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1  INTRODUCTION

Among the ever-expanding toolbox of methods for providing positioning in mod-
ern technology, few are as continually prevalent as global navigation satellite sys-
tems (GNSSs) (Borre et al., 2007; Hofmann-Wellenhof et al., 2007; Kaplan, 2006; 
Morton et al., 2021; Pany, 2010). As the GNSS research community continues to 
expand and investigate innovative ideas to increase the availability, precision, and 
reliability of these systems (Amin et al., 2016; Closas et al., 2017; Dardari et al., 2015 
2011; Kassas et al., 2019), one technique that has been gaining traction is “collabora-
tive” positioning (Garello et al., 2012; Huang et al., 2015 2014; Minetto et al., 2017). 
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In collaborative positioning, information is passed between and processed by mul-
tiple collaborators, with the goal of minimizing interference and achieving high 
levels of positioning accuracy for each or some of the collaborators. The application 
of obtaining highly accurate location values in an environment that involves mul-
tiple collaborators has expanded in conjunction with emerging technologies such 
as smart cities and intelligent transportation systems technology (Alsamhi et al., 
2019; Laoudias et al., 2018; Tahir et al., 2018; Williams et al., 2022). Additionally, 
technologies embedded with GNSS receivers, such as smartphone and vehicular 
communication systems, have expanded by incorporating collaborative position-
ing frameworks in order to enhance the accuracy of positioning performance by 
mitigating the errors observed for standalone GNSS, for instance, in the context of 
cooperative vehicular networks (Alam & Dempster, 2013), for COVID-19 contact 
tracing purposes (Minetto et al., 2022), to exploit a massive number of users for 
enhanced differentiation schemes (Calatrava et al., 2023), to exploit neighboring 
user positions (Hernandez et al., 2023), or to distributedly learn jammer classifiers 
(Wu et al., 2023).

Although these techniques may be desirable for their increase in precision, it 
may not always be advisable to expose information that might be used to identify 
a user’s location to collaborators, as this information may become vulnerable to 
wireless and cyber attacks. Previous studies have researched the vulnerability of 
such systems that depend on user position and location information. In aviation 
systems, instrumental landing systems that depend on precision approach sys-
tems may become vulnerable to wireless attacks that may change the instructions 
provided by the system to the pilot (Ranganathan & Capkun, 2017; Sathaye et al., 
2019). As advances continue, it appears that everyday technology is increasing its 
dependency on proximity-based and location-based technology to make everyday 
tasks easier; however, this technology may become defenseless to certain attacks 
(Ranganathan & Capkun, 2017). In certain situations, these attacks may access the 
data layer of the system and modify the distance on which these systems depend. 
Thus, researchers are interested in the task of keeping a user’s location private 
while performing the computations necessary to determine the user’s position at 
a remote location from GNSS observables. By making a user’s location private, a 
collaborative positioning framework may prevent an outside adversary, who is not 
part of the framework, from infiltrating a framework to collect user information. 
Moreover, this approach will account for a honest but curious user, or an untrusted 
user, who partakes in such a framework with the objective of obtaining user infor-
mation. By addressing these privacy concerns, users will be encouraged to partake 
in a collaborative positioning framework, similar to those mentioned above.

Multiple approaches have been proposed for addressing privacy concerns in 
location-based applications, as well as different perspectives on where these pri-
vacy concerns may occur (Chen et al., 2017). For instance, Lohan et al. (2022) pro-
posed a perturbation method that depends on random noise that is suitable for 
proximity-detection-based services and applications that rely on the relative dis-
tance between two receivers. Before broadcasting an approximated location to the 
server, a user may control the level of perturbed noise to add to its location values, 
while satisfying the noise threshold criteria. With this approximated location, the 
server can identify other users near this location. It was found that the privacy of 
the proposed mechanism depends on the level of accuracy; a more accurate loca-
tion requires less inserted noise. Additionally, the proposed mechanism depends 
on external services and applications. Holcer et al. (2020) identified three locations 
in which location privacy-preserving mechanisms are used: on the device, in trans-
mitted data, and at on-server locations. A common approach for addressing privacy 
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concerns for on-server locations is -differential privacy, which maintains a user’s 
information within a statistical database (Feng et al., 2019). While the -differential 
privacy method provides user privacy, a user’s position may still be exposed within 
the application server.

In this work, we evaluate three different approaches to address the task of pre-
serving user information. The first method is not based on encrypted communi-
cations, and it is shown to limit the exposure of a user’s information. With this 
method, the only possible information leakage entails the user’s position uncer-
tainty, but not the user’s position information. This position uncertainty could be 
accessed by a user’s collaborative partner and an eavesdropping adversarial user. 
The second method utilizes regular encryption methodologies in order to main-
tain the privacy of information transmitted between users within the framework. 
We discuss how this approach prevents a third party from eavesdropping on the 
communication flow to learn about the cooperative users’ position uncertainty, as 
well as their positions. The encrypted data possess properties that allow sensitive 
information to be concealed, and because of these properties, the encrypted data 
can be broadcast to one or more collaborators without compromising the message’s 
content. This effectively prevents an outside observer from obtaining any valuable 
information from an encrypted message. Additionally, with an encryption scheme 
method, a user does not depend on an external server, such as a localization server 
that can access a user’s measurements, to compute its position. While this approach 
maintains the message’s integrity against external adversarial users, vulnerability 
arises when the recipient of the encrypted data decrypts it, subsequently exposing 
their collaborative counterpart’s position uncertainty information. Therefore, the 
third approach exploits the use of “homomorphic” encryption schemes for private 
cooperative positioning (CoPo). This approach retains the same benefits as the 
second approach, the regular encryption approach, while providing the additional 
feature that cooperative users cannot learn the position uncertainty or position 
of their peers. By using homomorphic encryption, certain elementary mathemat-
ical operations may be performed on encrypted data, or ciphertext, resulting in an 
encrypted output which, when decrypted, is identical to that which would have 
been computed had encryption not been employed. The benefit of this property is 
that the manipulations required for collaboration can be performed in a way that 
does not expose the details of the operation, either at the input or the output, to the 
user performing the manipulations.

In our preliminary work (Hernandez et al., 2020), homomorphic encryption 
was proposed to leverage privacy in collaborative and differential GNSS (DGNSS) 
schemes. The current article extends that previous work by broadening the dis-
cussion toward different approaches of privacy-preserving methods, including a 
non-encryption scheme and two encryption-based schemes. In parallel, the dis-
cussion is also expanded to the applicability of a weighted least-squares (WLS) 
algorithm, while considering the least-squares (LS) algorithm as a particular 
case. Additionally, the complexity aspects of each approach are discussed, provid-
ing a deeper experimental discussion based on simulated GNSS observable val-
ues obtained by an “open-sky” environment, and each approach is also analyzed 
using real-world data. In summary, the objective of this article is to demonstrate 
how each of these different approaches can provide a relevant satellite navigation 
scheme for situations in which private data (i.e., user position) must be shared 
and to expand the discussion on how these approaches can serve as a protocol for 
achieving such privacy in single-difference positioning.

This article demonstrates that the approaches employed in satellite naviga-
tion can effectively address privacy-preserving concerns within single-difference 
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positioning, as well as potentially other CoPo schemes. The CoPo algorithm may 
utilize these privacy-preserving schemes to generate estimates for position, velocity, 
and time (PVT) values. These estimates are derived from information exchanged 
with neighboring users, resembling code-phase DGNSS schemes, while also incor-
porating privacy-preserving features. These methodologies leverage a single pseu-
dorange difference that cancels the effects of certain impairments (i.e., tropospheric 
delay and ionospheric delay) between two receivers (Gogoi et al., 2019). The two 
receivers, or users, compute the position of the other user while using one of these 
privacy-preserving approaches to perform the computations securely. Afterward, 
they return the results to the respective user so that each user can determine its 
final estimated position.

As part of the simulation process, the required computations are performed 
locally at each receiver, leveraging the data of others. Thus, with respect to user 
privacy, the variables involved in the WLS (and LS) algorithm should remain pri-
vate and be sent to the users responsible for computing the PVT solution. When the 
different methodologies that provide privacy are used in a WLS problem (in this 
case, the PVT computation), the results are expected to be the same as those for a 
WLS problem with a non-privacy-preserving scheme in place. Within the simula-
tion process, consideration is given to what was briefly described, and the results 
will establish a concrete understanding that utilizing a secure protocol has little to 
no effect in terms of performance degradation while adding an important layer of 
privacy to the user accessing the service. Parallel to this idea, the problem with the 
non-privacy-preserving scheme will serve as a base for comparing the accuracy of 
the results to the cases in which a privacy-preserving scheme is implemented.

The remainder of this paper is organized into three main sections. Section  2 
details a CoPo scheme and its implementation of the WLS and LS algorithms. 
Section  3 provides some technical background on homomorphic encryption, 
which is required in order to implement the private CoPo scheme. In Section 4, 
the three approaches for preserving privacy between collaborating peers are pre-
sented. Subsequently, in Section 5, the results of simulated and real-world data are 
discussed to validate the three privacy-preserving schemes, and conclusions are 
drawn in Section 6.

2  COPO METHODOLOGY

A positioning scheme is described in which two arbitrarily close receivers 
exchange code-phase GNSS observables such that they can remove atmospheric 
errors by combining those measurements. Under such a scheme, pseudoranges 
measured by two receivers (denoted by n  and m  indices) are subtracted, in the 
vein of standard DGNSS schemes, with the particularity that none of those receiv-
ers have accurate knowledge of their own position and that each receiver benefits 
from the process (i.e., no base station is present). The remainder of this paper lever-
ages this CoPo scheme to propose an approach that preserves privacy among these 
collaborating users; that is, the CoPo scheme can be implemented without the n-th 
user being able to infer the position of the m-th user, and vice versa.

The remainder of this section details the formulation of the aforementioned 
CoPo scheme to later describe how it can be practically implemented in three 
alternative schemes. Namely, a non-encryption, a regular encryption, and a homo-
morphic encryption implementation can be leveraged to preserve privacy among 
participating users, each providing increasing levels of privacy to the participating 
users as discussed in Section 4.
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2.1  DGNSS as a CoPo Scheme

A GNSS receiver processes signals to compute the pseudorange and carrier phase 
measurements for L  visible satellites. Let us assume that two nearby receivers (n 
and m) are able to receive their respective navigation signals from the same set of 
satellites, as shown in Figure 1, to compute the pseudorange observable. As an 
example, the n-th receiver is modeled as follows:
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By computing the difference between the pseudoranges observed by two neigh-
boring receivers, a new observable can be obtained that is free of the common 
troposphere- and ionosphere-associated delays: 
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FIGURE 1 In differential positioning, all receivers observe navigation signals from the same 
set of satellites.
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In general, the combined pseudoranges are modeled as a nonlinear function of 
the unknown position and clock offset of the receivers: 

	 ��� ��( , ) ( ) ( )( , )n m n m� �h x x � (5)
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L  is a mapping from position and time unknowns 
to combine pseudoranges, which makes this a difficult problem to solve in general. 
However, the mapping is known and given by the following1: 
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One can take a first-order Taylor expansion to linearize the problem at some arbi-
trary points µµ0
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Here, x  gathers both x ( )n  and x ( )m ,  and H x� �h( ) denotes the derivative of 
h( )⋅  with respect to x,  which can be computed as H H H� �[ , ]( ) ( )n m , where we 
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Once the problem in Equation (5) is linearized, it can be easily solved analytically 
through an iterative LS procedure. To do so, the terms are rearranged as follows: 
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where H H H� �[ , ]( ) ( )n m  can be split into the terms associated with each receiver.
Solving for ( )ˆ mx  in Equation (11) as a WLS problem and assuming that the n-th 

receiver has an estimate of ( )ˆ ,nx  the WLS estimate for the m-th receiver can be 
readily computed as follows: 
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1[a]i denotes the i-th element in vector a. [A]i,j denotes the {i, j}-th element in matrix A.
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where ( )( ) ( , ) ( ) ( ) ( )
0ˆ( ).mn n m n n m= − +T y H x H µ  Similarly, we have the following: 
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that solving this WLS problem requires knowledge of the pseudorange variances of 
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In the case of the LS problem, the measurements are assumed to be independent 
and identically distributed such that the covariance matrix of the measurements is 
diagonal, R I�� 2 .  Thus, we obtain the following: 
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A similar approach is considered for the estimated value of the n-th receiver, 
( )ˆ .nx  With this approach, it is possible for receivers to estimate their PVT values. 

For the situation in which each receiver is substituted for a user and each user 
shares their own measurements as described by the procedure, this process does 
not account for user privacy. Therefore, we present three possible schemes imple-
menting a differential positioning scheme that addresses this privacy concern at 
different levels in Section 4, namely, a non-encrypted scheme, a regular encryption 
scheme, and a scheme using homomorphic encryption.

3  HOMOMORPHIC ENCRYPTION RUDIMENTS

Homomorphic encryption schemes fall broadly into three categories: partially 
homomorphic encryption (PHE), somewhat homomorphic encryption (SWHE), 
and fully homomorphic encryption (FHE). The distinctions between each of these 
categories are based on the type and number of operations that may be performed 
on a piece of encrypted data before it is unrecoverable via decryption. In a PHE 
scheme, encryption is limited to only one operation performed over ciphertexts 
(encrypted data): addition or multiplication. In contrast, an SWHE scheme limits 
the number of operations performed, but allows both addition and multiplication 
to be performed over ciphertexts. Finally, in many ways combining the advan-
tages of both PHE and SWHE, FHE schemes can be used to perform an unlim-
ited number of both addition and multiplication operations over ciphertexts (Acar 
et al., 2018)

Research on FHE schemes has expanded substantially since the first functional 
scheme was introduced by Gentry (Gentry, 2009; Gentry et al., 2013; van Dijk 
et al., 2010). Since then, many have used the Gentry blueprint to develop newer 
FHE schemes based on the learning-with-errors (LWE) problem. In general, FHE 
schemes are computationally expensive and complex during a multiplication oper-
ation, and a few researchers have attempted to minimize these common issues. 
Within the proposed privacy-preserving CoPo approach, the Brakerski, Fan, and 
Vercauteren (BFV) scheme is taken into consideration (Brakerski, 2012; Fan & 
Vercauteren, 2012). The BFV scheme used herein describes the process for con-
verting an SWHE scheme into a FHE scheme.

An encryption scheme generally consists of three main algorithms; the key gen-
eration algorithm KeyGen(⋅), an encryption algorithm Enc(⋅), and a decryption 
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algorithm Dec(⋅). To gain a better understanding of these algorithms, it is benefi-
cial to examine the case in which the n-th user seeks to communicate with the m-th 
user in a private manner. The n-th user generates a set of public and private keys 
through the use of the KeyGen(⋅) algorithm. The n-th user must distribute its public 
key to the m-th user, but never distributes its private key, thus solely maintaining 
access to its private key. With the n-th user’s public key, the m-th user may now 
conceal its message and send this hidden message to the n-th user. The process of 
using a public key to hide a message is considered the encryption process, which is 
accomplished through the encryption algorithm Enc(⋅). Therefore, the encryption 
algorithm takes a message as input and produces a ciphertext (the encrypted mes-
sage) as output. When the n-th user receives the hidden message from the m-th 
user, the n-th user also receives the ciphertext. With the ciphertext and its private 
key, the n-th user is able to retrieve the message within the ciphertext. The process 
of retrieving the message within a ciphertext with the private key is the decryption 
process, which is performed during the decryption algorithm, Dec(⋅).

In addition to concealing a message, an FHE system will support one or more 
mathematical operations. In such a system, the operator can be applied to the 
encrypted form of a set of arguments, and the desired result is attained by decryp-
tion. Specifically, denoting encryption by Enc(⋅), decryption by Dec(⋅), and an oper-
ator by f ( , )⋅ ⋅ ,  the following holds for homomorphic encryption: 

	 Dec Enc Enc( ( ( ), ( ))) ( , )1 2 1 2f m m f m m= � (17)

for two messages m1  and m2  (van Dijk et al., 2010). That is, the function can be 
applied to encrypted data, which are then decrypted, and yield the same result as 
when privacy is not considered. The types of functions supported (typically mul-
tiplication and addition) depend on the considered cryptosystem (van Dijk et al., 
2010).

The BFV scheme follows this approach. This scheme contains the three algo-
rithms, KeyGen(⋅), Enc(⋅), and Dec(⋅), and it supports the operations (multipli-
cation and addition) used for the CoPo scheme. The BFV scheme uses two sets 
of rings, one for the plaintext and the other for the ciphertext. The polynomial 
ring R x f x=[ ]/ ( ( )),  where f x x( ) [ ]∈  is a monic irreducible polynomial of 
degree d. A popular choice for f x( )  is xd +1,  a cyclotomic, where d n= 2 .  The 
ring R  contains coefficients from the set of integers ( /2, /2]−q q ,  denoted as q ,  
where q>1.  Therefore, Rq  denotes the set of polynomials in R  with coefficients 
in q .  From this, we have both the plaintext polynomial space and the ciphertext 
polynomial space, denoted as Rt  and Rq ,  respectively.

In the encryption process, a plaintext polynomial serves as the input, and a new 
polynomial is generated, incorporating random coefficient values. These two poly-
nomials are then added together, resulting in a modified version of the original 
polynomial. The generated polynomial, considered as noise, plays a critical role in 
ensuring the required security and performing various operations. The plaintext 
polynomial is then mapped to the ciphertext space to attain a ciphertext.

During the decryption process, the ciphertext is reverted back to the plaintext 
polynomial via the private key, and the noise is simultaneously removed. It is possi-
ble to obtain an incorrect decryption when the noise observed during the encryption 
process exceeds a certain noise threshold. The noise increases when operations are 
performed on the ciphertext; thus, if the noise remains under the noise threshold, 
the original plaintext polynomial is successfully obtained. However, if the noise 
exceeds the threshold, the plaintext polynomial will differ from the original plain-
text polynomial, leading to an incorrect decryption.
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The BFV scheme supports ciphertext addition and multiplication operations. 
When two ciphertexts are added together, the coefficients of the underlying poly-
nomials are added in a coefficient-wise manner. As a consequence, the noises of 
each polynomial are combined, resulting in an increase in the overall noise level. 
This noise is measured in terms of bit size. With the addition operation, the noise 
will increase by approximately one bit. During the multiplication operation, the 
polynomials are multiplied by a polynomial multiplication technique. Similarly, 
the amount of noise increases at a rapid rate, which will cause the amount of noise 
to increase by several bits.

Certain parameters influence the noise threshold level and, in parallel, the secu-
rity of the system. The main parameters include the polynomial degree, the mod-
ulus parameter for the polynomials, and the security parameter. The polynomial 
degree, denoted as n, has a crucial role in determining both the computational 
cost and the size of the polynomials for the plaintext and ciphertext. Increasing the 
polynomial degree results in larger polynomials, enabling more complex computa-
tions but also leading to a higher computational cost.

The plaintext modulus parameter, denoted as t, provides the range of the plain-
text coefficients. As t  increases, the range of coefficients expands. Similarly, the 
ciphertext modulus parameter, denoted as q, affects the range of coefficients in 
the ciphertext. These two parameters significantly impact the noise level and noise 
threshold.

When t increases, the result from a computed operation will be large. Consequently, 
the noise level, or noise growth, increases at a higher rate compared with when t is 
smaller. In contrast, the q parameter impacts the noise threshold. Increasing q will 
increase the ciphertext coefficient range, therefore allowing a higher acceptable 
amount of noise, thus increasing the noise threshold. Furthermore, when consider-
ing the value of q, the bit size should be similar to the polynomial degree, n. If n is 
larger than q, there will be an unnecessary increase in the computational complex-
ity. Conversely, if n is much less than q, then the level of computation capability 
becomes limited.

The security level, denoted as λ, impacts the scheme security by determining the 
noise introduced to the polynomial during the encryption process. As the secu-
rity level increases, the noise magnitude becomes larger for the generated random 
polynomial. This noise increase also increases the computational capacity and the 
resources required for an adversary to break the scheme. However, as the noise 
magnitude increases, q must increase in order to raise the noise threshold. It is 
important to emphasize that λ, n,  and q are not independent. When considering 
security, there is a trade-off between n and q; for more security, n is increased but 
q must decrease. The aspect of computational complexity must also be considered. 
To reduce the complexity, both n and q must be small. Lastly, the accuracy depends 
on q: as this value increases, the outcome becomes more accurate.

Additional technical details can be found in Appendix  A, which further dis-
cusses the relevant parameters and addition/multiplication operations within the 
homomorphic encryption frameworks.

4  PRIVACY-PRESERVING COPO METHODOLOGY

This section details three implementations of the CoPo scheme discussed in 
Section 2. Namely, we implement 1) a scheme that leverages a convenient rear-
rangement of Equation (14) and that does not employ encryption techniques, 
2) a scheme that adds encrypted communications to the former, and 3) a scheme 
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that implements a protocol in which homomorphic encryption is used to provide 
an additional degree of privacy. A simple illustration of each scheme is shown in 
Figure 2. This section also discusses the privacy features of each approach as well 
as the attack models that they can each handle. In collaborative processes, each 
user computes a portion of the other’s position in a private manner and commu-
nicates it back to its peer in an iterative process that mitigates the effect of atmo-
spheric errors.

4.1  Non-Encryption Approach

Here, a “privacy-aware” modification to the CoPo scheme previously described 
in Section 2 is proposed, in which each user can obtain an enhanced PVT solution 
after combining the pseudorange by solving Equations (12) and (14). The first mod-
ification assumes that users have the capability to perform the required computa-
tions and are able to partake in the collaborating component while users can enjoy 
the benefits afforded by CoPo without exposing their position to other adversarial 
or curious users.

To ensure a comprehensive understanding regarding which data are shared 
between users, Equation (14) is rearranged as follows:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )

-th receiver -th receiver

ˆ ˆ( )n n n n m m m

n m

= − −x A y A y H x
 

  � (18)

where: 

	 y y y( , ) ( ) ( )n m n m� �  � (19)

	 y H( ) ( ) ( )
0
( )

0
( )( )n n n n n� � ��� �� ��h � (20)

	 y H( ) ( ) ( )
0
( )

0
( )( )m m m m m� � ��� �� ��h � (21)

	 A H R H H R( ) ( ) 1 ( ) 1 ( ) 1( )n n n n� � � �  � (22)

FIGURE 2 Three different schemes that maintain user privacy 
(a) In the non-encryption scheme, the m-th user sends b( )m  to the n-th user. (b) In the regular 
encryption scheme, the n-th user shares its public key Pk( )n  with the m-th user, and the m-th user 
sends b( )m  encrypted. (c) In the homomorphic encryption scheme, the the n-th user shares its 
public key Pk( )n  with the m-th user and also sends A( )n  encrypted. The m-th user then proceeds 
to encrypt its own data using Pk( )n ,  computes the corresponding terms in Equation (24), and 
sends the encrypted matrix/vector product to the n-th user.
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Here, the two 4-dimensional vectors in Equation (18) only carry information of 
the corresponding user.

Locally, to compute A( )n ,  the n-th user requires knowledge of its R( )n  and the 
other user’s R( )m  covariances, and vice versa. Therefore, this process requires both 
users to share that information. To alleviate this requirement, an unweighted LS 
solution, as in Equation (16), could be considered, in which case the matrix can be 
computed as A H H H( ) ( ) ( ) 1 ( )( )n n n n� �  .

Let b( )m  denote the data shared by the m-th user with the n-th user, as shown 
in Equation (18), with ( ) ( ) ( ) ( )ˆ .m m m m= −b y H x  This is the only information that 
must be transmitted, as shown in Figure 2. As for the dimensions of these param-
eters, b( )m  is an L-dimensional vector, and A( )n  has dimensions of 4× L.  The L 
parameter value is the number of available satellites that are shared between the 
two users, with L ≥ 4.

The non-encrypted collaboration shown in Equation (18) does not provide 
any information regarding the positions of the n-th and m-th user, because no 
information about the n-th user is ever sent and b( )m  only has residual infor-
mation from which ( )ˆ mx  cannot be inferred, respectively. However, this scheme 
does leak information regarding the position uncertainty of the m-th user. 
Potentially, if K  instances of that vector { }( )

1bk
m

k
K
=  were available for a user 

(the n-th user or an eavesdropping third user), the uncertainty ( )ˆCov( )mx  could 
be inferred as 1

=1
( ) ( )

K k
K

k
m

k
m∑ b b   if K > 4.  Therefore, while the position infor-

mation could be preserved, these approaches (i.e., non-encrypted or regular 
encryption) still leak information about a user to a certain extent through the 
position uncertainty of the user. This leakage could be undesirable for certain 
sensitive applications in which this information might need to be kept secret 
because it could itself leak information about the position of the user (e.g., low 
uncertainty might indicate that the user is in a good-visibility area, which could 
help pinpoint its location, or might provide an indication regarding the type 
of sensors and algorithms on board, which again could potentially be used to 
determine the user’s identity).

4.2  Encryption Approach

In this scheme, we propose to preserve the access to b( )m  by encrypting its trans-
mission. To consider a secure communication link between the n-th user and m-th 
user, one approach is to use an encrypted method, where the ability to perform 
any computation within the encrypted domain is not required (Katz & Lindell, 
2007). Using this encrypted method will allow the data shared between users to be 
encrypted, thus concealing the data transfer between users. The regular encryption 
can be seen as a message being encrypted by a public key, thus converting a mes-
sage to become encoded and then again converted to a ciphertext. The decryption 
aspect would involve a process similar to encryption: with a private key, the cipher-
text is decrypted and then decoded to the message that was encrypted (Katz & 
Lindell, 2007). This process is described in Section 3, with the exception that any 
computation can be performed on a ciphertext. Using this scheme with the CoPo 
approach will involve encrypting b( )m :

Dec Enc( ( ))( ) ( )b bm m=

The procedure for using regular encryption in the CoPo approach will require 
the n-th user to create the public and private keys, denoted as Pk( )n  and Sk( )n ,  
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respectively. After creating these keys, the n-th user will share its public key with 
the m-th user. It is important to note that the distribution of the public key Pk( )n  
occurs once, and this key is required when any desired data are sent in an encrypted 
manner to the n-th user. Following the procedure shown in Section 4.1, the n-th 
user will compute its parameters A( )n  and y( )n  locally, while the m-th user will 
compute its parameter b( )m  locally. Once the m-th user computes its parameters 
and obtains the public key from the n-th user, Pk( )n ,  the m-th user encrypts b( )m  
with Pk( )n  and sends these encrypted data to the n-th user. It is worth emphasiz-
ing that the encryption process entails encrypting each individual element within 
b( )m ,  thus generating ciphertexts for each element. A more detailed process is 
presented in the next subsection. When the n-th user receives the encrypted data, 
Enc( )( )b m , this user will use its private key, Sk( )n ,  to decrypt the encrypted data 
and obtain b( )m ,  which should be the same as if the m-th user never encrypted it. 
Similar to the encryption process, the decryption process includes decrypting every 
ciphertext that represents the element entry of b( )m .  With the decrypted data, the 
n-th user will then proceed with the process of computing its position, as shown in 
Equation (18), which can be rearranged as follows: 

	 ( ) ( ) ( ) ( ) ( )ˆ ( ( ))n n n n m= − bx A y A Dec Enc � (23)

As discussed in Section 3, encrypting the data will not have an impact on the 
data itself; therefore, Equations (18) and (23) are equivalent, while the data trans-
mission is changed, as shown in Figure 2. By implementing an encryption method, 
any eavesdropping adversarial users will be prevented from inferring the uncer-
tainty on ( )ˆ mx  if they intercept Enc( )( )b m .  However, this information might still 
be revealed to the n-th user, as this user has access to b( )m  as in the non-encrypted 
scheme.

4.3  Homomorphic Encryption Approach

The third alternative scheme implementing Equation (18) aims at preserving the 
privacy of b( )m  from not only an eavesdropper but also the cooperative user n. An 
alternative approach for ensuring the privacy of sensitive information among coop-
erative users involves the utilization of homomorphic encryption. Using homomor-
phic encryption will allow addition and multiplication operations to be performed 
on ciphertexts, the encrypted data, without leaking any sensitive information. 
Similar to the previous two approaches, the implementation of homomorphic 
encryption will yield identical results, as the exact same formula (Equation (18)) 
is applied. The only difference is in the shared information in which the user com-
putes certain elements, as shown in Figure 2.

The key distribution is similar to that in the encryption approach shown in 
Section 4.2. The n-th user creates a set of public and private keys, denoted as Pk( )n  
and Sk( )n ,  respectively. The n-th user will proceed in sharing its public key with the 
m-th user. As an overview, the m-th user will be tasked with solving Equation (14) 
in an encrypted manner without leaking information about the n-th user. Once 
the task is completed by the m-th user, the m-th user returns the encrypted results 
to the n-th user, who is then able to decrypt and compute ( )ˆ .nx  As a consequence, 
when implementing a homomorphic encryption scheme with the following:

	 Enc Enc Enc( ) ( ) ( )( ) ( )
( )

( )
( )

( )
( )A An m

n
n

n
m

n� � �b b
Pk Pk Pk

� (24)
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where b( )m  is the same parameter used in the previous two methods, this process 
will actually solve for the user’s dependent calculations in Equation (14).

After the n-th user transfers its public key Pk( )n  to the m-th user, the m-th user 
will encrypt its data, b( )m ,  using the public key Pk( )n .  Additionally, the n-th user 
also encrypts its data, A( )n ,  and sends these encrypted data to the m-th user, as 
shown in Figure 2. Before the encryption process, each element entry of A( )n  and 
b( )m  is first encoded to a fixed-point representation. As the number of bits allo-
cated to the integer and fraction part increases, the value becomes more precise. In 
Figure 3, the encoder result is represented by y, where the positive exponent value 
represents the allocated bits for the integer and the negative exponent values rep-
resent the allocated bits for the fraction portion. After the encoding process, each 
value is then converted to a plaintext polynomial, xn +1.  Once in the plaintext 
polynomial form, the polynomial is converted to a ciphertext by the encryption 
process. The decryption will follow the inverted process.

The m-th user will perform the computation in Equation (24) locally. As previ-
ously stated in Section 4.1, b( )m  is an L-dimensional vector and A( )n  is a 4× L  
matrix when they are not encrypted, and L  is the number of available satellites 
shared between the two users. When the two users share the same four observed 
satellites (i.e., L = 4),  there is a risk that the n-th user will be able to obtain the 
position uncertainty of the m-th user by simply sending A I( )n =  and receiv-
ing b( )m  directly in return. Therefore, to avoid this risk, the number of shared 
observed satellites must be greater such that L> 4.  Once the number of shared 
observed satellites is greater than 4, then the n-th user would not be able to 
obtain b( )m  from A b( ) ( )n m  because this is an undetermined system in which L  
unknowns are to be inferred from 4 measurements. Therefore, because A( )n  is not 
a full-column rank matrix rank( ) 4 <( )A n L≤ ,  it yields to infinitely many solutions 
if ( ) ( )( ) 1 ( ) ( )A A bn n m−  is attempted. This fact protects the m-th user against the n-th 
user knowing its position uncertainty. Thus, homomorphic encryption becomes a 
feasible option, and the operations that the m-th user performs within the encryp-
tion domain are supported by the BFV scheme, as it can perform the required mul-
tiplication and addition operations.

After computing Equation (24), the m-th user then returns the encrypted results 
to the n-th user, as shown in Figure 2. When the n-th user receives the encrypted 
results, using its secret key Sk( )n ,  the n-th user decrypts the results and solves for 

FIGURE 3 For a message m to be encrypted, it must first be encoded. Once the value is 
encoded, the encoded value is converted into a plaintext polynomial within the plaintext 
polynomial ring Rt. Afterwards, this plaintext can be converted into a ciphertext. To decrypt the 
ciphertext, a similar process is applied: the ciphertext is first decrypted into a plaintext and then 
decoded to recover the message.
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Equation (14). In Figure 3, the ciphertext results are reverted back to a plaintext 
polynomial form ( )xn +1  via the decryption algorithm and the appropriate secret 
key. This plaintext polynomial is then sent to the decoder, which decodes y. The 
decoded outcome is the original plaintext form. After the process is complete, the 
results should be the same as if all of the computations were performed via an 
non-encrypted method. A similar approach is required to calculate Equation (12).

Lastly, the complexities of the two encryption schemes are considered and com-
pared with that of the non-encrypted scheme. The non-encrypted scheme must 
perform the same number of operations, i.e., 



 � �A( ) ( )[ , ] [ ]n mj b .  This will lead 
to a complexity of ( )L .  Here, the worse-case scenario was used because the com-
putation will require the use of all of the observed satellites, i.e., L. The complexity 
for the regular encryption scheme will be the same because, after Enc( )( )b m  is 
decrypted, the computation requisite will be identical, as in the first scheme. As 
for the homomorphic encryption approach, the operation first takes into consid-
eration the polynomial degree value, which is the same for both the plaintext and 
ciphertext. Secondly, the number theoretic transform (NTT) is used to perform the 
polynomial multiplication operation. Using this method will allow the multipli-
cation of a polynomial to have a complexity of ( )nlogn  (Harvey, 2014). Thirdly, 
the number of polynomials considered in a ciphertext, i.e., log q,  also impacts the 
complexity. With the NTT method and considering the number of observed satel-
lites between the users, each user’s computation complexity is ( ( ) )2Ln n qlog log .

In terms of transmitting data between users, the non-encrypted approach will 
require the least amount of data compared with the other approaches. In this 
approach, only the b( )n  parameter is transmitted; therefore, the storage complex-
ity will be ( )L ,  strictly depending on L. For the regular encryption approach, 
the encrypted b( )n  parameter is transmitted. Because the element entry within 
b( )n  has a ciphertext size of polynomial degree n  and a log q  number for the 
ciphertext, the message will have a storage complexity of ( )Ln qlog .  The result 
for the homomorphic encryption approach is similar to that of the encryption 
approach, with the exemption of the A( )n  parameter. When the n-th user trans-
mits its encrypted A( )n ,  it originally has 4× L  elements, with each having its own 
ciphertext. Therefore, a message would have a storage complexity of ( )Ln qlog .  
The worse-case scenario is evaluated for all of the approaches, as they will require 
all of the element entries of b( )n  for the first approach and the encrypted elements 
for the second and third approaches to be transmitted.

4.4  Attack Models

The three models address the privacy of collaborating users against any adversar-
ial user not participating in the collaborative framework and also among participat-
ing collaborative users. From the prospective of when an adversarial user desires to 
obtain information from any of the participating users, the privacy approach will 
distinguish between the non-encryption method and the two encryption methods. 
For the non-encryption method, the adversarial user is capable of obtaining access 
to the data being transmitted between the two users. The issue for the adversarial 
user is that the information exchange between the n-th user and m-th user will 
be of no value if its objective is to obtain any valuable positioning information for 
either user. Because b( )m  is the only information that is made public, the adver-
sarial user will only obtain the information of the m-th user’s position uncertainty. 
Therefore, the confidentiality of the m-th user’s position is maintained, eliminating 
the potential for any adversarial user or the n-th user to access that information. 
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Furthermore, the n-th user’s position information will not experience any risk from 
this adversarial user, as no information from the n-th user is shared or made public.

In the regular encryption and homomorphic encryption schemes, the privacy 
is enhanced such that no information is leaked to any adversarial user outside 
of the framework. Suppose the m-th user sends the n-th user its encrypted infor-
mation, Enc( )( )

( )b m
nPk
,  and an adversarial user intercepts this encrypted mes-

sage. The adversarial user will receive an encrypted message and will not be able 
to decrypt the message without the n-th user’s private key. Similarly, when the 
homomorphic encryption approach is employed, an adversarial user could poten-
tially access the encrypted solution transmitted by the m-th user to the n-th user, 
Enc Enc( ) ( )( )

( )
( )

( )A n
n

m
nPk Pk

b⋅ ,  and the adversarial user will not be able to decrypt 
the message for the same reason. As a result, the n-th user and m-th user data will 
remain private at all times against any adversarial user that attempts to infer sensi-
tive information (e.g., their locations) based on communications between the two 
users. There is also the consideration of an adversarial user that poses as a collabo-
rating user, which follows the latter privacy concern discussed below.

Let us assume the case in which the m-th user is an adversarial user and estab-
lishes a connection with the n-th user. The adversarial user seeks to obtain more 
information about the n-th user’s location or other valuable information that may 
help in determining the location of the n-th user. The argument is the same as that 
for an adversarial user who does not participate in the collaborative approach when 
the non-encryption method is used. Because the n-th user does not make any of its 
information public, it will never risk having its information compromised. For the 
regular encryption scheme, the argument is the same: the n-th user never shares 
any information with the m-th user. For the homomorphic encryption scheme, the 
n-th user transmits A( )n  in an encrypted manner; however, because the n-th user 
is the sole holder of the private key that is needed to decrypt any encrypted infor-
mation and the private key is never distributed, the possibility that the m-th user 
will decrypt the ciphertext and obtain the message within is negligible.

We also consider the case in which the n-th user is an adversarial user. The 
non-encryption scheme will have the same argument as before when the trans-
mitted information is already made public; therefore, when an adversarial user 
disguises itself as the n-th user, the situation is equivalent to the case of an external 
user that attempts to infiltrate the collaborative framework. For the two encryption 
methods, the n-th user will have access to the private key and to all of the encrypted 
data. In the regular encryption approach, the adversarial user will proceed in creat-
ing a set of keys and will share them with the m-th user. The m-th user will encrypt 
its data and send the data to the adversarial user, who poses as the n-th user. With 
the private key, the n-th user will obtain the position uncertainty of the m-th user. 
As stated before, this will not provide the adversarial user any valuable information 
regarding the position of the m-th user. 

For the homomorphic encryption case, the n-th user (the adversarial user) fol-
lows the original procedure, as described above: the n-th user sends the m-th user 
its encrypted data, and the the m-th user performs the encrypted calculations 
in Equation (24) and returns the encrypted results to the n-th user. Because this 
approach follows the constraint of L> 4,  after the n-th user decrypts the results, 
the n-th user will not be able to determine the correct values of b( )m .  Therefore, the 
n-th user (the adversarial user) will not obtain any valuable information about the 
m-th user’s location. Still, the m-th user will need to encrypt its information, b( )m ,  
using the n-th user’s public key because the m-th user is required to perform the 
encrypted operations in Equation (24). Although the m-th user always assumes 
that the n-th user is not an adversarial user, for both encryption methods, the 
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m-th user can be confident that valuable information about its location will not be 
exposed in the case that the n-th user is an adversarial user.

A summary of the privacy-preserving capabilities of the three schemes is pro-
vided in Table 1, which shows an increasing level of privacy and implementation 
complexity from non-encryption as the simplest scheme to homomorphic encryp-
tion as the scheme that arguably requires the most resources.

5  RESULTS

This section presents an analysis of the non-encrypted and encryption-based 
CoPo schemes, as well as a comparison with the classical non-cooperative PVT 
solution implemented as iterative LS and WLS algorithms. The objectives of this 
analysis were i) to verify that the cooperative (DGNSS) scheme indeed reduces the 
impact of ionospheric delays on pseudoranges even when the encryption scheme 
is employed, as opposed to the benchmark non-cooperative solution, ii) to gain an 
understanding of the relevant parameters in the homomorphic encryption scheme, 
as utilized in the CoPo solution, iii) to demonstrate the use of the homomorphic 
encryption scheme and validate its performance and privacy features, and iv) to 
demonstrate the use of these methods with real-world data. The subsections below 
address these objectives.

5.1  CoPo Scheme

A simulator that replicates an open-sky environment in which users are able to 
obtain GNSS observable measurement values without any obstruction or multipath 
was used. The benchmark was simulated to obtain noisy observable pseudorange 
measurements, with a standard deviation of approximately 10 m, and observation 
values from 30 available satellites were utilized. The simulator was set to observe 
this large amount of satellites (rarely seen in practical DGNSS setups) in order to 
account for the case in which both users observe the maximum number of possible 
satellites, thus leading us to explore the maximum number of values that must be 
set as private and of the computations needed in the encrypted domain. This case 
was applied to further understand the impact of the operations performed in the 
encrypted domain for the homomorphic encryption scheme. Furthermore, an eval-
uation was conducted to assess the impact of the ionospheric effect on the mea-
surement values. For the (ionosphere-free) WLS algorithm case, the ionospheric 
delay was removed.

TABLE 1
Summary Table of the Information That Can Be Potentially Leaked From User m to Either an 
Eavesdropping Agent or the n-th User

Eavesdropper privacy n-th user privacy 

Scheme x�(m) Cov(x�(m)) x�(m) Cov(x�(m)) RT 

non-encryption ✓ ✗ ✓ ✗ ✓

regular encryption ✓ ✓ ✓ ✗ ✓

homomorphic encryption ✓ ✓ ✓ ✓ ✗

Note: The primary information indicates either the user’s position x�(m) or the associated position 
uncertainty Cov(x�(m)). A check denotes that the quantity is kept private, while a cross refers 
otherwise. The table also shows the real-time (RT) readiness of each approach, given the 
corresponding complexity.
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Figure 4 shows the cumulative density function (CDF) of the positioning error for 
all of the methods mentioned above: i) The benchmark method, that is, the case with 
the WLS (ionosphere-free) non-CoPo solution. This corresponds to the weighted 
standard point positioning (SPP) method. ii) The same SPP non-cooperative WLS 
method with ionospheric perturbations. Based on Figure 4, the ionospheric delay 
skews roughly 90% of the PVT quantities by approximately an additional 10 m. 
The objective was to reduce the ionospheric effect by using a cooperative scheme 
and produce PVT values that mirrored the PVT values seen within the benchmark 
case. iii) The SPP non-cooperative LS method with and without the ionospheric 
error effect. These solutions assumed that the noise variance was the same for the 
observed values, thus reducing the accuracy of the results. iv) The case of the CoPo 
scheme (without a privacy-preserving scheme) with WLS and LS algorithms in 
the presence of ionospheric delays. The scheme with the WLS algorithm provided 
values similar to those in the benchmark scenario, virtually eliminating the ion-
ospheric error effects. v) The implementation of the privacy-preserving schemes 
under ionospheric errors. Given that the non-encryption and regular encryption 
approaches did not have a direct impact on the computation of the CoPo aspect, the 
results were the same as the CoPo results (with no privacy-preserving scheme) and, 
to some extent, to the results obtained when the CoPo scheme incorporated homo-
morphic encryption. The privacy-preserving scheme that included homomorphic 
encryption had the same results, depending on its encryption parameters. Here, 
the encryption parameters were set as follows: a polynomial degree n  of 4096, a 
security parameter λ  of 128, and a plaintext modulus value t  of 5003. Using these 
encryption parameters for the homomorphic encryption allowed the ciphertext 
values to stay within the noise threshold (thus being decryptable) when L  was set 
to 30. This indicates that 30 satellites were equally observed by the users.

As analyzed earlier in Section  2, the ionospheric error delay can be reduced 
when the pseudoranges measured by two receivers (n-th and m-th users) are sub-
tracted from one another in the CoPo scheme. As briefly mentioned, in contrast to 
the WLS approach, the LS approach assumes that the measurement noise variance 
is the same, which caused the results to be less accurate. This result was seen in 
both the cooperative and non-cooperative approaches. This finding indicates that 

FIGURE 4 Positioning error comparison of the benchmark non-cooperative scheme with 
and without ionospheric disturbances and the proposed cooperative scheme with and without 
privacy layers
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if users are able to obtain this information, then the accuracy will be improved, but 
this may not always be the case.

In the analysis of the three privacy-preserving schemes within the CoPo scheme, 
the results were expected to replicate those of the standard CoPo scheme. Therefore, 
we labeled these results as “Privacy CoPo” in the plots, as they are equivalent with 
regard to positioning performance. With the non-encryption privacy-preserving 
scheme, the results were exactly the same, as nothing was truly altered. For the 
regular encryption scheme, the approach simply hid the message within a cipher-
text; the message consisted of the b( )m  quantities sent by the m-th user to the 
n-th user. After receiving the encrypted message, the n-th user decrypted the mes-
sage, but the process of determining the estimated PVT quantites of both users 
remained the same as the standard CoPo solution. The homomorphic encryption 
scheme instituted a caveat whenever the ciphertext exceeded the permissible noise 
threshold. Whenever this situation occurs, the outcome of the decryption process 
of that ciphertext will decrypt a value differing from the original value. Therefore, 
this approach requires a further analysis to be explored, with the impact that the 
encrypted parameters enable the homomorphic encryption to produce reliable 
estimated PVT values.

5.2  Homomorphic Encryption Parameters

Although the homomorphic encryption CoPo method obtained results similar to 
the benchmark and the CoPo method, this did not hold true for lower polynomial 
degree values (n), with higher security parameters (λ) and high plaintext modulus 
values (t). As mentioned above and as shown in Figure 4, the privacy-preserving 
CoPo method will produce the same results as the benchmark, as long as the 
ciphertext does not exceed the noise threshold. The ciphertext noise level was ana-
lyzed via the Pyfhel library for different encrypted parameters (Ibarrondo & Viand, 
2021). Two polynomial degree values were used: n = 4096  and n = 8192.  Values 
higher than 8196 added more than enough computational capacity and increased 
the storage complexity, as discussed in Section 3, to perform all of the computations 
needed for the CoPo scheme with the implementation of homomorphic encryption 
to satisfy the noise constraints of the encryption method.

In Figure 5, the noise level results are shown to reach the noise threshold for dif-
ferent security parameters (λ), while the polynomial degree ( )n = 4096  remains the 

FIGURE 5 Increase in noise level for different values of t and λ for a polynomial degree value 
n = 4096  
When the noise level reaches the threshold for a specific configuration, the ciphertext cannot be 
correctly deciphered. For large security parameter values λ, there is a higher likelihood of this 
case arising as the modulus value increases.
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same for all cases. As observed earlier, as the security parameter increases (indicat-
ing an increase in the security of the ciphertext) and the plaintext modulus value 
increases, the capacity to perform a certain number of operations in the encryption 
domain begins to decrease. As discussed in Section 3, increasing the plaintext space 
or allowing for higher coefficient values will expand the plaintext ring, therefore 
increasing the number of polynomials to which an encoder can be mapped. This 
feature becomes important during the encoding process. The downside of having 
high plaintext coefficient values is the increased noise level within the ciphertext. 
The ciphertext modulus value depends on the security parameter; increasing λ  
will limit the amount of operations that can be performed on the encrypted mes-
sage. Based on Figure 5, the ciphertext’s noise level increases sublinearly. It can be 
observed that the noise threshold is the lowest for a security parameter value of 
256 compared with the other two values. This result indicates that the coefficient 
modulus value of the ciphertext is much smaller. Decreasing this value limits the 
ciphertext coefficient values; if operations are repeatedly performed on these coef-
ficient values, the coefficients will reach their upper bound. It is ideal to operate 
under the ciphertext’s noise threshold in order to maintain a correct decryption. 
For a security parameter value of 128, the ciphertext’s noise level did not reach 
the ciphertext’s noise threshold, indicating that all of the polynomial values in this 
domain are valid for correctly decrypting the message within the ciphertext.

Similar to Figure 5, the ciphertext’s noise level was also analyzed and com-
pared with its noise threshold as the polynomial degree increased to 8192 (refer 
to Figure 6). It can be observed that as the polynomial degree increased, the noise 
threshold of the ciphertext also increased. It is important to note that the noise 
increase rate remained the same compared with the case in which the polynomial 
degree value was 4096, giving a reassurance that a higher polynomial degree can be 
a solution toward correctly decrypting the message within a ciphertext. The results 
shown in Figure 6 capture this evidence, as the ciphertext’s noise level remained 
below the noise threshold, with the same plaintext modulus domain. The cipher-
text noise level was also analyzed for a polynomial degree value of 16384. The noise 
level was consistent with the other two cases; the differences in the ciphertext noise 
thresholds are summarized in Table 2.

Although increasing the polynomial degree increases the privacy of the cipher-
text, this comes with a computational complexity cost. Table 3 provides a summary 
of the time consumption for different polynomial degree values. In particular, the 
table shows the average execution time of the homomorphic encryption applied 

FIGURE 6 Increase in noise level for different values of t and λ for a polynomial degree 
value of n = 8192  
Compared with n = 4096, the noise threshold increases, which enables more encrypted operations 
to be computed.
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to the LS algorithm in which the two users obtained their own pseudorange mea-
surements for L = 30  satellites (clearly an upper bound on the number of typically 
considered satellites) and L = 6  satellites. Recall that the LS algorithm is an iter-
ative process (approximately 5 iterations are typically sufficient for convergence); 
thus, the results show the average execution time until convergence. The algorithm 
was implemented in Python and run on an Intel(R) Core(TM) i7-8650U CPU @ 
1.90GHz platform; therefore, it is expected that a more optimized implementation 
would improve the execution time metrics.

The polynomial degree will not only expand the plaintext polynomial, but will 
also increase the ciphertext polynomial, which, in turn, increases the ciphertext 
size, thus increasing the computational complexity. The trade-off is as follows: on 
one hand, increasing the polynomial degree with a high security parameter will 
increase the computational complexity, which will increase the number of oper-
ations in the encrypted domain. In terms of security, this will demand that the 
ciphertext modulus be smaller. On the other hand, maintaining a small polynomial 
degree with a high security parameter will increase the likelihood of having a cor-
rupted message. Alternatively, having a small polynomial degree with a lower secu-
rity parameter will decrease the number of operations in the encrypted domain 
while still decrypting the message correctly, as evidenced by Figure 5.

TABLE 2
Noise Threshold Results For Different Security Parameters and Polynomial Degree Values

Security Param (λ) Polyn Degree (n) Noise Threshold log(q) 

128 

4096 109

8192 218

16384 438

192 

4096 75

8192 152

16384 300

256 

4096 58

8192 118

16384 237

TABLE 3
Average Execution Time of Homomorphic Encryption Applied to the LS Algorithm When L = 6  
and L = 30  Satellites Are Observed by Each User 

Number of Satellites (L) Polyn Degree (n) Average Execution Time (s) 

6 

2048 0.0491153

4096 0.1296411

8192 0.4144107

16384 1.6944951

30 

2048 2.48926928

4096 7.53169804

8192 25.07900775

16384 93.36147592

Note: The test was performed for four polynomial degree n values: 2048, 4096, 8192, and 16384. 
The security parameter � � 128  and plaintext modulus value t = 5003  remained constant for 
all cases.
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5.3  Homomorphic Encryption CoPo Scheme

In addition to analyzing the ciphertext noise level and comparing it with the 
noise threshold, the effects of the noise level on the CoPo scheme with the imple-
mentation of the homomorphic encryption scheme were also analyzed. Using 
a range of prime values for the plaintext modulus parameter and the additional 
encryption described above, the privacy-preserving CoPo scheme with homomor-
phic encryption provided the same results as the benchmark case. Table 4 provides 
a summary of these results.

When the noise level was below the noise threshold, indicating a correct decryp-
tion, the CDF values produced the same results as shown in Figure 4. From Table 4, 
this success is represented within the plaintext modulus values. For example, when 
the polynomial degree value was set to 4096 and the security parameter was set to 
192, valid plaintext modulus values were below 100003. Values below this bound 
produced the same results from the benchmark case, up to t = 5003.  A value below 
5003 caused rounding of the input message, resulting in reduced accuracy of the 
WLS and LS estimate values, whereas the same number of iterations per epoch 
as the benchmark case was needed to converge to the estimated PVT quantity. In 
contrast, when the noise level was above the noise threshold, the message within 
the ciphertext produced random values, causing the estimated PVT quantities to 
become random. Because each PVT quantity depended on the previous estimated 
quantity, the cascade of error continued to produce incorrect estimated values.

5.4  Experiments With Real-World Data

Upon obtaining the simulated results, we evaluated the performance of the 
privacy-preserving CoPo scheme, specifically the homomorphic encryption 
scheme, using data collected from two Android phones. These two devices acted as 
the two users in the CoPo scheme. In the experimental setup, the two devices were 
separated by approximately 321.9 m in an outdoor environment at the Northeastern 
University campus, Boston MA, as shown in Figure 7. Table 5 provides the recorded 
C N/ 0  values for each user across their common satellite IDs.

The GPS Measurement Tools were used to read and process data from the GNSS 
Logger App (Banville & Van Diggelen, 2016). The raw data were processed to obtain 
the following necessary information: the satellite ID list, time of reception, time of 
transmission, pseudoranges for each full time cycle of measurements, pseudorange 
error estimates, pseudorange rate, and pseudorange rate error estimates. With the 
possibility that each user observed different satellites and obtained invalid values 

TABLE 4
Valid Plaintext Modulus Ranges for the Values of n and λ Considered Here

Polyn Degree (n) Security Param (λ) Plaintext Mod (t) 

4096 

128 5003 ≤ t ≤ 1000000207

192 5003 ≤ t ≤ 10000439

256 5003 ≤ t ≤ 100003

8192 

128 5003 ≤ t ≤ 1000000207

192 5003 ≤ t ≤ 1000000207

256 5003 ≤ t ≤ 1000000207
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throughout the full cycle time of measurement, the processed data were syn-
chronized to have the same observed satellites. To synchronize the data between 
receivers, the shared satellite IDs were identified for each full cycle time of mea-
surement. Interpolation was used to account for any missing measurements, and 
invalid values were discarded. Furthermore, to obtain satellite information such as 
the transmission time, ephemeris files from the National Aeronautics and Space 
Administration’s archive of space geodesy data were retrieved. As a comparison 
method, the ionospheric delay was computed based on the ionospheric coefficients 
broadcast within the navigation message and the Klobuchar model, which was 
then used to remove that error from the pseudorange measurements. These results 
are labeled as “Iono-Free” in Figure 8.

Following a process similar to that for the simulator, the locations of both users 
were determined by using the privacy-preserving CoPo scheme and compared 
with the results of other positioning approaches. Figure 8 summarizes the results 
of the estimated position values for each of the methods: non-cooperative LS and 
WLS; ionosphere-free non-cooperative LS and WLS, where Klobuchar modeling 
was used; cooperative LS and WLS; and the privacy-preserving method in which 

TABLE 5
Minimum and Maximum C N/ 0  Values Observed by the Two Collaborative Users in the Real-
World Data Experiment 

Satellite ID n-th User [Min - Max] (dB-Hz) m-th User [Min - Max] (dB-Hz) 

3 [26.8 − 42.2] [23.5 − 46.5]

16 [16.8 − 28.7] [16.9 − 27.5]

25 [23.8 − 28.7] [16.8 − 23.5]

26 [21.4 − 38.2] [18.2 − 32.1]

31 [21.8 − 43.1] [29.1 − 44.4]

32 [20.4 − 46.7] [35.6 − 46.7]

Note: The users had six common satellites used in the CoPo scheme.

FIGURE 7 Geographic satellite image depicting the true locations of the n-th and m-th users 
for the setup used in the real-world data experiment at the Northeastern University campus, 
Boston MA 
The two users were separated by approximately 321.9 m.
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homomorphic encryption was implemented within the cooperative LS and WLS 
methods. Only the LS method was used in the homomorphic encryption domain 
because sharing the measurement variance of the users may raise privacy con-
cerns. The results in Section  5.1 indicated that the privacy-preserving coopera-
tive scheme, both with the non-encryption and regular encryption approaches, 
produced the same outcomes as the homomorphic encryption scheme when the 
ciphertext noise level was beneath its noise threshold. Therefore, homomorphic 
encryption was considered here. For the homomorphic encryption scheme, the 
encryption parameters were set to t � �5003, 128� ,  and n = 4096.  Similar to 
the simulated-data results, the privacy-preserving CoPo scheme with homomor-
phic encryption produced the same results as the cooperative algorithm (with 
no privacy-preserving scheme implemented). Additionally, the time complexity 
was similar to the case of n = 2048,  as shown in Table 3. With computing perfor-
mance constantly improving, this proof of concept may become practical in the 
near future. Nevertheless, the validity of this framework with current computing 
devices is limited to non-real-time and post-processing operations.

6  CONCLUSIONS

In this paper, multiple approaches were described for addressing the privacy con-
cern that arises when GNSS observables are shared between two receivers. When 
these two observables are combined together in the standard differential method, 
ionospheric errors are removed, which allows a more accurate knowledge for the 
receivers (n-th and m-th users) to compute their position. This scheme falls within 
the set of DGNSS or cooperative GNSS methodologies. The main concern arising 
from such collaborative schemes is the privacy leakage by which one could learn 
where other users are located through shared data. In this paper, three different 
privacy-preserving schemes are analyzed: a non-encryption scheme, a regular 
encryption scheme, and a homomorphic encryption scheme. The first scheme 

FIGURE 8 CDF of the positioning error obtained by using raw data collected from Android 
smartphones 
The case study compared non-cooperative LS and WLS (ionosphere-free), non-cooperative LS 
and WLS, cooperative LS and WLS, and the implementation of homomorphic encryption within 
the cooperative WLS and LS methods.
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maintains the user positions as private at all times, but exposes the user position 
uncertainty to eavesdropping adversarial users. The regular encryption scheme 
limits this exposure to only collaborating users. Still, the implementation of homo-
morphic encryption removes these two risks, but comes with a large computational 
consumption.

When these computational operations are performed within the encryption 
domain created by the homomorphic encryption scheme, the ciphertext noise 
must be taken into consideration to successfully decipher the message. Such noise 
is inherently added by the homomorphic encryption scheme and increases as oper-
ations are performed on the ciphertext. If the ciphertext noise level reaches a pre-
determined noise threshold level, the message will be corrupt, which will prevent 
decryption of the message. To reduce the likelihood of reaching the noise thresh-
old, a set of parameters (i.e., the polynomial degree, security parameter, and plain-
text modulus) must be considered in the system design. As shown by simulated 
and real-world data results, correct decryption comes with a high computational 
complexity cost. Ideally, smaller parameter values result in less computational 
complexity. Table 4 provides values that allow for correct decryption.

Indeed, homomorphic encryption may currently be computationally demand-
ing and impractical for real-time applications. This approach could be consid-
ered valid for non-real-time applications, such as those involving observables in 
post-processing or tracking non-critical assets. The research outlook shows that 
this approach could be readily available for more latency-adverse applications 
when advances in computing devices enable FHE and related solutions to be 
obtained more rapidly (Dampf et al., 2015). Alternatively, the other schemes dis-
cussed in this paper (non-encrypted and standard encryption) could be considered 
for latency-critical applications, although, as discussed, their privacy features are 
reduced compared with the homomorphic scheme.
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problem and its implementation, followed by a commentary on some of the rele-
vant parameters. Finally, some notes on the homomorphic properties under addi-
tion and multiplication of ciphertexts are given.

Definition 1 (Decision-RLWE (Fan & Vercauteren, 2012)). Given a security 
parameter λ, let f x( )  be a cyclotomic polynomial ΦΦm x( )  with def ( ) ( )f m��  
depending on λ and set R x f x=[ ]/ ( ).  Let q q� �( ) 2�  be an integer. For a random 
element s∈Rq  and a distribution � � �� ( )  over R, As,

( )
χ

q  denotes the distribution 
obtained by choosing a uniformly random element a ← Rq  and a noise term e ��  
and outputting ( , [ ] )a a s e� � q .  The decision RLWE- d q, ,χ  problem is to distinguish 
between the distribution As,

( )
χ

q  and the uniform distribution Rq
2 ←   

The polynomial ring R x f x=[ ]/ ( ( )),  where f x x( ) [ ]∈  is a monic irreduc-
ible polynomial of degree d. A popular choice for f x( )  is xd +1,  a cyclotomic, 
where d n= 2 .  This implies that the random variables are sampled as random 
polynomials with an indicated degree, defined by def ,( )f  where the m-th cyclo-
tomic number field is considered as ϕ( )m .  Additionally, the random element a  
is uniformly distributed from the set of polynomials within the ring R  that con-
tain coefficients in q .  Let q  denote a set of integers ( /2, /2]−q q ,  where q>1,  
and Rq  denote the set of polynomials in R  with coefficients in q .  According to 
Lyubashevsky et al. (2010), the shape of q  is independent of the hardness of the 
problem, and s  can be distributed from R2  as a polynomial of degree n. With ring 
R, the expansion factor limits the exponential coefficient growth and is defined as 
� R max R� � � �{ /( ) : , }     a b a b a b  (Fan & Vercauteren, 2012; Lyubashevsky & 
Micciancio, 2006). Furthermore, because the noise is distributed according to χ ,  
it is considered to be B-bounded if the support of χ  is in [ , ]−B B  (Brakerski, 2012; 
Fan & Vercauteren, 2012).

Definition 1 contains the ingredients needed to create the four main functions 
that define the BFV scheme, namely, SecretKeyGen, PublicKeyGen, Encryption, 
and Decryption. Note that the scheme itself does not include any homomorphic 
operations; instead, its main focus is on how to encrypt and decrypt a message. 
Additionally, these schemes depend on common parameters, denoted as θ here-
after, which include the security parameter (λ), polynomial degree (n), modulus 
value (t) of the plaintext coefficient, and modulus value (q) of the ciphertext 
coefficient, which are dependent on one another. Later, the homomorphic prop-
erties of this cryptographic scheme will be analyzed under certain operations 
such addition and multiplication. In the SecretKeyGen and PublicKeyGen algo-
rithms, a pair of private and public keys is created, respectively. These keys are 
required if the (n-th) user desires to encrypt and decrypt data. The public key is 
kept with the user that created the keys (n-th user) and is also distributed to any 
(m-th) user that wishes to communicate with the user that created the keys. The 
Encryption algorithm takes in as an argument this public key and the message 
and uses the public key to encrypt a message. The Decryption algorithm uses 
the private key to decrypt a message. A brief description of these functions, as 
detailed in Brakerski (2012); Fan & Vercauteren (2012), is provided here for the 
sake of completeness.

Encryption Scheme
•	 SecretKeyGen ( ):θθ  The secret key is sampled from χ .  The secret key is then 

set as Sk s� � � .
•	 PublicKeyGen ( ,θθ  Sk):  a  is uniformly sampled from Rq ,  and e  is sampled 

from the χ  distribution. The public key is set as follows: 

	 Pk a s e a� � � �([ ( )] , )q � (A1)
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•	 Encryption (Pk, m, θθ ):  Let m∈Rt  be the message to be encrypted, 
p Pk a s e0 [0] [ ( )]� � � � � q ,  and p Pk a1 [1]= = .  e1,  e2 ��  and u ← R2  are 
sampled. The ciphertext is generated as follows: 

	 ct � � � � � � �� �[ ] ,[ ]0 1 1 2p u e m p u e� q � (A2)

•	 Decryption (Sk, ct, θθ ):  Let s Sk= ,  c p u e m0 0 1[0] [ ]� � � � � �ct � q ,  and 
c p u e1 1 2[1]� � � �ct .  The ciphertext is decrypted as follows: 

	 m
c c s

� �
� � �

�
�

�
�
�

�

�
�
�

t

q
q

t

[ ]0 1 � (A3)

From the SecretKeyGen algorithm, the secret key (Sk) is created from the χ  
distribution, the same distribution used to generate the noise vector (e). This also 
indicates that the secret key polynomial coefficient values are within the domain 
of { 1, 0, 1}− .  As the size of the secret key (which depends on the polynomial degree 
parameter n) increases, it becomes more difficult for other users to recreate the 
secret key. Later, the impact of a large n  for the remainder of the cryptosystem will 
be explored.

As shown in the encryption process, the public key is required in order to encrypt 
a message. The message itself must reside within the domain of the coefficient 
of the plaintext, indicating that m∈Rt .  Increasing the value of t  will increase 
the plaintext space. With the public key, the additional noise polynomials, u,  e1,  
and e2 ,  and the value � � � �q t/ ,  the message is converted to ciphertext. All of 
the additional polynomials contain coefficients that are small, similar to the error 
polynomial (e) that exists within the public key. With the added noise, the cipher-
text obtains an initial noise level, which is seen within the decryption process. 
To recover the message within the ciphertext, the ciphertext noise level must not 
become too high, as this would cause the message to be corrupted and not recov-
ered. The noise threshold within the decryption process is discussed next.

The decryption process requires the secret key that was paired with the public 
key that encrypted the input ciphertext. With the secret key, the message is suc-
cessfully decrypted if the noise level of the ciphertext remains below the noise 
threshold. Again, the ciphertext noise comes from the error vectors, e1  and e2 ,  
introduced in the Encryption algorithm. If Equation (A3) is expanded in terms of 
the public key Pk  and if the noise variables are used, the total noise and upper 
noise bound within the ciphertext can be determined as follows:

	
c c s p u e m p u s e s

a s u e u e m a u
0 1 0 1 1 2

1

� � � � � � � � � � � �
� � � � � � � � � � � �

�
�

mod q
ss e s

m e u e e s
� �

� � � � � � �
2

1 2

mod
mod

q
q�

�
(A4)

Because the ciphertexts, c0  and c1,  consist of polynomial rings, the operations 
are polynomial addition and multiplication. From Equation (A4), the total noise 
is given by v e u e e s� � � � �1 2 .  Because e e e, ,1 2 ��  and u s, 2← R ,  the bound 
of the ciphertext noise is given by  v � � � �B R(2 1)� .  This upper bound is con-
structed from the expansion factor of the ring R  and the upper bound from the χ  
distribution, and the error polynomial coefficients must satisfy the norm as  r <1.  
Accounting for the noise and error terms, c c s0 1� �  is set as � � � � �m v rq ;  by 
applying this expression in the decryption expression (Equation (A3)), the follow-
ing is obtained: 
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Based on Equation (A5), where  � �q t/ <1� ,  the decryption will be successful 
if the rounding term ( / ) ( / ) <1/ 2t q q t� � �� � � v m� .  The term t ⋅r  vanishes 
with mod ,q  and lastly, m  must exist within Rt .  These results prove Lemma 1 in 
Brakerski (2012); Fan & Vercauteren (2012). Later, we will show how the ciphertext 
noise level increases with the number of homomorphic operations.

Encryption parameters. Based on the cryptosystem above, the following 
parameters have an impact on the size of the ciphertext or its noise level. The first 
parameter is the bit-length security parameter, λ. Roughly 2λ  computations are 
required for known attacks to determine the secret key; thus, as the security param-
eter increases, so does the computational cost for an attacker (Katz & Lindell, 
2020). The second parameter is the modulus value q  of the ciphertext coefficient, 
which creates a boundary of ( /2, /2]−q q .  As the boundary increases, the cipher-
text domain increases, allowing for more possible ciphertext options to be mapped 
to and enabling the ciphertext to support more operations, which consequently 
increases the noise threshold. Increasing q  does not signify any additional hard-
ness within the problem (Brakerski, 2012; Fan & Vercauteren, 2012). The plain-
text coefficient modulus, represented as the parameter t, creates the boundary 
( /2, /2]−t t  (Brakerski, 2012; Fan & Vercauteren, 2012). As the boundary increases, 
the plaintext polynomial also increases, and when noise is added, the noise level 
increases as well.

Homomorphic encryption under addition. When two ciphertexts are added, 
it can be observed that the messages within the ciphertexts are added as well, 
m m1 2+ .  At the same time, the noise of each of these ciphertexts is also added, 
such that the overall noise is the sum of the noise contained in each ciphertext, 
which is shown as follows: 

[ ] [ ]
([ ] , [ ]) ([

3 1 2

0 1 1,1 1 1 1 2,1 0 2 1

ct q q

q

� �
� � � � � �

ct ct
p u e m p u e p u e� ,,2 2 1 2 2,2

1 2 1 2 1,1 1,2 2

] , [ ])
[ ] ( ) ( ) (

� �
� � � � � � � �

�
�

m p u e
m m e u u e e e

q

t ,,1 2,2

1 2 1 2

)
[ ]

� �
� � � � � � � �

e s
m m v v r� t t

From the above expression, let m m m m r1 2 1 2[ ]� � � � �t t .  The summation 
of two ciphertexts will give the same result as m m1 2� �t ,  with the noise also 
increasing. For the noise metric, the noise will increase by 1 bit.

Homomorphic encryption under multiplication. The product of two cipher-
texts experiences a faster noise growth than the addition operation case. Lemma 2 
in Fan & Vercauteren (2012) and Brakerski (2012) provides an in-depth analysis of 
the multiplication operation. While skipping the technical details here for the sake 
of clarity, it is important to emphasize that the noise will increase, as observed for 
the addition operation, but will increase by multiple bits (Brakerski, 2012).


	Privacy-Preserving Cooperative GNSS Positioning
	Abstract
	Keywords
	1  Introduction
	2  CoPo Methodology
	2.1  DGNSS as a CoPo Scheme

	3  Homomorphic Encryption Rudiments
	4  Privacy-Preserving CoPo Methodology
	4.1  Non-Encryption Approach
	4.2  Encryption Approach
	4.3  Homomorphic Encryption Approach
	4.4  Attack Models

	5  Results
	5.1  CoPo Scheme
	5.2  Homomorphic Encryption Parameters
	5.3  Homomorphic Encryption CoPo Scheme
	5.4  Experiments With Real-World Data

	6  Conclusions
	Acknowledgments
	References
	Appendix
	A  Additional details on Homomorphic Encryption



