof of Proposition 2.11. Fort > 0, set X; : [0,s/t] = R, X;(x) = t~'/2X (tz).
Note that X;(s/t) = t~'/2y. By Brownian scaling, we note that X, has the law of X
indexed by parameters (r/t,s/t,t~'/?y,¢) in place of (r,s,y,c). Moreover, the spatial-
temporal scaling (z,y) — (tz,t'/2y) sends the event E(X,r,¢) to the event E(X;,7/t,¢).
It is thus enough to prove the proposition for a given value of » > 0. We will do so with
r=2.

Set L = [1,3], R = [3,5], and write N = X(3) — (X (1) + X(5))/2. Consider the
three-item list that represents X in the case that [z,y] = [1,5]. The two bridges in the
second item are X% and X%, and the relative value in the third item equals N.

We will prove the proposition by analysing a random experiment in which the process
X is sampled and then altered to produce a coupled process X". This resampled process
X" will share the law of X. The discussion of the experiment will include four claims
each of whose proofs is given straight after the claim in question is stated.

In the experiment, X is first sampled and represented in the format of the three-item
list. The third element is discarded and resampled to equal N”, a random variable that
is selected independently according to the standard Gaussian law. Let X" : [0,s] = R
denote the process arising from the resampled three-item list.

Let S denote the event that X"(x) < 0 for all x € (0,s). If S occurs, we set Z = X".
In the other case, we sample an independent copy of the process X and repeat the
procedure. This process continues until Z : [0,00) — R is specified.

Claim 1. The process Z : [0, s] — R has the law of X.

Proof. It is enough to argue that the conditional distribution of X" given the occurrence
of S equals the law of X. We will establish the stronger assertion that, given the first
and second items in the three-item list that specifies X, the conditional distribution of
the third item that specifies X, and of the third item that specifies X" given S, coincide.

Thus suppose given the first and second items that specify X. Let Y denote the
random height, measurable with respect to these items, such that setting the third
item value equal to Y ensures that X : [0, s] — R assumes the value zero in [1, 5], but
is never positive in this interval. Since the value (y — z)/4 in Lemma 2.12 equals one
in the present case, this lemma implies that, given the first and second items, the
conditional distribution of the third item in the specification of X is the law of a standard
Gaussian random variable conditioned to be less than Y. But the characterization of the
event S given the first and second items is simply that the standard Gaussian random
variable N” be less than Y. This confirms the stronger assertion and completes the proof
of Claim 1. O

In view of Claim 1, it suffices for the proof of Proposition 2.11 to argue that, for some
D > 0, the bound P(E(Z,2,¢)) < De holds for all £ > 0.

Let K € IN* denote the step at which the procedure terminates. Thus, S = {K = 1}.
Let F denote the g-algebra generated by the first and second items in the three-item
list for X. Let H C R denote the F-measurable random set of h € R such that the
specification of the third item value to h alongside the given first and second items
causes the event SN E(X",2,¢) to occur.

Claim 2. The random set H is an F-measurable interval whose length is almost surely
at most 2%/%¢.
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Proof. Given F, the event SNE (X", 2, ) is characterized by the condition that sup { X" (2) :
z € [2,4]} € (—2'/2¢,0). When N" =Y/, this supremum equals zero; let Z € [2,4] satisfy
X"(Z) = 0 when N” = Y. Then X"(Z) = —2=Z=3l\ < _2-1\ when N" = Y — ), so
that the supremum is at most —2'/2¢ when A\ > 23/2c. Thus, H C [V — 2%/%¢,Y]. The
monotonicity of X" in N implies that H is an interval, so that Claim 2 is validated. O
Denoting by u the standard Gaussian law, note that
P(N, € H) _ p(H)

P(E(Z,2,e) | K=1) = P(S)  —P(5) (2.16)

Claim 3. P(S) > 47 'u(1,00)e 2.
Proof. Consider four independent events: {X(1) < —1} N {X(5) < X(1)}; the supremum
of the bridge X! is at most one; likewise for the bridge X[*%]; and N" < 0. Lower
bounds on the probabilities of these four events are: 27'u(1,00); e~}; e7!; and 1/2.
Indeed, X (1) is stochastically dominated by a standard Gaussian random variable, as
is X(5) — X (1) conditionally on the value of X (1); Bélyb?’](supme[l’g] B(z) >r) = e for
r > 0 by Brownian scaling and equation (3.40) in [KS88, Chapter 4]; while the third
bound follows similarly to the second, and the fourth is trivial. The four events ensure

that S occurs, whence Claim 3. o O
Claim 4. Forx € Rand a > 0, u[m,az—i—a] < (271')_ 24,
Proof. The standard Gaussian density is at most (2r)~ /2, O

Applying Claims 2, 3 and 4 to (2.16), we learn that
P(E(Z,2,e)|K =1) < De
where D = 2772 . 45(1, 00)"'e2. Note then that
P(E(X,2,e)) = P(E(Z,2,¢)) =P(E(Z,2,¢) | K =1),

so that IP(E(X, 2, s)) < De is seen to hold for the same choice of D > 0. Thus we obtain
Proposition 2.11. O

2.6 The rarity of twin peaks for the routed weight profile

Theorem 1.3 would now seem to be readily at hand on the basis of Theorem 1.2 and
Proposition 2.9. There is a gap to be bridged, however. To explain this, let X = Y mean
that ‘the random function X is very similar to the random function Y in the sense of
Definition 1.1°. By Theorem 1.2, Z,(-,a) : [R — ¢, R + ] — R has (up to an additive shift)
the form B + ¢, where B is Brownian motion of rate two and / is the linear function
{(z) = Kz, with K = 2'/2(a(1 — a))flR. Proposition 2.9 delivers pertinent information
about the process B + ¢. The extra little element we thus need is to understand that a
random function that has the form B+ + ¢ also has the form (B + ¢)*. This element is
furnished in the proof of the next result, which translates Proposition 2.9 into a form
which in unison with Theorem 1.2 will then readily deliver Theorem 1.3.

Corollary 2.13. let RE R,/ >1,a€n"'Zn(0,1), 0 >0 and e > 0. Let M denote the
maximizer of Z,(-,a) : [R—¢, R+/] — R. Suppose that |R| < 2~ en'/? (a/\(l—a—n‘l))7/9,
where ¢ appears in Theorem 1.2. Let { > 0 satisfy —2"'n'/3a < R— ¢ and R+ { <
2-'n1/3(1 —a —n~'). Abbreviating Z = Z,(-,a), let Mid(Z) denote the event that M lies
in[R—-1{/3,R+{/3]. Let NT(Z) denote the event that there exists x € [R — ¢, R + {] such
that |x — M| € [e,2¢] and Z(x) > Z(M) — ge'/2. When a lies in a compact interval in (0, 1),
then there exist constants H, h > 0 and ny € IN determined by this compact interval such
that, if we further suppose that ¢ < hn'/137 and n > ng, then

IP(Mid(Z)ﬂNT(Z)) < max {a*-exp {—hR2€+H€19(1—|—R2+log 0;1)5/6}, exp {—hn1/12}} ,
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where we denote o, = min{o, 1}.

Proof. Set X* : [R—{¢,R+{] - R, X*(R) = 0, to be Brownian motion of diffusion
rate two. Thus X* is the pure counterpart to the process X : [R — ¢, R + {] — R from
Theorem 1.2 which is (g, G'¢%, ¢, min{a, 1 — a}n, 2)-Brownian for G’ = ©(1)G*"/6¢=5/6 (a A

_1y) —34/3
(1—a—n"1)) .

Now define MidNT*(X*) to be the event that the process [R — ¢, R+ /(] - R:z —
X*(x) + Kz realizes the event Mid N NT. That is, MidNT" is the set of those continuous
functions f : [R — ¢, R+ ¢] — R that vanish at R and for which

the map [R—{¢,R+{] - R:x — f(z) + K(z — R) belongs to Mid N NT.

Let Z* : [R—{¢,R + {] — R be given by Z*(z) = X*(z) + K(z — R), where K =
—21/2(a(1 - a))_lR + ¢, with ¢ specified by Theorem 1.2. Given the form of ¢, we see
that, provided that n > ng, we have d;|R| < |K| < D;|R)|, where the positive constants d;
and D; and the natural number ng are determined by the compact interval in (0, 1) in
which a € n~17Z is supposed to lie.

Note that, by definition,

]P(Mid(Z*) N NT(Z*)) - IP(MidNT*(X*)) .
Let p € (0, 1) denote this probability. Recalling from above that the process X : [R—¢, R+
0] - Ris (g,G'¢5,¢,min{a, 1 — a}n,2)-Brownian for G' = ©(1)G*/5¢=5/5(a A (1 —a —
n~1))~34/3, By Lemma 2.7, we thus have that, when exp{ - g( min{a,1 — a}n)1/12} <np,

]P(MidNT*(X)) < q-exp {5(G/)11/6€6+77/69—5/6} exp {G’E(logq‘1)5/6} .

for any value ¢ € [p, 1]. This left-hand side equals P(Mid(Z) "NT(Z)) by definition, while
the value of p satisfies

p< DK~1~1/? exp { — K*¢/18} min{o, 1}

as well as p < Do by Proposition 2.9. Choose ¢ = DK ~1¢~Y/2 exp { — K2¢/18} min{c, 1}.
Recalling the notation ¢, = ¢ A 1, we find that

P(Mid(Z) NNT(Z)) < DK 0 '2exp{— K?¢/18}0. g " exp {5(G')1}/0¢113/64=5/6}
X exp {G’E(log (DK exp {K2£/18}0;1))5/6} :

Using d;|R| < |K| < D;|R|, and absorbing the D~! K ¢!/ factor in the third exponential
term into exp { K%¢/18}, we obtain, for positive constants H and h determined by the
compact interval in (0, 1) in which a is supposed to lie,

P(Mid(Z) \NT(Z)) < Hexp { — hR2(} exp { H g5/} exp { HIT (R20 + log o) *Y o,

(The dependence on G and g has been absorbed by H.) Further note that, the factor
K~'4~1/2, which is problematic for small K¢'/2 > 0, has been omitted by making H large
enough; indeed, exp { — hRR*(} approaches one as K (/2 0, while the other right-hand
exponential terms are at least one, and the left-hand side, being a probability, is at most
one.

Noting that ¢ > 1, and suitably increasing H, this upper bound is at most

exp{ — hR%*( + Hﬁlg(l + R? + 1oga;1)5/6} O -
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This completes the proof of Corollary 2.13 in the case that exp{ — g(min{a, 1-
a}n)1/12} < p. Suppose now that the opposing inequality holds. Choosing ¢ = exp { —
g(minf{a, 1 — a}n)1/12}, we find that

P(Mid(Z)NNT(Z)) < exp{— g(minfa,1— a}n)l/u} g texp {4(G')11/6€6g75/6}
X exp {G/€g5/6 (min{a,1 — a}n) 5/72} )

For positive constants H and h determined by the compact interval in (0, 1) in which a is
supposed to lie, we obtain

P(Mid(Z) NNT(Z)) < exp { — hn'/'? + HEY + H£7n5/72} :
or, more simply,
P(Mid(Z) NNT(Z)) < exp { — hn/?? + H€19n5/72}.

1/1370

Since we suppose that /¢ is at most a small constant multiple of n , we also have,

after a decrease in the value of h > 0,
P(Mid(Z) NNT(Z)) < exp { — hn'/1?}.

This completes the proof of Corollary 2.13. O

Proof of Theorem 1.3. Corollary 2.13 implies that, when a € n~'Z lies in a compact
interval in (0, 1), there exist constants H, h > 0 determined by this compact interval such
that, for ¢ € (0,¢/3),

JP(M c[R—0/3,R+10/3], sup  Zn(w,a) > Zn(M,a) — 051/2)
zER:|z— M |€[e,2¢]

< max {0' cexp{ — hR*(+ HOO(1+ R? +1ogo)” %}, exp { — ;ml/lz}} .

Summing this bound over dyadic scales [2/¢,2/1¢] from that indexed by j = 0 until a
final truncated scale of the form [27¢, '], we learn that

]P(M €[R—0/3,R+1/3], sup (Zo(@,a) + 0272 (x — M)V/2) > Zn(M,a)>
z€R:|x—M|€[e,l/3]

< [log, (¢'=™")] max {a cexp{ —hR*(+ H("(1+ R* + loga_l)s/ﬁ},exp{ - hn1/12}} .

Relabelling ¢ and adjusting the values of H and h, we obtain Theorem 1.3. O

3 Fluctuation in polymer weight and geometry

Here we prove our robust modulus of continuity assertions Theorem 1.4, which
concerns polymer geometry, and Theorem 1.6, which concerns polymer weight. As a
consequence, we will prove Corollary 1.5, which addresses the maximum fluctuation of
polymers. We further prove Theorem 1.7, a result which offers control on the fluctuation
of polymers that is uniform in compact endpoint variation and in variation on a given
dyadic scale for the polymer lifetime proportion at which fluctuation is measured.

There are eight subsections. The first introduces some basic tools needed on sev-
eral later occasions in this article. Four sets of preliminaries that are needed for the
proofs of Theorems 1.4 and 1.6 are respectively treated in the ensuing four subsections:
the assertion of a strong form of invariance for parabolic weight in Brownian LPP; a
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result, in the style of Corollary 1.5, concerning the maximum fluctuation of polymers;
control on polymer weight that is uniform in compact endpoint variation; and control
on large local fluctuations in unscaled geodesic energy. The sixth subsection proves
Theorems 1.4 and 1.6 and Corollary 1.5. The seventh proves Theorem 1.7 and the eighth
Proposition 1.8.

3.1 Some basics

3.1.1 The scaling principle

Write R2 = {(z,y) € R? : < y}. Let (n,s1,52) € N x RZ be a compatible triple.
The quantity ns; o is a positive integer, in view of the defining property (1.4). The
scaling map Rj : R?> — R? has been defined whenever k£ € INt, and thus we may
speak of R, and Ry, ,. The map R, is the composition of R, , and the transform
S,-1 given by R? — R? : (a,b) — (asig/B,bs;%). That is, the system of ns; »-zigzags
is transformed into the system of n-zigzags by an application of Ss;é' Note that

1/3 —2/3 —2/3 _
Wgtn[(m,sl) — (y,sz)} = 31,/2 Wet,, , [(acslz/ JK) — (y8172/ LK+ 1)} where k = 8181’5,‘

indeed this weight transformation law is valid for all zigzags, rather than just polymers,
in view of (1.6).

We may summarise these inferences by saying that the system of ns; »-zigzags, in-

cluding their weight data, is transformed into the n-zigzag system, and its accompanying
weight data, by the transformation (a,b,c) — (a5;§/37 bs;§/3, csl_é), where the compo-
nents refer to the changes suffered in weight, and horizontal and vertical coordinates.
This fact leads us to what we call the scaling principle.
The scaling principle. Let (n,s1,s2) € N x R2 be a compatible triple. Any statement
concerning the system of n-zigzags, including weight information, is equivalent to the
corresponding statement concerning the system of ns; 3-zigzags, provided that the
following changes are made:

* the index n is replaced by ns; »;

e any time is multiplied by sl_é ;

* any weight is multiplied by 31/23 ;

* and any horizontal distance is multiplied by 31_,3/ 3

3.1.2 Tail bounds on one-point polymer weight

Recall from Section 1.9 that Wgt,, [(x, h1) — (y, h2)] denotes the parabolically adjusted
weight Wet,, [(z, h1) = (y, h2)] +271/?(y—2)?hy 3. We will have need on several occasions
for control on the upper and lower tail of this random variable.

Lemma 3.1. There exist positive constants C and ¢, and ng € IN, such that the following
holds. Letn € N and z,y € R satisfy n > ng and |z —y| < en'/?.

1. Fort >0,
P(Wgti[(m,O) = (y,1)] > t) < Cexp{ - ct3/2} .

2. Fort >0,
]P(Wgtﬁ[(m,O) = (y,1)] < —t) < Cexp{ - ct3/2} .

Proof. This result follows from [CHH19, Proposition 3.6] and translation invariance
of Brownian LPP. O
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3.1.3 Polymer uniqueness and ordering

A polymer with given endpoints is almost surely unique.

Lemma 3.2. [Ham19b, Lemma 4.6(1)] Let =,y € R. There exists an n-zigzag from (x,0)
to (y,1) if and only ify > x — n'/3/2. When the last condition is satisfied, there is almost
surely a unique n-polymer from (x,0) to (y,1).

A rather simple sandwiching fact about polymers will also be needed. Let (z1,x2), (y1,y2) €
R? and consider a zigzag Z; from (z1, s1) to (y1, s2) and another Z, from (2, s1) to (y2, s2).
We declare that Z; < Z5 if ‘Z5 lies on or to the right of Z;’: formally, if Z, is contained in
the union of the closed horizontal planar line segments whose left endpoints lie in Z;.

Lemma 3.3. [Ham20, Lemma 5.7] Let (n, s1, s2) be a compatible triple, and let (z1, z3)
and (y1,y2) belong to R%Z. Suppose that there is a unique n-polymer from (z;,s1) to
(yi, s2), both when i = 1 and i = 2. (This circumstance occurs almost surely, and the
resulting polymers have been labelled p,, [(21,51) — (y1,52)] and p, [(z2,51) = (y2, 52)].)
Now let p denote any n-polymer that begins in [z, z3] X {s1} and ends in [y1,y2] X {s2}.
Then

pnl(@1,51) = (y1,82)] = p =2 pu[(w2,51) = (y2,52)] -

3.1.4 Boldface notation for parameters in statement applications

Some later used outside results come equipped with parameters that must be set in any
given application. When such applications are made, we employ a boldface notation to
indicate the parameter labels of the results being applied. This device permits occasional
reuse of symbols and disarms notational conflict.

3.2 Invariance of the polymer weight field

Given two collections of real-valued random variables M! and M? indexed by pairs
(x,h1), (y, h2) € R x Z, we write M! = M? to indicate that the two collections have the
same law. This notation will be applied in the unscaled picture, when the fields of random
variables are energies of geodesics, such as M[(:L, hi) = (y, hz)] Thus, the conditions
z <y and h; < hy must be imposed, to ensure that these energies are well defined. We
abuse notation by setting values such as M [(z,h1) — (y, h2)] equal to zero when they
are not well defined, so that the indexing by (z, h1), (y, h2) € R x Z is admissible. The =
notation will also be adopted in the scaled picture, where two collections of real-valued
random variables W' and W? indexed by pairs (z, h1), (y,h2) € R x n~'Z are said to
satisfy W' = W?2 when they have the same law, and where a similar extension of domain
is applied to permit this choice of domain for the two collections.

For K € R, let 7% : R? — R? denote the shear map

7(x,y) = (v + Ky, y) (3.1)

The shear map will permit us to straighten sharply sloping corridors. Our invariance
result asserts that parabolic weight is statistically almost unchanged under application of
the shear map. Later, when we prove Proposition 3.16(2,3), it will permit us to propagate
control on polymer weights from roughly square rectangles to much wider ones.

Proposition 3.4. Suppose given two disjoint compact real intervals I; and Is. Forn € IN
and K > 0, let K,,(K) denote the set of quadruples (z,y, hi,hs) € R*, where the real
values = and y vary over [—2K,2K| and where h; and hs respectively vary over elements
of n='Z lying in I, and I,. Suppose that n > ©(1) and ©(1) < K < ©(1)n'/'8. Then

Wat),) [Tx (z, h1) = 7i (y, ha)] = Wet,, [(z,h1) = (y, ha)] + E(x,y, h1, ha)
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where the error terms E(x,y, h1, he) are random but small, satisfying the uniform tail
bound

P(sup{|s<x7y,h1,h2>y @,y b, o) € Ka(K) ) > e<1>n—1/9)
< O()n*t3K—2 exp{ — @(1)n1/12K_3/2} +O(1)K*exp{ — 9(1)711/12} . (3.2)

The O(1) terms may depend on the pair (I1, I;) and on no other parameter.

The parameters h; and hy vary subject to h; o = O(1) in this result. During the
upcoming derivation, we will monitor dependence on h; » more closely, with a view to
the potential for applications where h; 2 < 1, and will impose h; » = O(1) as we close
out the proof of Proposition 3.4.

The first element on our route to proving the proposition is the assertion of a strong
form of energetic invariance that is enjoyed by Brownian LPP.

Lemma 3.5. Forx >0, M[(z,h1) — (y,h2)] = ml/QM[(x,hl) — (x4 £y —x),hs)].

Proof. The law of the Brownian motions B : R x Z — R that constituent the noise
environment of Brownian LPP is invariant under the scaling B(z,n) — «?B(z +r~ (2 —
x),n). O

By the definition of the shear map 7x and the specification (1.7) of weight in terms of
its unscaled counterpart, energy, we see that Wgt,, [TK(x, h1) = 1k (y, hQ)] is equal to

2 1/2p~1/3 (M[(nh1+2n2/3(x+Kh1), hi) — (nh1—|—2n2/3(y+Kh2),hg)]—(2n+K)h172—2n2/3(y—x)) .
(3.3)
Seta' = z(1+ 2n‘1/3K)_1 and y =y(1+ 2n‘1/3K)_1. Applying Lemma 3.5, we see that
M [(nhy +20%3(x + Kh1),h1) — (nhy + 20?3 (y + Kh), ho)]
= (14207 Y3K)" P M[(nhy + 20232/ hy) — (nhy + 2023 hy)]

where note that, in the usage of the notation =, the two fields are viewed as functions of
the variables (z, h1) and (y, h2), with the dependence on z and y being communicated
via ' and 3’ in the right-hand case. Translating to scaled coordinates, we see that
Wegt, [Tk (z, h1) — Tk (y, h2)| takes the form

1/2

(1+ 2n*1/3K) Wgt, [(z',h1) = (v, ha)] + R1 + R2 + Rs,

where
Ry = 2120230y 5 (1 + 207 3K) % — 1);
Ry = 22013 (y — 2)((1 + 202 K)"* — 1); and
R3 = —21/2711/3Kh172 .

The term R, is seen to take the form 2'/2n'/3h) s K — 271/2h; s K2 4+ ©(n~Y/%)hy o,
where the ©(n~1/) term is due to |K| < ©(1)n'/'®. We have that

Ry = —2Y2(y —2)K + 27233 (y — 1) K% + @(n72/3K3)|y —x.

Thus, Ry = —2'/2(y — ) K + ©(n~'/9), since |z — y| < 2K and |K| < ©(1)n!/18,
Considering now the parabolically adjusted weight Wgt,, [7x (2, h1) — T (y, he)] that
is the subject of Proposition 3.4, we see that it has the form

Wet, [ (2, h1) = i (y, ha)] + 272 (y — @ + Khi o) by} .
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We expand the right-hand square (a + b)?, a = y — x and b = Kh, 5, and make use of the
noted forms for Ry, R, and Rs, to find that Wgt,, [Tk (z,h1) = Tk (y, h2)] equals (in the
sense of the relation =)

(142079 8) Wt [(#', ) = (4 ha)] + 272y = )W} + (1) Yoh .

Since z’ and y’ are small perturbations of  and y, we can already recognise the desired
weight Wet})[(z,h1) — (y,h2)] in this display. We next summarise our progress by
stating and proving a lemma that clarifies the form of the discrepancy between the
obtained and desired terms. A second lemma offers control on the tail of the discrepancy,
so that the two lemmas will directly yield Proposition 3.4. We employ the shorthand
Wgt“A(z, y; 2’,9) to denote the parabolically adjusted weight difference

Wetls,, (a0 30) = (/A3 1)) — Wt [(ohi 30) = (shi 3 1)]

’thLQ TL}LLQ

Lemma 3.6. We have that

Wgtrg [TK (1.7 h’l) — TK(yv h’2)}
= Wgt)) [(z,h1) = (y, ho)] + O(1)n"'/5hy 5 + Errory (z,y) + Errora(z,y)

where
Error (z,y) = (1+ @(n_5/18)) (hi{;WgtuA(x,y;x’7y’) + G(I)hig/gK‘gn_l/‘?) :
and
Errorg(z,y) = @(n_s/lg)Wgtn[(:mhl) = (y, h2)] .

Proof. Setting E = Wgt,, [(«/,h1) — (¥, h2)| — Wagt,, [(z,h1) = (y, h2)], and recalling
that |K| is at most ©(1)n'/'%, we find that

Wet,, [Tk (z,h1) = Tk (y,h2)] = (1+ @(”_5/18)) (Wgtrg [(#,h1) = (y, ha)] + E)

= Wat,, [(z,h1) — (y, ha)] + Error,

with Error = Error; + Errory + ©(1)n~'/%h; 5, where Errory has the form asserted in

the lemma; and where Error; = (14 ©(n=%/1%))E, for a system E that by the scaling
principle is seen to satisfy

B = by (Wetu,, [(@/h15°,0) > (/hi 3 1)] = Wety,, [(hi5°,0) = (ki 5, 1)])

nhi 2
and thus

E = bWt A, yia' ) — 272 —y/Phiy* 27 @ —y)hi
Note that 2 1/2(z/ — y/)2hiy/® — 27V2(zx — y)*hyy'* equals 27250 (|ly — |(|z| +
ly|))n~/3K, since 2’ = z(1+ ©(n"'/3K)) and y = y(1 + ©(n"'/3K)). Note that O(|y —
z|(|z| + |y|)) = ©(K?) since |z| and |y| are at most 2K; we have obtained the desired
form for Error; and thus Lemma 3.6. O

Lemma 3.7. Recall that z,y € R are in absolute value at most 2K.

1. Suppose that hy» < O(1), nhio > ©(1) and O(1)h; /™ < K < ©(1)n'/ 8"
Then

]P( sup  |Errory(z,y)| > @(nil/g)) <O)n**K—? exp { — @(1)711/12[(*3/2}.
||, |ly| <K
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2. Suppose thatn > O(1), K < ©(1)n'/'® and h, » = ©(1). Then

IP( sup ’Errorg(sc,y)‘ > @(n_l/ﬁ)) <O(1)K?exp{ — @(1)711/12}.
], |y <K

Proof of Proposition 3.4. Following directly from the two preceding lemmas is a
form of the sought result in which h; and hy are given; the factor of ©(1)n? is absent
from line (3.2) in this version. When a sum indexed by h1 € n='ZNI; and hy € n 1ZN 1,
is performed, the factor of ©(1)n? enters the right-hand side. O

Proof of Lemma 3.7:(1). Our argument principally rests on establishing that

lP(sup {IWet"Aw,ys 2’ o) : Jal lyl < K} > 9(1)h1é/3n‘”9) (3.4)
< O(1)n*PK %exp {- @(1)n1/12K_3/2} .

Indeed, Error;(x,y) is a sum of two terms, and the displayed bound controls the first.
The second, @(1)h;3/‘5K3n‘1/3, is at most ©(n~'/?) because the needed condition K <

6(1)/1411(29712/27 is implied by the hypotheses of Lemma 3.7(1); thus, it indeed suffices to
prove (3.4).

The difference Wgt”A(x,y; 2, y') of parabolic weights will be addressed by [Ham19a,
Theorem 1.1]. Indeed, if we denote by I and J two compact real intervals, and set, for
r > 0, the quantity p; ;(r) equal to

IP(sup {Wgtﬁh,1 [(ul,O) — (v1, 1)]—Wgttjh1 [(uz,O) — (va, 1)} tup,ug € I,v1,v0 € J} > r) ,

then [Ham19a, Theorem 1.1] will shortly provide an upper bound on p; ;(r). To make a
choice of the interval-pair (I, J) for which such a bound will aid our derivation of (3.4),
we begin by noting that

max { |z’ — |, |y’ — y|} < 4K*n /3.

Indeed, |2/ —z| = |z|(1—(1+2n/3K)~!) < 8K2?n~'/3 since |z < 2K and 2n~ /3K < 1/2;

and similarly for |y’ —y|. In considering, as we do, Wgt”A(z, y; 2/, y'), we see that the pair

of starting endpoints x’hig/g and xhig/B are at distance at most 8K2n_1/3h;§/3 and have

absolute value at most 2K hl_;/ 3 As such, we may find a set Z of compact intervals, each

contained in | — 2Kh1_§/3, 2Kh1_§/3] and of length 16K2n’1/3h1_§/3, in such a way that
|Z| < ©(1)n'/3 K~ while, for every = € [~ K, K], there exists I € Z for which z, 2’ € I.

This of course implies that, for any z,y € R in absolute value at most 2K, we may
find (I, J) € Z? such that x,2’ € I and y,y’ € J. By a union bound indexed by 72, we see
that the left-hand side of (3.4) is at most

O K2 pry(O(1)h 4 *n ), (3.5)

where (I,.J) is some element of Z2. Thus we see that our usage of [Ham19a, Theorem 1.1]

should be made so as to find an upper bound on p17J(®(1)hi§/?’n*1/9). We set this
result’s parameters so that n = nh;; x and y are the left endpoints of the intervals

I and J in (3.5); € equals the interval length 8K2n*1/3h1_’§/3; and with R chosen so

that e!/?R = @(1)hi§/3n*1/9—which is to say, R = ©(1)n'/*®*K~!. What we learn
from this application of [Ham19a, Theorem 1.1] is that the p; ; term in (3.5) is at most
exp { — ©(1)n'/12K~3/2}. Thus are (3.4) and Lemma 3.7(1) obtained. It remains only
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to verify that the hypotheses of Lemma 3.7(1) are adequate to permit the application
of [Ham19a, Theorem 1.1]. The application requires five conditions:

1] K2 303 < ©(1):[2] iz > ©(1), 3] Khyy® < ©(1)n"/ Byl
4] n'/SK ! > ©(1); and [5] !/ BETT < ©(1)n!/ 5"

We consider the further conditions
6] K <n'/hy/50(1);[7] K < 0(1)n'/™h " [8] hip < 1; and [9] K > ©(1)hy 5™

Denoting equivalence and implication by +» and —, note that [1] <> [6]; [3] <> [7]; [7] — [6];
[7,8] — 4; and [5] <> [9]. Thus [2,7,8,9] — [1,2,3,4,5]. Since [2,7,8,9] are the hypotheses
of Lemma 3.7(1) and [1, 2, 3, 4, 5] permit its proof, this completes the needed hypothesis
verification for this result. O

(2). The tail of the parabolically shifted weight Wgt,, [(x, h1) — (y, h2)] is addressed
by [Ham19a, Proposition 1.5]. Indeed, when this result is applied via the scaling principle,
and with parameter settings n = nhy 2, x = xhig/g, y= yhfé/g and t = R, the outcome
is the bound

IP(sup{’Wgt;J[(x +u,hy) = (y+ v, h2)]| tu € hf/g’ -10,1],v € h?/j - 10, 1]} > hig’R)
< exp{-O(1)RY?},

where we should bear in mind for the upcoming selection of R > 0 that this application
demands that R < @(l)nl/lsh}gs. A union bound over a mesh of order (Khl_;/?’)2 points
(z,y) € [-K, K]? then yields that

IP<Sup{|Wgt,L;[(x,h1) — (y, h2)]| N TRS [—K,K]} > hng)

< O()K2hyy *exp{ — ©(1)R?}.

If we set hy’; R equal to ©(1)n'/18—a choice made so that the needed upper bound on R
is satisﬁed,/provided that h; 2 has unit order ©(1), as we impose that it does—then this
right-hand side takes the form @(1)K2h;3/3 exp { — 9(1)n1/12h;§/2}. Since hy o = O(1),
this has the form of the right-hand quantity in the bound maintained by Lemma 3.7(2);
thus, if the superscript U for Wgt,, were omitted from the preceding display—so that
weight without parabolic shift were instead addressed—we would obtain the result
that we seek. This alteration is permitted because the parabolic term (y — :z:)th_é,
being at most 4K2hy 3, is at most ©(1)n?*/?, in view K < ©(1)n'/? (which is implied
by our hypothesis on K) and hy 2 = ©(1). Thus, we obtain Lemma 3.7(2), subject to
verifying that the hypotheses of this result are enough to permit usage of inputs during
its proof. These inputs are the application of [Ham19a, Proposition 1.5], which requires
the conditions

[1] nhiz > ©(1): [2] lz—ylhry® < O Bh; 3] R > ©(1); and [4] R < ©(1)n'/18h1)*;

and control on a parabolic term, which requires [5] K < nl/ghi’/;. Recall that |z —y| < 2K,
since |z| and |y| are at most K. In the preceding proof, we have set R = @(1)n1/18h£;/?’.
The hypotheses of Lemma 3.7(2), namely that K < ©(1)n!/'8, n > ©(1) and h; » = O(1),
are readily seen to imply [1,2,3,4,5]; so the needed hypothesis verification has been
carried out for the proof of Lemma 3.7(2). O
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3.3 Local energetic fluctuation

In this short section, we offer control in Proposition 3.9 on the tail of large local
fluctuation in the unscaled geodesic energy, relying on oscillation estimates for Brownian
motion which constitutes the underlying noise.

Definition 3.8. Letn € N and K,0 > 0. Let A, (K,0) C (R x Z)2 denote the set of pairs
(z1,81), (x2,82) € R X Z with x1 < o < 1+ 0; 81 < $3 < 81 + 0; and with each of x1, x2,
s1 and sy at most nK in absolute value.

Proposition 3.9. For K,o0 >0 andr > 0,

]P(sup{|M[($1,sl) — (@2,99)] |+ (@1, 51), (3, 2)) € An(K,o)} > r)
< 27 2Ke o+ rtexp { — 272 (0 + 1) 20
Let L >0, and let f:[0,L] = R. For I C [0, L] and r € (0, L], set
wi(fir) = sw { /() - f@) :0<e<y<a+r<L,zel}.

In this way, (0, L] = R : 7 — wyo,z)(f,7) is the modulus of continuity of the function f.

Lemma 3.10. For L > 0, let B : [0, L] — R have the law of standard Brownian motion.
Forr € (0,L] and x > 0,

IP<0J[0,L] (B,r) > :10) <2 V2L 2 bexp { — 27t )

Proof. Set I =rZnN [0, L]. It is readily verified that w; (B,2r) > w r)(B,r)/2. This
enables the first of the next displayed bounds,

IP(W[O,L] (B,r) > x) < IP(wI(B,Qr) > :v/2)

1] -IP(sup{|B(z)| —1<2< 1} > 273/2”’1/2)

IN

< 2Lp ' B3p 2Ly /20 exp{ — 2_4x2r_1} ,

where the second bound is due to Brownian translation and scaling symmetries and,

in whose third, L > r is used to bound |I| above by 2L/r, and the reasoning in (2.15)

bounds above the probability term. O
Proof of Proposition 3.9. The concerned supremum is at most

(U + 1) - sup {W[an,nK} (.13 — B(x,s),o) :sE€ZN[-K, K]} ,

where recall that the constituent curves B : R x Z — R in the Brownian LPP noise
environment are independent two-sided standard Brownian motions. The displayed
supremum thus has probability of being at least /(o + 1) given by the bound offered by
Lemma 3.10 with L = 2nK, r = 0 and x = /(o + 1). The result is Proposition 3.9. O

3.4 Global polymer fluctuation

In this section, we present and prove the next result, which concerns the location at
which the polymer p,, = p,[(0,0) — (z,1)] departs alevel a € n=*ZN(0,1). This theorem
is in essence a weaker form of Corollary 1.5; it will be needed for our principal proofs.

In a shorthand usage, p% will denote p, [(0,0) — (z,1)] (a polymer that is almost
surely unique for given = € R, by Lemma 3.2). By the convention of Subsection 1.7.8,
p:(a) thus denotes the concerned location, at which a forward-in-time tracing of this
polymer departs from the horizontal line R x {a}.
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Theorem 3.11. For K any compact interval of (0,1), there exist positive constants
H = H(K) and h = h(K) and an integer nog = no(K) such that, ifn € N, R € R,
a€n 'ZNK and x € R satisfy n > ng, |R| < hn'/? and |z| < n?/3, then

P(‘pﬁ(a)—xa| > R) < Hexp{ —hR*}.

Next is a result that includes an important special case of Theorem 3.11. We write p,,
for P% = Pn [(07 0) - (Oa 1)] .
Proposition 3.12. For K any compact interval of (0, 1), there exist positive constants
H = H(K) and h = h(K) and an integer ny = no(K) such that, ifn € N, R € R and
a € n~'Z N K satisfy n > ng and |R| < hn'/°, then

IP(pn(a) ER-1,R+ 1]) < Hexp{ — hR*}

and
IP<|pn(a)| > hn1/9> < Hexp{ - hnl/B}.

Proof. Recall from Lemma 2.1(2) that p,(a) is the almost surely unique maximizer of
the random function x — Z,(x, a), and recall the formula (2.4) for the latter process.

To prove the first bound, we first note from (2.4) that the event that Z,(z,a) > —r for
given z,r € R entails that either al/?’NrEI;?O’O) (a_2/3x) > 271y or

(1 —ap) BNeLEOD (1 —ay)™?B27) > —27'r.

Thus, the event { sup,c(p_1 gy1] Zn (2, a) > —R?} is contained in

{ sup Nrﬁz;f(to)o) (z) > —2_1a_1/3R2}

w€a=2/3.[R—1,R+1]

U { sup Nrﬁi;.gloil)(x_) > 2711~ a+)_1/3R2} .
z€(l—ay)~2/3.[R—1,R+1] '

We now apply the regularity of normalized ensembles expressed in Proposition 2.3(1,2),
and a tail bound [Ham22, Proposition 2.28] for the deviation of regular ensemble top
curves relative to parabolic curvature. Indeed, using the boldface notation, we choose
the latter result’s parameter n equal to na and to n(l — a4 ), and thus find that the
probability of each event in the above union is at most

Hmax{exp{ — hR3}7exp{ — hnl/Q}},

where the existence of positive constants H and h is ensured because we may select the
lower bound ng(K) so that na and n(1 — a, ) are at least the lower bound on n demanded
in [Ham22, Proposition 2.28].

Since |R| < hn'/?, we find that

IP< sup  Zp(z,a) > —R2> <2Hexp{ — hR*}.
z€[R—1,R+1]

However, sup,cg Zn(z,a) equals Wgt,, [(0,0) — (0,1)] and thus has probability to exceed
—R? which is seen to be least 1 — C'exp { — cR*} provided that R < hn'/? (with h = ¢!/?)
by Lemma 3.1(2).

From these inferences, the former assertion of Proposition 3.12 follows after a
relabelling of H and h.
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To prove the latter bound, we first note from (2.4) that the event that Z,,(z,a) >

—gn?/? for given z € R entails that either Nrﬁz,;;?o,o) (a=2/32) > —271gn?/% or

(1- a+)1/3Nr£,¢j;(aof) (1— a+)_2/3x_) > —271gn2/9,

By Proposition 2.3(1,2), and [Ham22, Proposition 2.30], for any ¢’ > 0, there exist
positive G and g > 0, such that, for a« € n~'Z N K, the probabilities

P(Hy eR:|y| >a?Bgn?, Nrﬁj}ﬁo,o) (y) > —2*1gn2/9>

and
. . —2/3 1.1/9 45(0,1) _o—1,_.2/9
P(Ey eR: ‘yl > (1 a+) gn ) Nrﬁn;cur (y) > -2 an / )

are at most Gexp{ — gn1/3}. Thus, the probability that Z,(x,a) attains a value of at
least —gn?* for z € R satisfying |z| > ¢'n!/° is at most 2Gexp { — gn'/3}. However,
Sup,eg Zn (7, a) equals Wgt,, [(0,0) — (0,1)] and thus has probability to exceed —gn?/®
which is seen by Lemma 3.1(2) to be at least 1 — Cexp{ — cg*?n'/3}. From these
inferences, the latter assertion of Proposition 3.12 follows. O

To obtain Theorem 3.11 from Proposition 3.12, we need to reach a comparable
conclusion about polymers of route (0,0) — (x,1) as we have in the case z = 0. In this
task, we benefit from the strong invariance property of Brownian LPP that we indicated
in Lemma 3.5, but which is now presented in a scaled guise in the next lemma. Recall
that p?(a) denotes the location of departure p, [(0,0) — (z,1)](a) of this polymer from
the horizontal line R x {a}.

Lemma 3.13.

1. Letx > —2n?/3. The random processes n~'Z N [0,1] — R that map a to p®(a) — za
and (1+27'n=2/3z)p,(a) are equal in law.

2. Letb > —2n?/3. Let, : R? — R? denote the shear map 7(z,y) = (z + yb,y). The
field of polymers p,, is indexed by starting and ending points in R x n~'Z (with a
formal empty-set value for inadmissible choices of index). The image under T, of
this field is equal in law to the field of polymers (1 + 27 'n=2/3b)p,,.

Proof: (1). The geodesics I',[(0,0) — (n + 2n*3z,n)] and T',[(0,0) — (n,n)] are
mapped to pi and p, by the scaling map R,, in (1.3). We claim that the former geodesic
is mapped to a distributional copy of the latter by applying the transformation R x Z —
R x Z, (z,h) = (2,(1 +27'n"2/32)"'h). Indeed, the image of the noise environment
of static Brownian LPP under this transformation is a copy of Brownian LPP in which
the constituent Brownian motions have rate 1 + 2~ 'n~2/3z. The energy of any given
staircase is thus simply the product of (1 +271n=2/3z) /2 and the energy of the staircase
in Brownian LPP where the motions have the standard rate of one. Since this factor is
present in computing the energy of all staircases, its presence does not affect the status
of the geodesic, so that the claim is confirmed. Given the claim, we apply the scaling
map R, to obtain Lemma 3.13(1).

(2). The above inferences apply equally when we instead consider the (z1, 22)-
indexed fields of geodesics I',, [(2n%/321,0) — (n+2n?/3(20 +2),n)] and T, [(2n?/321,0) —
(2n2/3n + 29, n)] where 21, 25 € R. O

Allying Proposition 3.12 with Lemma 3.13 leads to the next result, which equips us to
give a short proof of Theorem 3.11.

Corollary 3.14. For K any compact interval of (0,1), there exist positive constants
H = H(K) and h = h(K) and an integer no = no(K) such that, ifn € N, R € R,
a€n 'ZNK and z € R satisfy n > ng, |R| < hn'/? and |z| < n?/®, then

P(pﬁ(a)—xae [R—1,R+ 1]) < Hexp{—hRB},
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and
P(’pfb(a) — a:a| > hnl/g) < Hexp{ — hnl/g}.

Proof. The dilation factor 1 + 2~ 'n~2/3z in Lemma 3.13 lies on the interval [1/2,3/2]
under the present hypothesis that |z| < n?/%. Denote this factor by d. When the
probabilities in Corollary 3.14 are addressed by Proposition 3.12 via Lemma 3.13, the
proposition is applied with R = d"'R,d 'R — 1 and d~'R + 1 in alliance with a simple
union bound. Thus we obtain the corollary by suitably adjusting the values of the

constants H and h. O
Proof of Theorem 3.11. Note that the set R\ (—R, R) is a subset of the union of
intervals:
[hn'/?]

(— 00, —hn?/?] U [hn'/?, 00) U U ([—i—l,—i+1]u[i—1,i+l]).
i=[R]

By the latter assertion of Corollary 3.14, the probability that pZ(a) — za takes a value
in the union of the first two displayed intervals is bounded above by H exp { — hn'/ ‘3}
Let i € IN satisfy i < hn'/?. By this corollary’s former assertion applied with R equal
to either ¢ or —i, the probability that p®(a) — xa assumes a value in [{ — 1,i + 1], or in
[~i—1,—i+1], is at most H exp { — hi®}. Summing these bounds over i € [[R], |hn'/?]],
and employing the first inference alongside |R| < hn'/?, we obtain Theorem 3.11 after a
relabelling of H and h. O

3.5 Compact uniform control on polymer weight

In this section, we present a further tool needed for the proofs of Theorems 1.4
and 1.6. Control is gained on the tail of the maximum absolute value of the parabolic
weight of polymers whose endpoints are varied over compact regions.

Proposition 3.15. Forn > 0(1), (1) < R < n'/?" and 0 < K < n!/*S,

P sup ‘Wgtﬁ [(x,h1) = (Z/J@)H >R| < O(1)Kexp{ - @(1)R3/2} :
(z,h1)€[—K,K]x[-3,—1]
(y,hg)E[—K,K]X[l,?)]

The argument that we will give for Proposition 3.15 mimics that of [BSS16, Proposi-
tions 10.1 and 10.5].
Proof of Proposition 3.15. The next presented proposition is sufficient to prove this
assertion. Indeed, Proposition 3.16(2) and (3) imply it. O

Proposition 3.16. Forn > O(1) and ©(1) < R < ©(1)n*/*(logn)~2, the following hold.
1. The probability that

inf{wgtg[(o,()) = (b)) tye[-1,1he [1,3]} <-R (3.6)

is at most ©(1) exp { — ©(1)R*/?}.
2. For K < ©(1)n'/'8, the probability that the condition

inf {Wet}[(2, 1) = (y,h2)] : 2,y € [ K, K], by € [-3,~1],hz € [1,3]} < -
holds is at most ©(1)K?exp { — ©(1)R3/?} + ©(1)n*K* exp { — ©(1)n'/12K~3/2}.
3. Likewise for the condition
sup {Wgtrg [(x7h1) - (y?h2)] 1XL,Y € [_Ka K]7 hl € [_3? _1}7h2 € [173]} > R.
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Proof. We will starting by proving the proposition’s first part; and then the later
parts when K = 1. Note that the parabolic discrepancy Wgt}, [(z,hi) — (y,h2)] —
Wegt,, [(:1:, hi) = (y, hg)] is uniformly bounded in absolute value over all concerned routes
(0,0) — (y,h) or (x,h1) — (y, h2) in these cases. Thus, we may prove these assertions
with Wgt,, in place of Wegt. .

(1). We start by defining an infinite tree T = (V, E), embedded in the plane and
rooted at (0,0), each of whose vertices has four offspring. The children of each vertex
will be called left-low, left-high, right-low and right-high. The root is the unique vertex in
generation zero. Its left-low child is at (—1/2,1/2); its left-high child at (—-1/2,1/2 + 1);
its right-low child at (1/2,1/2); and its right-high child at (1/2,1/2 4+ 1). Let w denote
the four-vector of planar points whose coordinates are these respective locations. The
offspring of any child ¢ of the root lie at ¢ + w/2. Iteratively, suppose that the locations
of any vertex in T of generation at most m € IN have been determined. Vertices in
generation m + 1 are placed in locations in the set {v +27"Mw v € Vn}, with an edge
running from parent to child.

It is straightforward that the closure of the vertex set V contains [—1, 1] x [1,2]. Let
(y,h) be an element in the latter set for which » € n~!Z. In order to find a lower bound
on Wgt, [(0,0) — (y, )], we aim to consider the sum of the weights of polymers that
interpolate the endpoints of the edges in T along the end of the tree that runs from (0, 0)
to the element (y, k) of the closure of V. However, such endpoints lie in the plane, rather
than in R x n~'Z; we begin by finding a nearby path through the latter index set. This
path P will follow the tree end until its distance from the destination (y, ) is a large
multiple (of order logn) of the microscopic spacing n~!; then it will jump directly to
(y, h), so that the approximating path is of finite length.

To any planar point (z, s) € R?, we associate (z,s)*, the element of R x n~'Z that is
first encountered on a journey due south that commences at (z, s).

We now specify j € IN to denote the smallest integer such that 277 < Kon~!logn,
where K| is a large constant.

Let {(z;,s;) : i € N} denote a sequence of adjacent elements of V with (zo, so) =
0 whose limit equals (y,h). Set (zi(n),s;(n)) = (x;,s;)*. Respecify (z;(n),s;(n)) to
equal (y,h). The path P has elements (z;(n), s;(n)) for i € [0, j], with edges between
consecutively indexed elements.

The path P indeed offers a lower bound on the polymer weight from (0,0) to (y, h).
Namely,

Jj—1

Wet, [(0,0) = (y,h)] = > Wat, [(z:(n),si(n)) = (zit1(n), six1(n))] . (3.7)

=0

An edge in T that connects a vertex (u,hy) in generation m € IN to one of its chil-
dren (v, hs) satisfies hy o € 217 - {1,3} and |v — u| = 27!7™. Let R > 0. The edge is
called R-typical if

2(’”“)/3’Wgtn [(u, h1)* = (v, hz)i]‘ < R(m+1)*3. (3.8)

The left-hand quantity is a normalized weight—it is random but of unit order, satisfying
tail bounds that are uniform over edges in the tree 7. Indeed, the scaling principle from
Section 3.1.1 and Lemma 3.1 imply that any given edge crossing between generations m
and m+1 such that n2~(m+1) > ny—a condition verified when m < j—fails to be R-typical

with probability that is at most C'exp { — ¢R3/ 2(m + 1)}. The parabolic curvature term in
Lemma 3.1 has been discarded because it takes the form hig/?’(u —v)? = h;2/3 hi, =
hi3 < 1.
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We now specify the event Typical = Typical(R) that every edge in the tree between
generations m and m + 1 with m € [0, 5 — 1] is R-typical. We see that

j—1
P(~Typical) < > 4™Cexp{ - cR¥*(m+ 1)},

m=0

whose right-hand side is at most 2C exp { — 271cR*/?} provided that R > ©(1).
In its final step (z;-1(n),s;—1(n)) = (x;(n),s;(n)), P departs from the path beaten
along T'. In this regard, we claim that

P(’Wgtn[(xj_l(n),sj_l(n)) — (x](n),s](n))]‘ > 1) (3.9
< O(1)n?3(logn)2Ky/* exp { —27n?3(Kologn +2)73}.

The differences z;(n) — z;_1(n) and s;(n) — sj_1(n) are at most Kon~'logn +n~! in
absolute value; and the four coordinates x;_1(n), s;_1(n), z;(n) and s;(n) are at most two
in this sense. Merely an order of log n microscopic levels separate the vertical coordinates
sj—1(n) and s;(n), making the unscaled picture a suitable context for proving the claim.
Indeed, specifying weight in terms of energy via (1.7), and applying Proposition 3.9 with
K =3,0 = Kylogn+1and r =2-'/2,!/3, we obtain the claimed (3.9).

Applying (3.8) and (3.9) to (3.7), we find that, when ©(1) < R < ©(1) K, *n*/?(logn) 2,

P i[m; : Wet,, [(0,0) = (y,h)] < —kR | <O(1)exp{ — O(1)R*?}
yel—1,
he(l,2]

for suitable positive d, H and h; here, we set kK = 1 + > oo (m + 1)2/32-(m+1)/3 The
appearance of x may be absorbed by the usage of ©(1) notation. The result is Proposi-
tion 3.16(1) with the instance of [1, 3] in (3.6) replaced by [1,2]. We need to obtain the
counterpart statement where the interval in question is [2, 3]. We move the tree T up-
wards by one unit and add to it the edge that connects (0,0) to (0,1). We treat this edge
in the preceding analysis as if it connects vertices of generation zero and one, and follow
the rest of the analysis unchanged. This completes the proof of Proposition 3.16(1).

(2) for K = 1. We prove this assertion in the stronger form where the probability upper
bound is ©(1)K? exp { — O(1)R*/?}.

Letz,y € [~1,1] and note that Wgt,, [(x, h1) — (y, hs)] is at least the sum of Wgt,, [(z, hy) —
(0,0)] and Wgt,, [(0,0) — (y,ho)]. Since {Wgt, [(z,h1) = (0,0)] : (z,h1) € [-K, K] x
[-3,—1]} has the law of {Wgt,[(0,0) — (y,h2)] : (y,h2) € [-K, K] x [1,3]} when the
identification of (z, hy) with (—z, —hq) is made, two applications of Proposition 3.16(1)
and a union bound yield Proposition 3.16(2), up to a relabelling of the constants H and
h.

(3) for K = 1. We also prove this assertion in the above mentioned stronger form.

Note that the occurrence of the condition

sup {Wgtn[(z,fl) — (y,l)] c(x,hy) € [-K, K] x[-3,-1], (y,ha) € [-K, K] x [1,3]} >R,

alongside the conditions

min { inf Wgt, [(0,—4) = (z,—-1)], _inf Wgt,[(y,h2) = (0,4)] } > —R/4,

re[—K,K] yE[-K, K]
hi€[—3,1] ho€[1,3]
(3.10)
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entails that

Wetll) > R/2. (3.11)

Bounds on the failure probabilities of the two conditions (3.10) arise by applying Proposi-
tion 3.16(2) in light of simple scaling properties. The one-point upper tail control offered
by Lemma 3.1(1) via the scaling principle provides an upper bound on the probability
of (3.11). Thus we obtain Proposition 3.16(3). O
(2,3) for general K. Proposition 3.4 permits us to reduce this derivation to the
just obtained stronger form of the special case where K = 1, at the expense of the
appearance of the additive term ©(1)n*K* exp { — ©(1)n!/12K~3/2}. Indeed, this further
term takes the form of a multiple ©(1) K2 of an upper bound on the probability appearing
in Proposition 3.4. The reason for this form is that the indexing set-pair ([—K ,—K] x
[-3,—1],[-K, K] x [1,3]) may be covered by a union of at most ©(1)K? sets that are
distortions of the standard set-pair ([—1,—1] x [-3,—1], [~1,1] x [1, 3]). By distortion, we
mean that both elements in the pair are the image of their standard counterpart by an
application of a given shear map of the form 7,,, where |x| < ©(K), composed with a
horizontal translation. Proposition 3.4 with K = x offers control over weights indexed
by pairs (z, k1) and (y, ko) lying in a given image in this sense, and a union bound is
then taken over the ©(1)K? distortions, so that the general K result is obtained with the
indicated additive term. Note that it is these applications of Proposition 3.4 which are
responsible for the imposition of the hypothesis that K = ©(1)n'/'® in Proposition 3.16.
This completes the proof of this proposition. O

3.6 Modulus of continuity for polymer weight and geometry

Here we prove Theorems 1.4 and 1.6, and Corollary 1.5. To survey the route ahead,
it is perhaps helpful to recall first that the two theorems are expressed via a parameter
k € IN, and that they control polymer fluctuation and subpath weights uniformly along
stretches of vertical extension at most 27*. Theorem 3.11 offers control on the mid-life
fluctuation of a polymer that traverses between given endpoints. By use of polymer
ordering, a uniform form of this control may be gained for the fluctuation at height
one-half of all polymers on routes (x,0) — (y,1) for z,y € R of absolute value at most r.
A mesh of points in a rectangular pattern with heights zero, one-half and one—and with
horizontal distance between adjacent points shrunk in essence by a factor of 22/3 from the
level zero value of order »—may thus be constructed such that polymers progress without
sudden left or right movements between consecutive levels in the mesh. Theorem 3.11
may be applied to mesh endpoints at adjacent vertical levels, so that, in view of polymer
sandwiching, control on polymer fluctuation is gained at heights one-quarter and three-
quarters. The construction proceeds iteratively, down to a dyadic scale that we will label
j € IN. The outcome is that Lemmas 3.18 and 3.19 assert that, with a high probability
indicated in Lemma 3.17(3), polymer fluctuation between consecutive mesh heights at
level j—at distance 2~7—is controlled as Theorem 1.4 asserts, with an upper bound
of the form ©(1)22//3(log j)'/3. For Theorem 1.4 to be obtained, what remains is to
give the Kolmogorov continuity criterion argument, in which a sum over dyadic scales
7 at least k is performed to find a similar fluctuation upper bound between generic
heights at displacement of order 2=*. There is a slight twist: the mesh construction
becomes unmanageable at close to the microscopic scale, and a separate but simple
device, Lemma 3.21, is used to handle the very short scale. This apparatus also delivers
Theorem 1.6, which concerns polymer subpath weight. The aspect ratio of rectangles
whose consecutive corners are vertically or horizontally adjacent in the mesh at scale j
respects the two-thirds KPZ exponent up to a factor that is polylogarithmic in j. We may
thus apply (via the scaling principle) the uniform control gained in Proposition 3.15 on
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Figure 4: The graph structure GG; on vertex set V;, in which edges in F; connect elements
that are vertically adjacent and horizontally close. The rightmost depicted edge is closed
on account of fluctuation of the polymer away from the midpoint of the straight line
representing the edge, while the vertical edge is open.

weights for polymers crossing rectangles to derive Theorem 1.6.

We begin, then, by constructing the meshes. Let n € IN. For each ¢ € IN for which
2t < n —1, let Y; denote a subset of n~1[0, n] of cardinality 2° + 1 such that, for each
k € [0,2'], there exists y € Y; satisfying |y — k27| < 27'n~!. For example, we take
Yo = {0,1} and Y7 = {0,n7!|n/2],1}. Note further that this set sequence may be
constructed so that each set Y; for i € INT contains its predecessor, with the set Y; \ Y;_;
of newcomers interlacing the set Y;_; of existing members.

Let » and k be positive. Set Xy = {—r,r}. Fori € IN* and j € N, set X; = X;(r)
according to

Xi(r) = 27283 + )Y 3krZ 0 (=27, 2r) .

The parameter r appears in Theorem 1.4. The just introduced « is presently unspecified;
it will shortly be joined by two further positive parameters «; and ko, with the triple
being specified when the relation that is demanded of them is derived.

Suppose given j € IN. Let i € [0,j]. We consider the graph G; = G;(j) = (V;, E;)
whose vertex set V; equals X; x Y;. Note that two dyadic scale parameters ¢ and j (with
1 < 7) are implicated in this definition, because, although we omit reference to j from the
notation X, this parameter enters via this object. What we called the mesh of scale j in
overview is G; = G,(j)—in our inductive gaining of control on polymer fluctuation, we
will treat the parameter j € IN as fixed, with a view to controlling fluctuation at vertical
displacement ©(1)277; we will descend through the scales 27, considering the G;(j) as
1 increases to its final value of j.

Two elements v, w € V; are vertically adjacent if their vertical coordinates vy and
wy differ, and no element of Y; lies in the open interval delimited by us and vy. The
elements v and w are horizontally close if their horizontal coordinates differ by at most
k1272/3(j 4 1)'/3r, where &, is a parameter that is at least x. The edge between v and w
belongs to the edge-set F; precisely when the vertices v and w are vertically adjacent
and horizontally close. Note that V; may be identified with a rectangle in the lattice Z?
and that, when this identification is made, an element of E; is an edge between vertices
that differ by one vertical unit and by at most 1+~ ! horizontal units. See Figure 4.

We now assign a status of open, or closed, to each edge in each of the graphs G;. The
assignation of this status will be random, and determined by a common realization of
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static Brownian LPP, governed by a law labelled P in a manner we now specify.

Let e € E; be an edge of the graph G, that connects the vertices (z1, h1) and (x2, hs),
with hy < hs. The distance hj o = ho — hy satisfies |hy 2 — 27¢ < n~!. There is a unique
element ht of Y1 in (hy, hs), and its distance from both h; and h, differs from 271 by
at most n 1.

Let ¢[(z1,h1) — (w2,h2)| denote the planar line segment with endpoints (z1, k1)
and (z2, ho). Extending the notational abuse introduced in Subsection 1.7.8, we write
[(z1,h1) — (22, h2)](h) for the horizontal coordinate at which this line segment visits
the vertical coordinate h € [hq, ha].

Let k2 > 0 be a further parameter. The edge e € E; will be declared to be r-open if

1/3

‘pn [(Qil,hl) — (IEQ, hg)] (h+) —E[(wl, hl) — (xg,hg)] (h+) ‘ < H22_2i/3(j + 1) r. (3.12)

An edge e € E; that is not r-open is r-closed.

Lemma 3.17. There exist positive h, g1, g2, g3 and ry, and ng € IN, such that, when
n € N and j € N satisfy n > ng and 27 < hn, and r € R satisfies rq < r < n'/19, the
following hold.

1. Leti € [0, j]. The P-probability that a given edge e € E; is (j 4+ 1)'/3r-closed is at
mostexp { — gir*(j +1)}.

2. Leti € [0, ]. The P-probability that a (j + 1)'/3r-closed edge in E; exists is at most
exp{—gar®(j + 1}

3. The P-probability that there exist i € [0,j] and an edge in E; that is (j + 1)1/3r-
closed is at most exp { — gsr®(j + 1) }.

The various constants in this result may depend on «, k1 and ks.
Proof of Lemma 3.17: (1). By the scaling principle from Section 3.1.1, the proba-
bility ]P(e is closed) takes the form

P(lom[(0,0) = (z,1)](a) = wa| = (j+ 1) *r(1+¢))

where m € IN satisfies |m — 27'n| < 1; a € m~'Z N (0,1) satisfies [a — 1/2| <m~ 5 z € R
satisfies [z < (j + 1)1/3r; and ¢ is a small error term, satisfying |¢] < m™!.

Since |¢| < 1/2, the displayed probability is bounded above by Theorem 3.11 with
n=mand R=3/2- (j + 1) 1/ %, The theorem implies that the probability in question is
at most the quantity exp { — h(3/2)3r3(j 4+ 1)}. Setting g; = h(3/2)® yields the lemma’s
first part.

(2). By the preceding part and a union bound, the probability in question is found to
be at most 2°/3rexp { — g1r*(j + 1) }. Since i < j and r > r, the desired bound results
by making suitable positive choices for g, and rg.

(3). The second part of the lemma is summed over ¢ € [0, j] to obtain this result. O

Let i € [0, j]. A horizontal piece of scale i is a closed horizontal planar interval whose
endpoints are consecutive elements in X; x Y;. (This means that the concerned elements
of X; differ by 2-2/3(j + 1)*/3r.) If the vertical coordinates of two horizontal pieces are
vertically adjacent, we apply the latter term to the pair of pieces.

Let ¢ be an n-zigzag from (z,0) to (y, 1) where |z| and |y| are at most r. Let P denote
the set of horizontal pieces of scale ¢ that contain a point of departure of ¢ from a
horizontal planar line segment (of the form R x {h} for some h € n=1Z N0, 1]). Consider
any pair x = {[z1,22] X {h1}, [y1, 2] x {ho}} of vertically adjacent horizontal pieces in
P. The pair y is called good if two conditions are met. First, |y; — z1|, which equals
ly2 — 22|, must be at most s; - 272/3(j + 1)%/3r. Second, || and |y;| must be at most
(G+ )3 (4 —272/3(1 — 272/3) 7 1g).
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We call ¢ viable at scale i if every pair of vertically adjacent horizontal pieces of
scale i in P is good. In a viable zigzag, fluctuation on a vertical mesh of scale 27 is
consistently controlled; and the global horizontal location is also controlled via the upper
bounds on |z;| and |y;|, which contain a negative term with a factor of 2-2¥/2 in order to
facilitate the induction on 7 that will deliver the next result.

Lemma 3.18. Let j € N satisfy 2/ < hn, where the constant h > 0 is furnished by
Lemma 3.17. Suppose that every edge in F; is open for all i € [0, j]. Let x and y be two
reals of absolute value at most r. When n > 2%, the polymer p,, [(z,0) — (y,1)] is viable
at scale j.

Proof. We will prove by induction on i € [0, j] that, under the hypothesis of the
lemma, any polymer of the given form is viable at scale i. First take « = 0. The edges
with endpoint pairs {(—r,0), (—r,1)} and {(r,0), (r,1)} have elements whose horizontal
coordinates are shared by members of a pair and which are in absolute value equal to 7.
Thus these pairs are good, and the concerned polymer is viable at scale zero.

Now consider ¢ € [1, j], and assume that the inductive hypothesis holds for values
of the index that are lower than i. Write p = p,, [(z,0) — (y,1)]. Let [z1,22] x {h1} and
[y1,y2] X {ha} be two vertically adjacent horizontal pieces of scale i with h; < hs that
contain the point of departure of p(h) at the respective heights i € {hy, ho}. Thus h; and
ho are elements of Y;.

In order to demonstrate that this pair of vertically adjacent horizontal pieces is good,
and thus complete the proof of the inductive step, we must show that

lyr — 1| < Ky - 272335 4+ 1), (3.13)
lyo — wa| < Ky - 27235 4+ 1)Y3r; (3.14)

and A
max { |22, [y2|} < (5 + 1)V/37 (4 — 2723 0k) (3.15)

where we set A\ = (1 —272/3)~1,

We will argue that y; — z1 > —r; - 2727/3(j + 1)1/3r. Indeed, the bound ys — 2o <
w1 - 272/3(j 4 1)/3r follows from an almost identical argument to the one that we are
about to give. These two bounds imply (3.13) and (3.14) because y, — x» is in fact equal
to Yy — T1.

Since a horizontal piece of scale i has length 2-2/3(j + 1)'/3kr, we see that

y1 > plhy) — 272335+ 1)Y3kr. (3.16)

One or other of h; and hs also belongs to Y;_1. Suppose that h; € Y;_1; the other case
entails no further complication. Let h3 denote the lowest element of Y;_; that exceeds
hi.

Let [u1,us] x {h1} be the horizontal piece of scale i — 1 that contains p(h;). Let
[v1,v2] X {hs} be a horizontal piece of scale i — 1 that contains p(hs).

By the inductive hypothesis, |ui| < (j + 1)!/3r(4 — 2726=D/3)\k). Note that

luy — @1 < 272071/3(5 4 1) 3kp (3.17)

because p(hy) lies in [u1, us] and [z1, 2], so that the distance between z; and u; may be
at most the length us — wq, which is the longer of these two intervals. Thus,

21| < (§ + 1) (4 — 2720708\ 4 27207073
This implies that |z1| < (j + 1)Y/r(4 — 272/3)k) because 22/3(\ — 1) is equal to A. A

symmetric argument furnishes the same bound for |z2|. Thus do we obtain (3.15).
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The planar intervals [uj,us] x {h1} and [vq,vs] x {hs} are vertically consecutive
horizontal intervals of scale ¢« — 1 that ¢ intersects. By the inductive hypothesis, the
edge with endpoints (ug, hy) and (v, hg) is thus seen to belong to E;_;. By the lemma’s
hypothesis, this edge is open. By (3.12), we learn that

p(ha) = L[(u1,h1) = (v1,h3)](ha) > —kp27207D/3 (5 4 1)1/3p (3.18)

The levels hy, ho and hs each differ by at most n~! from the respective elements of
a three-term arithmetic progression of real numbers with consecutive difference 277.
Thus, |he — (hy + h3)/2| < 2'7In~! < 2|hg — hy|n~'. We know by the inductive hypothesis
that u; and v; have absolute value at most 2(j + 1)'/3r. We thus see that

C[(ur, 1) = (vi,hs)](ho) > “d9 — 2=t 4(5 + 1)Y3r. (3.19)
By (3.16), (3.18) and (3.19),
y] Z U — ulgwl _ 8n_1<] + 1)1/3T _ 2—2(i—1)/3(j + 1)1/3H27“ _ 2—21/3(] _|_ 1)1/3/{/7' .

Note that v; — u; > —ry - 2720-1D/3(; 4+ 1)1/3; because, as we have noted, the edge with
endpoints (u1, h1) and (v1, h3) lies in E;_;. Also using (3.17), we find that

o Z T _2721’/3(']-+1)1/322/3K,’4_271K1 '272(2'71)/3(.]-_'_1)1/37,
78(j+1)1/3n717' _ 272(7;71)/3(]"{» 1)1/314'/27’ o 272’i/3(j+1)1/3l€7,

and, since 2! < n,
yr— a1 > —272/3(5 + 1)1/3; ((22/3 F 1)k 427 Y3, 4 223, ¢ 8n—1/3) .

We now choose k, k1 and ko positive so that (22/% + 1)k + 273k, + 223Ky <k — 2719,
alongside the already supposed x;, > k. We find then that, for n > 239,

Y1 — o1 > 7111272"/3(]' + 1)1/37“.

This is the bound that we sought to show in order to verify (3.13) and (3.14). Since
we already obtained (3.15), the proof of the inductive step in deriving Lemma 3.18 is
complete. O

Lemma 3.19. Let j € N, and let x,y € R be such that |x| and |y| are at most r. For
i € [0, 5], let ¢ be an n-zigzag between (x,0) and (y, 1) that is viable at scale i for each
i € [0,4]. For any such i, let s1,s2 € n=*Z N (0,1) denote consecutive elements of Y;.
Then

|6(s2) — (s1)] < (k1 + K)272/3(j + 1)/ 3r. (3.20)

Proof. The horizontal pieces of scale i to which (¢(s1),s1) and (¢(sz),s2) belong
have length 2-2¥/3(; 4-1)'/3kr and are bordered on the left by a pair of points forming the
endpoints of an edge in F;; thus, these left-hand endpoints have horizontal separation of
at xy - 27%/3(j 4+ 1)/3r. From this, Lemma 3.19 is seen to hold. O

Corollary 3.20. There exist positive H, h and o, and ng € IN, such that, when n € IN and
j € N satisfy n > ng and 2/ < hn, and r € R satisfies 7o < r < n'/19, it is with probability
at least 1 — H exp { —hr3(j + 1)} that, for every x,y € R of absolute value at most r, and
for any consecutive elements hy, hy € n*ZN[0,1] of Y},

Pn [(Iv O) - (y’ 1)] (hl) — Pn [(I,O) — (y7 1)} (hZ)' < Hhi/;)(.] + 1)1/37,.

Proof. This statement follows from Lemma 3.17(3), and Lemmas 3.18 and 3.19. O

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 49/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

Lemma 3.21. Let ¢ be an n-zigzag. Let (x, s1) and (y, s2) be elements in (]R X n*IZ) Ne
with s1 < s2. Let (z, s) denote an element of ¢ that is encountered after (x, s1) but before
(y,s2) as ¢ is traced in the sense of increasing height. Then |z — x| and |z — y| are at most
ly — x| +271n1/3s 5.

Proof. By the deterministic properties of an n-zigzag outlined in Section 1.7.2, the
leftmost position that z may adopt is = — 2*1n1/35172. The rightmost such position is
y+2_1n1/381,2. O

Proof of Theorem 1.4:(1). This argument is in the style of the derivation of the
Kolmogorov continuity criterion.

Recall that the statement we seek to verify comes equipped with a parameter £ € IN
that satisfies 2 < hn for a small constant 4 > 0. The statement claims the existence of
an event of probability at least 1 — H exp { — hr3k} on which the conclusion holds. We
choose this event to be the intersection over indices j € IN satisfying k¥ < j < log,(hn) of
the event in Corollary 3.20, modifying the values of H and h so that this lower bound on
probability holds. In deriving the inequality in the conclusion of Theorem 1.4(1), we are
thus permitted to invoke the conclusion of this corollary for any such index j.

Recall further that we suppose hio € (27571, 27%]. Let [s1, s2] be an interval of
maximum length among those that are contained in [k, h2] and whose endpoints s; and
so are consecutive elements of Y; for some index i. We denote by k* the index ¢ thus
selected; note that k* is one among k, k + 1 or k + 2. We select in the interval [k, 51] an
interval of maximum length delimited by a pair (ss, s4) of consecutive elements of some
mesh Y;; necessarily, s4 = s1, with the concerned value of i being at least £*. Likewise,
an interval is selected within [sq, ho], with the resulting endpoint pair (ss, s¢) satisfying
s5 = so. We write K* for the maximum index ¢ € IN for which 2=% > hn, where the
positive constant h is contributed by Corollary 3.20. The selection of intervals is iterated,
both to the left and to the right. It runs upwards through dyadic scales, and is stopped
when all intervals of scale ¢ at most K* have been selected.

Among the closed intervals obtained in the procedure, the represented scales ¢ satisfy
k* <i < K* with K* = |log,(hn)], and with each such scale appearing at most twice; the
union [s1, so] of the intervals satisfies 0 < s; —hy <2h 'n"tand 0 < hy — sp < 2h~In~L.

Recall that we consider elements (u,h;) and (v, hs) of p, where here we denote
p = pn[(x,0) = (y,1)] for given z,y € R with max{|z|,|y[} < r. To obtain the sought
upper bound on |u — v|, we write

lu —v] < |u—p(s1)]+ |p(s2) — p(s1)| + [p(s2) — v, (3.21)

whose middle right-hand term is seen to be at most 2H 3" 2-2/3(; 4 1)1/3, and thus at
most H272F/3(k+1)'/3 after increase of H, by the form of the procedure that constructed
[s1,s2] alongside Corollary 3.20. After an increase of H, this upper bound is seen to take
the form H22¢/3(k +1)'/3; or equally the form Hhi/z?’ (loghy}) '/ Thus, Theorem 1.4(1)
will be obtained, provided that we verify that the first and third right-hand terms in (3.21)
are smaller than the middle term. Seeking to prove this, we let sy denote the greatest
element of Yy« that is less than s, and let s3 be the least element of this set that exceeds
s. Since sg < hy < s1, (u, hy) lies on the subpath of p between (p(so), so) and (p(s1), s1)-
Similarly, (v, h2) lies on the subpath of p between (p(s2), s2) and (p(s3), s3). Lemma 3.21
thus implies that [u — p(s1)| is at most |p(so) — p(s1)| + 27 n'/3s.1; and that |p(sz) — v is
at most |p(s2) — p(s3)| + 27 'n'/3sy 5. The pairs (s¢, s1) and (sq, s3) comprise consecutive
elements of Y-, where recall that K* = |log,(hn)]; so that sp; and s 3 are at most
(2n=1 + 1)n~!. By the conclusion of Corollary 3.20, |p(s0) — p(s1)| and |p(s2) — p(s3)| are
thus seen to be at most of order n‘2/3(log n)1/3r after suitable adjustment to H. The
sought upper bound, of order 2~2*/3(k + 1)!/3, holds because 2* < n. This completes the
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proof of Theorem 1.4(1).

(2). Recall that instead we suppose that h; o < Hn~'. Let [so, s3] denote an interval
containing [h;, he] whose endpoints are consecutive elements of the mesh Yi+; here, K*
continues to denote |log,(hn)|, with h now decreased from its value in Corollary 3.20
suitably to ensure the existence of such sy and s3. The notation sy and s3 is used to
indicate the similarity of these quantities with the usage in the preceding case. Now,
however, sg 3 is at most 2n~!. Thus, Corollary 3.20 with j chosen so that 2/ = O(n)
yields that, on an event of probability at least 1 - n=""*, the bound lp(s0) — p(s3)] <

Gn=2/3 ( log n) 13, for suitably high G and for all concerned choices of h; and hs. Since
(u, hy) and (v, h2) lie on the subpath of p between (p(so), so) and (p(s3),s3), Lemma 3.21
thus implies that |u — p(so)| and |v — p(so)| are at most Gn=2/3(log n)l/dr +n"2/3H.
Applying the triangle inequality, we learn that Theorem 1.4(2) holds with a suitably

increased value of G. O
Proof of Corollary 1.5. Take j =0, u =z, h; =0, v=wu and hy = h in Theorem 1.4.
Since |z| < r, the corollary follows by increasing H > 0. O

Proof of Theorem 1.6: (1). The mooted event of probability at least 1 — H exp { —
hr3k} will be chosen to ensure that the conclusions of Theorem 1.4 and Corollary 1.5
hold.

We have h; o € (27%=1 27k]. By the conclusion of Theorem 1.4,

v —u| < Hh?{;(log(l + hi%))lmr. (3.22)

By the conclusion of Corollary 1.5, |u| < Hr.

Let R C R? denote the rectangle [0,Y] x [0,27%], where Y denotes H2~2¢/3k1/3y,
The lower-third R~ of Ris [0,Y] x [0,27%/3]; its upper-third R is [0,Y] x [2/3-27F 27F],
To any translate T'= R + (z,y) indexed by (z,y) is evidently associated a lower-third 7'~
and an upper-third 7.

In light of the noted bounds, we may find a collection C of translates of R by vectors in
R x n~1'7Z such that |C| is at most a constant multiple of 2°*/3k~1/3 such that (u, hi) € T~
and (v, hy) € T for some element 7T of C.

We apply Proposition 3.15 with K of order k'/3r, R = K and n = 6n2~"* via the
scaling principle, and use a union bound, to find that, for K sufficiently high,

P ( sup [Wet, [(u, h1) — (v, ha)]| > O(1)(K + H2k2/3r2)2—k/3)
< |C|- k2/3r2Gexp{ - dK3/2} ,

where the supremum is taken over all choices (u, h1) and (v, hy) with hy, hy € n=1ZN[0, 1]
and hy 2 € (27%71,27%] that belong to p,[(z,0) — (y,1)] where z and y vary over real
values of absolute value at most r. Because Proposition 3.15 treats parabolically adjusted
weight, we need to take account of parabolic curvature, and, in view of (3.22), we do so
by means of the above term H?k?/31-22-%/3_ The upper bounds on K and R hypothesised
by the proposition are satisfied in view of the assumption that r < (nh; )'/%.

By choosing K to be a large multiple of (10g(r2k))2/3, the right-hand factors of |C|k?/3,
which grows as a power of 2%, and of 2, may be removed, at the expense of a decrease
in the value of d > 0. The form of Theorem 1.6(1) entails that we desire this failure
probability upper bound exp { — dK*/?} be at most Hexp{ — hr®k}. This condition
is ensured if we adjust K so that it equals a large constant multiple of r2k?/3. This
adjustment is an increase to the value of K: indeed, since r is supposed to be high,
and h; 2 < 1, the adjusted value of K is at least the maximum of r2 and the given
large multiple of (log(r2k))2/3. (The choice K = ©(1)r2k?*/? imposes the constraint
rk'/3 < ©(1)(n27%)/% to admit the above usage of Proposition 3.15. The upper bound
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on r in Theorem 1.6(1) implies this constraint.) Since the adjusted value of K may be
absorbed into the preceding display’s term H?2k?/372 that arose from parabolic curvature,
we complete the derivation of Theorem 1.6(1) by decreasing h > 0 if need be.

(2). Suppose instead that h; o < Hn~'. The points (u, k1) and (v, h2) lie on a polymer
of the form p[(z,0) — (y,1)] where |z| and |y| are at most r. In this case, we will rely on
control on Brownian oscillation and adopt the unscaled perspective to finish the proof.
By Theorem 1.4(2), with probability at least 1 — Hn*hrg',

lv—u| < Gin~3(logn)/3r.
Thus, recalling (1.7), it suffices to prove that, with probability at least 1 — H n*hrg,
M[(u,i) = (v,5)] < %7'2 - (logn)?/3

forall 1 < i< j<mn withj—i< H u<wv |Ju—v < Gi(logn)/3, and |u| <
O(n(log n)l/ 3r). To prove this bound, we will simply bound the probability that

M{(u,i) = (v,i+1)] > %72 (logn)?/3,

for some u, v as above. Since we may suppose that G > 2H, simple Brownian oscillation
estimates, relying on the reflection principle, yield that this probability is at most

O(n exp{ — r(logn)*? /r(log n)l/?’}) <exp{-— 27113 1og n} = n=2 ,
for all large enough r. Thus the proof of Theorem 1.6(2) is complete. O

3.7 Polymer fluctuation tails, uniform in variation of endpoints and lifetime
fraction

In this section, we prove Theorem 1.7.

Let a € (0,1) and r > 0. Define the lower zone Z, (a,r) to be the product of
[~1,1] - ra2/3(loga‘1)1/3 and n~'Z N [0,a/4]; and the upper zone Z}(a,r) to be the
product of [—1,1] - ra?/3(log a*1)1/3 and n 'Z N[l —a/4,1].

Recall Fluc, [+, -] from (1.9).

Lemma 3.22. There exist positive constants C,C5,Cs and Cy such that, forr > C1,
a € (0,1/16] and n € IN for which min {na,n(1 —a)} > Cs,

IP(sup Flucn[(m,hl) — (y, ha); h] > 37"a2/3(log a_1)1/3) < C4ac‘°’"3 7

where the supremum is taken over (x, hy) in the lower zone Z, (a,r); (y, he) in the upper
zone Zf (a,r); and h € n='Z N ([a/2,4a] U [1 — 4a,1 — a/2]).
Proof. Let z € R. Define the event Narrow,(z, a,r) that

pn[(2,0) = (5 1)] N (IR x (n7'z0 ([0,40] U1 - 4a, 1]))) (3.23)
C [z—ala,r),z+a(a,r)] x[0,1],
_4-1,..2/3 —1\1/3
where a(a,r) =47 ra?/3(loga™") ",

To argue that this event is typical, we make two sets of applications of Theorem 1.4,
first with h; = 0 and then with h, = 1. In each, we apply Theorem 1.4(1) with k ranging
upwards from the maximal ¢ € IN for which 27¢ > a/4; and then use Theorem 1.4(2) to
treat the smallest scale. We take r = r in these applications. Since a > O(1)n~!, what

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 52/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

we learn by doing so is that it is with probability at least 1 — @(1)@9(1)’“3 that (3.23) holds
when «(a,r) is multiplied by a large constant. By replacing r by a small constant multiple
of this quantity, and relabelling, we find that, for z € R,

1P<ﬂ Narrow,, (, a, r)) < O(1)a®Wr" (3.24)

Setz™ = —5/4-m2/3(10g a_1)1/3 and 2" = 5/4-Ta2/3(10g a_1)1/3. When Narrow,, (z‘, a, r)
and Narrow,, (2%, a,r) occur, every polymer of the form p, [(z, h1) — (y, h2)], with (z, ;)
in the lower zone Z,, (a,r) and (y, h2) in the upper zone Z," (a,r), has the property that
its endpoint locations (z, h1) and (y, h2) are bounded on the left by p,,[(27,0) — (27, 1)],
and on the right by pn[(zﬂo) — (2, 1)] By polymer ordering Lemma 3.3, every
point in p,, [(z,h1) — (y, h2)] is also thus bounded. However, p, [(27,0) — (27,1)] and
pn[(2T,0) = (2T,1)] remain in vertical strips

[z —ala,r),z + afa, r)] X [0, 1] ,

with z equal to z~ or 2T, during [0,4a] U [1 — 4a, 1] as indicated in (3.23). We learn that
pn[(z, h1) = (y, ho)] remains in the strip [ — 2ra?/3(log ail)l/s, 3ra®?(log ail)l/s] dur-
ing [0,4a| U [1—4a, 1]. This implies that the quantity Fluc, [(x, h1) — (y, h2); h] appearing
in Lemma 3.22 is for h € n7'Z N ([a/2,4a] U [1 — 4a, 1 — a/2]) at most 3ra*/3(log a’l)l/B,
since (x,h1) € Z,, (a,7) and (y, ha) € Z;F (a,7).

Thus the proof of Lemma 3.22 is complete, because, the upper bound @(1)@6(
in this result is in light of (3.24) a bound on the probability that Narrow, (27, a,r) U
Narrow,, (2T, a, r) fails to occur. O

Proof of Theorem 1.7. By the scaling principle, it suffices to treat that case that
s1 = 0 and s = 1. Specify the starting region S equal to the product of [- K, K| and
n~1ZN|0,1/3]; and the ending region E equal to the product of [~ K, K] and n=1ZnN[2/3,1].
We are concerned with journeys between (z,h;) and (y, he), where (x, hq) lies in the
starting region S and (y, h2) in the ending region E. We plan to argue that typically such
journeys simultaneously have the desired property of fluctuation by applying Lemma 3.22
via the scaling principle and using a union bound. We first construct a family of maps
which will map any pair of points in S x E to a pair of points in Z,, (a,r) X Z,"(a,7) as in
Lemma 3.22, which then will allow us to finish the proof by applying the lemma.

For K € R, recall from (3.1) the shear map 7« : R? — R?, 7(z,y) = (v + Ky, y).
Further, define a KPZ dilation to be a map of the form R? — R? : (z,y) — (¢*/3z,(y)
which sends the line R x {1} to a line of the form R x {y} for y € n~'IN with y > 0; that is,
we ask that ¢ € n='IN*. A vertical shift is a map of the form R? — R? : (x,y) — (z,y+h),
where h € n='Z. A horizontal shift is a map of the form R? — R? : (z,y) — (v + u,y),
where u € R.

Let O denote the class of maps from R? to R? that take the form ¢, o ¢, 0 ¢4 0 ¢s,
where ¢ is a shear map 7,; with |k| < n2/3; ¢q is a KPZ dilation; ¢, is a vertical shift; and
¢y, is a horizontal shift.

A basic covering pair for the product set S x F is a pair (B~, BT), where there exists
an element 6 € O© for which B~ is the image under 6 of the lower zone Z,, (a,r); BT is
the image under 0 of the upper zone Z, (a,7) where a and r are as in the statement
of Theorem 1.7, with B~ NS # (; and Bt N E # (. The covering number is defined
to be the minimum cardinality of a set of basic covering pairs for S x E such that
S x E CJ (B~ x BY) where the union ranges over pairs (B~, BT) in the set.

1)

Lemma 3.23. Suppose that Ka'/? is bounded above. The covering number is at most a
constant multiple of a~'9/3 K2,

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 53/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

Proof. Let (x,h1) € S and (y,h2) € E. We want to locate a basic covering pair
(B~,B7T) with (x,hy) € B~ and (y, ho) € B*. Associated to (B~, B*") is the composition
of a shear, a KPZ dilation, a vertical shift and a horizontal shift. We attempt to recover
these operations by undoing them.

1. The inverse horizontal shift. Shift the two points horizontally by a common dis-
placement that is a multiple of 373/242/3 so that the resulting points (z’, h;) and
(v, ho) satisfy the condition that |z’| < 373/242/3.

2. Next is the inverse vertical shift. Shift the two new points down by the maximum
multiple of n~!|na/12] so that the resulting points (2, h}) and (y', h}) lie in the
upper half-plane. Note that 0 < ] < a/12 and 1/3 < hf < 1.

3. Next the inverse KPZ dilation. We map (z/,/}) and (y/, h}) to (&, k1) and (§, hs)
via an inverse KPZ dilation (z,y) — (¢~2/3x,(~'y), where (~' € [1, 3] is chosen to
ensure that 0 < h; < a/dand 1 —a/4 < hs < 1. This choice of ¢ may be made from
a set of cardinality of order a~!, where this entropy factor is adequate to ensure
the desired bounds on §.

4. Now, we undo the shear map. Let (&1, h,) and (§,, h2) denote the image of (&, hy)
and (4, hy) under an inverse shear map 7_,, selected to ensure that |j, — 1| < a/3.
Since 0 < # < a¢*/® <1 < K and |j| < 3K, the value of x may be chosen among a
constant multiple of Ka~2/? options to guarantee this outcome.

5. A final shift. Having undone the several maps, we hoped to obtain (&1, k) € Z; (a,r)
and (9, hs) € Z;(a,r). The vertical coordinates satisfy the desired conditions
hy €10,a/4] and hy € [1 — a/4,1]; and the horizontal displacement |{, — #1|, being
at most a?/3, is consistent with our aim. But a final horizontal shift is needed, to
ensure that the horizontal coordinates are both at most ra*?(loga™!) '3 Since
|Z1] is readily seen to have order at most Ka, and r > 1 as well as a < e 1, we
see that this final shift may be chosen from among an order of Ka'/3 choices.
However, since we hypothesise that Ka'/? is most a large constant, the entropic
term associated to this final step is bounded.

The product of upper bounds neglecting bounded factors on the number of choices for
the maps employed in the respective steps is equal to

Ka P xa'xa'x Ka??x1=K?2a193,

If we apply the inverses of our inverse maps—in reverse order!—to the lower and upper
zones Z,, (a,r) and Z, (a,r), we will obtain B~ and B™, elements of a basic covering
pair that respectively contain the given points (z,h1) € S and (y,h2) € E. Since the
constructed map is one among a collection whose cardinality is at most the displayed
quantity up to a bounded factor, we have completed the proof of Lemma 3.23. O

In seeking to obtain Theorem 1.7 in the case that s; = 0 and s» = 1, it is enough, in
view of hy 2 < 1, to bound above the probability of the event—that we will denote by
A—that there exist (x, h1) € S and (y, h2) € E for which

there exists a moment h at which a fraction lying in [a, 2a] U [1 — 2a,1 — a]
of the lifetime [hq, h2] has elapsed such that

072 pn (@, h1) = (9, ha)] (B) = €], h1) — (y, ha)] (B)] is at least Ra®/3(loga™")",

when R = 5r, where the positive parameter R is displayed to permit convenient later
reference to the display, and where the choice of a multiple of five—or, indeed, of any
given multiple, but five will work for our purpose—is admissible via the absorptive
proclivity of ©(1) terms in the theorem. We cover E x S by a union indexed by i € C of
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basic covering boxes (B;, B;") which by Lemma 3.23 we know may be chosen so that |C|
is at most a constant multiple of K2a~10/3.

Fix a given index ¢ € C and consider the event that there exist (z,h;1) € B; and
(y,ha) € B;r such that the displayed circumstance takes place with R = r. We have
constructed a composite function that maps B; into Z, (a,r) and B;" into Z;" (a,r). The
composite is the outcome of a five-step composition. After each step, the given points
(z,h1) € B; and (y,h1) € B have been mapped to certain locations; we may consider
the probability that there exist (z,h1) € B; and (y, h2) € B;" such that the last displayed
event occurs when (z,hy) and (y, ha) are replaced by these locations. For the step
indexed by j € [0, 5], we denote this probability by p; (R, ).

Note that the probability P(A) that we seek to bound in order to obtain Theorem 1.7
when s; = 0 and s, = 1 is bounded above by a constant multiple of K2a 1%/ sup, . po(5r, i).
Thus, if we can show that p(5r,4) is at most a@’ for each i € C, we will have proved this
theorem.

On the other hand, p5(3*/3r,) for any given i € C is at most the probability that the
last displayed event occurs with R = 3*/%r and when (z, h;) and (y, ho) are respectively
replaced by certain given elements of Z, (a,7) and Z, (a,r). As such, p5(34/3r,10) is
bounded above by Lemma 3.22: indeed, this result implies that ps (3%/3r,4) < 0(1)a®Wr’
because h; 2 > 1/3 (since hy < 1/3 and he > 2/3) and because, if h € [0, 1] satisfies hh:’ZI S
[a,2a]U[1—2a,1—a] for hy € [0,a/4] and hy € [1—a/4,1], then h € [a/2, 4a]U[1 —4a,1—a/2].

To close out the proof of Theorem 1.7 , it suffices to show that po(5r,4) < ps(3%/3r,1).
Indeed, this bound proves this result when the left-hand instance of r in (1.10) is replaced
by 5r; but, as we have noted, the stated form may then be obtained since ©(1) notation
is used. We seek then to obtain the just stated bound. Of the five maps involved in
the composition, four are shifts or a KPZ dilation. For each index advance j — j + 1
in which one of these maps is involved, the scaling principle shows that p;(s, i) equals
Pj+1(8,7). The remaining map is the fourth—the inverse shear map 7_,—involved in the
index change 3 — 4. Since the value of the parameter « specifying this map is at most a
constant multiple of K, and |K| is at most a small constant multiple of n*/?,  itself is at
most a small multiple of n?/3; thus, Lemma 3.13(2) and 5 > 3%/ imply that p3(5r, i) is
at most py (3*/3r,4). This confirms that py(5r,i) < p5(3*/®r,i) and completes the proof of
Theorem 1.7. O

3.8 Polymer weight tails, uniform in variation of endpoints

In this section, we prove Proposition 1.8.

Proof of Proposition 1.8. Proposition 3.15 is concerned with the tail of parabolic
weight for polymers that begin in the lower third and end in the upper third of the
rectangle [~ K, K] x n~'Z N [-3,3]. With v = 6! - 5/4 - 27¢, this rectangle is mapped
under the transformation (x,y) — (v?/3z,vy) and a vertical shift to the rectangle

[~ K, K]-672/3(5/4)*327%/3 x m™'zZn[0,5/4-277],

where m = n - 4/5 - 2°. Consider the collection of translates of the displayed rectangle by
vectors of the form (K -6-%/3(5/4)%/3272/3. j 2=¢.1/12-k), with (j, k) € Z2. Let ¥ denote
the subcollection indexed by those (j, k) for which the translation vector has horizontal
component lying in [—M, M] and vertical component lying in [0,1]. Set K > 0 so that
L =K -62/3(5/4)%/3. Then V is a set of cardinality ©(1)M K ~'2°¢/3 such that any pair
of elements (z, s1) and (y, s2) implicated in the definition in the events Low,, (Q, {, L, M)
and High,, (C, l, L, M) belongs to some element of ¥. What we learn from this is that we
may apply Proposition 3.15 withn = n-5/4-27¢, K = K and R = (4/5)'/327'/3( via
translation invariance and the scaling principle, and use a union bound, to conclude that
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the probability in Proposition 1.8 is at most ©(1)M K ~125/30(1)K?exp { — ©(1)¢3/2}.
(That the selection of R is satisfactory depends on s;5 > 2-¢-1)) Since the obtained
bound takes the desired form, and the hypotheses on n, L and ( in Proposition 1.8 enable
this application of Proposition 3.15, the proof of Proposition 1.8 is complete. O

4 Slim pickings for slender excursions

Here we prove our result Theorem 1.10 asserting the significant shortfall in weight
accrued by zigzags that are constrained to follow excursions relative to a given zigzag
that are narrower than the width dictated by the KPZ scaling exponent of two-thirds.

More precisely, but still in summary, this theorem concerns the maximum weight
that may be accrued by an n-zigzag « that is constrained to pursue a slender excursion
relative to a given zigzag ¢ of duration of order 2~*. By slender, we mean that, at a high
but fixed proportion 1 — x of heights along the excursion, the width between 1 and ¢
is at most a small multiple 6 of the characteristic separation 2-2¢/3. There is a degree
of choice in the levels, of proportion x, at which  is not bound by this slenderness
constraint. Proposition 4.5 is a result en route to Theorem 1.10 in which a counterpart
conclusion is reached when this set of levels is instead fixed.

There are four subsections. In the first, we give a brief LPP-based proof of a result that
we will need: the mean of the GUE Tracy-Widom distribution is negative. (See [BGHH20,
Lemma A.4] for another proof pointed out by Ivan Corwin.) In the second section, we
record two needed results, including a form of [Ham19a, Theorem 1.1] that concerns
variation of polymer weight under endpoint perturbation. In the third section, we prove
Proposition 4.5. In the fourth, we sum out over the levels fixed in this proposition in
order to obtain Theorem 1.10.

4.1 The negative mean of the GUE Tracy-Widom distribution
Proposition 4.1. There exist d > 0 and ny € IN such that, forn > ng and |z| < 2~ 'cen!/19,

EWgt,, [(0,0) = (z,1)] < —d.

It is Proposition 4.1 that we will later employ, but this result has the following
interesting consequence.

Corollary 4.2. The mean of the GUE Tracy-Widom distribution is negative.

Proof. The limit in law as n — oo of Wgt,,[(0,0) — (0,1)] has the distribution of
21/3X, where, by [TW94, Bar01], X has the GUE Tracy-Widom law. Thus the result
follows from Proposition 4.1. O

The next result is the principal component of Proposition 4.1.

Lemma 4.3. There exist d; > 0 and ny € IN such that, for n > ng and |z| < 2~ en'/19,
E {Wgtn [(0,0) = (x,1)] v Wat,, [(0,0) = (z + 1, 1)]} > EWet,, [(0,0) — (z,1)] +di (4.1)

provided that x < 0 while, if x > 0, the same inference holds when = + 1 is replaced by
xz—1.

Proof. We will give a Brownian Gibbs argument. The random profile = — Wgt,, [(0,0) —
(, 1)] is (¢, C,n + 1)-regular in the sense of Subsection 2.2.3 by Proposition 2.3(1) (with
a = 1) therein. We will write £ for the (n + 1)-curve regular ensemble whose uppermost
curve £(1,z) equals Wgt,, [(0,0) — (z,1)].

Suppose first that z € [-1/2,1/2]. For D > 0, let N = N(D) denote the event that the
weight Wgt,, [(0,0) — (z,1)] is at most D, and that Wgt,, [(0,0) — (z + 2,1)] is at least
—D. We make two claims.
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Claim 1. There exist D1 > 0, d2 € (0,1) and n; € IN such that, when n > n,, it is with
probability at least dy that N(D;) occurs.
Claim 2. For n € IN and D > 0, the conditional probability of

Wgtn[(0,0) — (41, 1)] > Wgtn[(0,0) — (z, 1)] +1

given N(D) is at least V0,1/2 (D +1, oo), where vg 1/, denotes the Gaussian law of mean
zero and variance one-half. The same statement holds when the displayed left-hand side
is replaced by Wgt,, [(0,0) — (z —1,1)].

Proof of Claim 1. The ensemble L satisfies Reg(2) and Reg(3) in Definition 2.2, and
from this, the result follows.

Proof of Claim 2. The event on which we condition in this claim is that £(1,z) < D
and £(1,z + 2) > —D. If we further condition on the value (u,v) of (£(1,), L(1,z + 2)),
and on the form f of £(2,:) : [z,z + 2] — R, then the conditional distribution of £(1,) :
[z,z + 2] — R is given by Brownian bridge B : [z,z + 2] — R, with B(z) = v and
B(x + 2) = v—whose law we label Bl;* "2 —conditioned on B(z) > f(z) for z € [z, 2 + 2].
Note that

BYP(B(1) = ut1|B > ) 2 B (B(1) = ut1) 2 By (B(1) = DH1) = v,1/5(D+1,00)

the first inequality by the monotonicity offered in [Ham22, Lemma 2.18] (a result
originally proved in [CH14]); the second by the affine scaling property of Brownian
bridge; and the third by the law of the midpoint value of standard Brownian bridge. This
completes the proof of the first assertion of Claim 2. The second assertion has an almost
identical proof.

The two claims show that, for x € [-1/2,1/2],

E [Wgtn[(0,0) — (2,1)] VWat,, [(0,0) — (x—l—l,l)” > EWgt, [(0,0) — (z,1)] +da2, (4.2)

as well as the bound after we replace z + 1 by x — 1. This proves Lemma 4.3 in the
case that x € [-1/2,1/2]. By [Ham22, Lemma 2.26]—a tool of near parabolic invariance
that propagates spatial information from unit-order to much broader intervals—we learn
from (4.2) that, for |z| < 2 'en!/19,

E [Wgt;/[(0,0) = (2, 1)] v Wet2[(0,0) = (2 + 1, 1)] | = EWgt:/[(0,0) = (2, 1)] + da,

where recall that Wgt;,[(0,0) — (z,1)] is a shorthand that denotes the parabolically
adjusted weight Wgt,, [(0,0) — (z,1)] + 271/22%. Subtracting 2-'/22? yields (4.1) for
x < —1/2. We obtain (4.1) for x > 1/2 by the same argument, with the role of (4.2)
played by its counterpart where x — 1 replaces x + 1. This completes the proof of
Lemma 4.3. O

Proof of Proposition 4.1. We will prove this result by showing that E Wgt,, [(0,0) —
(z, 1)] is at most —d;, where Lemma 4.3 furnishes d; > 0. To verify this, suppose first
that z < 0. We claim that

lim inf SUEK_1Wgtn [(0,0) = (2, K)] > HLH (E Wet,, [(0,0) — (2, 1)] + dl) . (4.3)
zE

where the limit infimum is taken as K — oo through K € IN. This claim is substantiated

by constructing an n-zigzag that begins at (0,0). It travels first either to (z,1) or to

(x + 1,1), the choice being made so that more weight is captured along the way. After

arrival, the zigzag makes an immediate microscopic jump, moving by ( — 2n~%/3,n71).

Zigzag formation continues as if the point of arrival plays the role that (0,0) did at the
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outset. That is, the zigzag continues by travelling to one of the points whose displacement
from its present location is (z,1) or (z + 1,1), the selection made to maximize weight;
then a further microscopic jump is made; and the process iterates indefinitely. If an
arbitrarily small constant is subtracted from the right-hand side of (4.3), the left-hand
supremum is seen to exceed the right-hand side for all sufficiently high K. Thus, we
obtain (4.3).

However, the left-hand side of (4.3) is at most zero almost surely. Indeed, by the
scaling principle, sup, . K~'Wgt, [(0,0) — (z, K)| equals K ~2/3 sup, . Wgt,  [(0,0) —
(z, 1)] in law; and the latter supremum converges as K — oo in law to the Tracy-Widom
GOE distribution v, because the process z — Wgt,,[(0,0) — (z,1)] converges in law as
m — oo in a compact uniform topology to the parabolic Airy process, whose maximum
has the law v (see e.g. [BFPS07]).

Thus, the mean of Wgt, [(0,0) — (z,1)] is at most —d;. This completes the proof of
Proposition 4.1. O

4.2 Two tools

4.2.1 Gaussian increments for weight profiles

For a shortly upcoming use, we record a result bounding the tail of increments for the
weight of polymers subject to horizontal endpoint perturbation. The result is better
expressed using parabolically adjusted weight, so that a slope arising from a difference
of parabolas is eliminated and much higher choices of horizontal endpoint discrepancy
may be treated. The parabolic weight notation Wgt;) was specified in Subsection 3.1.2.
We now specify a variant notation in order to describe differences in parabolic weight.
Let (21, 72) and (y1,y2) belong to RZ. The parabolically adjusted weight difference

AYWagt,, [({z1, 22}, 51) = ({y1, 92}, 52)]

denotes
. 2
(Wgtn [(£U2,81) N (y2,32)] + 2_1/2(3/2552))
SS9 — 81
. 2
(et Lo = ] 2 ),
2 — 81

Proposition 4.4. Positive constants C and c exist for which the following holds. Let
a € (0,27%]. Let (n,s1,52) € N x IR2S be a compatible triple for which ns; 5 > 1032¢~18
and let x,y € R satisfy ‘1: — y’sfg/s < 27237 1¢(nsy0)/18. Let K € (10, 103(n5172)1/18}.
Then

P Sup ‘AU Wet, [({z1, 22}, 51) = ({yhyz},sz)]‘ > Kal/zs},/;’
whwze[:c,w—&-asfg] L x1<To

2/3
yuyzé[y,y-l-asl,/2 1 y1<y2

is at most Cexp { — 2721 K?}.

Proof. The special case that s; = 0 and s, = 1 is implied by [Ham19a, Theorem 1.1].
(The upper bound in the latter result is 10032 C exp { —c1272'R3/2}. But ¢; = 27%/2¢A1/8,
where ¢ > 0 is a constant that is at most one, so that we obtain the upper bound in
Proposition 4.4. We also relabel 10032C' to C to obtain the form stated above in the
special case.) The scaling principle from Section 3.1.1 then yields the proposition from
this special case. O

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 58/80


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Near ground states for Gaussian polymers

4.2.2 A control on weight that is uniform as endpoints vary.

Here we record a consequence of Proposition 1.8. Recall that we used Low,, (¢, ¢, L, M)
to denote the event that

—-1/3 U

s1o " Wet, [(x731) — (y,SQ)}

is less than —( for some pair (z,s1),(y,s2) € R x n='Z N [0,1] with |z| V |y| < M,
lz—y| <27%/3L and s; 5 € (27471, 27¢). Similarly, High,, (¢, ¢, L, M) denotes the event that
the displayed quantity exceeds ¢ for some such pair. For M = n'/?0 and L = (n2=4)V/47,
specify the uniform boundedness event

UnifBdd,,(¢) = ) (ﬁLown(C,&L,M) ﬁﬁHighn(C,K,L,M)),
4

where the intersection ranges over ¢ such that (?'n~! < 27¢ < 1.
From Proposition 1.8 and a union bound, it follows that, for ¢ > ©((logn)?/3),

P (UnifBdd,,(¢)) > 1 — e~ @M<, (4.4)

4.3 Excursions constrained at given heights are uncompetitive

Letr € N, and let x > 0 satisfy
k¥? er !N and k%% € N. (4.5)

The parameter x will be positive but small, and these conditions are then ensured if
need be by slight adjustment to its value. They ensure that an r-zigzag ¢ of lifetime [0, 1]
begins and ends at moments that are multiples of x%/2, and that every intervening such
multiple, being an element of !N, is the vertical coordinate of a horizontal interval
in ¢. Furtherlet b € (0,1). A segment is a horizontal planar line segment of length bx
whose height is an integer multiple of /2. The role of b, which will be taken to be a
small enough absolute constant, is elucidated in the discussion following the statement
of Proposition 4.5.

Let x € (0,1). A plentiful segment collection is a set of segments that numbers at
least (1 — x)x /2 whose elements have distinct heights that include 0 and 1 and that
belong to [—r1/29 #1/29] x [0, 1]. Let C denote the set of plentiful segment collections.

Let c € C. A c-path is an r-zigzag from an element (21, 0) in the lowest of ¢’s segments
to an element (22, 1) in its highest that intersects every segment in c. Let Wgt, [c—path]
denote the supremum of the weights of c-paths.

Proposition 4.5. There exist positive parameters ko, b, d, d2, and xo € (0,1/2] such that,
ifr € N and r € (0, ko) satisfy (4.5); if x € (0, xo) satisfies x > 2x%/? and 2xyx%/? € IN;
and ifc € C; then

P(Wet, [c-path] > ~din") < exp{ — dar¥/?}.

To derive this result, our task is to show that typically Wgt, [c-path] is a large negative
number. To argue this, let 1) be a c-path. A value of the form jx3/2 for j € [0,x73/2 — 1]
is said to be y-useful—but we will simply say ‘useful’—if v intersects a segment in c
of height jx%/? and another of height (j + 1)x%/2. We will write Wgt,.(¢)) in the form
W.(¥) + W,() in a sense that we now explain. We divide # into sub-zigzags by splitting
at points of departure of ¢ from levels that are integer multiples of x%/? lying in (0,1).
Each sub-zigzag is called useful, or otherwise, according to whether the height of its
starting point is useful or not. Then W, (v) and W, () are the respective sums of the
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weights of the useful, or otherwise, sub-zigzags. We aim to carry out the needed task by
finding bounds on the upper tail of the two right-hand terms in the inequality

Wagt, [c-path]| < sup {W,(¢) : ¥ a c-path} + sup {W, () : ¥ a c-path}. (4.6)

We will first analyse the useful weight sum supremum sup {Wu (¥) v a c-path} ; and
then do likewise for the otherwise counterpart. The resulting bounds will then permit a
quick proof of Proposition 4.5.

Analysing the useful sum is the principal component in the proof of this proposition,
and a few words in summary of this analysis will, we hope, be helpful. There are
two elements: we will show that weights of the sub-zigzags that contribute to W, (¢)
have negative mean; and we will then appeal to concentration inequalities for sums of
independent random variables.

Regarding the first element, it follows from Proposition 4.1 and the scaling principle
that the weight of a useful sub-zigzag with fixed endpoints has mean at most —d; x'/2.
However, the endpoints of useful sub-zigzags are not fixed, but in fact vary over horizontal
segments of length bx. An effect of Brownian oscillation for polymer weight that will
be controlled in Lemma 4.12 causes our upper bound on the mean to rise by an order
of (br)'/2. Tt is at this moment that we will select the value of b > 0. By choosing
this parameter to be small enough, the mean supremum weight of useful sub-zigzags
traversing between vertically consecutive elements of ¢ will be shown to be at most
—%1.%1/ 2,

In consecutive subsections, we analyse the useful sum; and the otherwise sum; and
give the proof of Proposition 4.5.

4.3.1 The useful sum
Definition 4.6. Let I and J be compact intervals in [—r'/2° r'/2] of length bx. Set

Y= kY2 sup Wgtr[(u,()) — (v,n:‘/z)} .
uel,vedJ

Let U denote the set of useful values. A useful sub-zigzag starts in a segment
belonging to c and intersects that segment only at this starting point. Its ending point
is x%/2 higher than its starting point. The law of the weight of a useful sub-zigzag with
given starting height is at most the supremum of weights of r-zigzags that begin and
end in two given segments and whose lifetime has duration x3/2. Since the sub-zigzag
immediately departs from its starting height, the weights of distinct sub-zigzags in our
partition are independent. Thus, we find that the useful weight sum supremum

u|
sup {W,(¢) : ¢ a c-path} is stochastically dominated by Z U;, (4.7)
i=1
where the latter quantity is a sum of independent random variables, U; having the law
of :‘il/2Y[’J, where Y7 ; has been specified in Definition 4.6, and where the pair (I, J)
satisfies the hypothesis in that definition.
The next result is our conclusion regarding the useful sum; indeed, with U; = x'/2X;,
it will permit analysis of the right-hand sum in (4.7).
Proposition 4.7. Let j € N satisfy k~%/2/2 < j < k%2, Let {X; : i € [1,5]} be an
independent sequence of random variables, where X; has the law of Y7 ; for a possibly
i-dependent pair (I, J) satisfying the hypothesis in Definition 4.6. Then

P(zj:Xi > —@(1)&3/2) <exp{ - @(1)/173/2}.
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To derive this result, we will need the second element to which we alluded in summary
of the useful sum analysis: a concentration result for independent random variables.

Proposition 4.8. [Verl18, Theorem 2.8.1] Let {Xi NS lN} be a sequence of independent
real-valued random variables of zero mean. For any C > 0, there exist positive ¢; and ¢,
such that, fork € IN andt > 0,

1. ifEexp {|X;|/C} <2 then

k
IP(‘ZXZ-
=1

2. and if Eexp {X?/C} < 2, then

> t> < exp{ — min {Cthkil,CQt}} ;

k

P(’Z)Q

i=1

> t> <exp{—cit’k'}.

The variables satisfying the hypotheses in (1) and (2) are known to be sub-exponential
and sub-Gaussian variables respectively. Now let (v/,v’) € I x J satisfy

W' — | =inf{jv—ul:uel,veJ}. (4.8)

Write Y; ; = Z;,y + E; 5, where Z; ; = k= /?Wgt, [(«/,0) — (v/,x*?)] and

Erg= kY2 sup (Wgtr[(u,O) = (v, /{3/2)} — Wgtr[(u’,O) — (v’,HS/Q)]) .
uel,ved

This decomposition reflects the argument promised in the first element in our summary:

Zr,y is a point-to-point weight (normalized to be of unit-order by the factor k~1/2), and

the error term Ey ; is a weight difference due to horizontal endpoint perturbation. We

offer a Gaussian form of control on the latter next. In a usage also found later in this

section, Cj and ¢y denote positive constants whose value may change from line to line.

Lemma 4.9. There exist positive constants C, and ¢, such that, for r > Cor~'%° and

0<b<2% the following holds. For all I and J as above, there exists an event E; ; such
that
]P(ELJ) < Cyexp { — corl/gmlw} (4.9)

and that
P(Ersle; , = 0/2h) < Coexp{ — coh?} (4.10)
for h > 0.
Proof. Note that, foru € I and v € J,

Wet, [(u,0) — (v, x*?)] — Wgt, [(«/,0) = (v/,x%/?)]

3 ’U/ _ u/ 2 B v —u 2
= AYWagt, [({v/,u},0) = ({v/,v},£*%)] + 2 1/2(,937/2)_2 1/2(,{37/2)

< AYWgt, [({u/,u},0) — ({U',v},ﬁ3/2)] ,

where the inequality is due to (4.8). Thus, Er,; < = 1/2AY Wegt, [({«/, u},0) — ({v/, v}, £3/2)].
We now apply Proposition 4.4 with parameter settings n = r, sy 2 = k3/2, a = b and
K = h, and with x and y equal to the left endpoints of I and J. Note that the hypothesis
a < 274 holds due to b < 2%, The hypothesis ‘X — y‘sig/g < 27237 1¢(rsy 2)'/!® holds due

to |x], |ly| < r1/20 which follows by hypothesis on I and .J; and to the hypothesised lower
bound on 7.
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The hypothesis ns; » > 10%2¢~!® is due to r+%/2 > 10%2¢~'8, a consequence of the
hypothesised lower bound on r alongside ¢ < 1 and « < 1. The hypothesis K €
[10*, 103(rk3/2)1/18] holds provided that we impose this condition on &. This application
of Proposition 4.4 yields that

P(Bry > 0"%h) < Cexp{ - 270}

for h € [10*, 103r1/1851/12]. Define the error event E; ; = {E; ; > ho(bk)'/?} where hg

equals the maximal value 103r1/185!/12 for the range of h. We obtain (4.9), and (4.10) for

h > 0. O
To address the point-to-point normalized weight Z; ;, we introduce a parabolically

adjusted version:

o u/)2

/
Zpy=2p,+ 220 (4.11)
K

By Lemma 3.1 with parameter setting n = rx%/2, and the scaling principle, it follows
that, fort > 0,

IP(|ZI,J| > t) < Cexp{—ct*?}, and hence ]P(|Z,,J|1E; o> t) <Cexp{—ct®?}.

(4.12)
This implies that
]P( ’Z]’J].E(I" s E[Z]7‘]1E? J]‘ Z t) S C’exp{ — Ct3/2} . (413)
Concentration of the sums 25:1 Zy,; and Zle Zr,; will be related by means of
j — —
ZZI,JlE;’J —E[Z;1g; ] (4.14)
i=1
j 12 (o )
= Z [Zr,s1es , = E[Z1 51g; ]| + ZQ e [Lee , — B(leg )]

Il
—

3

with the next result offering control on the latter parabolic term.
Lemma 4.10. With probability at least 1 — Cor~3/% exp { — cor'/*k1/6},

!
Z 2” 172V =) 5 w)* [le; , — E(1lg )] < Cort/"x 4 exp { — cor'/x1/}
P :

Note that, by our hypothesis on k, the right-hand side is less than one when r is large
enough.

Proof. Since by (4.9), E(1gc ) > 1—Cpexp { —cor'/?k1/6}, on the event le:  =1we
have |

—1/2 (v —u')? 1/10 ,.—2 1/9,.1/6
2 T[IE;J —E(1g )] < Cor/ 7k exp { — cor'/?k'/}

since |v —u/| < 71/2°. A union bound over i € [1, ] now implies the lemma. O

We now note that the tail bound (4.13) allows us to invoke Proposition 4.8(1). For
brevity’s sake, let Wy ; = Z7 j1gc | — E[Z; j1E: J]. By this proposition, we may find d > 0
so that 7 Y

J
P(ZW[’J > 1d()l<3_3/2) < eXp{ — cod/@_3/2}.

i=1
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Now, by our assumptions on r and «, (4.14) and Lemma 4.10, it follows that

(ZZ} J]_E [ZI JlEC ] Z (811%_3/2) S exp{ — Codli_g/2} . (415)

Here we used Cor /2 exp { —cor!/?x1/6} < e~ "* ‘which follows from our hypotheses

on r and K.

In the last display, we see, in a mildly truncated form, the point-to-point mean weight
that was the mainstay of our overview of the first element of useful sum analysis. Indeed,
we next argue that this truncated mean is suitably negative.

Lemma 4.11. There exists d > 0 such that, forr > 0(1),

] E[Z < 33
Z [ 17J1E?,J] — 4K: :

i=1

Proof. Since Proposition 4.1 and the scaling principle imply that E[Z; ;] < —d,
it suffices to show that >7_, E[Z; ,1g, ,] < 1+ %2 Now note that E[Z; ;1g, ,] <
(E(Z7 ;)P(Er, ]))1/2. Since r is assumed to be large enough, we are now done by
(4.9), and , /]E(Z% ) < O(
decomposition (4.11), the ﬁrst term is O(1), and hence the above bound arises from the
maximum value of the parabolic term. O

A final result needed to deliver Proposition 4.7 concerns the error terms Ey ;.

) the latter due to Lemma 3.1, which implies that, in the

Lemma 4.12. There exist positive constants C; and ¢, such that, for small enough b and

Ky

J
IP(ZELJlE;J > b1/2Cm_3/2> < exp{ — cm_?’/2}.

Proof. Note that, by definition, the random variables 6~ 1/ 2E1 J].EC are independent.
Further, by (4.10), they are sub-Gaussian. Thus, Proposition 4. 8(2) s hypotheses are
satisfied, and the lemma is obtained. O

Proof of Proposition 4.7. By (4.15) and the two just stated lemmas, we find that,
for a suitably small choice of b > 0, it is with probability at least 1 — e—cox~"* that

J J J J
D Xi=D Xilg, Z Zr1e; , + ZEI,JlE;J
1=1 =1 7 :

J J
= ZE Zrgles |+ [ Z1sles , —BlZsle 1+ > Erle

i=1 i=1
—d d —d
< Tﬁfs/z + §H73/2 + bl/sz’B/z < 176"{73/2 )
The first equality follows from (4.9) and a union bound. O

4.3.2 The otherwise sum

Our upper bound on the otherwise sum, namely on the latter right-hand term in (4.6), will
depend partly on there being few otherwise summands. To this end, we begin by stating
and proving a simple claim giving a lower bound on the number of useful summands.
Recall that it is hypothesised in Proposition 4.5 that 2y~ ~%/2 € IN and 2y < 1.
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We claim that,

for at least (1 — 2X)/-f3/2 — 2 indices j € [0, k2~ 1], the value jr%/? is useful ,

(4.16)
where the notion of usefulness was specified after Proposition 4.5. In verifying this, we
will describe two segments in c as being vertically consecutive if their heights differ
by x3/2. Consider the set formed from INx3/2N [0, 1] by the removal of those elements that
are the heights of members of c. This set has cardinality at most yx /2 + 1. Any element
§#%/2 in the set forbids the values (j — 1)x%/? and jx*/? from being useful. Cumulatively,
at most 2yx*/2 4 2 elements of x3/2[0,x~3/2 — 1] are thus forbidden. The remainder,
numbering at least /2 — 2yx~3/2 — 2, are useful. This is as we claimed.

We now present a bound on the upper tail of the otherwise weight sum supremum
sup {W, (1) : ¢ a c-path}. Let ¢ again denote a given c-path. Let O € IN denote the
number of otherwise sub-zigzags of 1. Recalling that I/ denotes the set of useful values,
with U = ||, we have (U + O)/i3/2 < 1, because every sub-zigzag, useful or otherwise,
has height at least x/2; so that (4.16) implies that

O <2y 3?42, (4.17)

The expression W, () is the sum of weights of the otherwise sub-zigzags of ¢. Each
otherwise sub-zigzag begins, but immediately leaves, a given segment in ¢, and ends
in another such segment. The two segments may be called the starting and finishing
segments of the sub-zigzag. Labelling the otherwise sub-zigzags {Zi c1e 1, Oﬂ} in
order of increasing height, we denote by S; and F; the starting and ending segments
of Z;. The respective heights of S; and F; will be denoted by s; and f;. Note that
s; < fi < Sit1 < fi—i—l fori e [[].,O — ].ﬂ

Fori € [1,0], let (u;, s;) € S; and (v;, f;) € F; be chosen so that the gradient of the
line segment connecting (u;, ;) and (v;, f;) is maximal given that these endpoints lie in
S; and F;. This implies that

lv; — ug| = inf{|v —u|:u,v € R, (u,s;) €Sy, (v,8i41) € Fl} . (4.18)

We find then that the otherwise weight sum supremum

o
sup {W, (%) : ¥ a c-path} is stochastically dominated by Z (W; +E;), (4.19)

i=1

where {W; : i € [1,0]} is an independent sequence whose term W; has the distribution
of Wet,.[(ui, s;) = (vi, f;)]; and where {E; : i € [1,0]} is an independent sequence of
error terms given by

E; = suel:])R (Wgtr [(ua 31) - (Uv fl)} - Wgtr [(uia Si) - (Uiv ft)] ) .
(u::i)eéi
(v,fi)€F:

Reminiscently of useful sum analysis, the right-hand quantity in (4.19) is a sum of a
point-to-point W-sum and an error E-sum. The next two lemmas, which provide tail

bounds on these two sums, are the outcomes of otherwise sum analysis that will be
needed to prove Proposition 4.5.

Lemma 4.13. There exist y € R and s € [0, 1] that satisfy |y| < r'/?° + 2xbx~1/? and s <
2x such that the random variable ZiO:1 W, is stochastically dominated by Wgt,.[(0,0) —

(y,5)].
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Proof. Set s = Z?zl(fi —s;) and y = Z?zl(vi — u;). Set S equal to the set of
planar points p; = (Zgzl(v,— — ), Z{Zl(fi — s;)) where j varies over [1,0]. The value
Wegt,. [(O, 0) — (v, 5)] is the supremum of the weights of r-zigzags from (0, 0) to (y, s). This
value is at least the supremum W of weights of r-zigzags with these endpoints but that
also contain the set S. Note that W has the law of Ziozl W;, because, if Z denotes the
maximizer zigzag in the optimization that specifies W, the weight of the sub-zigzag of
Z between p; and p;11 equals W, in law, and the various sub-zigzags have independent

weights. O
Lemma 4.14. There exist Cy,cy > 0 such that the following holds. Suppose that r >
Cor™19, h € [10*, 103(rs;,i41)"/1®] and b < 274
1. Fori € [1,0],
P(E: > hbr)'/2) < Coexp { — coh?} .

2. Suppose that x > 2x/%. There exist hy > 0 and an error event E satisfying
]P(E) < Coxf-@_3/2 exp{ — corl/gnl/ﬁ} (4.20)
such that, for h > hy,
o
IP(ZEAEC > hxbl/znfl) < Cy exp{ — coxn73/2h2} . (4.21)

=1
Proof: (1). Note that, for u,v € R with (u, s;) € S; and (v, $;41) € Sit1,
Wgt,. [(u, Si) — (’U7 5i+1)] — Wgtr [(ui, 81) — (Ui+17 Si+1)]
)2 _aN\2
= AWat,, [({us, u}, 51) = ({vi, v}, 89)] + P ) e VY el
S9 — 81 S2 — 81
AU Wgtn [({uia u}a 51) — ({'Uz'; ’U}, 52)} )

where the inequality is due to (4.18). Thus, E; < AYWgt,, [({ui, u}, s1) = ({vi,v},s2)].
We now apply Proposition 4.4 with parameter settingsn =7, s12 = 5,41, a = s;fﬁ’bm
and K = h, and with x and y equal to the left endpoints of S; and S;;;. Note that the
hypothesis a < 27* holds due to b < 27* and s; ;41 > x*/2. The hypothesis |x — y]s;fﬁ <
27237 ¢(rs;41)"/'® holds due to |x|, [y| < 71/20, which follows from S;, Sy € ¢; to ;41 >
#x%/2; and to the hypothesised lower bound on 7. The hypothesis ns; 2 > 1032¢718 is
due to rk3/2 > 1032¢718, a consequence of the hypothesised lower bound on r alongside
¢ < 1and k < 1. The hypothesis K € [10*, 10%(ns1,2)'/*®] holds because this condition is
imposed on h. Lemma 4.14(1) follows from this application of Proposition 4.4.

(2). Set the error event E by defining E = Nj;c[9,0-1)E:, where

IN

Ei = {Ez Z (bl‘i)l/Qlog(TSi,i+1)l/18}.

Since y > 2x%/2, (4.17) implies that |O| < 3yx~3/2. From this bound, and since s; ;41 >
x3/2 for all concerned indices i, we obtain (4.20), from the conclusion of Lemma 4.14(1)
and a union bound.

The random variables Ei].E;' verify the conclusion of Lemma 4.14(1) for all h > 10%;
that is, even after the removal of the upper bound on A hypothesised in that result.
Hence, they are, after scaling by the factor (b/@)‘l/ 2, sub-Gaussian variables as in
Proposition 4.8(2). Since (4.17) holds, (4.21) is implied by the bound ]P( Zfil E! > hK) <
e~ ®MWER for all large h, where K = [2xx~2/3] + 2 and E] = (bx)~'/?E;1¢.. Since the £
are by definition independent, the desired bound follows from Proposition 4.8(2). O
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4.3.3 Proof of Proposition 4.5

We are ready to return to the bound (4.6) in order to prove the upper tail bound stated
by this proposition. Indeed, by (4.6), (4.7) and (4.19),

IP(Wgtr [c-path] > —dmfl) <AL+ A+ A,

where here we set A; = IP(ZLL:”l Ui > —2dis71), Ay = IP(Z?ZIW,» > 27'dys7t) and
A3 = P(Z?:l El 2 2_1d1:‘€_1).

To find an upper bound on A;, note that 3| /; > —2d,x~! entails that Zf: o U; >
—2d; k7!, where on the right-hand side, further U;-terms have been introduced consis-
tently with the conditions on this sequence. Provided that b < by and d; < d/8, we may
apply Proposition 4.7 with j = x~3/? to find that

A < exp{ — dﬁ_3/2}.

Let the parameters y € R and s € [0,1] satisfy the hypotheses of Lemma 4.13. This
result implies that A, < P(Wgt,[(0,0) — (y,s)] > 27'dyx~!). From s < 2y, and the
one-point upper tail bound P (Wgt, [(0,0) — (y,s)] > hs'/3) < Cexp{ — ch®/?} offered
by Lemma 3.1(1) via the scaling principle, we see that

Ay < Cexp { — 2720X71/2d‘;’/2/—173/2} .

In the notation of Lemma 4.14(2), A3 < P(X7 | E;1gc > 27 'dyx~"') + P(E). Choose
h in Lemma 4.14(2) so that hxb'/? = 2-'d;; we ensure the needed condition that
h > hg by insisting that x > 0 be small enough (as we do by demanding that y < xq in
Proposition 4.5). From Lemma 4.14(2), we thus learn that

Az < Chexp { — con73/2xflb71272d%} + C()XI{73/2 exp { — corl/gnl/G} .
Applying r > £~ 1%/2 in the guise r/?k!/¢ > k~2/3, we obtain Proposition 4.5 by choosing
(or adjusting) the positive parameters kg, d; and ds to be suitably small. O

4.4 Deriving Theorem 1.10

Throughout this section, we suppose that §~'/4 > C'logn and that ¢ € N satisfies
2¢ < nB*, since these conditions are hypothesised by the result that we seek to show.

To apply Proposition 4.5, let x > 0 satisfy x*/2 € n='Z, k~%/2 € N and bx/8 €
2-2¢/3¢ . [1,2], where b appears in the statement of the proposition. Let « also satisfy
K312 < 9-1-ty,

As we derive Theorem 1.10, we will define the terms segments, plentiful segment
collection and c-path. In doing so, we abuse the notation employed in Proposition 4.5.
However, as we will explain shortly, the different usages coincide when suitable parame-
ters are specified and a simple change of coordinates is made.

Suppose given an n-zigzag ¢ from (0,0) to (0,1). For now, we take an arbitrary such
¢, though we later impose the condition, seen in Theorem 1.10, that ¢ be #~1/%° regular.

Further suppose given s, s, € n71Z N [0, 1] for which 2717¢ < s, 5 < 27; Recall that
our choice of x ensures that k3/2 < xs; 5. Let 1o € n71[0,nx%2 — 1]. An ro-segment is a
horizontal planar interval of the form

Lijnsro = [0(j/n+10) —bK/2,6(j/n+10) + br/2] % {in™ 41y}

where j/n € k%27 and j/n + ry € n"'[ns1,nsy]: see Figure 5.
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(.CC,Sl)

Figure 5: The solid zigzag is ¢ and the dashed zigzag is a c-path which passes through
the elements of ¢, denoted by the black horizontal planar lines of length bk, a plentiful r¢-
segment collection. Such segments occur regularly at vertical separation being integer
multiples of x3/2.

A plentiful ro-segment collection is a subset of {I;/,.,, : j/n € &*?Z, j/n+rq €
n~'[nsi, ns2] } whose cardinality is at least (1 — x)s1,25 /2, where note that the quantity
s1,26~%/? differs from the cardinality of the set {j/n € k3/%Z: j/n+ro € n™'[ns1,nss]}
by at most one. If v~ and v denote the lowest and highest vertical coordinates assumed
by elements in a plentiful ry-segment collection, note that

’v_ — 51’ vV ’v+ — 52’ < 2xs1,2. (4.22)

Indeed, the left-hand side is at most ys; 2 + £%/2, and k%/2 < ys .

Let C,, denote the set of plentiful rp-segment collections. Set C equal to the union
of C,, as 7y varies over n~'[0,nx%? — 1]. For given such ry, let c € C,,. A c-path is
an n-zigzag whose starting moment is the lowest height of an element of c; whose
ending moment is the greatest such height; and that intersects every element of c. Let
Wgt,, [c-path| denote the supremum of the weights of c-paths.

Define

HighSIenderWeight(sl, S2, 1 — x; gf)) = U {Wgtn [c-path} > —2*1d0/<;*15112 } .
ceC

Recall the event UnifBdd,, () from Subsection 4.2.2. The argument to prove Theorem
1.10 proceeds by showing that, on the event UnifBdd,, (-)—with a choice of this event’s
parameter that will make it typical—the non-occurrence of LowSlenderWeight* (¢, 0, 1—x; ¢)
implies the occurrence of HighSlenderWeight (51, S2, 1 — x; <;5) for some s; and s». The latter
event is then shown to be rare, implying the desired rarity of LowSlenderWeight*(¢, 6,1 —

X; @)
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Recall the notion of regularity from (1.11). and that the definition of the quantity
LowSlenderWeight*(¢,6,1 — x; ¢) involves a constant dy.

Lemma 4.15. Suppose that x'/3 < 2-'1/3d,. Then, for any zigzag ¢ from (0,0) to (0,1)
that is §—'/*-regular,

Unided(l—boﬂfl) N — LowSlenderWeight™(£,0,1 — x; @)

N

U HighSlenderWeight(s1, s2,1 — x; @) .
0<s1<s2<1
51’26[2—1—[72—51

Proof. When — LowSlenderWeight®(¢,0,1 — x; ¢) occurs, there exist (z,s1), (y,s2) €

R x n~'Z for which 2717¢ < 51, < 27¢, and a (¢, 0, 1 — x)-close zigzag 1 from (z,s1) to
(y, s2) that satisfies

Wet,, (1) > —dor ™ s12. (4.23)

By our choice of b and «, the zigzag v satisfies the bound

[1(s) — ¢(s)| < br/2 (4.24)

for at least (1 — x)|[s1,s2] N n'Z| values of s € [s1,s2] N n~'Z. When elements of
[s1,82) N n~1'Z are identified if they differ by a multiple of x%/2, they are partitioned
into classes which are naturally indexed by ry. Since s; 2 > #3/2, the number of classes
equals nx3/2. At least one of these classes—call it D,,—contains at least n~'x~3/2(1 —
X)|[s1,82] Nn~ Z| = k73/2(1 — ) (s1,2 + n~') elements s that satisfy (4.24). Let c denote
the set of I;/,,,,, indexed by those j/n + 9 € D,, such that (4.24) is satisfied with
s = j/n +ro (where note that j/n € x%/2Z and j/n +ro € n™[ns1, nsa).
Note that |c| > x73/2(1 — x)s1,2. Thus, c is a plentiful ro-segment collection; so that
c € C. We claim that
Wegt,, [c-path] > —271s; odor ™. (4.25)

To verify this, let ¢/ denote the sub-zigzag of ¥ from the entry of ¢ to the lowest vertical
coordinate v~ in D,, to its departure from the highest such coordinate v*. Note that
Wagt,, [c-path] is at least Wgt,, (¢?). To bound below the latter weight, we write ¢ as a
concatenation ¥~ o 9% o ¥+,

We now claim that, since ¢ is regular, the occurrence of the event UnifBdd,, (b&‘l)
entails that Wegt,, (1)) and Wgt,,(1)™) are at most

2(4X81,2) 1/38?{2:))&_1 _ 25/3X1/381’2K—1.

Admitting the claim, note that, by weight additivity, Wgt, (") equals Wgt,, () —
Wet, (™) — Wet,, (¢b1); by (4.23), and the claim, this weight is thus seen to be at least
—s1.2dok ™! 4 28/3x1/35; ok, Since 28/3x1/3 < 271d;, we have verified (4.25) for all n
high enough. In view of the definition of the HighSlenderWeight event, this reduces the
proof of Lemma 4.15 to deriving the claim.

To this end, note first that bounds on Wgt,,(¢~) and Wgt, (/") cannot be obtained
directly from Proposition 1.8, since the duration of these zigzags may be too small for
this result to offer a meaningful bound. This said, the claimed bounds follow easily
from superadditivity. We will provide only the argument for ¢)~. Let (z1, s1) and (23, v_)
denote this zigzag’s endpoints (recall from (4.22), that v_ — s; < 2xs1,2). Now consider
the point (zg,v_ + x$1,2). We then have

Wgtn(/w*) < Wgtn [(1’1781) — (*/E27U* + XSI,Q)} - Wgtn [(37277]7) — (LL'Q,’U, + XSI,Q)} .
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1/4

Now, recall that, when ¢ is §~!/*-regular, we have that, for any (u, h1), (v, ha) € ¢,

‘U - u‘ < hi/2559—1/4 < hi/; max(9_50/47nh172)1/50.

In particular, this means that z; and z, are at most n!/59

(4xs1,2)%/3(ndxs1,2)'/°. Note that this last deduction needs 4xs;,» > —— for all fixed x
and all large enough n, which condition is implied by our stronger standing assumption
that 2~/ > £

We can now conclude that the event Unidedn(%H_l) implies that the quantities
Wgtn [(131,51) — (I’Q,U_ + XSLQ)] and Wgtn [(IQ,U_) — (IEQ,U_ + XSLQ” are at most

(4X81,2)1/ 3(%9‘1). We prove only the claim that this bound holds for the first term,

because a similar argument works for the second. The occurrence of UnifBdd,, (1—}’09*1)
entails that the parabolically adjusted weight satisfies

in absolute value, and |z — 2| <
§—50/4

b
Wet,, [(371, 51) = (z2,v— + X81,2)] < Toe_l )

while the parabolic correction term 27'/2(z; — x2)?(v_ + xs12 — 51) " is bounded above
by O((4X3172)1/39‘1/2) < (4)(51,2)1/3%0‘1 for all large enough n, since 6§ is assumed to
satisfy #—/* > C'logn throughout this section.

Since br < 85?{230, we find that the above bound is at most (4xs1,2) 1/3,9?’/23/1*1, finishing
the proof of the claim that we sought to show. O

Lemma 4.16. There exists xo € (0,1) such that, when x € (0, xo), 1, s2 satisfy 0 < s; <
se < 1,and sy € [2717¢ 27 and ¢ is a 0~ /*-regular n-zigzag from (0,0) to (0, 1),

IP(HighSIenderWeight(sl, 52,1~ x; ¢)) < exp{ — dor 32271}

Proof. Note that

(Xsl,zﬁfg/z]

—3/2 —3/2
IC| < nk3/? Z (’—51’2H 1) <nr??. s1,2:‘€_3/2< 51,20 ] ) )

—3/2
pors k [x51,2673/2]

where the latter bound invokes y < 1/4.

Now let ¢ € C. We now proceed to express our present circumstance in the notation
of Proposition 4.5. Given c, let r = n(v™ — v~ ), where v~ and v™ are the lowest and
highest vertical coordinates assumed by elements in the plentiful ry-segment collection
given by c. Note that, when yq is small enough, %nsm < r < ns; 2. We will now apply

Proposition 4.5 with r = 7 and Kk = H(%)WS € b710-[8,16]. In a detail to ensure
formal accuracy of the application, we apply a vertical translation that sends v~ to zero.
Furthermore, given the collection of horizontal segments of length b« forming c, let c,

be the collection obtained by multiplying each of them by the factor (%)2/ 3, and their
vertical heights by . Now, by the scaling principle, we conclude that ( )1/ *Wet,, [c-path]

r

n
is equal in law to Wgt,. [c*-path]. Note that, by the assumed regularity of ¢, the horizontal
segments of ¢ are confined in an interval of length s; »%/%(ns; 2)'/30 < (rn‘1)2/3r1/20,
and hence the elements of c, are contained in a horizontal interval of length r1/20 Thus,

by Proposition 4.5, we learn that
]P(Wgtn [c-path] > —smdm’l) <exp{-— dgn’3/22’z} )

Hence, if 271dy > d;,

[51,0573/%]

IP(HighSIenderWeight(sl, s2,1—x; qb)) < n53/2-51’2n_3/2 <[X81)2K_3/2]

> exp {—dglﬁ_3/22_€} .
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Since x € 272¢/3b710 - [8,16], s10 € [2717¢,27¢], 671/4 > C(logn) and b > 0 is given, we

may choose xo € (0,1) small enough that this right-hand side is at most the quantity

exp { — 27 'dyx~%?}. Lemma 4.16 follows by relabelling d» > 0. O
Proof of Theorem 1.10. By Lemmas 4.15 and 4.16,

IP(Unided(l%H‘l) N — LowSlenderWeight*(£,6,1 — x; ¢)) <(n+1)2exp{ —do(b7'0)%?}

<exp{ - %(b_IO)_?’/Q} .

The factor (n + 1)? arises from the union bound taken over values of s; and s, in Lemma
4.15; it is absorbed during the second inequality in view of =1/ > C(logn). Further, by
(4.4),

b =
P(~UnifBdd(3507") ) < exp { — CO7%/2}.

For a suitably high choice of ng € N, the theorem is obtained from Proposition 1.8 by
assembling the preceding estimates and by adjusting the constant d; > 0. O

We are ready to prove Theorem 1.9. Alongside the result just proved, the main
ingredients are Theorem 1.4, which asserts that the polymer p, is typically regular with
high probability; and the FKG inequality. Indeed, from the latter, we will learn that
conditioning on p,, has a negative effect, so that the proof will be completed by invoking
Theorem 1.10 and the observation that LowSlenderExcursion(¢, 6,1 — x; p,,) is a decreasing
event in the remaining environment.
Proof of Theorem 1.9. We start by recording some notation in order to state a
stochastic domination lemma. A noise field will be viewed as a random function sending
R x n7'Z to R. Let X and Y denote two such. For any subset A of R x n™'Z, Y
stochastically dominates X on A if there exists a coupling of X and Y such that, whenever
(4,u,v) € Z x R? satisfies u < v and {j/n} x [u,v] C A, the bound Y (v, j/n) — Y (u,j/n) >
X (v,j/n) — X (u,j/n) holds. An event E that is measurable with respect to the natural
o-algebra generated by the increments of the Brownian motion on A is called decreasing
on Aif P(Y € F) <P(X € E) whenever Y stochastically dominates X on A.

For a given n-zigzag ¢, let the exterior Ext(¢) of ¢ denote (R x n™'Z) \ ¢. Recall
from Sections 1.6 and 1.7 that our scaled noise environment is given by an ensemble of
independent two-sided Brownian motions, thought of as a function R x %Z — R.

Lemma 4.17. Given a zigzag ¢, and two independent noise environments ) and Q, the
restriction of ) to Ext(p,) stochastically dominates ) on this set.

Proof. Consider the noise environment that is given by 2 on p,, and by Qon Ext(pn)-
When this environment is conditioned on the event that there exists no n-zigzag from
(0,0) to (0, 1) whose weight determined by this environment exceeds that of p,,, the result
is a distributional copy of 2. The event in the conditioning is negative for Q2 on Ext(p,,).
The system (2 on Ext(p,,) is a countable collection of Brownian motions whose domains
are either copies of the real line or semi-infinite real intervals; indeed, to each height
in y € n~'Z are associated one or two intervals, formed by the sometimes vacuous
removal from R x {y} of this set’s intersection with p,,. The FKG inequality for products
of independent Brownian motions is implied by [Bar05, Theorems 3 and 4]. Applying it,
we obtain the lemma. O

The next lemma says that the polymer is typically regular.

Lemma 4.18. Given C' > 0, there exists ¢ > 0 such that, for all large n, and for 6 with
Clogn < =4 < Cnio, with probability at least 1 — exp(—cf~1/2), the polymer p, is
6—'/4.regular.
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Proof. By Theorem 1.4 and a union bound over all hy, hy € %Z N[0, 1], we get
P(p, is 0’1/4-regular) >1—exp{-— 31/ log n)}
>1- exp{ — 09_1/2},
using the upper bound on 6. O

Note that 6 in the hypothesis of Theorem 1.9 satisfies C'logn < §~/* < ni since
2¢ > 1. Theorem 1.9 now follows from Theorem 1.10; the just noted bound; Lemma
4.17; the event LowSlenderExcursion(¢,6,1 — x; p,,) being decreasing on Ext(p,); and that
LowSlenderExcursion(¢, 6,1 — x; p,) implies LowSlenderExcursion™(¢,6,1 — x; py).

We finish with a brief discussion regarding the point that Theorem 1.10 bounds
the probability of LowSlenderExcursion™ (¢, 6,1 — x; ¢) for a fixed zigzag ¢ while Theorem
1.9 only bounds the probability of LowSlenderExcursion(¢,6,1 — x; p,,). In short, this is
because ¢ is deterministic and hence independent of the noise environment, while
pr is highly correlated with the latter. Namely, notice that the proof of Theorem 1.9
uses Theorem 1.10, along with an FKG inequality; the latter implies that the noise
environment off p,, is stochastically smaller than a typical environment, this rendering
LowSlenderExcursion(¢, 0,1 — x; p,) more likely. However, the same cannot be said for
LowSlenderExcursion™ (¢, 0,1 — x; py,), since the environment on p,, is, in fact, stochastically
larger than a typical one—indeed, it is easily seen that the path p,, itself obstructs the
event LowSlenderExcursion®(¢,0,1 — x; p,) from occurring.

O

5 There are few cliffs along the geodesic

Here we derive Theorem 1.11. In a first subsection, we reduce to a principal compo-
nent, Proposition 5.1; and, in a second, we prove this proposition. Theorem 1.11 will
find application in the investigation of Brownian LPP under dynamical perturbation in
[GH20a]. This study is undertaken in scaled coordinates, and uses a scaled counterpart
to Theorem 1.11. In the third and final subsection, the counterpart, Proposition 5.6, is
presented and proved.

5.1 Proving Theorem 1.11, a main component admitted

Let v C [0,7n]? denote any staircase between (0, 0) and (n,n). We may associate to y
the index set Z(vy) (that is specified before the theorem), just as we did to the geodesic
staircase I',,.

For now, let a be any given value in (1/2,1) for which am € IN; the lower bound
ap > 1/2 on this parameter’s value will be set later in the proof of Theorem 1.11.
Consider the class O of difference functions ¥ : [0, m] — [0,n] that are associated to
staircases v C [0,n]? with (0,0), (n,n) € v and |Z(v)| > am.

Let I'(¥) C [0,n]? denote the staircase of maximum energy that contains (0,0) and
(n,n) and whose Z-difference function as specified by (1.12) is equal to .

Our approach to proving Theorem 1.11 is governed by the bound

P(1Z] = am) < 3_ P(E(T()) = B(T,)).
veO
This right-hand side is in fact equal to 3 ycq P (E (T(w)) = E(Fn)).
The next two results form the backbone of the proof of Theorem 1.11.

Proposition 5.1. There exist positive constants H and h such that, for A high enough
and V¥ € O,
P(E(N(¥)) > E(T,)) < Hexp { — hn}. (5.1)
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The quantity © grows at a rate that is exponential in n/A when « is close to one.

am[m+1 n+1
ef <3 ( am )((l—a)m—Fl)' (5.2)

We close out the proof of Theorem 1.11 before deriving these two inputs.
Proof of Theorem 1.11. By Proposition 5.1 and Lemma 5.2, we see that

P(|Z] > am) < 3°m (";;1> ((1 _"a‘;ﬂi . 1) -Hexp{ —hn}.

Lemma 5.2.

Since m € [n/A,n/A + 1), the right-hand factor arising from Lemma 5.2 is at most
3e(A7 In+) (n/A+1)-exp{(RA™' + 1)K(a)} - (n+ 1 exp{(n+ 1)K ((1 —a)A™ ")},

where K : (0,1) — R denotes the entropy rate K(p) = plogp + (1 — p)log(1 — p). Our
choice of A € IN made so that (5.1) holds as well as 3%(4 'n+1) < ¢hn/4 we specify
oo € (1/2,1) to be high enough that the last display with any «a € [ag, 1] is less than e""/2
when 7 is supposed to be sufficiently high. We obtain Theorem 1.11 by further relabelling
the parameter i > 0 to be one-half of its present value. O

Proof of Lemma 5.2. For any staircase ~ that offers a function ¥ belonging to ©, let
J(7y) denote the set of the am lowest elements of Z(~y). Further set J¢(y) = [0, m] \ J (7).
The element ¥ of © associated to v may be surmised from three pieces of data:

* the set J(v);
* the values ¥(j) indexed by j € J(v);
* and the remaining values, namely ¥ (i) for i € J¢(y).

The number of choices for J(v) is equal to (""F'!). For each index j € J(v), ¥(j) is valued

in {0,1,2}, so that there are at most 3™ choices for the second piece of data. The
remaining values, in the third piece of data, are indexed by ¢ € J¢(y); to each such
index i is associated the partial sum p(i) of U(j) over j € J¢(v) with j < i. The index
set J°(y) has cardinality m + 1 — am and may be identified with the integer interval
[0, (1 — a)m] via an increasing map I : [0,(1 — a)m] — J°(v). The third item data is
specified by the function mapping [0, (1 — a)m] to [0,n] given by i — (p o I)(¢). This
function is increasing, so that it is determined by its values; thus, the number of such
functions is at most ((177;)’51“).

The right-hand side of (5.2) is a product of three factors. These factors have been
verified to offer respective upper bounds on the cardinality of the set of choices for
the second, first and third pieces of displayed data. Thus, the proof of Lemma 5.2 is
complete. O

5.2 Energy near a given cliff-strewn route is unlikely to attain the maximum

To complete the proof of Theorem 1.11, it remains to give the next derivation.

Proof of Proposition 5.1. Let ¥ € O. Let P denote the set of points of the form
(Z;:o W(j),iA) for i € [0,m]. Let I'((¥) denote the almost surely unique staircase
between (0,0) and (n,n) that has maximum energy among those that visit every element
in P and that, on arrival at any such element, immediately jump upwards by one unit.
The staircase I'o(¥) offers a coarse-grained description of any staircase specifying ¥,
including the staircase I'(¥) among these of maximum energy.

The plan of attack for proving Proposition 5.1 has three steps:
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1. We wish to argue that the energies of I'(¥) and its coarse-grained cousin I'o(P)
are typically similar. Indeed, we will find positive constants H and h such that, for

r >0,
IP(E(F(\I!)) — E(To(¥)) > (5+ r)nA*W) <Hexp{—hnr?}.  (5.3)

2. We will then need to analyse E(I'o(V)). This is the maximum energy of a staircase
from (0,0) to (n,n) that visits every point (Z;:o W(j),iA) for i € [0,m]. We will
argue that this maximum energy is unchanged in law if the vector of differences
between consecutively visited points is reordered so that these vectors are pre-
sented in decreasing order of gradient. Because ¥ € O, the reordered collection
of points-to-be-visited contains an element whose distance from the diagonal has
order n.

3. Thus, E(I'o(¥)) has the law of the maximum energy of a staircase from (0,0) and
(n,n) that visits a given point at a distance of order n from the diagonal. We will
exploit this information to argue that there exist positive constants K and « such
that

P(E(To(¥)) = (2 - k)n) < Kexp{ — wn}. (5.4)

The sought bound (5.1) will then emerge directly from (5.3) and (5.4).

In three subsections, we accomplish these respective steps.

5.2.1 The coarse-grained energetic approximation: deriving (5.3)

To derive (5.3), we split the staircases I'(¥) and I'g (V) into pieces that traverse consecu-
tive strips of height A. The staircase I'(V) is divided into pieces by splittling at its points
of entry to the levels {iA} x R indexed by i € [0, m]. The coarse-grained counterpart
I'o(P) is partitioned by splitting at the points (Z;ZO U(j), iA) indexed by the same set.
The elements of the two partitions may be paired according to which strip of height A
they cross. If the difference in energy between the fragment of I'(¥) crossing the i** strip
and its counterpart for () is denoted by E;, then E(T(¥)) — E(Ty(¥)) = 2[4 E;.
The pair of fragments involved in specifying F; each begin with a unit vertical movement,
from level (i — 1)A to level (i — 1)A + 1. With hy = (i — 1)A + 1 and hy = iA, note thus
that, for i € [1, [n/A]], E; takes the form M [(u, h1) = (v, h2)] — M [(x,h1) — (y, hs)] for
a choice of (u, v, z,y) that satisfy the hypotheses of the next result.

Lemma 5.3. Letu,v € Nandx,y € Rsatisfyu <v,z <y, z € [u,u+1]andy € [v,v+1].
Let hi, hi € IN satisfy hy < hy. Writing hy 2 = ha — hy, we have that

P sup ’M[(u,hl) — (v,hz)]*M[(x,hl) = (y, hg)]‘ > 4(h1,2+1)1/2+(h1,2+1)1/6r>
z€[u,u+1
yg[[v,vil]]
(5.5)

i 2
is atmostCexp{ - cm}

The tail of the remainder term indexed by i = [n/A] is also treated by Lemma 5.3
with h; 2 assuming a value in [0, A — 1]. We derive (5.3) and then prove this lemma.
Proof of (5.3). We rely on the bound

ln/A] ln/A]
E(N(¥)) = E(To()) < > Ei+ R< (R—4AY?) 4442 4 " [4AY2 4 (B, — 441/7),]
1=1 1=1
Ln/A]
< (4n+ A)AV? 4 (R—4AY%) >~ (B — 44?4,

i=1
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where R is the remainder term (and a = max(a,0)). By Lemma 5.3, the random variables
X; = (BE; — 4A'/?), are independent and satisfy the uniform tail bound P(X; > r) <
Ce=°. This tail bound is also satisfied by R = (R — 4A'/?) . By Proposition 4.8(2), we
thus see that, for ¢t > ¢[n/A],

[n/A] Y .
IP(ZXH—RZ ZIE(XiH—t)ge_CtA" .
=1

i=1

Observing that E(X;) = O(1), we see that, for a large enough A4, and for all large n,
IP(E(F(\I/)) — B(To(D)) > (5+ r)nA*W) < e~hnr®

for some constant h > 0. O

Proof of Lemma 5.3. The argument is simple and relies on using superadditivity to
bound the expression on the left-hand side of (5.5) by a linear combination of passage
times between deterministic points, which is then easy to bound using the well-known
correspondence between passage time in Brownian LPP between fixed points and the
largest eigenvalue of a matrix drawn from a suitable Gaussian unitary ensemble.

We now carry out the first part of the above strategy. Suppose first that v > u + 1.
Note that

M[(z,h1) = (u+1,h1)] + M[(u+1,h1) = (v,hg)] + M[(v, h2) = (y, h2)]
M[(1’7h1) — (y7h2)]
M[(z,h1) = (u+1,he)] + M[(u+1,h1) = (v, ha)] + M[(v,h1) = (y,hs)] .

IAIA

These bounds hold also when the replacements * — » and y — v are made. Thus,

‘M[(m, hy) = (g, ha)] — M [(u, hy) — (v,hg)]’

< M[(m,hl) = (u+ l,hg)] — M[(x,hl) = (u+ thﬂ
+M[(U7 hl) — (y,hg)] — M[(’U,hg) — (y,hg)]
< M(u,h) = (u+1,ha)] = M[(u,hy) = (u+1,hy)] (5.6)

+M[(’U, hl) — (U —+ 1, hQ)] — M[(’U, h2) — (U —+ 1, hQ)] .
Here, the latter inequality depended on

M[(u,hl) — (u+ 1,h2)] > M[(u,hl) — (Ql‘,hl)] + M[($,h1) — (u+ 17h2>}

and

M [(u, k1) = (u+1,h1)] = M[(u, k1) — (x,h1)] + M[(z,h1) = (u+ 1, hi)]
as well as

M[(v,hy) = (v+1,h2)] = M[(v,h1) = (y, h2)] + M[(y, h2) = (v+1,hs)]
and

M[(v,ha) = (v+1,ha)] = M[(v,ha) = (y,h2)] + M [(y,h2) = (v+1,ho)] .

Note that the right-hand expression in (5.6) does not depend on z or y, so that the
upper bound on the left-hand term is valid when the supremum over z € [u, v + 1] and
y € [v,v+ 1] is taken. For n € IN and s > 0, let G,(s) denote the uppermost eigenvalue of
an n x n random matrix drawn from the Gaussian unitary ensemble with entry variance
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s. Viewing the right-hand expression in (5.6) as a sum of four terms, we see that the first
and third are independent and have the law of Gj,,+1(1), and the second and fourth are
independent and have the law of G (1). The latter two clearly have Gaussian tails. We
also use the following tail estimate of Gj,,+1(1), which is the content of [Aub05, (5),(6)].
Forallr > 0,

2
1/2 r 3/2 r
P(Gh12+1(1) —2(h12+1) / > W) < CEXP{ — cmax (T’ / 7(h12+1)1/3)}'

(5.7)
The lemma in the case that v > u + 1 now follows by a simple union bound over the
possibilities that one of the four quantities is bigger than m.
Suppose then that v < v+ 1. Since u,v € N and v > u, we have v = w. Thus,
M [(u,h1) = (v, hs)] = 0. Note that

M [(u,hy) = (u+1,hs)] (5.8)
> M[(u,hy) = (x,h1)] + M[(z,h1) = (y, ha)] + M[(y, ha) = (u+1,hs)]

and that

M{[(u,hy) = (u+1,hs)] (5.9)
< Ml(u,h) = (, he)] + M[(z,h1) = (y, ha)] + M [(y, h1) — (u+1,h)].

Hence, by rearranging, we obtain

M[(I,hl) — (y, hg)]
> M[(u,hl) — (’LL+ 17h2)} — M[(U,hl) — (x,hg)] — M[(y7h1) — (’LL + ].,hz):l .

Note further that

M [(u,h1) = (z,h2)] + M [(z,h2) = (u+1,h2)] < M[(u,h1) = (u+1,ho)],
and that

M[(u,hl) — (y,hl)] + M[(y,hl) = (u+ 1,h2)} < M[(u,hl) = (u+ l,hg)] )
Applying the two preceding bounds, we find that

M[(‘T,hl) — (ya hZ)]
> —M[(u,h1) = (u+1,ho)| + M[(z,h2) = (u+1,ho)] + M[(u,h1) = (y, h1)] .

From this bound, and (5.8), we see that

—M[(u,h1) = (u+1,h2)] + M[(z,ho) = (u+1,h2)| + M[(u,h1) = (y, h1)]
M[(x7h1) — (ya hQ)]
M [(u,h1) = (u+1,ho)] — M[(u,h1) = (z,h1)] — M[(y,ha) = (u+1,h2)] .

IAIA

If the first line takes the form A; + A, + A3, then A, has the law of Gy, ,41(1), while
the suprema of |A;| and |A3| over z € [u,u + 1] and y € [v,v + 1] are stochastically
dominated by the supremum of standard Brownian motion on the interval [0, 1]. This
statement is equally true of the third line. Since M [(u,h1) — (v, h2)| = 0, Lemma 5.3
when v = u follows from (5.7) and an upper tail bound on the supremum of Brownian
motion obtained from the reflection principle and a standard bound on the Gaussian tail.
This completes the proof of Lemma 5.3. O
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5.2.2 Reordering the trajectory of the coarse-grained cousin

We now analyse E(T'o(¥)). We first argue that the path I'(¥) may be reordered in order
to visit a point far away from the diagonal without a change to the law of its energy. We
will present notation and a general form Lemma 5.4 for such a rearrangement result
before discussing the energy E(I'o(¥)).

Let P denote a collection of points in [0,n]? with distinct y-coordinates, which lie
in the range of a staircase that begins at (0,0) and ends at (n,n). We write M,,[P] for
the supremum of the energies of staircases that begin at (0,0); end at (n,n); that visit
every element of P; and that, on visiting any element (m;,msy) of P for which ms < n,
immediately jump upwards by one step, to (m;, mo +1). When P is a singleton set whose
element is (m1, my), we abuse notation, and denote M,[P] by M, [m1,ma].

Suppose that (u,0) € P for some u € [0,n]. Thus, the staircases involved in specifying
M,,[P] begin at (0,0); remain on the z-axis until (u,0); and end at (n,n).

To the collection P, we may add the point (n,n). The resulting set of points may be
ordered so that each successive element lies strictly upwards, and to the right, of its
predecessor. To each consecutive pair in this sequence, we may associate the rectangle
whose lower-left corner is the former element in the pair and whose upper-right corner
is the latter. Any staircase from (u,0) to (n,n) that visits every element of P crosses
all of these rectangles, passing out of the upper-right corner of one into the lower-left
corner of the next.

The rectangles may be placed in increasing order of width, and translated so that the
lower-left corner of the lowest rectangle equals (0, 0), and the upper-right corner of one
rectangle is the lower-left corner of the next one. Note that the upper-right corner of
the last rectangle is (n — u,n).

Let P~ denote the collection of upper-right corners of the rectangles when so placed.

Lemma 5.4. Let u € [0,n]. Let P denote a collection of points in [0,n]* which satisfies
the condition in the second paragraph of this section and which contains (u,0). Then
M, [P] and M, [P~] are equal in law.

Proof. The quantity M, [P] equals A; + A2, where A; = B(0,u) — B(0,0) is the energy
accrued along (0,0) — (u,0) and where A, is the sum over the rectangles associated to
P of the maximum energy available in a staircase that crosses the rectangle from its
lower-left to its upper-right corner. The quantity M,[P~] equals A; + By, where B; is
the sum, counterpart to A,, over rectangles associated to P~*. The two collections of
rectangles are disjoint, except for endpoint intersections, and one is a rearrangement of
the other given by translations applied to the elements. So A; and B, are equal in law,
conditionally on the value of A;. This proves the lemma. O

We now employ Lemma 5.4 to find an upper bound on the energy E(Fo(‘ll)) of the
coarse-grained staircase. In the notation of Lemma 5.4, this energy takes the form

E(To(¥)) = M,[P], (5.10)

where P = {(Z;’.:O W(j),iA) i € [0,m]} U {(n,n)}. By this lemma, M,[P] and M,[P~]
are equal in law. Note that if @ > 1/2 then P~ contains a point of the form (km/2, Am/2)
where x < 2 is determined by the given element ¥ € © that we are considering. Thus,

M,[P7] < M, [(km/2, Am/2)]. (5.11)

5.2.3 The energetic penalty for highly off-diagonal travel: deriving (5.3)

In this third step, we present a tool indicating how M, [(/mm, Aam)] typically falls far
below the typical energy maximum 2n for the route (0,0) — (n,n). We will then promptly
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be able to obtain (5.4). Finally, from (5.3) and (5.4), we will obtain (5.1), the derivation
of which is the final step in proving Theorem 1.11.

Lemma 5.5. Let yu € (0,1). Let my, mq € [0,n] satisfyms € [un, (1—p)n] and |me—m4| >
un. Then there exist positive u-dependent K and k such that

IP(Mn[ml, ma] > (2 — n)n) < Ke "™,

Proof. Note that M, [m1, ms] = Mn[(0,0) — (ml,mg)] + Mn[(mhmg) — (n, n)} isa
sum of two independent terms having the respective distributions m}/ 2CT‘mZJrl(l) and
(n —m1)Y2Gy_m,+1(1). In an expression for this sum arising by writing the two G terms
as a sum of a leading order term and a random fluctuation, the deterministic part is

2(m1/2(m2 +DY2 4 (n—m)Y2(n—my + 1)1/2) .

This term falls short of 2n by a quantity that grows linearly in » under the hypotheses
of the lemma. The fluctuation term in the sum equals m}ﬂ(mg + 1)7Y5Ry + (n —
m1)*/2(n — mg + 1)"'/R, where the R-terms are independent random variables that
satisfy ]P(R > r) < Ce‘c"?’/2 for » > 0. By our hypothesis on ms, the fluctuation term is
at most a constant multiple of n!/3(R; + Ry). Thus the fluctuation term exceeds one-half
of the shortfall of the leading term with probability at most Ke™"" for suitable positive
K and k. Decreasing the value of x > 0 completes the proof of Lemma 5.5. O
From Lemma 5.5, we learn that for k, A as in (5.11),

]P(Mn [((km/2,Am/2)] > (2 — n)n) < Kexp{ —rn}

for suitable positive K and x not depending on A. Thus, we confirm (5.4) via (5.10).
From (5.3) and (5.4), we find that

IP(E(F(\I/)) >(2-r)+(B+ T)Afl/Q)n) < Hexp{—hnr*} + Kexp{ —rn}.
Setting r = 1 and choosing A high enough that 64~/ < /2, we learn that
IP(E(F(\I/)) > (2 n/Q)n) < Hexp{—hn},

where we have relabelled the positive constants H and h.
Using the bound Lemma 3.1(2) on the lower tail of the uppermost GUE eigenvalue,
we have
IP(E(Fn) <2n — xnl/?’) <Cexp{-— CI3/2}

for 2 > 0. Setting = equal to (c A k/4)n?/3, we confirm from the two preceding displays
that (5.1) holds, after suitable adjustment to the positive values of H and h. This bound
derived, the proof of Proposition 5.1 is complete, and, with it, the derivation of the
elements needed for Theorem 1.11. O

5.3 Few cliffs in scaled coordinates

In [GH20a], use is made of a scaled counterpart to Theorem 1.11. We finish by
presenting the notation needed to express this result; by stating it as Proposition 5.6;
and by deriving it from Theorem 1.11.

We start by recalling some notation: p, denotes the polymer p,[(0,0) — (0,1)].
For i € [0,n], pn(i/n) equals the supremum of the set {z € R : (z,i/n) € p,}. The
sequence {p,(i/n) : i € [0,n]} records the horizontal coordinates of departures of the
polymer p, from the consecutive horizontal intervals that it traverses. Indeed, the
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projections to R of the horizontal intervals of p,, take the form [0, p,(0)] and [p, ((i —
1)/n) — 2_1n_2/3,pn(i/n)] for i € [1,n]. Thus, by writing wy = p,(0) and w; = p,(i/n) —
pn((i—1)/n) +27'n=2/3 for i € [1,n], the lengths of the consecutive horizontal intervals
of p,, are recorded in the sequence {w; : i € [0,n]}. The unscaled preimage R,,'(p,) of
pn has endpoints with horizontal coordinates zero and n, so the form (1.3) of the scaling
map R, : R? — R? implies that Y jw; = 27 n!/3.

Let 51 > 0 and B2 € (0,1). The polymer p, is said to advance horizontally with
(81, B2)-steadiness if the cardinality of the set of i € [0, n] for which w; > in~%/3 is at
least Bon.

Proposition 5.6. There exist 3, > 0, 8> € (0,1), h > 0 and ng € IN such that, for n > ny,
the probability that p, fails to advance horizontally with (31, 2)-steadiness is at most
e,

Proof. For i € [0,n], let W; denote the length of the horizontal interval at which
I',, intersects R x {i}. The geodesic I',, maps to the polymer p, under the scaling
map R, from Subsection 1.7.1. Recall that w; denotes the length of the horizontal
interval at which p,, intersects R x {i/n}. The form of the scaling map thus dictates that
w; = 2*1n*2/3Wi.

Suppose that, for some i € [0, — 1], V(i) > 2. The sum Z;’;QA_l W; is readily seen
to be at least two. Thus, there is at least one j € [i4, (i + 1)A — 1] for which W, > 24~

If |Z(T')| < am, then the cardinality of the set of i € [0,mA] for which w; >
2A~'n=2/3 is thus seen to be at least (1 — a)m. In the language of Theorem 1.11, the
event that ]I(I‘n)| < am entails that p,, advances horizontally with (81, 82)-steadiness,

for f1 = 2471, By = %, and for n at least a level ny determined by fs.
Thus Theorem 1.11 implies Proposition 5.6. O
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