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Abstract— Multitemporal hyperspectral unmixing (MTHU) is
a fundamental tool in the analysis of hyperspectral image
sequences. It reveals the dynamical evolution of the materials
(endmembers) and of their proportions (abundances) in a given
scene. However, adequately accounting for the spatial and
temporal variability of the endmembers in MTHU is challenging,
and has not been fully addressed so far in unsupervised
frameworks. In this work, we propose an unsupervised MTHU
algorithm based on variational recurrent neural networks. First,
a stochastic model is proposed to represent both the dynamical
evolution of the endmembers and their abundances, as well
as the mixing process. Moreover, a new model based on a
low-dimensional parametrization is used to represent spatial
and temporal endmember variability, significantly reducing the
amount of variables to be estimated. We propose to formulate
MTHU as a Bayesian inference problem. However, the solution
to this problem does not have an analytical solution due
to the nonlinearity and non-Gaussianity of the model. Thus,
we propose a solution based on deep variational inference,
in which the posterior distribution of the estimated abundances
and endmembers is represented by using a combination of
recurrent neural networks and a physically motivated model.
The parameters of the model are learned using stochastic
backpropagation. Experimental results show that the proposed
method outperforms state of the art MTHU algorithms.

Index Terms— Hyperspectral data, hyperspectral unmixing,
recurrent neural networks, deep learning, multitemporal.

I. INTRODUCTION

YPERSPECTRAL images (HIs) have very high spectral

resolution, which allows for a precise discrimination
of different materials in a scene [1]. However, physical
limitations of spectral image acquisition and large distances
between the sensor and the scene of interest as seen in,
e.g., remote sensing, means that each pixel of an HI may
cover a large area of the scene and typically contains a
mixture of different materials [2]. Hyperspectral unmixing
(HU) aims to decompose an HI into the spectral signatures
of the pure materials it contains (the endmembers — EMs),
and the proportions with which they appear in each pixel (the
abundances) [3].
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The classical approach to describe the interactions between
light and the different materials in a pixel is the linear mixing
model (LMM) [3]. However, the LMM assumes the EM
signatures to be the same for all pixels in an HI, disregarding
spectral variability of the EMs which can be caused by,
e.g., atmospheric, illumination or seasonal variations, and
propagates significant errors throughout the HU processing
chain [4], [5]. Thus, significant effort has been dedicated to
address spectral variability in HU (see Section II for a review).

More recently, multitemporal HU (MTHU) has been
receiving increasing interest in the literature since it leverages
information in sequences of HIs acquired at different time
instants to reveal the dynamical evolution of the endmembers
and abundances in a scene [6], [7], [8], [9]. MTHU has
proven important for many applications such as invasive
species mapping in rainforests [10], [11], and monitoring
vegetation cover in shrublands [12] or seasonal variations
of vegetation cover in dry forests [13]. Moreover, MTHU
is also useful to perform change detection at the subpixel
level [14], [15]. However, spectral variability can be very
significant in MTHU due to different seasonal and acquisition
conditions [4], [5], [7].

Addressing both the spatial and temporal spectral variability
of the EMs is challenging, and has only been done in MTHU
by supervised techniques [10], [16]. However, supervised
MTHU techniques require prior knowledge of libraries
containing spectral signatures which can accurately represent
the endmembers for each image in the time sequence. Such
libraries can be difficult or expensive to collect. Unsupervised
MTHU methods, on the other hand, estimate both the
endmember signatures and the abundances for all time instants
directly from the observed HI sequence. Thus, unsupervised
methods are of great practical interest, but can be challenging
to design. See Section II for a review of MTHU methods.

Machine learning has become a popular framework to
solve the HU problem [17]. Recent developments include
methods based on, e.g., autoencoders (AECs) [18] or unrolled
optimization-based neural networks [19] (see Section II for
a review). In particular, solutions based on deep learning
are especially attractive for HU when the mixing model
considers nonidealities such as, e.g., nonlinearity [20] and EM
variability [21], circumventing the need to construct complex
analytical models to represent such physical effects.

However, the literature lacks MTHU solutions that are
unsupervised and take spatial and temporal EM variability
into account, which are addressed in this work. In particular,
we also address several other needs, including the development
of parsimonious models for EM variability with adjustable
flexibility, and of machine learning-based strategies for MTHU
which jointly leverage both a physically motivated and data-
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driven (e.g., neural networks) models in a principled manner.
Such hybrid approaches, where physics-informed models are
used to regularize and provide interpretability to data-driven
methodologies are becoming increasingly popular [22].

In this work, we propose an unsupervised MTHU algorithm
based on variational recurrent neural networks (RNNSs). First,
a stochastic model is proposed to represent both the dynamical
evolution of the EMs and of the abundances, as well as
the mixing process. Moreover, a new low-dimensional model
is used to represent spatial and temporal EM variability by
parametrizing band-dependent scaling variations of the EMs
using a set of smooth spectral basis functions. This allows us to
control the flexibility of the model by varying the number and
types of basis functions. To model the abundances, we make
use of the softmax basis representation [23], which leads to a
physically accurate model and has been successfully used for
fuzzy classification [24] and single-image HU [25]. This way,
we can use a Gaussian distribution to represent the abundances
in the softmax basis, which closely approximates a Dirichlet
distribution when mapped back to the original abundance
domain (i.e., the unit simplex) [26].

MTHU is then formulated as a Bayesian inference problem.
However, exact inference is analytically intractable due
to the nonlinearities in the model. Thus, we consider a
variational inference solution based on RNNSs, in which the
approximate joint posterior distribution of abundances and
EMs is learned by maximizing a lower bound over the
marginal likelihood of all pixels. Note that approximating
the true posterior typically requires a flexible family
of distributions which can be represented using neural
networks [27]. However, using feedforward neural networks
leads to models with large numbers of parameters, making
inference costly. By exploiting the temporal structure in the
data (e.g., Markovity), RNNs provide a solution that gives
flexibility while also having a lower number of parameters
(being computationally lightweight). Besides, RNNs have
shown excellent performance in numerous sequence modeling
tasks [28]. Interpretability of the estimated abundances and
EMs is paramount for the applicability of MTHU systems. For
this reason, we parameterized the joint posterior distribution
using a hybrid model composed of physics-based and
data-driven components. More specifically, the posterior is
modeled by a family of nonlinear functions constructed by
integrating both a simple, physically motivated model that is
able to provide an approximate abundance estimate, and a
bidirectional RNN that can represent more complex effects
(i.e. not captured by the simpler model). The parameters of
the model and of the posterior distribution are learned based
on all image pixels using stochastic gradient descent (SGD).
The contributions of this paper include:

« anew low-dimensional model to represent the spatial and
temporal variability of the EMs with a small amount of
parameters to be learned;

« a stochastic model describing the temporal evolution of
the abundances and of the EM variability parameters,
which leverages the softmax basis used in single-image
HU [25] to obtain a physically accurate representation of
the abundance dynamics using a Gaussian distribution;

« a deep variational inference formulation of model-based
MTHU with both spatial and temporal EM variability,
solved using stochastic backpropagation;
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e a parametrization of the posterior distribution of the
abundances and EMs combining bidirectional RNNs and
a physically interpretable model.
The proposed method is called ReDSUNN for Recurrent
hyperSpectral Unmixing with Neural Networks. Experimental
results with synthetic and real data show that ReDSUNN
outperforms state of the art MTHU algorithms. Codes are
available at https://github.com/ricardoborsoi/ReDSUNN.

II. BACKGROUND AND RELATED WORK

A general multitemporal linear mixing model represents the
n-th pixel of an HI acquired at time ¢ as:

Yot = Mn,tan,t +ru:,
st. 1Ta,, =1, a,,>0, (1)

where, for each time ¢t € {1,..., T} and pixel n € {1, ..., N},
¥no: € RE denotes the observed pixel with L bands, the
columns of M n: € REXP contain the spectral signatures
of the P endmembers in the scene, vector a,; € RP
contains the fractional abundances of each EM, and r,, ; € RL
represents additive noise. Note that the general model (1)
can accommodate EM variability both in space and in time,
being able to represent effects such as, e.g., atmospheric,
illumination, or seasonal variations [4]. In the following,
we review different HU strategies addressing multitemporal
sequences, spatial EM variability, and based on deep learning
frameworks.

A. Multitemporal HU

A fundamental aspect of MTHU is taking into account the
relationship between the EMs and abundances at different time
instants. Since these are usually temporally correlated, this
can greatly improve the performance of unmixing algorithms.
Most previous works have been focused on addressing the
variability of the EMs in time. This was usually performed by
considering a more constrained version of model (1), where
only the temporal variability of the EMs is considered, leading
toM,; =My, forall ]l <n,m <N [6], [7], [8].

Several works have considered parametric models to
represent the temporal variability of the EMs (i.e., using only
a single EM matrix per image). For instance, dynamical model
was used in [6] to constrain the EMs to be a scaled versions
of a reference EM matrix, with smoothly varying scaling
factors. Another model considered the EM matrices at each
time instant to be an additive perturbation of a mean EM
matrix [7]. Using this model, MTHU was performed using a
two-stage stochastic programming approach [7]. Other works
considering this model have also proposed MTHU solutions
using a distributed algorithm using sparsity constraints [29],
and a hierarchical Bayesian framework incorporating additive
residual terms to account for outliers [30]. A recent work
proposed a hierarchical Bayesian MTHU strategy (called
HBUN) which incorporated priors promoting the spectral
smoothness of the estimated EM signatures, and the spatial
and temporal smoothness of the abundances [9]. Another
model representing the EMs using bandwise multiplicative
scalings of a set of reference EM signatures was considered
in [8]. MTHU was performed by combining a Bayesian
filtering (the Kalman filter and smoother) with the expectation
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Tlustrative diagram of the proposed ReDSUNN method. A likelihood and transition PDFs, with parameters 6, define the spatiotemporal mixing

process (i.e., the generative model). The variational posterior, with parameters ¢, approximates the unmixing solution (i.e., the PDF of the abundances and
EMs conditioned on the HIs) recursively, being implemented using an RNN. The parameters of these PDFs are learned by maximizing a loss function based
on the ELBO, which balances data reconstruction (MSE) and consistency between posterior and prior (KLD). The parameters ¢,,; and ¥, ; are mapped to

the abundances and EM matrices, a,,; and M, ; using a deterministic model. The notation z

Fig. 2. In the generative model (left), conditional independence among pixels
y, is assumed given abundances a; and variability coefficients ¥,, as well as
Markovity of state variables. During inference (right), state estimation exploits
correlations between pixels, states and hidden representations h; generated by
a bi-directional RNN.

maximization method. Heteroscedastic measurement noise
was also considered in [31], where the (diagonal) covariance
matrix of the measurement noise was estimated along with the
EMs and abundances in a maximum a posteriori framework.
However, these methods disregard EM variability within a
single image, which limits their performance. Existing MTHU
algorithms which tackle both spatial and temporal variabilty
are based on the MESMA framework [32], which searches
for a combination of EM signatures in a library which can
best reconstruct a given HI, rendering it highly interpretable.
These have been applied for MTHU in vegetation monitoring
applications [10], [12], [33]. Recent advances were also
made on developing efficient solutions to this problem with
theoretical guarantees by exploring the temporal information
of the abundances [16]. However, MESMA-based approaches
are computationally costly and their performance depends
strongly on the accuracy of the library, rendering this model
inadequate for unsupervised processing. Note that some works
proposed to leverage complementary high-resolution (Landsat)
images to unmix low-resolution (MODIS) images [34], [35].
However, the availability of such complementary information
and difficulties associated to differences in their acquisition
times limit the applicability of such methods in practice.

B. HU With EM Variability

The variability of the EMs across an HI occurs due
to atmospheric, illumination (e.g., topographic) or intrinsic
variations of the EM spectra [4], [5], [36]. It introduces errors
which propagate through the various steps of the traditional
HU processing chains and can have significant negative impact

-1 represents a delay. See Section III for more details.

on the abundance estimation performance. EM variability
is generally addressed in HU by representing the spectral
signature of each material using structured spectral libraries,
statistical distributions, or physically motivated parametric
models [4].

Spectral library-based methods represent the EMs in
each pixel as one of several spectral signatures in a
dictionary known a priori, which implies formulating HU
as a structured sparse regression problem. The sparsity prior
can be addressed either with combinatorial approaches, which
are computationally costly [32], or using different relaxations
of the Ly seminorm based on convex [37], [38] or non-
convex [39] sparsity promoting penalties. Other strategies
also allow each EM to be a convex combination of library
spectra [40]. Such relaxations are computationally easier to
solve. This can be a reasonable modeling assumption when
multiple signatures of the same EM can contribute to form
a single pixel. However, such relaxations might reduce the
interpretability of the solutions if the goal is to identify which
signature is active [39]. Nevertheless, the performance of both
kinds of strategies is strongly dependent on the quality of the
spectral library.

Using statistical distributions to model the endmembers has
been well-investigated as it provides principled HU solutions
through a Bayesian framework. The Gaussian [41], mixture of
Gaussians [42] or Beta [43] distributions have been considered.
However, when complex distributions (such as the Beta or
mixtures of Gaussians) are used to represent the endmembers,
HU (which consists in a Bayesian inference problem) can
become computationally expensive.

Another approach to address spectral variability consists in
representing the signatures of the EMs in each pixel using
a physically meaningful parametric model, and estimating
the model parameters during HU. Examples of such models
include the use of additive perturbations [44], spectrally
uniform or spectrally localized multiplicative scaling factors
[45], [46], or a combination thereof [47]. Other models explic-
itly exploit spatial information, using multiscale [48] or low-
rank tensor representation [49], and external information (e.g.,
LiDAR) by means of digital surface models [50]. However,
designing physically accurate models whose parameters can
at the same time be properly recovered from an HI can be
challenging.
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C. Deep Learning-Based HU

Deep learning has recently become a popular approach
to perform HU. While HU was traditionally viewed as a
regression problem (i.e., learning a mapping from the pixels to
the abundances) [51], [52], recent work has been focused on
developing unsupervised or self-supervised strategies, which
avoid the need for vast amounts of training data. Among
such strategies, AECs have become a predominant approach
for deep learning-based HU due to their close connection
to linear or nonlinear mixing models and good experimental
performance [18]. The latent representations of the image
pixels obtained by the AEC are associated to the abundances,
and the decoder network to the mixing model [53], [54].
Several AEC methods for HU have been proposed for
linear HU by using different choices of encoder networks
including, e.g., denoising layers [55], [56], spatial-spectral
(convolutional) architectures [57], [58] and the use of sparsity
constraints [59].

AECs have also been used to perform nonlinear HU
by considering nonlinear decoder networks to address
complex mixing effects. This includes a post-nonlinear mixing
model [20], additive nonlinearities [60] and the use of
application-specific nonlinear neural network layers [61].
Another work also exploited the relationship between the
encoder and decoder networks to propose a model-based
architecture [62].

Spectral variability was also addressed using deep learning
methods. In [21], a generative EM model is proposed to
represent the variability of the EMs on a low-dimensional man-
ifold. Such a model was used to perform HU using methods
inspired by matrix factorization [21], sparse regression [63]
and probabilistic approaches [56], [64]. Gaussian process
regression has also been considered as a non-parametric
approach to mitigate the effects of spectral variability in
HU [65], [66].

Other approaches also used multiple sets of pure pixels
extracted in a self-supervised manner to regularize (explicitly
or implicitly) AEC-based HU algorithms in order to improve
their robustness [67], [68], [69]. An approach to learn
dynamical models for the spectra of individual materials
has also been proposed [70]. Finally, other methods have
been proposed using, e.g., Wasserstein [71], adversarial [72],
or cycle-consistency [73] loss functions during training. Deep
priors [74] and unfolding optimization-based neural networks
have also been considered [19].

We highlight, however, that despite these advances previous
MTHU methods did not address spatial EM variability
without supervision, and also did not exploit deep learning
frameworks. In the following, we will present a probabilistic
model representing both spatial and temporal EM variability,
and develop an unsupervised inference strategy based on
RNNS.

III. OVERVIEW OF THE PROPOSED APPROACH

We consider a probabilistic framework for MTHU. This
amounts to two steps. The first is the modeling step, which
consists in defining a set of probability density functions
(PDFs) which describe how the abundances and EMs evolve
over time, and how the pixels are generated. Note that
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the model PDFs typically depend on different deterministic
parameters, some of which are specified a priori (which we
refer to as hyperparameters) and some which we intend to
learn from the observed Hls. We represent the parameters to
be learned in the set 8. We include the subscript 6 on the model
PDFs in order to make their dependence on these parameters
explicit.

The second is the inference step, which consists in
computing (an approximation of) the posterior distribution,
which is the PDF of the abundances and EMs conditioned on
the observed pixels. The inference step is also decomposed
in two distinct parts which are interdependent. The first part
consists in computing the approximate posterior distribution,
while the second part involves learning the deterministic
parameters of the model in & by maximizing the likelihood
of the pixels.

Note that this process leads to an unsupervised learning
problem, that is, the model parameters in 6 and posterior
distribution are both computed based only on the observed
HI pixels (i.e., there is no separate training and testing data).
In the following, we provide a high-level description of the
approach, which is illustrated in Figures 1 and 2. Modeling
and inference steps are then detailed in Sections IV and V.

A. Modeling Step

The first step is to characterize the dynamical evolution
of the EMs and abundances. Under a Markovity assumption,
it can be expressed using the following sequence of conditional
probability distributions [75]:

(atle)Np@(al»tht—lth—l)s (2)
where a; = [aIt, . ..,a;,t]—r denotes the abundance maps
in lexicographic ordering and M; = {M1,1, ...,MNJ} the

collection of EM matrices for all pixels, and (ag, Mg) ~
po(aog, Mg). We also assume that the abundances and
endmembers at time ¢ are statistically independent when
conditioned on the their values at time ¢ — 1, that is,

po(a;, Mila; 1, M,_1) = po(asla,—1) po(M|M;—1). (3)

This allows us to model the evolution of a, and M, separately.
The second part of the model represents how the HI pixels
are generated from a, and M/, which is given by

4)

where y, = [ yI,, ey y;’t denotes the HI in lexicographic
ordering. Note that the pixels y, are assumed to be
conditionally independent given a; and M;. These PDFs are
defined explicitly in Section IV.

Y ~ po(ylas, My),
]T

B. Inference Step

This step, which constitutes the solution to the MTHU
problem, consists in computing the posterior PDF of the EMs
and of the abundances given the observed pixels, which is
given by:

polar, My, ...,ar, Mr|y(,....,¥y1)
_ potao, Mo) T, po(y,lar, M) po(arla;,—1) po(M,|M,_y)
Po(Y1s--s V1)

o)
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where the r.h.s. of (5) was obtained using the Bayes rule and
the factorization in (2)—(4). The PDF in (5) generally does not
have a closed form solution [75]. One efficient solution is to
use variational inference based on SGD [27], which attempts
to find an approximate posterior ¢ € Q within a family of
distributions Q that is as close as possible to the true posterior
in (5). This approximation is often obtained by maximizing
a lower bound on the marginal log-likelihood, the so-called
evidence lower bound (ELBO):

ELBO(q, 0) < log po(y1, ..., ¥71), (6)

see Section V for a detailed explanation. Under specific
conditions over the model and posterior family Q, such
as assuming conditionally Gaussian distributions, the max-
imization max,eg ELBO(g, 6) can be solved locally using
SGD techniques, which are computationally efficient when
compared to solutions based on Monte Carlo sampling [27].

The flexibility provided by the family of posterior
distributions Q is paramount for the performance of the
strategy. Recent works have considered neural networks,
parameterized by ¢, to represent the approximate posterior.
Thus, instead of searching for ¢ in a (continuous) family of
distributions Q, we search for the parameters ¢, such that
the parameterized posterior, denoted by ¢4, maximizes the
ELBO. Thus, the optimization becomes maxy ELBO(gy, 6).
For problems with a temporal Markov structure, RNNs provide
a parameterization that, although flexible, is computationally
efficient. Moreover, they explicitly explore the temporal
structure in the data, having shown excellent performance in
various sequence modeling tasks [28]. This will motivate us
to use an RNN in the parametrization of our posterior in
Section V-C.

Finally, the parameters of the generative model, 6, are
also learned within the same framework. The underlying
idea is to perform type-II maximum likelihood (ML)
estimation [76], that is, maxg log pg(yy, ..., y7). However,
since computing pg(y;,...,Yyr) is intractable, 6 is also
computed by maximizing the ELBO w.r.t. 6 using SGD. Thus,
as ELBO(qy,0) is maximized w.r.t. g4, the lower bound
in (6) becomes tighter and its maximization w.r.t. € better
approximates ML estimation. Thus, the complete inference
problem is formulated as the maximization of the ELBO
w.r.t. both the posterior and the model parameters, that is,
maxg, 4 ELBO(gy, 0).

IV. PROPOSED MODEL

The modeling step will be divided as follows. First,
we develop a mixing model and represent EM variability
(which defines pg(y,la;, M;)). Next, we consider the
dynamical behavior of the EMs, and finally of the abundances
(which define pg(M;|M;_1) and pg(a;|a;—1), respectively).

A. Mixture Model With EM Variability

As discussed in Section II, devising EM models that
combine flexibility to represent complex spectral variability
with simplicity of having a small number of parameters
is challenging. Flexible models such as the PLMM [44],
GLMM [46] and ALMM [47] have many degrees of freedom
and require additional regularization strategies to guarantee
physically meaningful solutions, while simpler models such
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as the ELMM [45] are too restrictive to represent complex
spectral variability. An important information which can
be used in the design of mixing models accounting for
endmember variability is the spectral correlation of EM
signatures [4]. This points to a natural representation of EMs
as smooth functions. Although the smoothness of the EMs can
be introduced through regularization (see, e.g., [77], [78]), this
leads to high-dimensional and potentially costly HU solutions.
On the other hand, a more efficient and interpretable model
can be obtained by directly parametrizing smoothness using
properly selected basis functions [79].

In this work, we consider an EM model inspired by the
GLMM [46], which represents spectral variability using a
multiplicative scaling of reference EM spectra that vary for
each band, endmember and pixel. However, instead of using
regularizations we propose to constrain the scaling factors to
be linear combinations of spectrally smooth functions. The
resulting model, which we call Smooth GLMM (SGLMM),
represents each observed HI pixel y, , as follows:

Yni=(MoO L+ DV, ) an; +rns, (7)

Mn,t

where O represents the Hadamard (elementwise) product,
1 is an L x P matrix of ones, My € RIL*P a set of
reference or average EM signatures, matrix D e RE*K
contains K spectrally smooth basis vectors as its columns,
and ¥, ; € RKXP contains the low-dimensional coefficients
that parameterize the variability of each EM. Vector r, ; € Rt
denotes zero-mean additive Gaussian noise.

It is instructive to analyze how the variability of the
endmembers M, ; is introduced in the model (7). The EM
matrix M, , is formed by scaling the reference EMs in
M bandwise by matrix 1 + DV, , € RL*P This model is
similar to the GLMM, the difference being in the structure
of this multiplicative scaling matrix. First, note that when
¥,; ~ 0, the term DW¥,; is also small and the scaling
factors will be close to 1, meaning that M, ; =~ My, ie.,
the spectral variability is small. Thus, the amount of EM
variability depends directly on the amplitude of the elements
of W, ;. Second, matrix DW¥, ; represents a perturbation over
the constant scaling 1, and its properties depend directly
on the choice of D. Thus, by properly selecting D we
can constrain DV, ; to represent smooth functions with few
parameters, leading to smooth spectral variations in M, ;.
Following an idea used in [79] for robust HU with smooth
additive residual terms, we select the columns of D as
the first K rows of the discrete cosine transform (DCT)
matrix.

The SGLMM models endmember variability using K P
parameters. The number of basis functions K gives a trade-
off between existing models in the literature: when K = 1,
D will contain only a constant vector and the model becomes
equivalent to the ELMM [45], whereas for K = L it has the
same flexibility as the PLMM [44] and GLMM [46]. Values
of K « L should give the SGLMM sufficient flexibility to
represent smooth spectral variability accurately.

Representing the spectral variability parameters in vector-
ized form as ¥, , = vec(¥, ) and assuming the noise r,
to be independent for each pixel, the PDFs in the generative
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model (4) can be rewritten equivalently in terms of ¥, , as

N
povilan ¥0) =[] Poaslans, ¥ ®)

n=1

where

po (yn,tlan,t’ 1/’n,t)
=N((Mo© @+ Dvec ' (¥, N)ans, o21), (9

in which o, € Ri is the standard deviation of the measurement
noise, which is assumed to be independent and identically
distributed for different bands.

B. Dynamical Model for the EM Scaling Parameters

In this work, we consider My to be a deterministic
parameter of the model and estimated from the observed
HIs using an approximate ML framework (i.e., Mo € 0).
This means that the EM matrix for each ¢ and n, M, , =
MyO @+ DY, ;), is a deterministic function of the lower-
dimensional vector of scaling factors ¥, ,. Thus, we can
substitute the problem of estimating the very high-dimensional
po(M:|M;_1) by the problem of estimating po(¥,|¥,_;),
with ¥, = [1/11':“ . ..,1/1;’[]T. Since vector ¥, is still high
dimensional, we consider an independence assumption on the
time evolution between different pixels:

N
Po ) =[] PoWoi¥ui1) (10)

n=1

for t > 1, where the prior PDF for time instant + = 0 will
be specified later in Section IV-D. We consider a Gaussian
distribution to represent the evolution of ¥, ,:

PoW, W) =N, 05lpk), (1D

where oy € Rj_ is the distribution standard deviation, which
controls its uncertainty and is assumed to be isotropic. Note
that the evolution of ¥, , is not assumed to be affected by
abrupt changes, which leads us to consider oy constant. This
assumption is motivated from the fact that the reflectance
of materials are primarily influenced by their physico-
chemical composition (e.g., particle size and roughness in
packed particle spectra [80], or biophysical parameters in leaf
spectra [81]), which we assume to change smoothly at fine
time scales.

C. Abundances Model

In order to represent the abundances dynamical behavior,
we first assume their time evolution to be independent for
different pixels in order to make the problem tractable, that is,

N
potaila;—1) = [ | potanilan—1).

n=1

12)

for t > 1, where the prior PDF for time instant r = 0 will
be specified later in Section IV-D. To represent the time
evolution at each pixel, we consider a Dirichlet distribution.
The Dirichlet is a natural choice of distribution to model
the abundances as it enforces the physical constraints that
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the elements of a; should be nonnegative and sum to one
[41], [82]. The transition PDF is then given by

Do (an,t|an,t—1) = Dir(an,t) , (13)

where o,; € Ri denotes the concentration parameters,
which are a function of the abundances at the previous
time instant, a, ;-1 (i.e., the parameters of pg(a, |an:—1),
o, ;, are a function of the conditioning variable). Note that
the uncertainty of the abundances predictions is represented
implicitly in e, ;, where small concentration values yield low
uncertainty and temporally smooth transition, whereas large
values lead to higher uncertainty, allowing for more changes.

However, the Dirichlet distribution can make inference
difficult. One workaround consists of using, e.g., Laplace’s
method, which approximates the Dirichlet distribution
Dir(e, ;) by a Gaussian with mean and inverse covariance
equal to the mode of the original distribution and the Hessian
of its negative logarithm, respectively [23]. However, since
the Dirichlet distribution is supported at the simplex, this
approximation can be inaccurate. To overcome this problem,
MacKay [26] proposed to perform this approximation in the
so-called softmax basis, which consists in a mapping 7' :
a,; +— ¢, from the unity simplex to R?, where & is the
softmax function:

7 Nan,) = ens, (14)
tilens) = —PCni) oo py, )
Zj exp(cn,i,j)

with 7;, ¢, ;; being the i-th positions of & and ¢, ;. This
approximation is very accurate and has been used in several
works to facilitate statistical inference [83], [84]. Thus,
replacing a, ; by the softmax parameters ¢, ;, we achieve the
following alternative representation of (13) [26]:

Po (cn,t |cn,lfl)

rc? )
= D ) P 6, 00T e, (16)
H,’=1 [(an.ri) i=1

where «,, ;; is the i-th position of &, ;, I' denotes the Gamma
function, and g is an arbitrary distribution used to constrain
an extra degree of freedom (since the Dirichlet has only
P — 1 degrees of freedom), selected as g(x) exp(—%xz) for
mathematical convenience [26]. The Gaussian approximation
of this distribution is then given by pgp(cnilcni—1) =~
Nty 1, Znp) [26], [83], with p,, given by

P

1
i = log(o,ri) — 7 glog(an,t,e),

a7

where fun; is the i-th position of u,, and X, is the
negative Hessian of (16) at ¢,,; = m, ;. Note that the mean
and covariance p,, and X, are a function of e, and,
consequently, depend implicitly on ¢, ;1.

Therefore, we can approximate the transition PDF (13) by a
Gaussian one on the softmax basis. Note that the relationship
between the parameters of both models, that is, between a;, ;
and p, , and X, ,, is nonlinear and burdensome to compute.
However, by working on the softmax basis we do not need
to specify pg(an:la,;—1) explicitly in (13). Instead, we can
directly define the Gaussian transition for pg(cu.s|cn r—1),
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which is mathematically more convenient. This implicitly
defines a transition probability pg(a, :|l@,—1) by mapping
¢n: ~ po(Cnrlen—1) into the simplex, approximating a
Dirichlet distribution. Thus, we consider the following model:

poenileni—1) = N(eni—1, 02 (en—)Ip),  (18)

where I p is a P x P identity matrix. Note that, for simplicity,
the covariance matrix in (18) was constrained to be isotropic,
and is scaled by Uaz(cn,t_l). The function o, : R — Ri
computes the standard deviation of each element of ¢,; ~
po(cnleni—1) as a function of c¢,;—1. Thus, it directly
influences the amount of change in the abundances: the
larger o4(cp 1—1), the larger the changes we expect to observe
between ¢, ;—1 and ¢, . This function, which is part of the
generative model, will be learned during inference using a
maximum likelihood approach. It will be parameterized using
a fully connected neural network with R, layers, where each
hidden layer has P neurons and uses the ReLU activation
function, and the output layer maps to a scalar and uses an
exponential activation function to ensure the output is positive.

D. The Complete Model

To finish the model derivation, we need to define the initial
PDFs at time ¢ = 0, which under the new parametrization
of the abundances and endmembers, which we assume to be
pixelwise independent Gaussian distributions, given by:

N
poeo, ¥o) = [ | po(eno)po @)

(19)
n=1
Po(en0) = N (v§, diag(y§)?) . (20)
Po(W,0) =N (vy, diag(y$)?) . @1
forall n = 1,..., N, where the means vg, vg and diagonal

covariance parameters, yf), yg’ are constant and shared among
all pixels in order to reduce the amount of parameters in the
model. Finally, the measurement model (9) can be written
using the softmax abundance reparametrization as:

Po (yn,t|cn,tv '/’n,z)

=N((Mo® (1 + Dvec™ ¥, ))m(enr), o 1), (22)

where m is the softmax function.

The final dynamical model is then given by equations
(20), (21) (initial PDFs), (18), (11) (the dynamical model)
and (22) (the measurement model). Finally, we denote
the parameters of the model which will be estimated
from the data using approximate ML inference by
0 = {My, o, 04, vg, vy, y(c), yo'/f}. An illustrative diagram of
the proposed generative model can be seen in Figure 3.
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V. VARIATIONAL INFERENCE WITH RNNS FOR HU

In this section, we will present the proposed solution to
the inference step, referred to as ReDSUNN. Considering
the parametrization of the abundances and of endmember
variability derived in the previous section, this task, which
consists in performing MTHU, becomes that of approximating
the posterior distribution:

SR (23)

PG(CI’ 1/,]7"'5(:7‘7 '/,T‘yl’

T . .
where ¢; = [c;rt, c—'A—, z] . First, let us denote with an
underline the collection of variables at all time instants:

Y=y 24)
3, =ntse s yurhs (25)
c={co,...,cT}, (26)
v=o....¥7}. (27)

As discussed in Section III, due to the nonlinearity in the
model caused by the interaction between the abundances
and the variability scaling factors, and the potentially high
dimensionality of these variables, it is not possible to
compute the posterior distribution (23) in closed form. In this
work, we adopt a deep variational inference framework:
we consider a parametric surrogate distribution g4 (c, ¥|y)
from a sufficiently flexible family with parameters ¢, and
learn its parameters by minimizing the Kullback-Leibler
(KL) divergence between gg(c, ¥|y) and the true posterior

po(c, ¥1y):

KL (po(c. ¥13) |94 (c. ¥13)) = log ps(p)
+ Egycwlyloggg(c. ¥1y))

—Egcyip{log pole, ¥, y)} .
(28)

Since the KL divergence is nonnegative and log pg(y) is a
constant, the above expression can be equivalently minimized
by maximizing a lower bound to the data likelihood formed
by the last two terms in the right hand side of the expression,
which is the so-called ELBO [23], [27]:

log pg(y) = Egyc.y1y){log po(c, ¥, ¥)}

—Egycyipiloggg (e, ¥1y)}- (29)

Recent advances in variational deep learning such as in
variational autoencoders has made it possible to devise
efficient algorithms to maximize (29) when the PDFs are
possibly parameterized by deep neural network using, e.g.,
stochastic backpropagation algorithms [85]. Furthermore,
the conditional independence assumptions of the model
in the previous section can be exploited to further simplify
the inference problem. In the following, we factorize the
ELBO both in the temporal as well as in the pixel dimensions.

Note that, as discussed in Section III, (29) will be optimized
both with respect to the parameters of the posterior distribution
¢, but also with respect to the parameters of the generative
model pg(c, ¥, y) in the set 8 in order to estimate them by
approximate ML inference. In the following, we will use the
Markov and pixelwise conditional independence assumptions
of the generative model in Section IV to factorize g4 (c, ¥|y)
and simplify the solution to the inference problem.
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A. Factorizing the Posterior Distribution

1) Factorizing the Posterior Distribution in Time: Various
kinds of parametrizations of the distribution g4 (c, ¥|y) have
been proposed. One of the simplest is to consider a mean field
assumption [86], which assumes that {¢;, ¥,} and {c¢;, ¥,/ } are
conditionally independent given y, for all ¢ # ¢'. However, this
disregards the temporal structure of the data. A more suitable
factorization can be obtained by noting that the Markov
property of the model can be used to show that the true
posterior factorizes as

T
pole. ¥1y) = paleo. oly) [ [ poter. ¥ileir. 9,1, y) .

t=1

Incorporating this assumption into the variational approxima-
tion g4 (a, ¥|y) leads to a similar factorization:

T
qp(c. ¥1y) = qg(co. ¥oly) [ [ goler- ¥ilei—r. ¥,y p).
t=1 30)

which preserves the temporal dependency of the model.

2) Factorizing the Posterior Distribution in Pixels: The
vectors ¢;, ¥, in (30) contain the abundances and variability
coefficients for all image pixels, and are thus of very high
dimension. Therefore, additional simplifications are necessary
in order to make inference tractable. One important property is
that in the model derived in Section IV, the initial, transition,
and measurement PDFs (equations (20), (21), (18), (11)
and (22)) can be factorized among the different image pixels.
Thus, the inference process can be factorized at the pixel level,
which leads to the following form for the posterior distribution:

‘](/)(Ct» 'ﬁ['ctflv 1#1‘—]32)

N
- 1_[ q¢(cn,ta wn,t|cn,t—lv ![,n,t—l’ Xn) )

(€2
n=1
for ¢t > 1, and similarly for the initial PDF at t = 0:
N
a(co, ¥oly) = [ | 46 (€n0. ¥u0ly,) - (32)

n=1

Although this factorization does not directly consider spatial
correlation between different pixels, which has been found
to be a useful source of prior information in HU [25], [41],
it allows us to work with pixelwise variational posterior
PDFs (i.e., the r.h.s. of (31) and (32)) which have a much
lower dimension, thus reducing the computational burden
associated with the inference step. To some extent, spatial
information can still be introduced indirectly by constraining
the parametrization of the variational posterior distributions
among different pixels, which will be explained in the rest
of this subsection. The incorporation of spatial information
directly through the probabilistic model will be investigated
in a future work.

3) Parameterizing the Posterior: A key aspect of the model
is how to parameterize the posterior PDFs of the different
pixels in the r.h.s. of (31) and (32). First, variational inference
implies selecting a parametric family of distributions from
which to select g4, which directly impact the results. Note
that the true posterior in (5) might have a complex form
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and be possibly multimodal, however, its form is not known
in advance. Thus, as in recent works in deep variational
inference (see, e.g., [27]) we considered a Gaussian family
for gy since this will simplify the maximization of the
ELBO considerably (through, e.g., the reparametrization trick
and closed form expressions for KL divergences), leading to
important computation savings. Thus, it can be expressed as:

q¢ (cn,h '/’n,z|cn,t—lv Wn,t—l’ Xn)

=N (5" (Cnr). diag(ay” (T0.0)) . (33)

where Y, ; = {cn,,,l,llfn,,,],zn} and u;’w and 6;"# are

functions (e.g., neural networks parameterized by ¢) which
compute the parameters of the posterior distribution, mapping
the data {¢,.;—1,¥,,—1, ¥, } to the mean and the square root
of the diagonal covariance matrix of the Gaussian posterior,
respectively. For convenience of notation, we decompose ué"p

v into two functions:

C C
W ) W %%
ILZ, = |:I,(,$:| s O'fb = |:a_$:| .

Note that functions [l,(% and aé) compute the mean and
ia

square root of the gonal covariance matrix of the
q¢(cn,,|cn,,_1, '/’n,tfl’X,,)’ while u,g and ag compute the
mean and square root of the diagonal covariance matrix of
46 Wnlens 1 Vo1, ).

A Gaussian parametrization is also used for the posterior
distribution of the initial PDF:

c,
and oy

(34)

q¢(co. ¥oly) = N(¢“V, diag(¢“V)?) (35)

where a fixed distribution was used for all pixels, with ;C"/’
and £V being the mean and the diagonal of the square root
of the covariance matrix, respectively.

An important observation is that we consider a shared
parametrization, where the posterior in (33) and (35) has
the same form for all pixels. More precisely, this means
that the same functions ;L;’W and ¢;" are used to compute
the posterior mean and covariance for every HI pixel, given
the input data Y, ;. This is an important characteristic of the
method, since it allows information from different pixels
(i.e., from the whole image) to be leveraged jointly in the
estimation of the model and, consequently, of the abun-
dances and variability coefficients in each pixel, ¢, ., ¥, ;.
n=1,...,N.

B. Factorizing the ELBO Cost Function

Using the simplifications derived in the previous subsection,
in the following we will rewrite the ELBO cost function (29)
in terms of the factorized model.

1) Factorizing the ELBO Temporally: Using the factoriza-
tion (30) and the Markovity of the model, the lower bound
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in (29) can be written as [86]:

log po(y)

T
> LO.¢.9) =D Egyterp, iy {108 po(yiler. ¥,)}

t=1

T
— KL (gg(co. ¥oly) | pe(ao. ¥o)) — Z]Eqd,(ctfl,w,_l@{

t=1

KL (gp(ers Viler—1. ¥y ) poter ¥ lerm1, ¥, )}
(36)

2) Factorizing at Pixel Level: Using the pixelwise fac-
torization of the generative and posterior PDFs discussed
in Section IV, we can simplify each term of (36). To this
end, we use the fact that KL(p(x1, x2)|lg(x1,x2)) =
KL(p(x1)llg(x1)) + KL(p(x2)[lg(x2)) when both p(x;, x2) =
p(x1)p(x2) and q(x1, x2) = q(x1)q(x2) are independent, and
the fact that K, ) {f(x1)} = Epip{f(x1)}. We proceed to
analyse each term of (36) in the following.

First term: Using the factorization of the measurement
model in (8), the first term in the r.h.s. of (36) becomes:

]Eq(p(cmll,lz){ 1og po (y,ler. ¥,)}

N
= Z qu;(cn,,,i/f,l‘,\zn){ log po (yn,t|cn,ts wn,z)} . (37)

n=1

Second term: Using the pixelwise independence of the
initial PDF in the generative model (19) and in the
posterior (32), the KL divergence can be written as:

KL (g (co. ¥oly) | po(eo. ¥0))

N
=D KL (gp(en 0 ¥oly )| Po(eno. ¥00) .  (38)

n=1

Third term: Using the pixelwise independence of the
posterior (31) and of the predictive PDFs (12), (10), this term
can be written as:

Eqsteir¥r 119 KL (
qe(cr, ¥lei—1, 'h_l’z) ” po(cr, ¥ lei—1, '/’t—l))}

N
= Z ]E‘Mﬁ(cn,t—l v'/’n,t—l |X,,){ KL (

n=1
qe(Cn i, ‘/fn,[|cn,t—1, 'ﬁn,t—la Xn) ”
PoCnis Vnslei—1.¥,-1))}. (39)

Combining these results, we can write the cost function
L@, ¢, y) as in equation (40), as shown at the bottom of the
next page. Details on the computation of the log-likelihood
and KL divergences can be found in Appendix A.

C. An RNN-Based Implementation
A key question is how to define the functions u;, [Lg, a;)

and o in (33) and (34), which parameterize the approximate
posterior distribution. On the one hand, these have to be
flexible to be able to approximate the true posterior, which
cannot be written in the form of a simple and well-known
distribution. On the other hand, it is important to incorporate
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information from a physical modeling of the problem to
make inference process more efficient, interpretable and
stable. Thus, we will parameterize the variational posterior
distribution using a lightweight RNN and, whenever possible,
leveraging physically motivated models.

First, a bidirectional RNN is used to compute a set of
feature-based representations, denoted by h, ; € R, from
the image pixel sequence y, - In particular, we compute h,

by combining the hidden states learned by two LSTMs [87]:

hfﬁ;w = LSTMg)rW(hfL(??zls yn,l)s = 1’ c T ’ (41)

h’[,)l.?.tck — LSTMIq)dek(hZillCi] , yn’t), = T, ey 1 5 (42)
1

= 5 (W7 + R @)

for n = 1,..., N, where LSTM;"rW and LSTM;’;‘Ck denote
two LSTMs which process the data forward and backwards
in time, respectively; their hidden state representation being
given by k™ and hgf‘fk. We choose LSTMs due to
their excellent performance in various sequence modeling
tasks [28]. Moreover, a bidirectional RNN (i.e., two LSTMs)
is used because at every time instant the posterior in (33)
depends on the HI pixels at all time instants, Y, whereas the
LSTMs in (41) and (42) depend only on past and future data,
respectively.

The dimension of the RNN representation is selected as
H = (K 4+ 1)P (i.e., the dimension of the state vector).
The gating units of the LSTMs use the sigmoid nonlinearity,
while the input and hidden state units use the uses the
hyperbolic tangent nonlinearity. Note that the parameters of
these LSTMs will also be learned during inference by SDG
using backpropagation through time [28].

We now use the representation h,; to parameterize [L;,

ﬂg, 6; and og. To introduce physical knowledge, we follow

the general idea of using hybrid models [22], [62], in which
an approximate model is complemented by a learnable
component (in this case derived from the RNN). In particular,
for the posterior mean of the abundances, u,j), we construct an
approximate model by assuming that 1) a least squares solution
provides a crude abundance estimate, 2) the abundances are
temporally smooth but may undergo sudden changes, and
3) abrupt abundance changes lead to abrupt changes in the
pixels. For the variability parameters, u 6 We consider it to be

temporally smooth. For the standard deviations, a; and GZ,
we don’t have a good physical model; thus, we use a purely
non-parametric representation. In the following, we define
each of these functions explicitly; an illustrative diagram can
be seen in Figure 4.

Considering the RNN features ki, ;, the abundance posterior
means ug is then parameterized as:

w5 (o) =" (o1 (1 = un ) (ens-1)

+ ol (M:,,t,lyn,; + Wchn,t)) ) (44)

where M, ;1 = MoO(1+D vec™! (¥,.;—1)) is the predicted
EM matrix at pixel n and time ¢ — 1, o1 and o are trainable,
real-valued weighting coefficients, and W, € RPX(K+DP jg 5
trainable matrix that maps the hidden RNN representations to
the abundances in the softmax basis. The scalar coefficient
tng € [0,1], defined as u,, = S5lls(M),_\y,,) —
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Fig. 4. Diagram of the proposed network implementing the posteriors
‘Iq’)(cn,ta '/’n.tlcn,t—lﬂ Wn,t—lﬂ Xn) and q¢(00, ]/’O|X)

m(cy—1)|l1, measures the difference between the predicted
abundances m(c,;—1) and a crude estimation of the current
abundances at time 7, given by s(M jl —1Yn.1)s where the fixed

function s(-) projects the linear regression solution M Z,z— 1Yt
to the unit simplex. Thus, u, ; works as a crude abrupt change
detector.

The parametrization (44) can be seen as a weighted
combination of three terms: the abundances at the previous
time instant, a crude abundance estimate at time ¢ computed
by linear regression, and a non-parametric term depending
on h, ;. The balance between them depends on the trainable
weights and on the change detector u, . When there are no
changes, u,  is small, which gives a higher contribution to the
predicted abundances ¢, ;—1 in (44). On the other hand, if there
is an abrupt change, u, , is large, giving a higher contribution
to the sum of the last two terms in (44), which is a linear
regression-based abundance estimate augmented by a non-
parametric RNN-based representation. This parametrization is
particularly relevant since the generative model (18) does not
explicitly represent abrupt changes.

For the function p ¢ leverage temporal smoothness we
consider a weighted linear combination of the variability
coefficients at the previous time instant ¥, ,_; and a linear
mapping of the hidden RNN representation:

Wy (Co) = B 1+ Wyhy, (45)

where B is a real-valued weight, and Wy, € REP(EKADP g

a matrix that computes the variability coefficients’ innovation
from the RNN representation ki, ;, both of which are trainable.
Note that by not considering abrupt changes to occur in ¥,
we obtain a simpler model compared to [L;).

The standard deviations a; and o are computed based on a
fully non-parametric model, which is given as linear mappings
of the RNN representations hj, ;:

a'gﬁ(Tn,t) = exp (Vchn,t) ,
Jg(Tn,t) = exp (thn,t) ,

(40)
(47)
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RPX(K+1)P REPX(K+1)P

where V. € and Vy € are
the transformation matrices, and the exponential function
is applied elementwise in order to ensure nonnegativity
of the standard deviations. The parameters of the
approximate posterior are finally denoted by ¢ = {CC’W,
£°V LSTMR™, LSTMP*, a1, a2, B, We, Ve, Wy, Vy }.

Note that all parameters in ¢ will be learned using SGD.

1) Approximating the Expectations and Optimization: To
optimize (40) using stochastic backpropagation, it is necessary
to estimate gradients of expectations whose distribution
depend on 6 and ¢, which are the parameters to be optimized.
To address this issue, we consider the reparametrization trick,
which provides low-variance gradient estimates [27]. This
is performed by writing the random variables inside the
expectations as deterministic functions of a random variable
that does not depend on ¢. In general, for a distribution g4 (x)
and function f, this can be formulated as Eq¢(x){ fx)} =
Ep@e{f(g(e))}, where g is a function such that x and g(e)
have the same distribution, and p(e€) does not depend on ¢.
Applying this to the expectations in (40) and considering that
the posterior in our model is Gaussian, this is achieved as:

[a), ¥l ] =us" Xun+05" (Xunoe,  @8)
fort = 1,...,T, where € ~ N(0,I). It can be verified
that the random variables in (48) are sampled according
to the distribution q¢(cn,t,1ﬁn‘,lzn). Thus, by using this
reparametrization, the expectations in (40) can be rewritten
in terms of expectations of €, which we subsequently
approximate using a one-sample Monte Carlo estimate and
denote by L(0, ¢, y).

The approximated cost function 2(9,(]5, y) is then opti-
mized with respect to both # and ¢ (i.e., the parameters of
the generative model and of the variational posterior) using
the Adam stochastic optimization method [85]. We used a
learning rate of 0.001 and a batch size of 128. Training was
performed for 30 epochs. The full MTSU process performed
by ReDSUNN is summarized in Algorithm 1.

Since the cost function is non-convex, the initialization
of the parameters can have an important impact on the

solution. The parameters of the neural networks o, LSTMg’rW,

LSTMgaCk, and the matrices V. and Vy are initialized
randomly using Glorot initialization [88]. W, and Wy
are initialized with zeros, and 8 = o = ay = 1.
M was initialized using the vertex component analysis (VCA)
algorithm [89], and o, = 0.0001 (corresponding to an SNR of
about 35dB for spectra with standard deviation 0.5). For the
parameters of the initial prior and variational posterior PDFs,
we initialized the means v(, vow and ;""p with zeros, and the
variances y, y(l)/f and €Y with ones, making the initial PDFs
standard Gaussians.

T N N
LO. ¢, 3) =D D Eoytenstrnly 1108 P Gilenss W)} = D KL (46(€n0, Wanoly,) | Po(€no, W)

t=1 n=1

n=1

T N
- Z ZEqd’(C”v’_l’wn,t*”X;«,) { KL (q(ﬁ(cn,lv ¢n,t|cn,lfla 'ﬁn,t—] ) Xn)HPG (c}’l,tv Wn,t|cn,lfl’ 'ﬁn,t—]))} . (40)

t=1 n=1
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Algorithm 1 ReDSUNN

Input : HIs y,,...,yp, hyperparameters P, K and o.
Initialize 6o and ¢o as described in Section V-C ;
Use Adam [87] to maximize E(Q, ¢,y) w.r.t. both ¢ and 6 ;
forn:L...,Nd(l o

Compute €n,0,% 0 as the means of gg(cn,0,%n 0lY,,)

using (35);

Compute the by 1,. ..
6 fort=1,...,7 do
7 Compute €, ¢, @n’t as the means of

qqﬁ(civ'd)t'at*l: wt—lvg) using (44) and (45) ;

AW N =

n

s ho, 7 using (41), (42) and (43) ;

end
9 end

10 Set @n,¢ = 7(En,t), Mpt = Mo® (1+ Dvec ' (9h,,,)) ;
1 Output: @n ¢, My, forn=1,...,Nandt=1,...,T.

TABLE I
VARIABLES TO BE ESTIMATED AND NUMBER OF PARAMETERS

Generative model (6)

Mo LP
or 1

a P(P + 1)R,,
ve vy ey 2K +1)P

Variational posterior (¢)

LSTME™, LSTME | 8(K + 1)P((K + 1)P + L + 1)

a1, az, B 3

W, Ve 2(P%(K +1))
Wy, Vi 2(KP%(K + 1))
cev, gev 2(K + 1)P

D. Model Complexity and Comparisons

We now summarize the parameters of the generative model,
of the variational posterior, and their dimensionality (i.e., the
number of parameters that have to be inferred). This can
be seen in Table I. To compute the number of parameters
corresponding to the LSTMs, we note that each LSTM has
four input-hidden weight matrices, four hidden-hidden weight
matrices, and four biases (where the input is of size L,
and the hidden state of size (K + 1)P). It is instructive
to compare the amount of parameters to other methods in
the literature. By using a Markovity assumption, a shared
posterior distribution for all pixels, and an RNN posterior
parametrization, the amount of parameters to be learned by
ReDSUNN in Table I does not scale with either N or T,
differently from previous methods such as OU [7] or the
HBUN [9].

VI. RESULTS

The performance of the proposed ReDSUNN algorithm
is evaluated using simulations with synthetic and real data.
We compare our method with the fully constrained least
squares (FCLS), online unmixing (OU) [7], HBUN [9],
and with a Kalman filter and expectation maximization-
based strategy (referred to simply as Kalman) [8]. The EMs
used by FCLS were extracted by the VCA algorithm at
each time instant [89]. The reference EMs required by the
Kalman method, and the initialization for the EMs in OU,
HBUN and for the proposed method were all set with
the signatures obtained by applying VCA to the matrix
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TABLE I
QUANTITATIVE RESULTS OF THE SIMULATIONS USING SYNTHETIC DATA

NRMSE4 NRMSEps SAMps NRMSEy  Time
Data Sequence 1 — DS1
FCLS 0.537 - - 0.086 2.7
ou 0.434 0.342 0.260 0.051 24.9
HBUN 0.479 0.355 0.162 0.050 542.6
Kalman 0.356 0.124 0.076 0.061 2422.8
ReDSUNN  0.318 0.117 0.075 0.089 479.0
Data Sequence 2 — DS2
FCLS 0.500 - - 0.122 7.3
OouU 0.335 0.256 0.120 0.055 60.6
HBUN 0.474 0.515 0.141 0.050 2166.0
Kalman 0.659 12.222 0.496 0.108 5937.4
ReDSUNN  0.294 0.203 0.289 0.160 1231.3
[ RLXNT f db :
Yidre-sYnr---2IYNT] E ormed by concatenating

the HI pixels for all time instants.

The abundances and EM scaling factors estimated by
ReDSUNN are set according to Algorithm 1. The hyperparam-
eters of all algorithms were adjusted so as to obtain high abun-
dance reconstruction performance. For ReDSUNN, parameters
K and oy (which are not optimized) were searched within
the ranges K € {I,...,10} and oy € {107>,...,0.1,1},
and R,, = 2 layers were used to parameterize function
0,4(+) in (18). For the other algorithms, their parameters were
selected in the ranges indicated in their original publications.
The proposed method was implemented in Pytorch (codes will
be available at https://github.com/ricardoborsoi/ReDSUNN).
The remaining methods were implemented in Matlab (codes
were provided by the original authors). All experiments were
run in a desktop computer with an Intel Xeon™ W-2104 CPU
with four 3.2GHz cores and 24GB of RAM. No GPU was
used in the simulations. ReDSUNN, OU and Kalman used
parallelization in their implementations.

The quantitative performance of the algorithms was
evaluated using the average normalized mean squared
error (NRMSE), between the abundances, EMs, and
reconstructed HIs, which are computed as NRMSE, =

-~ 1/2
(AT SN N, — @nl?/lal?)?, NRMSEy =
(i o N IM,, M, %)M, %)%, and

NRMSEy = (F 302 X0y |yae — Mo @) /1y,012)",
where @,, and M,, denote the estimated abundances
and EMs. To evaluate the EMs, we also computed the
average spectral angle mapper (SAM) as SAMy =

T =
_1 T N P mn,r.jm"’faj . .
TNP Zt:l ;n:l Zj:l arccos (mﬂm . 1I1. Wthh
my,, ; and m,, ; are the true and estimated EM signatures
for time ¢, pixel n and EM j.

A. Simulations With Synthetic Data

Two synthetic datasets were considered with spatiotemporal
abundance and EM variability. The first dataset, referred to as
Data Sequence 1 (DS1), contains P =3 EMs and T = 6 HIs.
The HIs are generated from sequences of abundance maps
with N = 50 x 50 pixels containing localized abrupt changes
for t € {2,3,4,5} (depicted in the first row of Figure 5).
The EMs for each pixel and time instant were generated as
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Fig. 5. Estimated abundance maps and ground truth for DS1, shown as
composite color maps (that is, the abundances of the EMs #1, #2 and #3 are
represented as the red, green, and blue color channels).

follows. First, three signatures with L = 224 bands were
selected from the USGS library and used as a reference EM
matrix. Then, for the first time instant (+ = 1), spatial EM
variability was introduced by following the model in [44],
in which the EMs in each pixel (M, 1, n = 1,...,N)
were generated by multiplying the reference signatures with
piecewise linear random scaling factors with amplitude in
the interval [0.85, 1.15]. For each subsequent time instant
t > 1, the EMs were also generated as scaled versions of the
reference spectral signatures. However, to introduce temporal
EM variability, the scaling factors at time ¢ are defined to
be the sum of the scaling factors at time ¢+ — 1 plus random
piecewise linear functions in the range [—0.1, 0.1]. Samples
of the generated EMs can be seen in Figure 6. These EM
matrices M, ; are then used to generate the HI pixels using
the LMM (1), with the measurement noise r,; being white
and Gaussian with an SNR of 30 dB. The second dataset,
referred to as Data Sequence 2 (DS2), contained P = 4
EMs and N = 50 x 50 pixels. A sequence of abundance
maps generated randomly according to a Gaussian random
field and containing small, spatially compact abrupt changes
was considered to generate 7 = 15 HIs. To introduce realistic
spectral variability, the EM signatures at each pixel and time
instant were randomly selected from a set of pure pixels of
water, vegetation, soil and road that were manually extracted
from the Jasper Ridge HI, with L = 198 bands. The HI
sequence was then generated according to the multitemporal
LMM (1), with the r,; being white Gaussian noise with
an SNR of 30 dB. The parameters of the ReDSUNN were
K =10 and oy = 107> for DS1, and K =2 and oy, = 1077
for DS2. The quantitative results are presented in Table II,
while the visual results (only shown for DS1 due to space
limitations) are depicted in Figures 5 and 7.

1) Discussion: It can be seen from Table II that ReDSUNN
achieved the best abundance estimation performance for both
datasets. OU and HBUN achieved consistent but intermediate
results, while the performance of the Kalman filter was
good for DS1 but very poor for DS2. The FLCS, which
does not take temporal information of spatial EM variability
into account, did not perform very well, having the worse
abundance reconstructions on average for both datasets. From
the estimated abundances in Figure 5, it can be seen that
ReDSUNN’s results are the closest to the ground truth.
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Fig. 6. True EMs for the DSI1, sampled over space, for time instant
t = 3 (top), and over time, for pixel n = 1 (bottom).
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Fig. 7. Estimated EMs for the DS1, sampled over space, for time instant
t = 3 (top), and over time, for pixel n = 1 (bottom).

However, the results for all methods were relatively noisy.
The abundances recovered by the Kalman filter, OU and
HBUN indicated more heavily mixed pixels. FCLS achieves
reasonable performance for ¢+ < 4, but led to a completely
wrong estimation for + = 6. The changes occurring in the
ground truth abundances can be observed in the estimations
of all methods, although they are more clearly visible in the
Kalman and ReDSUNN results since these methods led to a
larger separation between the different materials. The visual
abundance results for DS2 (not shown due to space limitations)
were qualitatively similar to those of DS1, with the exception
that the Kalman filter failed to identify the soil EM for all
images in the sequence, which explains its poor performance.

The ReDSUNN method also obtained the best EM
estimation performance all metrics except for the SAM in DS2,
in which OU achieved the best result followed by HBUN.
The Kalman filter obtained good results for DS1 (close to
ReDSUNN), but poor results in DS2. This happened despite
the Kalman filter obtaining reasonable image reconstruction
errors NRMSEy for both DS1 and DS2. Samples of the true
and estimated EMs in Figures 6 and 7 (only shown for DS1
and for ReDSUNN due to space limitations) indicate that
the EMs are correctly recovered. However, there are some
differences, particularly in the shape of the first EM (which
show higher amplitude in the ground truth compared to the
estimates). Moreover, the amount of variability was lower in
the retrieved EMs compared to the ground truth; this occurs
for the synthetic examples since the hyperparameter o, which
controls the flexibility of the EM model, was selected to
provide the best performance in terms of NRMSE4, leading
to relatively small oy values. This is further illustrated in the
experiments shown in Section VI-B.

The lowest image reconstruction errors (NRMSEy) were
obtained by OU and HBUN, while those obtained by
ReDSUNN were similar to those by FCLS. This is expected,
since NRMSEy is closely related to the number of learnable
parameters of each algorithm, and is not directly related
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Fig. 8. Abundance RMSE as a function of hyperparameters K and oy, for
DS1 (left) and DS2 (right).

TABLE III
QUANTITATIVE RESULTS FOR THE LAKE TAHOE HI SEQUENCE

FCLS ou HBUN  Kalman ReDSUNN
NRMSEy 0321  0.058 0.054 0.185 0.114
Time 16.1 92.5 3381.9  4607.7 2857.2
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I

Fig. 9. True color depiction of the Lake Tahoe HIs and their acquisition
dates.
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Fig. 10. Estimated EMs for the Lake Tahoe Hls, sampled over space, for

time instant ¢+ = 3 (top), and over time, for pixel n = 1 (bottom).

to the abundance or EM reconstruction performance. This
explains the higher reconstruction error by ReDSUNN since,
as discussed in Section V-D, the shared parametrization
of the variational posterior PDF leads to a relatively low
number of parameters, which also helps to mitigate overfitting.
Nonetheless, for the synthetic data sequences (DS1 and DS2)
ReDSUNN still has between 30% and 50% more learnable
parameters than OU. Its parametrizaition becomes significantly
more favorable when the images have a larger amounts of
pixels, such as in the experiments with the Lake Tahoe images
presented in Section VI-C. The computation times show a
clear separation between FCLS and OU, which were faster,
and HBUN, the Kalman filter and ReDSUNN, which took
longer to run. This indicates that the proposed method has
a competitive computational performance when compared to
more complex algorithms.

B. Sensitivity Analysis

To measure the influence of different hyperparameters on
the performance of the method, we evaluated how NRMSE 4
varied as a function of the hyperparameters, namely, the
number of basis vectors for the variability model, K, and
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the innovation standard deviation of the EM variability
parameters, oy,. The results for both DS1 and DS2 can be seen
in Figure 8. It can be seen that for DS1, the performance of
ReDSUNN is not heavily affected by the number of bases K
within the evaluated range. However, oy, has a larger impact on
the result, with smaller values leading to a lower NRMSE4.
For DS2, smaller values for both parameters generally lead
to lower NRMSE4 results, although there performance varied
more with K and oy. For both datasets, small variations of
these parameters around the optimal values lead to similar
results. In general, the larger the value of oy, the more
temporal EM variability is allowed by the model, whereas
the larger the value of K, the more complex the spatial and
temporal EM variability the model can represent. Devising
a methodology to automatically tune these parameters is an
interesting question for future work.

C. Simulations With Real Data

To evaluate the performance of the algorithms on real
data, we considered the Lake Tahoe HI sequence, which was
originally described in [7]. It consists of a sequence of T = 6
images acquired over the Lake Tahoe area by the AVIRIS
instruments, which are depicted in true color in Figure 9. Each
HI contained N = 16500 pixels, and L = 173 bands were left
after the removal of low-SNR and water absorption bands. This
scene contains P = 3 predominant EMs, consisting of soil,
water and vegetation, and considerable changes on the lake
and on the crop circles can be observed between the images.
The parameters of the ReDSUNN were set as K = 3, oy, =1,
while the parameters of OU, HBUN and of the Kalman filter
were selected as described in their original publications. The
recovered abundances are depicted in Figure 11, while the
recovered EMs (only shown for ReDSUNN due to space
limitations) are shown in Figure 10. The reconstruction errors
and the processing times are presented in Table III.

1) Discussion: From Figure 11, it can be seen that
the FCLS method did not achieve a good performance in
general, particularly for the fifth image in which there was a
considerable confusion between the soil and vegetation EMs.
The remaining algorithms achieve more stable performance
due to taking the temporal information into account. The
OU and the HBUN algorithms (both of which use the
PLMM [44] model to represent the temporal endmember
variability) behaved similarly to each other. Although these
methods performed more stably than the FCLS, they still
presented considerable water abundances outside of the lake
region, which are predominantly composed by soil. The
performance of the Kalman filter method was relatively poor
for the third, fourth and sixth images (in which the area of
the lake is small), and contained a considerable amount of
artifacts. This happens since the Kalman filter method assumes
the abundances to be constant over time when estimating the
EMs. Consequently, it is not able to handle large abundance
changes in the image sequence. The abundances estimated
by ReDSUNN, on the other hand, showed a clear separation
between the different materials, adequately capturing the
abundance changes occurring in the HIs. Moreover, larger
concentrations of mixed pixels were observed in regions that
are meaningful, such as at the drying edge of the lake in
the third image, and in some parts of the crop circles. The
EMs recovered by ReDSUNN show considerable variability in
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Fig. 11.

soil and vegetation spectral, particularly over space, while the
water spectra shows little variability. Moreover, the variability
of the EMs can be spectrally localized, which can be observed
most clearly in the temporal signatures of soil. Moreover,
spatial EM variability was more significant than temporal
EM variability. Note that the EM variability was also more
significant in this example compared to the experiments with
synthetic data since a larger value for the hyperparameter oy,
was selected.

The results in Table III show that HBUN and OU
obtain the smallest reconstruction errors (NRMSEy), while
those obtained by Kalman and ReDSUNN, which have less
learnable parameters, were larger, with FCLS having the
largest NRMSEy. The ratio between the computation times
were similar to the synthetic examples, with the Kalman
filter being the slowest and the OU the fastest among the
MTHU methods that account for temporal information, and the
proposed ReDSUNN method achieving intermediate results.
This indicates that the methods scale similarly with the
image size. Nevertheless, developing more efficient MTHU
algorithms is an interesting subject for future work.

VII. CONCLUSION

This paper proposed a multitemporal hyperspectral unmix-
ing method based on a variational recurrent neural network.
A low-dimensional, dynamical state space model was
presented to represent the spatial and temporal variations
of the endmember spectra by expanding it over a small
set of spectrally smooth basis vectors. The dynamics of
the abundances were modelled using a Dirichlet distribution,
which was approximated as a Gaussian in the softmax
basis in order to improve the efficiency of the inference
process. Based on this generative model, variational inference
was considered to perform unmixing by approximating the
posterior distribution of the abundances and endmembers. The
Markov and independence properties of the model were also
used to improve the efficiency of the solution. The posterior
distribution was parameterized using a combination of a
simple, physically interpretable, model and LSTM recurrent
neural networks to improve flexibility while maintaining
the physical interpretability of the abundances. In the
proposed framework, all parameters were computed using
stochastic backpropagation. Experimental results indicate that
the proposed algorithm achieves better unmixing performance
when compared to state-of-the-art methods, at a similar
computational complexity, using both synthetic and real
datasets.

Estimated abundances for the water (left panel), soil (central panel) and vegetation (right panel) EMs of the Lake Tahoe HIs.

APPENDIX A
COMPUTING THE TERMS IN (40)

Due to the (conditionally) Gaussian assumptions in the
generative model and in the variational posterior, the three
terms inside the expectations in (40) can be computed
analytically. The first term in (40) is the log-likelihood
of a Gaussian PDF, which can be computed from (22).
The second and third terms are KL divergences between
Gaussian PDFs, which can be computed using the general
result for two Gaussians of dimension D, given by

KL (N (i1, Z0) |V (s, £2)) = 5 (log {4 —D+tr{ ;' 1)+

(my — ;L])Tzz—l (o — [L])). The second (resp., third) term are
thus computed substituting the mean and covariance from (35)
and (20), (21) (resp., (33) and (18), (11)) in the expression
above by using the fact that ¢, ; and ¥, , are independent in

the generative model. For more details, see, e.g., [90].
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