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ABSTRACT This paper formally develops robust optimal predictive control solutions that can accom-
modate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing
optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive
controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e.,
template models) with MPC have the continuous differentiability property on an open neighborhood of
gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait
to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear
system with a constant state-transition matrix using discrete-time Floquet transform. The system is then
analyzed to accommodate parametric uncertainties and to synthesize robust optimal H2 and H∞ feedback
controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single
rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive
controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided
to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered
controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal
robot subject to various disturbances and uneven terrains. Our numerical results suggest that the H2- and
H∞-optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal
MPC.

INDEX TERMS Robotics, Nonlinear Systems and Control, Optimal Control, Robust Control, Stability of
Nonlinear Systems

I. INTRODUCTION
Complex and high-dimensional dynamical systems like
legged robots interacting with unknown environments grap-
ple with various uncertainties in the form of unplanned
contacts and unknown terrains. Developing robust control
solutions that accommodate uncertainties explicitly initiates
the first step toward safe and reliable real-world deployment
of legged robots. This has a couple of benefits. For instance,
it may be impractical to know all the properties of the
terrain a legged robot is navigating ab initio to inform the
control algorithms, even in the presence of visual sensors.
In these scenarios, robust control algorithms designed to

accommodate unplanned environmental interactions can ex-
tend the variety of terrains a legged robot can negotiate.
Furthermore, robust control algorithms can expedite the
transfer of algorithms from simulation to reality, potentially
circumventing the assumptions made by typical physics-
based simulation environments [1].

Toward this objective, this paper presents a robust con-
trol approach that can explicitly accommodate disturbances.
We propose an algorithm that builds on the conven-
tional optimization-based control stack, especially convex
quadratic programming (QP)-based model predictive con-
trollers (MPCs). Under mild conditions, we study the con-
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tinuous differentiability properties of MPC laws and closed-
loop nonlinear discrete-time systems on an open neighbor-
hood of gaits. We then linearize the resulting closed-loop
systems around the gait to obtain a linear time-varying
(LTV) system. Using suitable coordinate transformation via
discrete-time Floquet theory [2], [3], the resulting periodic
LTV system is transformed into a linear system with a
constant state-transition matrix. This system can then be
analyzed using the H2 and H∞ control methods subject
to parametric uncertainty, and robust state feedback laws
can be obtained as solutions to linear matrix inequalities
(LMIs) [4]. The theoretical contributions are extended to the
single rigid body (SRB) template dynamics of quadrupedal
robots and verified numerically. The proposed controllers are
then extensively validated for robust locomotion of the A1
quadrupedal robot both through simulations and experiments.

A. Background and Related Work
Real-time and robust gait planning for full-order dynam-
ical models of locomotion is a challenge arising from
nonlinearities, the hybrid nature of models, underactuation,
and high dimensionality. Models of legged locomotion are
hybrid with continuous-time domains representing the La-
grangian dynamics and discrete-time transitions representing
the change of contact points with the environment [5]–[10].
Although the direct-collocation-based trajectory optimization
techniques generate trajectories for full-order and nonlin-
ear locomotion models in a fast manner [11]–[15], they
cannot be solved in real-time. Reduced-order models (i.e.,
templates) [16] present low-dimensional representations for
complex locomotion models. Existing control algorithms for
the real-time planning and control of legged robots pre-
dominantly use optimization-based techniques, particularly
MPCs. These MPCs typically use a template model such
as linear inverted pendulum (LIP) [17]–[21], SRB dynamics
[22]–[26], and centroidal dynamics [27]–[29].

Designing robust optimal MPC solutions for periodic gaits
of these template systems is challenging, particularly because
state-of-the-art H2 and H∞ approaches pertain to the robust
stabilization of equilibrium points for ordinary differential
equations (see, e.g., [30], [31]) but not periodic solutions
(i.e., gaits) of template models with MPCs. The situation
is exacerbated with template models such as SRB, where
the control inputs are switched depending on the robot’s
gait. Other approaches considering uncertainty directly at
the MPC level can be sectioned into two categories: robust
MPC (RMPC) and stochastic MPC (SMPC). Popular RMPC
approaches include closed-loop (feedback) min-max MPC
[32], [33], open-loop min-max MPC [34], [35], and tube
MPC [36], [37]. While open-loop MPC often produces
conservative control actions, feedback MPC mitigates this
issue by optimizing over a set of control policies rather
than control actions. However, determining a suitable control
policy beforehand is prohibitively expensive, especially in
the context of real-time systems [36]. On the other hand,
tube-based MPC and SMPC rely on the offline computation

of robust invariant (RI) tubes and pre-stabilizing feedback
control laws for chance constraints, respectively. Recently,
SMPC and tube-based MPC have been utilized to address
uncertainty in legged locomotion using LIP [38], [39] and
centroidal models [40]. Alternatively, our previous work [26]
considered integrating model-free reinforcement learning
(RL) techniques with an RMPC algorithm to improve the
rough terrain locomotion of quadrupedal robots.

Within legged locomotion and nonlinear control theory,
several robust control solutions are proposed. For instance,
to account for uncertainties in the ground height variations,
feedback control solutions have been developed using either
a finite state machine [41] or through robust Lyapunov
functions [42] by considering ground height variations as
disturbances in the context of input-to-state stability (ISS).
Control Lyapunov functions (CLFs) have also been used to
generate input-to-state stable control laws for the stabiliza-
tion of bipedal [43] and quadrupedal robots [44]. Linear and
bilinear matrix inequalities have also been used to generate
robust centralized [45] and decentralized controllers [46] for
legged robots. The current work differs from our previous
work [45], [46] in that the proposed controller operates
in a real-time MPC fashion instead of slow event-based
controllers.

B. Goal, Objectives, and Contributions
The overarching goal of this paper is to present a systematic
approach to developing robust H2- and H∞-optimal pre-
dictive controllers for periodic legged locomotion. In this
regard, the objectives and key contributions of the paper
are as follows. The paper develops a robust state feedback
control law that builds on the existing MPC architectures,
thereby acting as a complementary control solution. The
paper presents sufficient conditions for continuous differ-
entiability of closed-loop nonlinear discrete-time template
models subject to MPCs on an open neighborhood of pe-
riodic gaits. We then analyze the conditions under which
the discrete-time closed-loop template dynamics with MPC
can be transformed into a linear system with a constant
state-transition matrix using Floquet theory. The system is
further analyzed to accommodate parametric uncertainties
and to synthesize robust optimal H2- and H∞ feedback
controllers via LMIs. The paper extends the theoretical
results to the SRB dynamics of quadrupedal locomotion
with closed-form Jacobian matrices and numerically verifies
them. The proposed robust MPC laws are then used in a
layered control structure, where the optimal reduced-order
trajectories prescribed by the robust predictive controllers are
provided to a full-order and nonlinear whole-body controller
(WBC) for tracking at the low level (see Fig. 1). The devel-
oped layered control structures are rigorously validated using
extensive numerical and experimental studies for the robust
locomotion of the A1 quadrupedal robot at various speeds
subject to disturbances and rough terrains. Our numerical
results indicate an improvement of around 50% for the H∞-
optimal MPC compared to the normal MPC for locomotion
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FIGURE 1. Overview of the proposed layered control structure. At the high level, H2- and H∞-optimal predictive controllers are used for robust
planning subject to the template dynamics. The optimal reduced-order trajectories are then provided to a low-level nonlinear WBC for tracking.

subject to randomly generated external forces and another
15% improvement with the H2-optimal MPC over the H∞-
optimal MPC. The paper additionally conducts a numerical
comparison to evaluate the efficacy of the proposed robust-
optimal MPC laws against the RL-based RMPC approach
outlined in [26]. Our numerical findings reveal a notable
enhancement of 20% compared to the RL-based RMPC in
the presence of unknown and randomly generated rough
terrains.

C. Organization
The paper is organized as follows. Section II presents nonlin-
ear template models, including SRB, MPC law, fundamen-
tal assumptions, and the problem statement for the robust
stabilization of gaits. Section III formally addresses the
properties of the closed-loop system, including continuous
differentiability, the Floquet transform, and the synthesis
of LMIs. Section IV analyzes the SRB template model in
more detail and applies the theoretical results. Section V
presents the layered control structure with the high-level,
robust trajectory planner and the low-level nonlinear WBC.
Section VI presents the extensive numerical and experimen-
tal validation of the proposed layered control structure on the
A1 quadrupedal robot. It also discusses the limitations of the
approach. Finally, Section VII presents concluding remarks
and future research directions.

II. TEMPLATE DYNAMICS AND MPC LAW
This section aims to present the template dynamics, MPC
law for periodic gaits of templates, assumptions, and the
problem statement. Without loss of generality, we consider
the template-based SRB dynamics as follows:

Σ :


r̈ =

f net

m
− g0

Ṙ = R ω̂

I ω̇ + ω̂ I ω = R⊤τ net,

(1)

where r ∈ R3 denotes the position of the center of mass
(COM) of the robot in an inertial world frame, R ∈ SO(3)
represents the rotation matrix of the body frame with respect

to the world frame, ω ∈ R3 denotes the angular velocity in
the body frame, m is the total mass, g0 is the acceleration
due to gravity, and I ∈ R3×3 is the positive definite inertia
of the robot in the body frame (see Fig. 2). Furthermore,
(̂·) : R3 → so(3) is the skew-symmetric operator with the
property â b = a × b for all a, b ∈ R3. In our notation, f net

and τ net denote the total net force and torque generated by
the legs, respectively, and are expressed in the world frame.
In other words, the net wrench is given by[

f net

τ net

]
:=
∑
j∈C

[
fj
r̂j fj

]
, (2)

where j ∈ C represents the stance foot index and C ⊆
{1, · · · , nlegs} is the set of contacting feet with the ground
with nlegs representing the total number of legs for the robot
(e.g., nlegs = 4 for quadrupedal robots). In addition, fj ∈ R3

represents the ground reaction force (GRF) at the stance
foot j ∈ C, and rj ∈ R3 denotes the distance between the
stance foot j and the COM. The state variables for the SRB
dynamics can be taken as x := col(r, ṙ, α, ω), where α ∈ R3

represents the body’s Euler angles (e.g., roll, pitch, and yaw)
parameterizing the rotation matrix and “col” denotes the
column operator. The control inputs are further chosen as
the GRFs at the stance feet, i.e., u := col{fj : j ∈ C}.

Most template models, including SRB and centroidal dy-
namics, can be discretized and written in a general nonlinear
form as

xk+1 = gol(xk, uk), k = 0, 1, ..., (3)

where xk ∈ X ⊂ Rnx and uk ∈ U ⊂ Rnu denote the
state variables and control inputs, respectively, for some
positive integers nx and nu, and k ∈ Z≥0 := {0, 1, · · · }
is the time sample. Furthermore, the superscript “ol” stands
for the open-loop system, and X and U are polyhedra
representing the feasible states and admissible control inputs.
More specifically, they can be expressed as an intersection of
a finite set of closed halfspaces in Rnx and Rnu as follows:

X := {x ∈ Rnx : V x x ≤W x}
U := {u ∈ Rnu : V u u ≤Wu} ,

(4)
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FIGURE 2. Illustration of the SRB dynamics for the A1 quadrupedal robot
with the position of the COM r, the orientation of the body frame with
respect to the world frame R, the angular velocity in the body frame ω, the
distance from the stance feet to the COM rj , and the GRF fj for j ∈ C.

where V x and V u represent some appropriate matrices and
W x and Wu denote some appropriate vectors. For the SRB
dynamics (1), U can be taken as the linearized friction cone
FC, where FC := {f = col(fx, fy, fz) ∈ R3 : |fx| ≤
µfriction√

2
fz, |fy| ≤ µfriction√

2
fz, fz ≥ 0} with µfriction being the

friction coefficient.
The physics-based template dynamics (i.e., gol) are usually

smooth (i.e., C∞) with respect to (x, u). We are interested in
MPC-based feedback control solutions subject to linearized
template models that typically take the form of a finite-
dimensional and strictly convex QP as follows:

min
(x(·),u(·))

p
(
xk+N |k

)
+

N−1∑
i=0

L
(
xk+i|k, uk+i|k

)
s.t. xk+i+1|k = Aop xk+i|k +Bop uk+i|k + dop

xk+i|k ∈ X , i = 1, · · · , N
uk+i|k ∈ U , i = 0, · · · , N − 1,

(5)

where N is the finite control horizon, (Aop, Bop) repre-
sents a Jacobian linearization of the nonlinear template
model (3) around a current operating point, dop denotes
an offset in the linearization, and p(x) and L(x, u) rep-
resent the terminal and stage costs, respectively, defined
as p(xk+N |k) := ∥xk+N |k − xdes

k+N |k∥
2
P and L(x, u) :=

∥xk+i|k−xdes
k+i|k∥

2
Q+ ∥uk+i|k−udes

k+i|k∥
2
R for some positive

definite matrices P , Q, and R and some desired state
and control trajectories xdes(·) and udes(·). In our notation,
∥z∥2Q := z⊤Qz, and xk+i|k and uk+i|k denote the state
and control at time k + i computed at time k with the
initial condition of xk|k = xk. In addition, x(·) and u(·)
represent the predicted state and control trajectories over the
control horizon, i.e., x(·) := col{xk+i|k | i = 1, · · · , N} and
u(·) := col{uk+i|k | i = 0, · · · , N − 1}. The nominal MPC
feedback solution is taken as the first optimal input denoted
by uk = π(k, xk). By applying this time-varying control
law, the evolution of the template model is described by the
following nonlinear time-varying closed-loop dynamics

xk+1 = gcl(k, xk) := gol(xk, π(k, xk)). (6)

We now make the following assumptions.

Assumption 1 (Periodic Orbit):
There exists a periodic orbit O, referred to as the gait,

for the nonlinear time-varying closed-loop system xk+1 =
gcl(k, xk) with the fundamental period of M . For future
purposes, the evolution of the state variables and the MPC
feedback law on the orbit O is given by the periodic func-
tions x⋆k and u⋆k, respectively, with the property x⋆k+M = x⋆k
and u⋆k+M = u⋆k for all k ∈ Z≥0.

Assumption 2 (Feasibility of the Orbit):
We further suppose that for every initial condition x⋆k on

the orbit O, the corresponding predicted state and control
trajectories (x(·), u(·)) in the MPC formulation (5) strictly
belong to the interior of the feasibility sets X and U , i.e.,
xk+i|k ∈ int(X ) for i = 1, · · · , N and uk+i|k ∈ int(U) for
i = 0, · · · , N − 1, where “int” denotes the interior of a set.

Assumption 2 will allow us to study some fundamental
properties of the nominal MPC law and the closed-loop
dynamics in Section III. In particular, it will let us locally
linearize the closed-loop dynamics around the gait and study
the robust stabilization problem. With these assumptions in
hand, we are now interested in robust stabilization of the
periodic orbit O in the presence of some unknown external
disturbances, denoted by wk ∈ Rnw for some positive integer
nw. In particular, we assume that the original template
dynamics are subject to some external force or wrench
disturbances and rewrite them as xk+1 = gol(xk, uk, wk). We
then alter the control input to uk = π(k, xk)+ vk and study
the following closed-loop system subject to disturbances

Σcl :

{
xk+1 = gcl (k, xk, vk, wk) , k = 0, 1, · · ·
zk = c(xk),

(7)

where vk is the auxiliary input to be designed, zk :=
c(xk) ∈ Rnz represents a smooth, measured performance
in terms of state variables for a positive integer nz , and
gcl(k, xk, vk, wk) := gol(xk, π(k, xk) + vk, wk).

Problem 1 (Robust Stabilization):
The robust stabilization problem of the periodic orbit O

consists of designing the auxiliary control input vk such
that the effect of the unknown disturbance input wk on the
measured performance zk = c(xk) is attenuated.

III. MAIN RESULTS AND ROBUST OPTIMAL MPC
This section presents the main results of the paper. In
particular, it first analyzes some properties of the MPC laws
and closed-loop dynamics. It then presents a systematic
approach to synthesize H2- and H∞-optimal MPC laws
that address the robust stabilization of the periodic orbits
in Problem 1. To study the properties of the MPC law, we
present the following theorem that addresses the continuous
differentiability of the closed-loop dynamics on an open
neighborhood of the periodic orbit O.
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Theorem 1 (Properties of the Closed-Loop System):
Under Assumptions 1 and 2, the following statements hold.

1) The orbit O is a periodic orbit for the unperturbed
closed-loop system xk+1 = gcl(k, xk, 0, 0) with vk ≡ 0
and wk ≡ 0.

2) There is an open neighborhood of the periodic orbit
O, denoted by N (O) ⊂ Rnx such that there exists a
unique solution to the QP (5) for every initial condition
xk|k ∈ N (O) and for every k ∈ Z≥0. Furthermore,
the MPC law and the unperturbed closed-loop system
gcl(k, x, 0, 0) are continuously differentiable (i.e., C1)
with respect to the state x on N (O) for all k ∈ Z≥0.

Proof:
Part 1 is an immediate result of Assumption 1. For Part
2, the QP in (5) can be expressed as an optimization
problem whose cost and constraints are parameterized by
the initial condition of xk|k. We want to show that the
solution of this QP is unique and C1 with respect to xk|k
on an open neighborhood of the orbit. On the orbit O, the
inequality constraints become inactive from Assumption 2.
Hence, the active constraints are only reduced to equality
constraints. These equality constraints, on the other hand,
represent the prediction subject to the linearized dynamics
of the template models. From [47], it can be shown that the
gradients matrix of the equality constraints with respect to
the decision variables of the QP, i.e., (x(·), u(·)), has the
following sparsity structure

Aeq :=


I 0 · · · 0 0 −Bop · · · 0

−Aop I · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . −Aop I 0 . . . −Bop


(8)

which has the full row rank. Here, I represents the identity
matrix. Hence, the gradients of the active constraints are
linearly independent. In addition, the cost function in (5)
is smooth (i.e., C∞), and strictly convex, and the second-
order sufficient conditions for optimality for every initial
condition on the orbit are met. More specifically, the Hessian
matrix of the Lagrangian for the QP on the orbit is positive
definite. Consequently, the sufficient conditions of Fiacco’s
Theorem [48, Theorem 2.1] are satisfied. This guarantees the
existence, uniqueness, and C1 continuity of the solutions of
the QP (i.e., MPC solution) with respect to the parameters
vector xk|k on an open neighborhood of the orbit. The
continuous differentiability of the closed-loop dynamics is
immediate. This completes the proof of Part 2.

From Theorem 1, one can differentiate the closed-loop
dynamics (7) around the augmented orbit

Oa := {(xk, vk, wk) : xk = x⋆k, vk ≡ 0, wk ≡ 0}
to obtain a periodic LTV system as follows:

δxk+1 = Acl
k δxk +Bk vk + Ek wk, k = 0, 1, · · ·

δzk = Ck δxk
(9)

with the property Acl
k+M = Acl

k , Bk+M = Bk, Ek+M = Ek,
and Ck+M = Ck, where

Acl
k :=

∂gcl

∂x
(k, x⋆k, 0, 0) =

(
∂gol

∂x
+
∂gol

∂u

∂π

∂x

) ∣∣∣
x=x⋆

k,u=u
⋆
k

and Bk := ∂gcl

∂v (k, x
⋆
k, 0, 0) = ∂gol

∂u (x⋆k, u
⋆
k, 0), Ek :=

∂gcl

∂w (k, x⋆k, 0, 0) = ∂gol

∂w (x⋆k, u
⋆
k, 0) and Ck := ∂c

∂x (x
⋆
k) for

all 0 ≤ k < M . In addition, δxk represents the change
in the state variables with respect to the periodic orbit, i.e.,
δxk := xk − x⋆k. Next, we make the following assumption.

Assumption 3 (Rank Conditions):
We suppose that the state-transition matrices Acl

k satisfy the
following rank conditions

rank
(
Acl
j+i−1 · · · Acl

j+1A
cl
j

)
= ρi, (10)

where ρi is independent of the running index j for all 1 ≤
i ≤ nx and 1 ≤ j ≤M .

This assumption is not restrictive and will be utilized
in the following theorem to generate a suitable change of
coordinates that converts the periodic LTV system (9) into a
linear one with a time-invariant state-transition matrix.

Theorem 2 (Floquet Transform):
Under Assumptions 1-3, there exits a time-varying, peri-

odic, and invertible matrix Λk, referred to as the discrete-
time Floquet transform, such that the change of coordinates
δxk = Λ−1

k δxk transforms the closed-loop system (9) into
a linear one with a constant state-transition matrix, that is,

δxk+1 = A
cl
δxk + Λ−1

k+1Bk vk + Λ−1
k+1Ek wk, k = 0, 1, · · ·

δzk = Ck Λk δxk,
(11)

where A
cl
:= Λ−1

k+1A
cl
k Λk is independent of time k.

Proof:
We are looking for a time-varying, periodic, and invertible
change of coordinates matrix Λk, which renders the matrix
A

cl
constant. In other words, we need to satisfy the following

set of matrix equations

Λ2A
cl
= Acl

1 Λ1

Λ3A
cl
= Acl

2 Λ2

...

ΛM+1A
cl
= Acl

M ΛM .

(12)

Without loss of generality, we assume Λ1 = ΛM+1 = I and
expand the recursive equation to get(

A
cl
)M

= Acl
M · · ·Acl

2 A
cl
1 . (13)

With Assumption 3, conditions of [2, Theorem 2] are met,
which in turn guarantees the existence of the sequence
{Λk}Mk=2 to satisfy (12). In addition, the time-invariant state-
transition matrix A

cl
can be obtained as the M th root of the
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matrix product in (13) using the techniques of [49]. Once
A

cl
is computed, one can compute the sequence {Λk}Mk=2

using the recursive equation of Λk A
cl

= Acl
k−1 Λk−1 for

2 ≤ k ≤M with Λ1 = I.

Remark 1:
We remark that for periodic and continuous-time LTV sys-
tems with bounded and piecewise continuous state-transition
matrices, the Floquet transform always exists [2, Theorem 1].
However, this is not true for periodic and discrete-time LTV
systems [2]. Assumption 3 allows us to have the Floquet
transform for translating the system (9) into the linear one
with a time-invariant state-transition matrix in Theorem 2.
From (13), the asymptotic stabilization of the periodic orbit
O for the unperturbed system xk+1 = gcl(k, xk, 0, 0) is
equivalent to having the eigenvalues of (A

cl
)M , or equiv-

alently, the eigenvalues of A
cl

, inside the unit circle, which
coincidences with the Floquet stability theory of periodic and
nonlinear discrete-time systems [3].

To address the synthesis of the auxiliary control input vk
for robust optimal stability, we next assume that the leftover
time-varying input and disturbance distribution matrices,
together with the output matrix in (11), take values in a
convex and bounded set. More specifically, we make the
following assumption.

Assumption 4 (Paramteric Uncertainty):
The time-varying and periodic input and disturbance dis-

tribution matrices Bk := Λ−1
k+1Bk and Ek := Λ−1

k+1Ek
together with the output matrix Ck := Ck Λk take values
in a convex and bounded set. In particular, the matrix

Hk :=

[
0nx×nx

Bk Ek
Ck 0nz×nu

0nz×nw

]
(14)

takes values in a convex and bounded polyhedron (i.e.,
polytope) H for all time samples 0 ≤ k < M as follows:

H :=

{
H(θ) =

nH∑
ℓ=1

Hℓ θℓ | θℓ ≥ 0,

nH∑
ℓ=1

θℓ = 1

}
, (15)

where each matrix in this domain can be written as an
unknown convex combination of nH given and known vertex
matrices Hℓ for 1 ≤ ℓ ≤ nH.

This assumption is not restrictive, and our numerical simu-
lation results in Section VI for the linearized SRB dynamics
(1) show that the time-varying matrices (Bk, Ek, Ck) are
indeed quite constant for 0 ≤ k < M , which is a practical
consideration. This will be clarified more in Sections IV
and VI. Hence, one can utilize Assumption 4 together with
Theorem 2 to study a suboptimal robustness problem that
translates the synthesis of H2- and H∞-optimal MPC for the
periodic orbit into LMIs for an LTI system via parametric
uncertainties. More specifically, the vertices of the convex

polytope H are given by

Hℓ =

[
0nx×nx

B
ℓ

E
ℓ

C
ℓ

0nz×nu
0nz×nw

]
, ℓ = 1, · · · , nH.

(16)
which results in the following uncertain LTI system

δxk+1 = A
cl
δxk +

(
nH∑
ℓ=1

B
ℓ
θℓ

)
vk +

(
nH∑
ℓ=1

E
ℓ
θℓ

)
wk

δzk =

(
nH∑
ℓ=1

C
ℓ
θℓ

)
δxk.

(17)
Here, the parameters vector θ := col{θℓ | ℓ = 1, · · · , nH}
is assumed to be unknown with the properties θℓ ≥ 0 and∑nH

ℓ=1 θ
ℓ = 1. Next, we are interested in designing state

feedback laws for the suboptimal problem that minimizes
the H2 and H∞ norms of the transfer matrix Twz relating
wk to δzk in the uncertain LTI system (17), in which

∥Twz∥2H2
:=

1

2π

∫ π

−π
trace

(
TH
wz

(
ejΩ
)
Twz

(
ejΩ
))

dΩ

∥Twz∥H∞ := max
Ω∈[−π,π]

σmax

(
Twz

(
ejΩ
))
,

(18)
and “trace”, “H”, and “σmax” denote the trace operator,
conjugate transpose, and largest singular value of a matrix,
respectively. We are now in a position to present the follow-
ing theorem to address the suboptimal problem.

Theorem 3 (Robust Stabilizing Controllers):
Under Assumptions 1-4, the following statements are cor-

rect.

1) (H2-Optimal Controller): There exists a linear state
feedback controller of the form vk = K δxk such that
the inequality ∥Twz∥2H2

< µ holds if, and only if, the
following set of LMIs hold

trace(W ℓ) < µ,

[
W ℓ C

ℓ
X

(·)⊤ X +X⊤ − P ℓ

]
> 0, P ℓ A

cl
X +B

ℓ
L E

ℓ

(·)⊤ X +X⊤ − P ℓ 0
(·)⊤ (·)⊤ I

 > 0

(19)
for all ℓ = 1, · · · , nH, where X and L, and the
sequence of matrices {P ℓ}nH

ℓ=1 and {W ℓ}nH
ℓ=1 with

the property P ℓ = (P ℓ)⊤ and W ℓ = (W ℓ)⊤ are
decision variables. The gain matrix is also calculated
as K = LX−1.

2) (H∞-Optimal Controller): There exists a linear state
feedback controller of the form vk = K δxk such that
the inequality ∥Twz∥2H∞

< µ holds if, and only if, the
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following set of LMI holds
P ℓ A

cl
X +B

ℓ
L E

ℓ
0

(·)⊤ X +X⊤ − P ℓ 0 X⊤C
ℓ⊤

(·)⊤ (·)⊤ I 0
(·)⊤ (·)⊤ (·)⊤ µ I

 > 0 (20)

for all ℓ = 1, · · · , nH, where X , L, and the sequence
of matrices {P ℓ}nH

ℓ=1 with the property P ℓ = (P ℓ)⊤

are decision variables. In addition, the gain matrix can
be calculated as K = LX−1.

Proof:
The proof of Part 1 is based on an extension of [31, Theorem
3], in which the Lyapunov matrix can be written as the same
convex combination of the sequence {P ℓ}nH

ℓ=1, that is,

P =

nH∑
ℓ=1

θℓ P ℓ. (21)

Finally, the nonlinear transformation of L = KX enables
us to extend [31, Theorem 3] for the controller synthesis
problem while having an LMI structure. In an analogous
manner, the proof of Part 2 is based on an extension of [31,
Theorem 4].

Finally, the robust stabilizing feedback controller in the
original coordinates can take a time-varying form as follows:

uk = π(k, xk) +K Λ−1
k (xk − x⋆k), (22)

where the time-varying feedback term K Λ−1
k (xk − x⋆k) is

added to the original MPC law π(k, xk) for robust optimality.

IV. APPLICATION TO THE SRB DYNAMICS
This section aims to expand upon the theoretical findings
concerning the SRB dynamics with the goal of deriving
closed-form expressions for the Jacobian matrices. These
expressions will be subsequently subjected to numerical
verification within the assumptions and synthesis framework
of the proposed computational approach. For this purpose,
we consider the SRB dynamics (1) subject to an unknown
external disturbance signal w ∈ R3 acting on the robot’s
COM. The measured performance is also taken as the COM
position, that is, z = c(x) := r (see Fig. 2). In particular,
we aim to minimize the effect of external disturbance w on
the robot’s COM positions r, as highlighted in Problem 1.

We assume that the robot’s orientation can be expressed
as a Z-Y-X vector, i.e., α := col(ϕ, ζ, ψ), where ψ, ζ, and ϕ
represent the yaw, pitch, and roll angles, respectively. More
specifically, the rotation matrix in (1) can be expressed as

R = Rz,ψ Ry,ζ Rx,ϕ, (23)

where Rz,ψ , Ry,ζ , and Rx,ϕ denote the basic rotation ma-
trices around the z-, y-, and x-axes. The angular velocity in
the body frame ω can then be expressed as

ω =

1 0 − sin(ζ)
0 cos(ϕ) cos(ζ) sin(ϕ)
0 − sin(ϕ) cos(ϕ) cos(ζ)

 α̇. (24)

We next extend the small angle linearization analysis ap-
proach of [24], originally expressed in the world frame, to the
body frame. In particular, for small values of roll and pitch
(ϕ, ζ), we can show that ω ≈ α̇ and R ≈ Rz,ψ . Ignoring the
term ω̂ I ω, the open-loop SRB dynamics (1), expressed in
the body frame, subject to the disturbance input w can be
then linearized around an operating point as follows:

ẋ =
d
dt


r
ṙ
α
ω

 =


03 I3 03 03
03 03 03 03
03 03 03 I3
03 03 03 03

x

+


03 · · · 03
1
m I3 · · · 1

m I3
03 · · · 03

I−1R⊤
z,ψ r̂1 · · · I−1R⊤

z,ψ r̂4

u

+


03
1
m I3
03
03

w +


0

−g0
0
0

 (25)

where 03 and I3 are 3 × 3 zero and identity matrices,
respectively. We remark that (25) can be discretized using
the Euler approach, which yields the following time-varying
state equation

xk+1 = Aop xk+Bop(r1, · · · , r4, ψ)uk+Eop wk+dop, (26)

in which Aop, Eop, and dop are constant matrices/vectors
whose values do not depend on the operating point, whereas
Bop is a time-varying input distribution matrix whose value
at every time k depends on the yaw angle of the operating
point as well as the distance from the stance feet to the COM,
denoted by (r1, · · · , r4) (see Fig. 2). The matrix Aop and
the vector dop together with the updated input matrix Bop at
every time sample are used in the nominal MPC formulation
of (5). We remark that the nominal MPC is not aware of the
disturbance input, and the proposed auxiliary control input
will address the robustness with respect to the disturbance.
For the remainder of this analysis, we assume the robot walks
along a straight line on the orbit, and the yaw angle remains
very small. Hence, we can ignore the yaw dependence in
the Bop matrix. But it is still time-varying as it depends on
(r1, · · · , r4) at every time sample.

We now compute a closed-form expression for the closed-
loop Jacobian matrices in (9). If Assumptions 1 and 2
hold for the unperturbed SRB dynamics, the nominal MPC
problem on the orbit O is reduced to the following QP

min
ξ

1

2
ξ⊤Q̄ ξ + β⊤ξ

s.t. Aeq ξ = beq,
(27)

for which the inequality constraints are inactive. In our
formulation, ξ := col(x(·), u(·)) represents the decision vari-
ables, consisting of the predicted state and control trajecto-
ries. In addition, Q̄ := block diag{Q, · · · , Q, P,R, · · · , R}
and β := −Q̄ col(xdes(·), udes(·)). Furthermore, Aeq is
already defined in (8) with beq := col(Aop xk|k +
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dop, dop, · · · , dop). Using the Lagrange multipliers, the op-
timal solution for the QP (27) can be computed as follows:

ξ⋆ =
(
Q̄−1A⊤

eq

(
Aeq Q̄

−1A⊤
eq

)−1
Aeq − I

)
Q̄−1β

+ Q̄−1A⊤
eq

(
Aeq Q̄

−1A⊤
eq

)−1
beq.

(28)

From this latter equation, we can now compute a closed-form
expression for the MPC law on the orbit. In particular, there
is a constant projection matrix to project down ξ⋆ into u⋆k|k
as u⋆k|k = Πproj ζ

⋆. In addition, beq and thereby ξ⋆ in (28) are
indeed affine functions with respect to xk|k. Consequently,
the MPC law on the orbit can be reduced to an affine function
with respect to the state vector xk|k, and one can compute
its derivative with respect to xk|k as follows:

∂π

∂x
=
∂u⋆k|k

xk|k
= Πproj Q̄

−1A⊤
eq

(
Aeq Q̄

−1A⊤
eq

)−1
Πlift, (29)

where Πlift :=
∂beq

∂xk|k
is a constant matrix. We remark that all

other terms except Πproj and Πlift are time-varying in (29) as
Aeq depends on the time-varying Bop matrix, as defined in
(8). We also note that (29) is the Jacobian of the MPC law
with respect to the states on the orbit, not other places, as
the inequality constraints may be active off the orbit.

With the above-mentioned closed-form expressions for the
open-loop Jacobian matrices as well as the Jacobian of the
MPC law with respect to the state vector on the orbit, we can
compute the Jacobian matrices for the closed-loop system in
(9) as follows:

Acl
k =

∂gcl

∂x
(k, x⋆k, 0, 0) =

(
∂gol

∂x
+
∂gol

∂u

∂π

∂x

) ∣∣∣
x=x⋆

k,u=u
⋆
k

= Aop +Bop Πproj Q̄
−1A⊤

eq

(
Aeq Q̄

−1A⊤
eq

)−1
Πlift

Bk =
∂gcl

∂v
(k, x⋆k, 0, 0) =

∂gol

∂u
(x⋆k, u

⋆
k, 0) = Bop

Ek =
∂gcl

∂w
(k, x⋆k, 0, 0) =

∂gol

∂w
(x⋆k, u

⋆
k, 0) = Eop

Ck =
∂c

∂x
(x⋆k) =

[
I3 03 03 03

]
.

(30)
Using the closed-form expressions in (30) for the SRB
dynamics, one can simply evaluate the rank conditions in
Assumption 3 and the convex parametric uncertainty in
Assumption 4. Our numerical results in Section VI show
that for a typical trotting gait of the SRB dynamics with an
MPC, the rank conditions for the above-mentioned closed-
form Jacobian matrices Acl

k hold and hence, one can compute
the change of coordinates Floquet transform matrix Λk.
Furthermore, our numerical results indicate that the matrix
Hk computed in the new coordinates using (14) do not
vary that much. Hence, we can choose a finite number of
vertices to form a convex and bounded polytope H, as in
(15), such that Hk takes values in H over a period. In the
numerical results of Section VI, the vertices for the set H
are chosen among finite samples of Hk. Theorem 3 finally
synthesizes the robust stabilizing H2 and H∞ controllers
using the vertices of this convex polytope H.

V. LAYERED CONTROL STRUCTURE FOR APPLICATION
TO QUADRUPEDAL ROBOTS
This section aims to present a layered control structure to
apply the proposed robust optimal predictive controllers for
quadrupedal locomotion. The layered controller consists of
two layers (see Fig. 1). At the high level, the H2- or H∞-
optimal MPC laws generate the optimal GRFs for real-time
planning of the SRB template dynamics. At the low level,
similar to [44], a QP-based nonlinear controller is employed
for WBC that imposes the full-order locomotion model to
track the optimal reduced-order trajectories subject to the
feasibility conditions. In what follows, we briefly describe
the low-level nonlinear WBC.

The full-order and floating-base model of locomotion can
be expressed by the Euler-Lagrange equations and principle
of virtual work as follows:

D(q) q̈ + F (q, q̇) = Υ τ + J⊤(q) f, (31)

where q ∈ Q ⊂ Rnq represents the generalized coordinates,
Q denotes the configuration space, nq represents the num-
ber of degrees of freedom (DOFs), including actuated and
unactuated DOFs, τ ∈ T ⊂ Rnτ is the vector of joint-level
torques, and T denotes the admissible set of torques taken as
a bounded convex set with nτ being the number of actuated
joints. In addition, D(q) ∈ Rnq×nq denotes the positive
definite mass-inertia matrix, F (q, q̇) ∈ Rnq represents the
Coriolis, centrifugal, and gravitational terms, Υ ∈ Rnq×nτ

represents the input distribution matrix, J(q) denotes the
contact Jacobian matrix, and f is the vector of GRFs. We
further remark that under no slippage condition, the full-
order nonlinear model of (31) is subject to the algebraic
constraints of r̈j = 0 for every j ∈ C stating that the
acceleration of each stance foot is zero.

We are now in a position to present the low-level nonlinear
WBC. The controller is developed based on the idea of vir-
tual constraints [6] and QP. In particular, we consider output
functions to be regulated, referred to as virtual constraints,
as follows:

h(t, q) := ha(q)− hdes(t), (32)

where ha(q) represents a set of holonomic controlled vari-
ables and hdes(t) denotes the desired evolution of the con-
trolled variables on the gait in terms of time. Here, the
controlled variables ha(q) consist of the COM position and
orientation, i.e., (r, α), together with the Cartesian positions
of the swing feet. The desired evolution for the COM
position and orientation can be computed heuristically based
on the gait’s velocity. The desired profile for the swing
feet is then chosen as Bézier polynomials connecting the
previous footholds to the upcoming ones. In particular,
we employ Raibert’s heuristic [50, Eq. (2.4), pp. 46] for
the footplacment strategy. To satisfy the virtual constraints,
no slippage conditions, and feasibility, we then solve the
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following real-time and strictly convex QP at 1kHz [44]

min
(τ,f,δ)

γ1
2
∥τ∥2 + γ2

2
∥f − fdes∥2 +

γ3
2
∥δ∥2

s.t. ḧ(τ, f) = −KP h−KD ḣ+ δ (Output Dynamics)
r̈j(τ, f) = 0, ∀j ∈ C (No slippage)
τ ∈ T , fj ∈ FC, ∀j ∈ C (Feasibility), (33)

in which γ1, γ2, and γ3 are positive weighting factors and
fdes denotes the desired GRF profiles generated by the high-
level H2- or H∞-optimal MPC. The first equality constraint
in (33) represents the desired output dynamics with some
positive definite gain matrices KP and KD. Here, δ is a
defect variable to ensure the feasibility of the QP. The second
equality constrict represents the condition of no slippage at
the stance feet. The inequality constraints guarantee the joint-
level torques’ admissibility and the GRFs’ feasibility. We
remark that the second-order derivatives ḧ and r̈j are indeed
affine functions with respect to (τ, f) that can be computed
via Lie derivatives and input-output linearization [51]. The
cost function of the QP in (33) tries to minimize the 2-norm
of the joint-level torques τ while 1) imposing the full-order
model to track the desired GRF profile fdes prescribed by
the proposed high-level, robust MPCs and 2) minimizing the
defect variable δ via a high-value weighting factor γ3.

VI. APPLICATION TO QUADRUPEDAL LOCOMOTION
This section aims to validate the proposed H2- and H∞-
optimal MPCs with the layered control structure using nu-
merical case studies and experiments for the robust locomo-
tion of the A1 quadrupedal robot subject to various external
disturbances and uneven terrains.

A. Control Synthesis
A1 is a fully torque-controlled robot with nq = 18 DOFs,
6 representing the unactuated position of the COM and the
orientation of the body, while the remaining nτ = 12 DOFs
correspond to the actuated joints of each leg (see Fig. 2).
Specifically, each leg has a 2 DOF hip joint in addition to a
1 DOF knee joint. The robot weighs 12.45 (kg), with motors
at each actuated joint. We consider the full-order nonlinear
model of the A1 quadrupedal robot with the proposed
layered control structure for the numerical and experimental
studies. In what follows, we will synthesize the high-level
H2- and H∞-optimal MPCs at various speeds. Both the QP-
based high-level MPC and the low-level nonlinear WBC are
solved online using qpSWIFT [52] at 160 Hz and 1kHz,
respectively.

To synthesize the high-level, robust planners, we linearize
the SRB dynamics (1) with the state variables taken as
x = col(r, ṙ, α, ω), as in (25). Next, we consider the MPC
solution for trotting at a speed of 0.5 (m/s) with a control
horizon of N = 7. The MPC parameters in (5) are chosen as
Q = diag{Qr, Qṙ, Qα, Qω} with Qr = diag{3e5, 3e5, 3e6},
Qṙ = diag{1e4, 1e4, 1e4}, Qα = diag{1e5, 1e5, 1e5}, and
Qω = diag{5e3, 5e3, 5e3}, P = 10Q, and R as the identity
matrix. We get a two-step periodic gait with the fundamental

FIGURE 3. Plot of the 2-norm of the Hk matrix in (14) versus the time
sample k over a period.

period of M = 60 samples (or 0.375 (s)). The following
performance and disturbances are then chosen for the SRB
dynamics. As mentioned in Section IV, we assume that
the external force disturbances are applied along the x-,
y-, and z-axes to the robot’s COM, and the performance
index is chosen as the position of the COM. With the
closed-form expressions for the Jacobian matrices in (30),
we then evaluate the assumptions. In particular, Assumptions
1-3 are met for the gait with the normal MPC. We next
aim to parameterize the time-varying matrix (14) according
to Assumption 4. We observe that this matrix is almost
quite constant for the SRB dynamics, as shown in Fig. 3.
In particular, Fig. 3 illustrates that the variation of the 2-
norm of the Hk matrix in (14) does not change much over
a period. In this study, we choose nH = 4 vertices to
parameterize the time-varying matrix in Assumption 4. These
four vertices Hℓ, ℓ = 1, · · · , 4 in (16) are chosen based on
the time-varying values of the matrix Hk at time samples of
k = 0, 15, 45, 59. The LMIs in Theorem 3 are synthesized
using the MATLAB Robust Control Toolbox with the upper
bound of the H2 and H∞ norms taken as µ = 2.89 and
µ = 1.96, respectively. For the low-level nonlinear WBC
(33), the parameters are chosen as γ1 = 1, γ2 = 1e4, and
γ3 = 1e6 with the PD control gains of KP = 400 and
KD = 40.

B. Numerical Simulations
We initiate our analysis with reduced-order simulations,
employing the proposed H2- and H∞-optimal controllers
along with the normal MPC on the nonlinear SRB dynamics
(1) for the trotting gait at the speed of 0.5 (m/s). To evaluate
the performance of the closed-loop template dynamics, a half
sinusoidal pulse force disturbance is applied along the y-axis
to the robot’s COM, with a magnitude of 100 (N) and a
duration of 2 seconds, starting from 5 (s) and ending at 7
(s). Figure 4 depicts the closed-loop system’s performance,
specifically the COM position along the y- and z-axes,
comparing the results for robust-optimal and normal MPCs.
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FIGURE 4. Plot of the performance index, especially the y- and z-
components of the COM, for the H2-optimal MPC, H∞-optimal MPC, and
normal MPC applied to the nonlinear SRB dynamics. In each simulation, a
half sinusoidal pulse disturbance along the y-axis with a magnitude of
100 (N) is applied to the COM of the robot for a duration of 2 seconds,
indicated by the gray shaded area.

FIGURE 5. Plot of the vertical component of the GRF, prescribed by the
H2-optimal MPC, H∞-optimal MPC, and normal MPC for the nonlinear
SRB dynamics. In each simulation, a half sinusoidal pulse disturbance
along the y-axis with a magnitude of 100 (N) is applied to the COM of the
robot for a duration of 2 seconds, indicated by the gray shaded area.

The figure illustrates that, under the influence of the external
disturbance, the lateral displacement of the COM (in the y-
direction) with the normal MPC significantly deviates from
the origin, rendering the system unstable. Following this
instability, the normal MPC becomes infeasible, and state
trajectories are not plotted beyond the gray area. In contrast,
the H2- and H∞-optimal controllers effectively address the
external disturbance, restoring the system to the robustly
stable gait. Figure 5 depicts the vertical component of the
GRFs, prescribed by the H2- and H∞-optimal controllers
along with the normal MPC, for the front right leg during
these simulations. The chattering phenomena demonstrate
the infeasibility of the normal MPC both within and beyond
the shaded region.

To quantitatively study the efficacy of the proposed H2-
and H∞-optimal MPCs with the full-order model, we con-
duct a numerical case study in the physics-based simulation
environment RaiSim [53]. We compare the performance of
the H2-optimal MPC, H∞-optimal MPC, and normal MPC
for the trotting gait at the speed of 0.5 (m/s) subject to ran-
domly generated external forces in the x- and y- directions.
In particular, the full-order dynamical model of the A1 robot

with the proposed layered control structure (i.e., the high-
level planner and the low-level nonlinear WBC) is studied
subject to 300 different randomly generated external forces
with a maximum absolute magnitude of 70 (N) for a period
of 30 (s). Figure 6 illustrates the percentage success rate of
the H2-optimal MPC, H∞-optimal MPC, and normal MPC
on 300 different trails. Here, the failure or the termination
criterion is determined when the rigid body links connecting
the knee with the toe hit the ground before 30 (s). The
figure indicates that the robust optimal MPCs outperform
the normal MPC. In particular, the overall success rate of
the H2-optimal MPC, H∞-optimal MPC, and normal MPC
is 38.6%, 33.3%, and 22.2%, respectively. More specifically,
a roughly 50% enhancement in performance with the H∞-
optimal MPC is observed over the normal MPC for locomo-
tion under randomly generated external forces. Additionally,
there is a further 15% advancement with the H2-optimal
MPC compared to the H∞-optimal MPC.

C. Experimental Evaluations
For the experimental validations, we synthesize both H2- and
H∞-optimal MPCs at 0.1, 0.3, and 0.5 (m/s). We consider
various indoor experimental investigations, particularly a)
forward trot gait with the H2-optimal MPC at 0.1, 0.3, and
0.5 (m/s), b) forward trot gait with the H∞-optimal MPC
at 0.1, 0.3, and 0.5 (m/s), c) H2-optimal MPC trotting on
uneven terrains at 0.5 (m/s), and d) push disturbances to the
H2-optimal MPC. Figure 9 (a) illustrates the snapshots of
robustly stable locomotion of the A1 quadrupedal robot in
the presence of external disturbances, and Fig. 9 (b) shows
locomotion on uneven terrain with wooden blocks. Both
experiments are performed using the H2-optimal MPC with
a forward speed of 0.5 (m/s). In addition, Fig. 7 shows the
vertical component of the GRF, prescribed by the high-level
H2-optimal MPC in (22), for the front right leg when the
robot is subject to external disturbances, as indicated in Fig.
9 (a). The plot of the normal GRF prescribed by the high-
level H2-optimal MPC for the same leg of the robot during
the rough terrain experiments (see Fig. 9 (b)) is illustrated
in Fig. 8. In all of the experiments, the layered control
structure with the proposed H2- and H∞-optimal MPCs
successfully stabilized the locomotion of the quadrupedal
robot. Simulation and experimental videos are available
online [54].

D. Discussion and Limitations
Comparison with Alternative Robust Control Ap-
proaches: To assess the efficacy of the proposed H2- and
H∞-optimal MPC laws in comparison to alternative robust
control methodologies, we conduct an extensive numerical
simulation aimed at verifying the robustness of the closed-
loop system for locomotion over rough terrains. In this
study, we compare the proposed robust-optimal MPC ap-
proach against the RL-based RMPC approach outlined in
our previous work [26]. Specifically, our previous work
introduced a QP-based RMPC approach to steer template
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FIGURE 6. Left: The percentage success rate of the H2-optimal MPC, H∞-optimal MPC, and normal MPC over 300 different trails. In each trial, the
full-order model of the robot with the proposed layered control algorithm is subject to a randomly generated external force with a maximum absolute
magnitude of 70 (N) for a period of 30 (s). The overall success rate of the H2-optimal MPC, H∞-optimal MPC, and normal MPC are 38.6%, 33.3%, and
22.2%, respectively. Right: A snapshot of the full-order dynamical model of the A1 robot subject to a random external force, illustrated by an arrow, in
the RaiSim environment [53].

FIGURE 7. The vertical component of the GRF, prescribed by the
H2-optimal MPC, for the front right leg during the push experiment in Fig.
9 (a). The white and gray areas represent the stance and swing phases,
respectively.

FIGURE 8. The vertical component of the GRF, prescribed by the
H2-optimal MPC, for the front right leg during the rough terrain
experiment in Fig. 9 (b).

dynamics subject to a convex set of uncertainties arising
from abstraction and unmodeled dynamics. In particular,
the RMPC considers all possible realizations of the temple
model subject to different vertices of the uncertainty set
acting as a disturbance on the model. This RMPC framework
was further enhanced through the integration of RL tech-
niques, wherein a multi-layer perceptron (MLP) was trained
to computationally determine the vertices of the uncertainty
set based on the system’s states (for comprehensive details
on the synthesis of RMPC and MLP, please refer to Section
V of [26]).

In our current investigation, we adopted the RL-based
RMPC approach of [26], employing a modeling uncertainty
set comprising two or three vertices computed by an MLP
architecture featuring two hidden layers of 128 neurons with
a rectified linear unit (ReLU) as the activation function.
The control horizon for the RL-based RMPC was set to
N = 7, aligning it with the H2- and H∞-optimal MPC
strategies. Solving times for the RL-based RMPC with two
and three vertices were recorded as 4.2 (ms) and 10.9 (ms),
respectively, on an off-board laptop equipped with an i7-
1185G7 processor running at 3.00 GHz. Figure 10 illustrates
the percentage success rate of various MPC methods, in-
cluding the H2-optimal MPC, H∞-optimal MPC, normal
MPC, and RL-based RMPCs with two and three vertices
across 550 randomly generated heightmaps, each with a
different distribution of blocks. Here, the blocks, each 5
(cm) in height, are distributed randomly over a terrain of
30 (m) in length (approximately 85 times the robot’s body
length). From Fig. 10, the entire success rates of the H2-
optimal MPC, RL-based RMPC with three vertices, H∞-
optimal MPC, RL-based RMPC with two vertices, and
normal MPC are 45.56%, 43.58%, 39.42%, 37.79%, and
23.51%, respectively. Analysis of Fig. 10 reveals that the
H2-optimal MPC achieved the highest overall success rate,
outperforming other MPC strategies. Both the H2- and H∞-
optimal MPCs exhibited superior success rates compared to
the RL-based RMPC approach with two vertices. Notably,
the computational time for the RL-based RMPC technique
with three vertices was considerably higher than that of
other MPC methods, underscoring the efficacy of this study’s
proposed robust optimal MPCs. More specifically, a roughly
20% enhancement in performance with the H2-optimal MPC
is observed over the RL-based MPC with two vertices.

Other Disturbed Environments: To assess the efficacy
of the proposed robust-optimal planning approach in other
disturbed environments, we consider quadrupedal locomo-
tion subject to unknown payloads and external disturbances.
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FIGURE 9. Snapshots illustrating the performance of the proposed H2-optimal MPC. In each row, the time increases from left to right. (a) Robust
locomotion subject to external pushes at 0.5 (m/s). (b) Robust locomotion on uneven terrain with wooden blocks at 0.5 (m/s). The videos are available
online [54].

FIGURE 10. The percentage success rate of various MPC methods,
including the H2-optimal MPC, H∞-optimal MPC, normal MPC, and
RL-based RMPC with two and three vertices versus the traveled distance
across 550 randomly generated uneven terrains.

Here, we investigate the robustness of the proposed approach
with a payload of 4.54 (kg) (36% uncertainty in the robot’s
mass) while the robot is subject to a lateral external force
disturbance acting on the robot’s COM with a magnitude of
50 (N) for a duration of 2 seconds, starting from 5 (s) and
ending at 7 (s). Figure 11 illustrates the evolution of reduced-
order states by employing the H2-optimal MPC controller.
It can be seen that the proposed high-level planner can
robustly address the uncertainties arising from the unknown
payload and external disturbance. More general disturbed
environments will be considered in future work.

Generalizability and Scalability: For reduced-order
models of legged robots with heavy limbs and high dimen-
sionality, such as humanoid robots, the SRB and centroidal
dynamics may have some limitations and cannot accurately
represent the full-order dynamics. More specifically, these
template models typically ignore the limbs’ dynamics, and
hence, there can be a gap between reduced- and full-
order models of heavy-limb-legged robots. Consequently,
one would need to find better reduced-order models for other
robots, such as humanoid robots or other tasks. This can be
a limitation of the proposed approach. We will need further
investigations to address this problem and to generalize
the design of H2- and H∞-optimal trajectory planners for
heavy-limb-legged robots with high degrees of freedom.

FIGURE 11. Plot of the performance index, especially the y and z
positions of the robot’s COM, with the H2-optimal MPC subject to a
payload of 4.54 (kg) (36% uncertainty in the robot’s mass) and a lateral
external force disturbance of magnitude 50 (N) for a duration of 2
seconds.

Assumptions and Extension to Non-Periodic Gaits:
This work operates under the assumption of periodic locomo-
tion, specifically tailored to periodic gaits of template models
as outlined in Assumptions 1-4. Extending the proposed ro-
bust trajectory optimization algorithm to accommodate non-
periodic gaits presents a notable challenge. One potential
avenue for such an extension involves composing multiple
trajectories, encompassing both transient and steady-state
periodic gaits, to construct an augmented trajectory with an
extended period. In addition to periodicity, Assumption 4
presupposes a finite convex parameterization of the polytope
H in terms of its vertices. As the number of vertices
increases, so does the complexity of LMIs for synthesizing
robust-optimal controllers in Theorem 3. This increase in the
number of LMIs can pose a further limitation to the proposed
approach and needs investigation in future work.

VII. CONCLUSION AND FUTURE WORK
This paper presented a formal approach for synthesizing
H2- and H∞-optimal MPCs to robustly stabilize the pe-
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riodic locomotion of legged robots. The proposed algorithm
builds on the existing optimization-based control stack. The
paper first studied template models with MPC solutions
and shows that under some mild conditions, discrete-time,
closed-loop template dynamics are differentiable around
periodic gaits. The paper then presented the conditions under
which the periodic, discrete-time, closed-loop templates can
be transformed into a linear system with a constant state-
transition matrix using Floquet’s theory. The paper presented
an approach to systematically generate H2 and H∞ robust
controllers subject to parametric uncertainty using LMIs.
The paper then extended the theoretical results to the SRB
template dynamics and numerically verified them. This work
employed a layered control algorithm for robust planning
and control of legged robots, where the optimal reduced-
order trajectories prescribed by the high-level, robust MPCs
are provided to a low-level nonlinear WBC for tracking by
the full-order locomotion models. The proposed H2- and
H∞-optimal MPCs with the layered control structure were
extensively validated both numerically and experimentally
for the robust locomotion of the A1 quadrupedal robot
subject to various external disturbances and uneven terrains.
Our numerical analysis suggests a significant improvement
in the performance of robust locomotion compared to the
normal MPC.

Future work will investigate the incorporation of different
kinds of uncertainties with robust adaptive predictive con-
trollers. In addition, we will investigate the extension of this
approach for a broader range of gaits, including non-periodic
gaits.
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