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Abstract

Given a flag variety Fl(n; ry, ..., r,), there is natural ring morphism from the symmetric
polynomial ring in r; variables to the quantum cohomology of the flag variety. In this paper,
we show that for a large class of partitions A, the image of s; under the ring homomorphism
is a Schubert class which is described by partitioning A into a quantum hook (or g-hook) and
a tuple of smaller partitions. We use this result to show that the Pliicker coordinate mirror
of the flag variety describes quantum cohomology relations. This gives new insight into the
structure of this superpotential, and the relation between superpotentials of flag varieties and
those of Grassmannians (where the superpotential was introduced by Marsh—Rietsch).

1 Introduction

The extension of mirror symmetry for Fano varieties beyond the toric context, where it is
well-understood due to foundational work by Hori and Vafa [12], Givental [10], Lian et al.
[18] and others, is an area of active research. Grassmannians and flag varieties are central
examples here, as Fano GIT quotients with a rich geometric and combinatorial structure.

One of the oldest proposals for a mirror, or superpotential, for the Grassmannian Gr(n, r)
was given by Eguchi et al. [7]. This was later generalized to type A flag varieties by Batyrev
et al. [1] (for simplicity, we refer to these mirrors as EHX mirrors). These proposals are moti-
vated by taking toric degenerations of Grassmannians and flag varieties, and then applying
toric methods to the singular fiber. However, the toric degeneration approach has not been
successful in proving required properties of these mirrors—partial verification was completed
for Grassmannian and flag varieties by Rietsch in [21] using the Lie theoretic superpoten-
tial, and a full verification for Grassmannians by Marsh and Rietsch [19] using the Pliicker
coordinate mirror.
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The Pliicker coordinate mirror for the Grassmannian is the most promising approach to
mirror symmetry beyond the toric context. This remarkable construction connects the earlier,
Lie theoretic proposals of the Grassmannian with the conjectures of the Fanosearch program
and the toric degeneration approach. Extending the construction beyond the Grassmannian is
thus an important problem. In [13], the second author introduces a conjectural Pliicker coor-
dinate mirror for type A flag varieties (see [23, 24] for recent progress on the subject in other
types). As a first test of its validity, the second author proves in [13] that the Pliicker coordi-
nate mirror is compatible with the EHX mirror. More is required, however: a superpotential
or mirror should compute quantum information about the variety—through determining both
quantum relations as well as certain genus 0 Gromov—Witten invariants.

In this paper, we prove a theorem in this direction. We show that partial derivatives of the
Pliicker coordinate mirror of a type A flag variety give quantum cohomology relations. To
state the result carefully, we need some more background.

The Pliicker coordinate mirror of the Grassmannian is a rational function on the Grass-
mannian. As for toric varieties, there is a map from the Cox ring of the Grassmannian (the
ring generated by Pliicker coordinates) to the cohomology ring of the Grassmannian. Pliicker
coordinates of the Grassmannian of quotients Gr(n, r) are indexed by the same set as Schu-
bert classes of the Grassmannian—i.e. by partitions fitting into an r x (n — r) box—and
this map takes the Pliicker coordinate p; to the Schubert class s, . Under this map, partial
derivatives of the Pliicker coordinate mirror give quantum cohomology relations [19].

Forn =:rpandr = (ry > -+ >r, > rpq1 :=0),let Fl(n;r) := Fl(n; ry,...,r,) be
the partial flag variety of successive quotients of C" of dimension r;. The Pliicker coordinate
mirror Wp of Fl(n; r) was proposed in [13]. The mirror Wp is arational function on a product
of Grassmannians ¥ = ]_[f=1 Gr(r;—1, ri), with the convention rg := n. See Definition 3.10
for the precise construction of Wp. More precisely, there are sets of algebraic independent
Pliicker coordinates on Y, called cluster charts, such that when Wp is expanded in a particular
cluster chart C, the resulting function Wp ¢ is a Laurent polynomial. See Sect. 3.1 for more
details on cluster charts. We index Pliicker coordinates on Y by pi, wherei =1,..., p and
A is a partition that fits into an r; x (r;_1 — r;) box.

Schubert classes of the Grassmannian are indexed by partitions, and Schubert classes o3
in a flag variety are indexed by tuples A= (A,...,Ap) of partitions. To interpret partial
derivatives of the Pliicker coordinate mirror requires a map from the Cox ring of Y to the
cohomology of the flag variety. This is not the natural map given by

i -
Dy i,

where fi; is A if i = j and @ otherwise. Instead, we require the Schubert map F (see
definition 4.2). Our main result is then the following.

Theorem A Let Wp be the Pliicker coordinate mirror of a flag variety, and Wp ¢ the
expression of Wp in any choice of cluster charts. Then

3
Fl-Zwpc|=0
api,

in quantum cohomology, foranyi =1, ..., p and pi in the cluster chart.

This result represents a significant step towards a full verification of the Pliicker coordi-
nate mirror of flag varieties. If similar structure holds beyond the type A case, this result
may also be important in extending candidate mirrors from cominuscule varieties to any
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Fig.1 A partition A containing
H,, the skew shape A/H,, and
the associated tuple of partitions
p=w! . uwt e )
Hy
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homogeneous space. It elucidates the increased complexity from the Grassmannian case. It
also demonstrates a previously unobserved structure relating the mirrors of Grassmannians
and flag varieties: although not at all obvious from the description of the Schubert map, we
show that it precisely interpolates between the Pliicker coordinate mirror of the flag variety
Fl(n; r) and containing Grassmannians Gr(N, r1), N >> 0. It is this property of the Schu-
bert map which is key to the proof of Theorem A, as it essentially allows us to reduce to
the Grassmannian case. This interpolation result is a corollary of Theorem B below, a purely
quantum cohomology statement.

Following the approach of [5, 8], we use a “quantization” approach for the quantum
cohomology ring of the flag variety. This and other descriptions will be reviewed in Sects. 2
and 3. There is a natural ring homomorphism from the ring A,, of symmetric polynomials in
rq variables to QH* Fl(n; r) defined sending elementary symmetric polynomials to certain
quantum elementary polynomials. We write sl{ € QH*Fl(n; r) for the image of a Schur
polynomial s; (see (7) for more details). The first part of Theorem B states that for certain
partitions A, the image is a Schubert class (up to multiplication by quantum parameters), and
the second part of Theorem B states that for another class of partitions, the image is zero.

For0 < b <n,let0 < I < pbesuchthatn —r; <b < n—rjy;.InSect. 5, we define the
quantum hook or g-hook of width b to be the partition Hp, := BN (b—n4rp)t by,
and set Ry = (bb_”"" 1) to be the maximal width rectangle contained in Hp, with Hp, =
Ry =9if b <n —r. Set

g™ =g @ g ) T (g ).

For a partition A that contains the g-hook of width equal to the width of A, we associate a
tuple of partitions 1 = (ul, el /Ll+l, g, ..., D) by subdividing the skew shape A/ H, as
in Fig. 1, where u; € P(ri_1, r;) is of width r;_1 — r;. (See Definition 5.6 for more details.)

TheoremB Let A C ry X n be a partition, and let I be such thatn —r; <Xy <n —ri41.
(a) If Hy, C A, then
s; = g™ oy in QH* Fl(n; 1),

where L = (1!, ..., n'tY, @, ..., @) is the tuple of partitions associated to A above.
(b) If A contains R;,, but Hy, € A, then

s} = 0in QH* Fl(n; r).

.....

@ Springer



28 Page4of29 L. Chen, E. Kalashnikov

In the case of the Grassmannian Gr(n, r), the rim-hook removal rule of Bertram, Ciocan-
Fontanine, and Fulton [2, Main Lemma] recovers Theorem B: for a partition A € r x n of
width A1 = n — r + a, the quantity in part (a) of Theorem B is obtained after removing a
n-hooks from A, and the vanishing in part (b) of Theorem B corresponds to A not containing
a consecutive rim-hooks.

In Sect. 2, we review the necessary background on quantum cohomology of Grassmanni-
ans and flag varieties, and in Sect. 3, we discuss the EHX and Pliicker coordinate mirror of
the Grassmannian. In Sect. 4, we describe the Schubert map and prove Theorem A, and in
Sect. 5, we study ¢g-hooks and prove Theorem B.

2 Quantum cohomology of flag varieties
2.1 Permutations and Schubert classes

Fix an n-dimensional vector space V and a tuple of integersr = (n > ry > --- > r, > 0)
and let Fl(n; r) = Fl(n; ry, ..., rp) denote the partial flag variety parametrizing successive
quotient flags of V of dimensions r;. It comes equipped with a tautological sequence of
quotient bundles Vryg.ry = Q1 — -+ = Qp of ranksry, ..., 7.

The cohomology ring H* Fl(n; r) has a basis of Schubert classes commonly indexed by

Sm;r)y :={wesS,:wi <wi+1)ifi ¢r},

the set of permutations in S, whose descent set is contained in {ry, ..., r,}. If S, r is the
parabolic subgroup of S, generated by simple transpositions (i,i + 1) for i ¢ r, then
S(n;r) is a set of coset representations for S, /Sy, r. Given w € S(n; r), the corresponding
Schubert class o, € H2®) Fl(n; r), where the length of w is the number of inversions
Lw) =#{i <jlw@) > w()}

There is a unique permutation of longest length in S(n; r) given explicitly by

w=nh-rp,+1,....n, ...on—r1+1,...,n—rp,...., 1,2, ... ,n—r].

Its length is £(w°®) = dim Fl(n; r). Let w, denote the unique permutation of greatest length

in S, given by w, (i) = n+1—i. There is an involution on S(n; r), using the longest element

w? of S, r. (The permutation w}, can be defined by w, = w®-wf.) Given w € S(n; r), define
wY = w, - w - wk.

This is an element of S(n;r), with £(w") = dim Fl(n; r) — £(w). The classes o,,v form a
Poincaré dual basis: fFl(n,r) ow Uoyy = 8y p.

2.2 Another basis and tuples of partitions

We describe another basis for H* Fl(n; r) in terms of tuples of partitions. Consider the set

P
P, 1) =[] PCi-1,ri),

i=1

where we set rg := n and r,11 = 0, and where P(a, b) denotes the partitions inside a
b x (a — b) rectangle.

@ Springer



Quantum hooks and mirror... Page50f29 28

Remark 2.1 There is a bijection between permutations in S(n, r) and tuples of partitions in
P(n,r). Given a tuple ji = (u',...,uP) € P(n,r),for 1 <i < p, denote by w! the
Grassmannian permutation in S, with possible descent at r; defined by the partition ! C
P(ri—1,ri) € P(n,rp),ie. ' = w'(r) —rin..ow' (1) — 1), sothat w' = wg i gz
Then the tuple i € P(n, r) corresponds to the permutation

W = Wil gy W@, pp) = wlw? . wP.
On the other hand, given w € S(n, r), we can produce a tuple i = (ul, ..., uP). (See also
[4D).
If a tuple of partitions i = (u,...,uP) € P(n, 1) corresponds to the permutation w

under the bijection in Remark 2.1, we also write the Schubert class oy, as oj;.

Example 2.2 Consider the flag variety FI1(8;6,4,3) with n = 8§ and r = (6,4, 3). For
the tuple (Hj, H @) in P(n,r), w' = [123457/68]1w? = [1245|3678], w> = id with
descents marked at r1 = 6 and r, = 4. The corresponding permutation in S(n, r) is

w = wlwiw’ = [1245|37]68]. Similarly, <H:‘, ﬁa, corresponds to the permutation

[123468|57] - [1356]2478] - [23415678] = [368]1|24|57], and (D, =, E) corresponds to
[123457|68] - [1246|3578] - [134]25678] = [147]2|35]68].

For a partition A € P(r;_y, r;), we define the class si to be the Schur polynomial associated
to the partition A in the Chern roots of Q;, the rank r; tautological quotient bundle on Fl(n; r):

55 = det(s’l'l;ﬁ[fk). 4))

Note that s{, = c,(Q;) is the ath Chern class of the bundle Q; so that s{, = e,(r;). Via the
bijection in Remark 2.1, s} is equal to the Schubert class

associated to the tuple of partitions consisting i th partition equal to A and the empty partition
elsewhere.

Note that we can use (1) to define si even when A ¢ P(r;_1, r;), although it is no longer
a Schubert class in general.

Remark 2.3 Given a tuple of partitions ji = ( /,Ll , ..., uP), we obtain another important class
Lol P
SM = S,u'l .. 'SM/)'

Running over all ji we obtain another basis for the cohomology of the flag variety. The two
bases {o};} and {s;;} are distinct, except in the case of the Grassmannian.

2.3 Quantum cohomology

The quantum cohomology ring QH* Fl(n; r) is a commutative and associative graded algebra
over Z[q1, ..., q,], where g; is a parameter of degree r; _| —r; 1. As amodule, QH* Fl(#; r)
is simply Z[q] ®z H™* Fl(n; r), so it has a Z[qg]-basis of Schubert classes o,:

QH*Fi:r) = P Zlgl-ow.

weS(n;r)
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The quantum product is a deformation of the usual product. For permutations u, v € S(n; r),
define a product by

d w,d
Oy * 0y = E q ¢y Ows
w,d

where d ranges over (n — 1)-tuples of nonnegative integers, and the three-pointed Gromov-
Witten invariant c;”,’vd is defined as follows.

Let Mo, 3(Fl(n; r), d) be the Kontsevich moduli space of three-pointed genus-zero stable
maps to Fl(n; r) of degree d, parametrizing data (f, C, (x1, x2, x3)), where C is a genus-
zero curve with marked points x;, f : C — Fl(n;r) is a map of degree d, and a certain
stability condition is imposed [16]. The space of stable maps is of dimension dim Fl(#n; r) +
Z?: 1 di(ri—1 — ri+1), and comes with natural evaluation morphisms

ev; : Mo 3(Fl(n;r),d) — Fl(n; 1)

for 1 <i < 3thatsend (f, C, (x1, x2, x3)) to f(x;). Now one defines c,lf,’vd = my(evioy -
evioy - evg‘awv). This defines an associative product. See [9] for more details on quantum
cohomology.

2.4 Quantum cohomology of flag varieties

The Schubert polynomials of Lascoux and Schiitzenberger are defined inductively, starting
from G, (x) = xf_lxé’_z ...Xp—1 and moving down Bruhat order using divided difference
operators [17]. For any w € S, the polynomial G,,(x) has a unique expansion in terms of
elementary symmetric polynomials:

Gu() =Y ak ke (D). ex, (1 —1) 2
over sequences (ki,...,k,—1) with 0 < k; < j and ij = {(w), where the ay, , ,
are integers and e (j) := ex(x1, ..., x;) is the kth elementary symmetric polynomial in the
variables x1, ..., x;.
Let
o p—1 p—1 0 0
Oy n O O e O sy O Oy

be n independent variables, with ol-j of degree i. To form quantum polynomials for Fl(n; r),
one replaces ey (j) with quantum elementary polynomials eZ (r1), which are defined forr; e r
and ro = n recursively by

r—-1—n

(i) = ) omerd, () + (=) T gt ), 3
m=0

where we set eg (r;)) = 1 and e, (r;) = 0 if either m < 0 or m > r;. When r is understood,
we simply write eZ (ry) for ez’q (r7). (Our conventions here differ from those found elsewhere
in the literature, e.g. our r; and ai] correspond to n,41—; and ol.p i n [5].)
From [5, 14], we know a presentation of the quantum cohomology ring and polynomial
representatives of the quantum Schubert classes.
H*Fl(n;r) = Z r p 0 o /1l
Q (m;r)=Zlglloy,....o0,...;00, ..., 05, 1/19,

T'p
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where 19 is the ideal (¢]?(n), ..., ey'?(n)) generated by n relations €]'?(rg) = 0 which
specialize to the known relations defining H* Fl(n; r) when ¢ +— 0, and

Oy = Gfﬁq (0)

for w € S(n; r), where the quantum Schubert polynomial &y,? (o) is formed by substituting
e;’q (ry) for e (j) on the RHS of (2) whenever j € [r, r—1).

The quantum structure constants of the alternate basis, s;, can be computed using rim-hook
removals via the Abelian/non-Abelian correspondence [11].

2.5 Determinantal formulas

In Sect. 5, we will study certain skew shapes A/u along with a labeling w(i, j) = r; +
i — j. By [3], associated to (A/x, ®) is a 321-avoiding permutation w whose corresponding
Schubert polynomial is equal to a flagged skew Schur polynomial that can be expressed as a
determinant:

Su) = e, @
where fj = w(j, A}) =r1 + j — A/ is the “flagging” associated to w.
For a skew shape A/ and ¢ = (¢1, ..., ¢;) with 1 < ¢; < p, define
Aoyt @) = el (rg,) ®)
L 1<i,j<t

When ¢; is defined by Ty, < fi < g1 substituting ex(j) = eZ (r)) in (4) as in the
discussion in Sect. 2.4, we obtain a determinantal expression for the quantum Schubert
class:

ow = Ay/u(e?(¢)) in QH" Fl(n; r). (©)

We can also define quantum classes si for partitions A by computing the determinant (1)
using the quantum product. When A € P(r;_1, r;), this gives the quantum Schubert class
0G..x..o,but si is also defined when A ¢ P(ri_1, r;). In particular, since sia = e,(ry)
classically, we have sia = el(r;) in QH(Fl(n; r)) and

i i
S
lkk+l—k

S, =

= Ax(e?(9)), @)

1<k,l<)\

where ¢ = (i, ...,10).
Remark 2.4 1f » ¢ A, then A, < pp forsome 1 <k <t.Ifi > kand j <k, the (i, j)th

entry of the matrix in A, is indexed by A} — '’ + j —i < A} —uj. < 0, and so is zero. Since
the matrix is block upper triangular with left upper block of determinant zero, A;/,, = 0.

3 Cluster structure and superpotentials
3.1 The cluster structure of the Grassmannian
In this section, some brief facts about the cluster structure of the Grassmannian are recalled.

Good references include [20, 22]. Fix a Grassmannian of quotients Gr(n, r). Pliicker coor-
dinates on the Grassmannian are indexed by partitions A fitting in an r x (n — r) box, i.e.
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by A € P(n,r). The homogeneous coordinate ring of the Grassmannian is generated by
Dy, A € P(n,r), and relations are given by the Pliicker relations.

This ring, as well as certain localizations of it, has a cluster structure. Certain sets of
algebraically independent Pliicker coordinates are clusters. An important example of a cluster
is the rectangles cluster.

Definition 3.1 The rectangles cluster chart is the set of Pliicker coordinates indexed by all
partitions A € P (n, r) such that A is a rectangle.

One cluster can be obtained from another via mutation. These mutations arise from three-
term Pliicker relations [22]. The three term quadratic Pliicker relations are of the form

PiPu = PaPb + DcPd

where A, u,a,b,c,d € P(n,r) are six partitions related in a particular way. A cluster
containing pj, Pa, Pb, Pe, and pg can be mutated to one containing py, Pa, Pb, Pe, and pqy.
Any cluster is related to any other by a series of mutations of this form.

Let M (n, r) be set of partitions that are either the empty set or a rectangular partition that
is maximally wide or maximally tall.

Remark 3.2 M (n, r) is the set of frozen variables in the cluster structure of the Grassmannian:
they appear in every cluster.

3.2 Superpotentials of the Grassmannian

The Eguchi-Hori—Xiong (EHX) superpotential for Grassmannians is described by building
a ladder diagram for the Grassmannian, and super-imposing a dual quiver on the diagram.
The ladder diagram for the Grassmannian Gr(n, r) is an r x (n — r) grid. There is a toric
degeneration of the Grassmannian to the quiver moduli space described by a quiver originating
from the ladder diagram. The superpotential is given by a head-over-tails process on the dual
quiver. We illustrate this briefly in the example Gr (5, 2): the ladder diagram is a 2 x 3 grid:

The dual quiver is then:

In general, to form the dual quiver, place a vertex in each box of the ladder diagram, as well
as one at the top left and bottom right of the diagram, and then add arrows oriented down
and right.

To obtain the superpotential, assign to each of the vertices a variable z;;, where i indicates
the row (starting at 0) and j the column (starting at 1). We set z19 = 1 and z,(,—r+1) = q.
The EHX superpotential is then:

_ Zh(a)
Wenx = Z 72:(11) .

a
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The sum is over the arrows of the quiver, and /(a) and ¢ (a) indicate the head and tail of an
arrow respectively.

Example 3.3 The EHX superpotential for Gr(4, 2) is

212 |, 221 22 I q
mt+r—+t—+—+—+
Z11 211 212 221 222

A superpotential is a mirror to a Fano manifold if information about the genus 0 Gromov—
Witten invariants of the Fano manifold can be computed by the superpotential. More precisely,
one or both of the following conditions might hold:

(1) The period sequence of the superpotential is equal to the regularized quantum period of
the Fano manifold (see [6] for definitions and details).

(2) The Jacobi ring of the superpotential computes the quantum cohomology ring of the Fano
manifold.

The first condition was the original conjecture of Eguchi—-Hori—Xiong, later proved by Marsh—
Rietsch [19] for the Grassmannian. This conjecture remains open for flag varieties.

The second condition—that the superpotential produces relations in the quantum coho-
mologry ring—is the central focus of the paper. We first discuss the proof in the case of the
Pliicker coordinate mirror for the Grassmannian, introduced by Marsh—Rietsch in [19]; the
same statement for the EHX mirror is obtained as a corollary.

To construct the Pliicker coordinate mirror the Grassmannian Gr(n, r), take n equations
of the form

Sk sy = qisu (8)

where i = 0, 1 depending on the partition. Here A := (a, a, . .., a) is a rectangular partition
in M(n,r).
Note that by manipulating the equations 8, we see that the sum

qisu
— 9
E 5 )]
LEM (n,r)

is equal to ns = —KGr(n,r)- This is the anti-canonical class of the Grassmannian.
To transform the sum into a (rational) function, every Schubert class s; is replaced with
the Pliicker coordinate p; .

Remark 3.4 This construction is inspired by the Hori—Vafa superpotential of a Fano toric
variety, which is also built out of a special breakdown of the anti-canonical class.

Example 3.5 The Marsh—Rietsch Pliicker coordinate superpotential for Gr(4, 2) is
Y
o B e
Pz P PB PHH
Following [19], we denote the open subvariety on which the Pliicker coordinate superpotential
is a function (i.e. where p) # 0, A € M(n,r)) as Gr(n,n —r)°.

Using Pliicker relations, we can expand the Pliicker coordinate mirror into a Laurent poly-
nomial in each cluster chartin the cluster structure on the coordinate ring of the Grassmannian.
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28 Page 10 0f 29 L. Chen, E. Kalashnikov

Example 3.6 We can use the three term Pliicker relation

PDPH] = PHPE\] + PzPHH

to find that in the rectangles cluster chart, the mirror for Gr(4, 2) is

pop
m, o, H, BﬂerEHJrqm.
pe PO PO MO PR P

In each cluster chart, one can compute the critical locus by setting the partial derivatives
to zero: ﬁWC = 0. It is clear how to interpret these equations as candidate relations in
quantum cohomology: both Pliicker coordinates and Schubert classes of the Grassmannian
Gr(n, r) are indexed by the same set of partitions, .. C r x (n —r).

Theorem 3.7 [19] The Jacobi ring of the Pliicker coordinate mirror is isomorphic to the
quantum cohomology ring of the Grassmannian.

The Pliicker coordinate mirror is a compactification of the EHX mirror: that is,

Proposition 3.8 [19] The Pliicker coordinate mirror in the rectangles cluster chart is
isomorphic to the EHX mirror under the map ¢, where

Pixj

¢ (zij) = —————.
Pi-1)x(j—1)

This proposition and theorem can be combined to show the following theorem:

Theorem 3.9 [19]. Let F : C[p,] — QH* Gr(n, r)[s;l : A € R] be the map given by

Dy +> ;. Then for any z;j,
a
Fl¢ Wenx )| =0.
0zij

3.3 Superpotentials of flag varieties

We first recall the Batyrev—Ciocan-Fontanine—Kim—van Straten generalization of the EHX
mirror to flag varieties [1]. Fixing Fl(n; rq, ..., r,), for each Grassmannian step Gr(r; 1, r;)
draw an r; x (r;_1 —r;) grid of boxes, placing them together. For example, the ladder diagram
of FI(5;4,2, 1) is

The dual quiver is similar to the Grassmannian case. There are vertices inside each box, as
well as at the top left and bottom right corners and in the inner corner of each step of the
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diagram. In this example, it is

|
|

Assigning to each of the vertices a variable z,,, the EHX superpotential is:

Zh(a)

Wenx = .
7 Lt

In [13], the second author proposes a generalization of the Pliicker coordinate mirror from
Grassmannians to type A flag varieties. We recall the construction now. Fix a flag variety
Fl(n;r1,...,rp). Foreachi =1, ..., p, we can consider r;,_; equations

shx st =G,
where A € M(r;_1, r;), and Gi is simply the expansion of the left hand side in quantum
Schubert calculus. This can be described explicitly—see [13] for details. As in the Marsh—

Rietsch construction, we can use this to obtain an expression of the anti-canonical class of
the flag variety:

P Gi .
S 2 F-nns

i=1 \ \neM@i_i.ri) Sr

The set P(n,r) naturally indexes elements of the coordinate ring of the product of
Grassmannians

p
Y(n, 1) =[] Greri1, o).

i=1

Let Q; be the tautological quotient bundle pulled back to ¥ (n, r) from the i’ Grassmannian
factor. Sections of det(Q;) are indexed by A € P(ri_1,r;). We write pf\ for the Pliicker
coordinate associated to i and A.
We denote Y (n, r)° := le Gr(rj_1,ri—1 — r;)° the locus in Y (n, r) where pﬁ\ # 0 for
alli and . € M(r;_1, r;). This is the complement of an anti-canonical divisor on Y (n, r).
To each Schubert class s; we associate the product

0
pi =[] r
i=1

We denote the polynomial in the coordinate ring of Y (n, r) and the g1, ..., g, obtained by
replacing the Schubert classes in Gi\ with Pliicker coordinates in this way as Gi.

Definition 3.10 The Pliicker coordinate superpotential Wp of the flag variety is

G! .
> Y. | ek
i=1 \ \neM@i_1.r) P
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Example 3.11 Consider the flag variety F1(6; 4, 2, 1). The Pliicker coordinate superpotential
is
1 1 1,2
+
p + CZIPD Pﬁ ‘IIPEPD q1pl p2
Pt E H
TD + + 1 + 1 + 1
pE pHﬂ p@ P@
R Bj s Bj Te g2 P 9
4+t e

p@ pE PD:‘ pHﬂ p@ pD

+

By choosing a cluster chart for each Grassmannian factor of Y (n, r), we can expand the
Pliicker coordinate mirror of the flag variety into algebraically independent sets of coordinates
onY(n,r).

In [13], a first check of the validity of the Pliicker coordinate mirror is carried out by
demonstrating that the Pliicker coordinate mirror is a compactification of the EHX mirror
(that is, Proposition 3.8 in the flag case). Fix a flag variety Fl(n; r). Recall that the ladder
diagram is made up of the ladder diagrams of p Grassmannians, i.e. an r; X (r;_1 — r;) grid
for each i. Recall the definition of the map ¢ from Proposition 3.8. Given a vertex v in the i""
block of the dual quiver, let ¢ (z,) be as prescribed in the Grassmannian case for Gr(r;_1, r;),
and then scale by g1 ...qi_1.

Example 3.12 To demonstrate, we label the vertices with ¢(z,) in the following example
(where the flag variety is FI(5; 3, 2, 1)):

1
1 1
il mn| a
Pl Py
1
1 1
P p P
ap
H EE on 7192
P nH P
| |
S B S B A
@ qarp q1q2p?
: Jﬁ TD —— 919293
Po pB Pe o

Theorem 3.13 [13] For any type A flag variety, the Pliicker coordinate mirror in the
rectangles cluster chart is isomorphic to the EHX mirror under the isomorphism

Zy = @ (2y).
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4 Quantum cohomology and mirrors of the flag variety

To summarize the situation for the Grassmannian, there are two mirrors—the Pliicker coor-
dinate mirror and the EHX mirror—the first of which is isomorphic with the second in a
particular cluster chart. Because the same partitions index Pliicker coordinates and Schubert
classes, partial derivatives of the Pliicker coordinate mirror can easily be interpreted—and
indeed give—quantum cohomology relations.

Up until the last clause, the same is true for a multi-step flag variety: there are two mirrors—
the Pliicker coordinate mirror and the EHX mirror—the first of which is isomorphic with
the second in a particular cluster chart. The same partitions index Pliicker coordinates and
Schubert classes—and indeed, the Abelian/non-Abelian basis of the cohomology as well.
But consider the following example.

Example 4.1 The Pliicker coordinate mirror of F1(4; 2, 1) is

1 1
J’_
py PN PP gy @
Hy O W D, D22
Pz Pr— PH pHE( Py P

Expanding in the rectangles cluster and applying plzjﬁ’ we obtain
(]

1.2
91 PP L2 92
1 POo— 3

pHﬂ P

The most natural way to interpret this as a quantum cohomology relation is as:

1.2
9550, 2 92
1 tso- 3 =
K Ky
H H
however, this relation does not hold. One could attempt to use Schubert classes instead, for
example:

q10] 2
L0 +U®,D_ L =0.

o7 g o,
¥
However, this relation also does not hold, and at any rate there will quickly be ambiguity
with this approach with multi-step flag varieties.

The above example demonstrates the central difficulty in the flag case: the Pliicker coordinate
mirror is built out of quantum Schubert calculus, but is written in Pliicker coordinates which
have the same multiplicative structure of the sj; basis. By multiplicative structure, we mean
the property that the basis element associated to a tuple (A1, ..., A,) is the product of the p
basis elements given by tuples with a single non-empty partition A; in the i** spot, as i runs
from 1 to p.

For the flag variety, we must instead use the Schubert map, which we introduce now.
Fix a flag variety Fl(n;r), where r := (r1,...,r,) as usual. Recall that P(n,r) is the
set of Pliicker coordinates pf\ on Y(n,r), where A is a rectangle. Let Up(,,r) be the open

subvariety of Y (n, r) where the pf\, A € P(n,r) do not vanish. Let /Q\H/*(Fl(n; r)) denote
the localization of the quantum cohomology ring at the rectangular Schubert classes.
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The ring of functions C[Up, r)] is generated (as an algebra) by P (n, r), as every Pliicker
coordinate can be written as a Laurent polynomial in the rectangular Pliicker coordinates using
three term Pliicker relations. We extend the coefficient field to the ring R = Clqy, ..., q,]
We define a map

F: R[Upur] — QH (Fl(n: 1))

amorphism of C[q, ..., g, ] algebras—by specifying the images of the rectangular Pliicker
coordinates.

Fix some pg. «k» Where the rectangle j x k is an element of P (r;—1, r;). We define two tuples
of partitions. For/ =1, ...,i — 1,let R be the (j —k+r;—; —r;) X (rj—1 —r7) rectangle, and
setR; := jxk.Setpiy :=(Ry,...,R;,@,...,9)andjir := (R, ..., R _1,2,9,...,9).

Definition 4.2 The Schubert map
——%
F:ClUpunllgi,--..q01 — QH (Fl(n;r))
is defined by setting

. o;
F(plg) =

m2

Example4.3 In FI(4; 2, 1), F(p},;) = s}, and

o
F(pl) = :
oo

Remark 4.4 Note that the Schubert map in the Grassmannian case is just the map p, — s,
which agrees with the map defined in Theorem 3.9.

The Schubert map allows partial derivatives of the Pliicker coordinate mirror to be
interpreted as quantum relations. We are now ready to prove Theorem A as stated in the
introduction, which we restate here.

TheoremA C = (Cy, ..., C,) be a choice of clusters for each Grassmannian factor in Y,
and let Wc¢ be the expansion of the Pliicker coordinate mirror in this chart. For all i and

Py €Ci,
d
ap,

To show this theorem will require two propositions.

Proposition4.5 LetC = (Cy,...,Cp)andC' = (Cy, ..., C;)) be two choices of clusters for
Y connected by a mutation. Let W¢ and Wi be the expansions of W in C and C' respectively.
Suppose Theorem A holds for C. Then it holds for C'.

Proof Forsomei =1,...,pthereisa A, u,a,b,c,d € P(ri_1,r;) such that le is obtain
from C; via the three term Pliicker relation

PyPy = Puph + PPy
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That is, p} € C; and pL € C/, and P, p;,, pl and pfj are elements of both C; and C!. The
Laurent polynomial W¢- is obtained from W¢ by replacing pﬁL with
PaPh + Pipy
P
Note that by construction,
. i i 4 i
F(p}) = F (”“”b : po”d) .
Pl

For any le , we can then compute using the multi-variable chain rule that

9 3 [ papy,+pipg\ 9 9

i Wer = a0 w 7z‘WC| s, T 7iWC| i Phpbplpl
apl, apl Pu ap; pi:% apl pkz%
3 n

It follows that

as

a a
-Wel| i i i i =F ~Wc ] =0
api p;\:l}alb"jpcld (a]];L

Pit

d d
F - W i | =F -Wc )| =0.
aph =ttt (8173, C)
in

and

[m}

The implication of this proposition is that we can reduce Theorem A to the statement for a
single cluster, the rectangles cluster. The next proposition is the main ingredient in the proof
of Theorem A, and is a corollary of the second theorem proved in this paper. This proposition
uses the fact that the ladder diagram of a flag variety Fl(n; r) can be viewed naturally as a
subquiver of the ladder diagram of a Grassmannian Gr(N, r;), where N >> 0 (or we can
think of Gr(oo, r1) if we wish).

For example, below, the ladder diagram of the flag variety F1(5; 3, 2, 1) is superimposed
on that of Gr(co, 3) (the second is drawn dashed in grey):

Recall that for a Grassmannian or flag variety, we have defined a map ¢ (see the discussion
before Theorem 3.13) which maps coordinates on the ladder quiver mirror to Pliicker coordi-
nates. We also have defined the Schubert map, which takes Pliicker coordinates to Schubert
classes.
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Viewing the ladder diagram of a flag variety either as a ladder diagram on its own right,
or as a sub-quiver of the big Grassmannian’s ladder diagram, we get two different ways
of mapping the z, to Pliicker coordinates. That is, we now have two ¢ maps, both with
domain Cl[z,], where v ranges over the vertices of the dual ladder quiver of the flag variety.
Let ¢ : Clzy] = C[Upn,r)] denote the homomorphism obtained by viewing vertices as
vertices in the flag quiver. If we view a vertex z, as a vertex of a Grassmannian quiver, then
we obtain a map ¢g; from C[z,] to a localization of the coordinate ring of Gr(co, r1). More
precisely, this is just the ring generated by minors of the infinite matrix

X11 X12 X13 X14 -
X21 X12 X13 X14 - -
Xril X2 X3 Xp4 00

which we can index by all partitions of length at most r, localized at the rectangular partitions
appearing in the flag quiver. Abusing notation, we call this ring C[Up(co,)]-

Example 4.6 Labeling the vertices the dual ladder quiver for the flag variety F1(4; 2, 1) with
or1(zy) gives:

S 7 1T o .
1 1 | 1
L] | q ! !
Py P | |
| | ‘ ‘ l
4 + \L 7777777 [
Pt ﬂIEE q1p2 |
1 H— 20 ——ae
Py pD z |

1
\L 7777777 - - - - == B
£l Lam
P P Py ‘
| | | Lo IR
4 3 3 |
1 1 1 1 |
P P P P
H H 1y HEH
P o . annl

By taking limits, we can see that there is a well-defined map from the ring of minors of
the infinite matrix above to the symmetric polynomial ring in r1 variables, A,,, given by

Py = S).
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Let A7, be the localization at the rectangular coordinates. The map above gives rise to a
natural generalization of the Schubert map
Fgr : (C[UP(oo,rl)] g A(rjl-

We also have the Schubert map for the flag variety:
— %
Fr : ClUpm,mllg1. - - .. qp]l > QH (Fl(n;1)).
Proposition 4.7 Consider the natural map
° Y 1
Ay = QH (Fli(n;1)), s+ 5,

discussed in the introduction and in (7). Then the following diagram commutes.

For .
ClUP(o.r)] ——— A},
PGr

Clzy] T

PF1
ClUpurllqr. - -+ qp] ~ QH (Fi(n; 1))

Example 4.8 (Example 4.6 continued) We illustrate the proposition in the case of F1(4; 2, 1).
We have already described ¢, (zy) and ¢ri(z,) in Example 4.6.

Proposition 4.7 states that if we apply the Schubert map to ¢, (z,) and then apply 7, we
obtain the same cohomology class as applying the Schubert map to ¢ (zy), for any vertex
7, appearing the dual ladder quiver. This is trivially true for the vertices in the first block.

Consider the vertex satisfying ¢Gr(zy) = pr7717/Pw. One can check using Theorem B

(see Example 6.1) that
1
DI S
- (e (72)) = B
Po S o

which is indeed the image under Fp of the label corresponding to the same vertex in the flag
diagram.
Similarly, from Example 6.1, we also have

(o))

Py S ODe P

and

1
D § 2
9192
7 (FGr ( )) = =12 = g192 = Fa(q192).
P

frg @

To summarize, the ladder diagram of any flag variety is a subquiver of the ladder diagram
of a sufficiently large Grassmannian. Using this inclusion of ladder diagrams, we can induce
an inclusion of dual ladder quivers. For the Grassmannian, Theorem 3.9 gives a map from
vertices of the Grassmannian ladder quiver to the cohomology of the Grassmannian. Theorem
3.13 together with the Schubert map gives a map from vertices of the flag variety to the
quantum cohomology of the flag variety. There is a natural map from the cohomology of the
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Grassmannian to the flag variety. Proposition 4.7 states that the Schubert map is precisely
the map that makes this diagram commute. We’ll delay the proof of Proposition 4.7 to the
next section, where it will be an easy corollary of Theorem B.

Proof of Theorem A By Proposition 4_.5, it suffices to show that for C = (Cy, ..., C,) the
rectangles cluster, and for all i and pi e Cj,

3
Fl-Zwe]=o.
ap}

Recall that Theorem 3.13 implies that W can be computed using the dual ladder quiver,
together with the labels as in Example 3.12: that is,

L)
We = Z L(Us(a)) {10

a

where a ranges over the arrows in the quiver, v,(q) and vy () are the vertices that are the source
and target of the arrow a, and L(vs(,)) and L(v;(,)) the labels of these vertices.

Fixing a rectangle j X k, in either the Grassmannian or the flag case, the partial derivative
p; <k ﬁ can be computed using the ladder diagram as well just as in (10). In this case, it is
a signed sum involving the arrows with source or target at one of the two vertices where p;. <k
appears in the numerator or denominator of the label. That is, the sum is over the following
eight arrows, and it is a signed sum—dashed arrows have a negative sign and solid arrows a
positive sign:

i
Pjixk

— --3

P{j—1yx =1y

!
!
| |
| |
w N
| pi
<~ .
[N (j+1i)><(k+l)
pjxk

1D

If a vertex is on the border of the diagram, some arrows do not appear. For example, a variable
of the form p;i «x appears in the label of only one vertex, and that vertex is the in the bottom
row. In this case, the diagram is simply

i
prixk

— --3

Pfr,-—l)x(k—l)

Notice that if we consider two variables p;x ¢ and pé F )X (k1) the arrows involved
overlap, and therefore the corresponding equations share half their terms in common. By
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starting with a variable of the form pii «& and then consider consecutive variables

DPrixks Pri—D)x(k—1)> Pri—2)x (k—2)> - - -

for some k, we can easily see the partial derivatives vanish under the Schubert map if and
only if diagrams of the following form vanish:

|

p}xk
Pl—1yxk—1)

M ) (12)

Again, some arrows may not appear depending on the position of the middle vertex in the
quiver.

To summarize, it suffices to show for every internal vertex in the dual ladder quiver of the
flag variety, the equation arising from (12) vanishes under the Schubert map. Let Efj be such
an equation for a fixed vertex v. Let Eg; be the corresponding equation for the Grassmannian
for the same vertex. By Theorem 3.9,

FGr(EGr) =0.
Our claim is that
0 =n(For(Egr)) = FR(ER).

If the arrows with source or target at v as a vertex in the Grassmannian quiver are also arrows
in the ladder quiver, this follows immediately from Proposition 4.7. For some vertices along
the border, however, there may be extra arrows in the Grassmannian quiver that contribute
extra terms to Eg;. For example, the vertex in the gray box is such a vertex in the following
diagram:

We claim, however, that these extra terms vanish under the Schubert map, and so the above
equation still holds. In the example above, the extra term in Eg, comes from the vertical
arrow into the gray box, and is

P P11

» .
HHHH
Note that 7 (Fg:(prr)) = slljjj = 0,‘ so the whole tem? vanishes as required.

In general, these extra arrows come in two forms: vertical arrows along the top of a step
in the ladder diagram and horizontal arrows along the side. Fixing a block or step i > 1 of
the quiver, vertical arrows contribute the factor below to an extra term:

P(ri—rip1—1)x(n—ri+k)

P(ri—riz1) x(n—ri+14+k)
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fork =1,...,r; —riz1 — 1. Horizontal arrows contribute a factor of the form

Py —ritk)x(n—ri+1)
Plri—ritk—D)x(n—ri)

fork=1,...,r; —riz1 — 1. Since
1
S(Vl—ri+1—1)><(n—r,'+k) = 0, k = 1, veo, i — r,'+1 — 1
and
1
Str—rithyxm—ri+1) = 0, k=1,....ri —rig1 — 1
in Fl(n; r) by part (b) of Theorem B, the extra terms vanish as claimed. o

5 Quantum hooks and quantum cohomology

In this section, we study a natural ring homomorphism from the ring A,, of symmetric
polynomials in ry variables to QH* Fl(n; r) given by mapping the kth elementary symmetry
polynomial in 7| variables ey (r1) to the kth quantum elementary polynomial ez (r1), defined
by the recursion (3) as in Sect. 2.

We have a Z-basis of A,, given by Schur polynomials indexed by partitions A of height at
most r1. Using the identity s, = dEt(Slx,’. 4joi) = det(e,\;_,_/-_,- (r1)), where A’ is the transpose

of A, we write s){ for the image of s, under the map A,, — QH* Fl(n; r):
S > s){ = det(ei,‘ﬂ._i(rl)).

For A € P(n,r), S,{ represents a quantum Schubert class. When A has width greater than
n-—ri, sl{ is still defined, and Theorem B states that for a particular class of partitions A, s/{
is equal to a Schubert class, up to power of ¢, and that for another class of partitions, s)l\ =0.

We begin with some terminology. For 0 < b < n —r,, write b := b — (n —ry) for I
such thatn — r; < b <n — ry41. As in the introduction, set the quantum hook (or g-hook)
of width b to be the partition

Hb = (bb_n+rl, (b —n4+ rl)n—r1+1—b) — (brl—rl-ﬁ-E’ Bn—rpr]—b).

In the proof of our results, we will often consider the column heights of Hj,, which we can
read from the transpose of Hp:

Hy = ((r — ren)?, (= BT = (1 — )P (b= n4 )" (13)

The g-hook Hj can also be described as the partition obtained from a (r; —ry) x (n — ry)
rectangle after adding b rim-hooks of length n 4+ r| — r; — ry41, each beginning in row
r1 — rr+1 and ending in row 1 (see Fig. 2, also Fig. 3).

For a g-hook Hj, of width b, set g™ := q]' ™ ... (q1 ... q1-1)" """ (q1 ... q)?~"—"D).
With this definition, note that

Hjp Hp—1

“qr...41- (14)

Example 5.1 Consider QH* F1(4; 2, 1) with degg; = 3 and degg, = 2. For the g-hooks

H; = (3,0) and H4 = (4, 4) shown in Fig. 2, we have ¢ = g1 and ¢™* = ¢1(q192) =
2

q192-

q9 " =4
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H

- o

Fig.2 g-hooks Hj, of width b = 3, 4 for F1(4; 2, 1) and of width 3 < b < 8 for FI(8; 6, 4, 3)

} A1 |
%H—T]%B%
T T
1 [
~ [
| [ I—I/\1
[
< (|
[
+ [
77777777777777777 [
— I
+ b et oo J
s +
| [
~ [
~ [
1 X
—p — n—ry {

Fig. 3 A g-hook Hj of width b and a skew shape A/H,, with associated tuple of partitions iy =
wh .t e, )

Example 5.2 Consider QH* FI(8; 6, 4, 3) with deggq; = 4, deggy = 3, and deg g3 = 4. Let
I be such thatn —r; < b < n —ry41. For the g-hooks of width 3 < b < 8 (depicted in Fig.
2), we have:

b I Hy, qu

3 1 G, D q1

4 1 “,4) qi

5 2 (5.5.5) 9 @192) = e

6 3 (6,6,6,6,1,1) q1(q192)(q19293) = qfq§q3
7 3 (7,7,7,7,7,2) 43 (q192)(q19293)* = 434393
8 3 (8.8,8.8.8,8) a1 (0192)@19293)° = 44343

Let Ry := (b1 71 +b ) = (b"~"~D)) be the maximal rectangle of width b contained in
Hp,with H, =R, =2 ifb <n—r;.

Remark 5.3 For a partition A C r; x n, let I be such thatn — r; < Ay < n — rr41. Then
R;, € A if condition (i) below holds, and Hj, C A if conditions (i) and (ii) below hold.

(i) Ay, =r —(n—r1)
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Hg

I i

Fig. 4 Partitions 7, A, and v, skew shapes n/H3, »/Hs and v/Hg, and their associated tuples of partitions
/1771 iy, and fi, for FI(8; 6, 4, 3)

(i) Ai]—(n—n) >r =TI
(Note that if A = n — rj41, then condition (ii) is redundant.)

Conditions (i) and (ii) are illustrated in the left diagram of Fig. 3 by A containing the southeast

corner boxes of_the g-hook marked by + and x, respectively. Here,b = A1,b := A1 —(n—ryp),
andry —r;+b=x1— @ —ry).

Definition 5.4 A partition A C r| X n is compatible with a q-hook if H;, < X, i.e. conditions
(i) and (ii) of Remark 5.3 holds.

Remark 5.5 The partition H}, has height r; — r;41. By convention, ro = n, so when 0 =
n—ro <b <n—ry, Hyis the empty partition, and so every partition A of width at most
n — ry is compatible with a g-hook.

For a partition & C r; x n that is compatible with a g-hook, define partitions /,Ll, R u’
by subdividing the skew shape A/Hj,, where ! is the partition consisting of the rightmost
n —r1 columns of Hj,, uz is the partition consisting of the second rightmost 7; — r» columns
of Hy,,etc. If I < p, let /LI *1 pe the partition consisting of the leftmost b columns. (See
Fig. 3.)

Definition 5.6 For a partition > C r; x n that is compatible with a g-hook, define the tuple
of partitions associated to A/Hy, to be iy = (/Ll, R /L1+1, a,...,2)if I < p and
iy = (le, o ,u’) if I = p, as described above (see Figs. 3, 4). Here, ji; € P(n,r) since
MZ Crex (rg—g—re)forl <l <p.

Lemma 5.7 For a partition X that is compatible with a q-hook, let w be the (321-avoiding)
permutation corresponding to (A/H, , w) with labeling w(i, j) = r1 + i — j under the
bijection in [3). Then w is equal to the permutation corresponding to the tuple [i; via the
bijection described in Remark 2.1. Moreover, w is either Grassmannian with descent at ry4+1
or has descents at exactly r; and ryy1, where I is such thatn —ry < Ay <n —ry4q.

Proof A reduced expression for the (321-avoiding) permutation w corresponding to
(A/H,,, w) is given by [3] as the product of simple transpositions obtained from reading
the labeling from bottom to top, beginning with the rightmost column. This product respects
the subdivision of A/ Hj, into the tuple of labeled partitions ,ul, R ul s ul +1 with labeling
' (i, j)=r¢+i—jforl < ¢ < I+1.(From Definition 5.6, if I = p, then the tuple consists
of only ul,oooopt) Again, by [3] (see also [15]), a reduced word for ut is the product of
simple transpositions obtained by reading the labeling of ©¢ from bottom to top, beginning
with the rightmost column. Concatenating these expressions recovers w. Moreover, define
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the partition z[/] to be the partition obtained by appending the partitions 1/, .. ., 1! together;
this consists of the last # — r; columns of A/ Hj,. Let w!/t! and w1 := w!... w! be the
Grassmannian permutations associated to u/*! and ul’l; these have possible descents at
r7+1 and ry, respectively, and so their product has possible descents at only vy and r;. O

Remark 5.8 For a partition A that is compatible with a g-hook with corresponding tuple /iy
and permutation w, we denote the associated Schubert class by oj;, , oy, or simply 035, -

Example 5.9 Consider F1(4; 2, 1) as in Example 5.1. The partition (3, 3) is compatible with
the g-hook Hz = (3, 0).

T
!
L

The associated tuple of partitions ([T, [J) is read from right to left from the skew shape
(3,3)/Hs.

Example 5.10 Consider FI(8; 6, 4, 3) as in Example 5.2 and partitions n = (3, 3,3,2), A =
(5,5,5,5,5,4,2) and v = (6,6,6,6,5,3). Then n is compatible with the g-hook Hz =
(3, 1), A is compatible with the g-hook Hs = (5, 5,5) and v is compatible with the g-hook
Hg = (6,6,6,6, 1, 1). The associated tuples of partitions to n/H3, »/Hs and v/Hg are

iy = (Hj, H, @), iy = (Hj, E} E) and ji, = (D, Hj H), as seen in Fig. 4 by reading

the associated tuple of partitions from right to left. Note that / = p = 3 in Definition 5.6 for v
sincen —r3 = 5 < v1. Also note that as in Lemma 5.7 and Example 2.2, the first permutation
has descents at r; = 6 and r, = 4 and the other two permutations are Grassmannian with
descent at r3 = 3.

Before proving Theorem B, we introduce and study the following auxiliary partitions.

Definition 5.11 Given a partition . C r; x nand 1 < m < Ay, define A0 o be the partition
obtained from A by removing column m from A and adding 1 to columns 1, ..., m — 1, i.e.

WY =M+ LA, LA L),

where A’ is the transpose of A, i.e. (A(’")); = A+ 1fori < mand (k("l)); = Ajq1 fori > m.
(See Fig. 5.)

Lemma 5.12 [fa partition . C ry X n is compatible with a q-hook, then . is compatible
with a g-hook for 1 < m < Aj.

Proof This follows from Remark 5.3 and Definition 5.11, where conditions (i) and (ii) of
Remark 5.3 for 0™ are illustrated by ® and & in Fig. 5. O

For a partition A C r{ X n, consider sl{ = det(s;,_ﬂ._i) and the determinants A as in (5)
and (7). ’

Proposition 5.13 Given a partition A € r1 x n of width b := Ay, let I be such thatn —rj <
b<n—riyrandletb=>b— (n—ry). Then

b

DD sk Aoy, (D) =1 a1 Dy, (e7(9)) in QHF Fl(n; 1),
m=1

where ¢ = (I + V)P, I"=1771 . 1"y and § = ((I + DP=1, prim=ri | vy,
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Fig.5 The skew shape A/Hj ¢ A1 |
and the skew shape )L(m)/H;L] 1

+|D

| T

S

mth column of A

Proof From (5), we have

Ay b, (@) = det (ez/__(Hb)/__‘_j_i (¢‘/)) =: det[vy, ..., vp] (15)
i J
A)\("l)/Hb—l (J) = det <e?)h(m))l/v*(Hb—l)_/,~+j*i (Wj)) s (16)

where ¢ and v are as in the statement of the proposition, and where we write v; for the
jth column of the matrix in (15). (Note that A and A need not contain Hp, and Hj_j,
respectively.) Since sll,, = ¢l (r1) in QH* Fl(n; r), the left hand quantity of the proposition
can be rewritten as the determinant:
4 _
det (ex;—(o,(Hb_o’)mfi(l’ ‘pi)),-,_,- {17
where (1, ) = (1, (I + 1)5_1, rri=1=r oo 1", We proceed by reordering the columns
of this matrix and then comparing the resulting determinant to (15). More concretely, let
T € Sp be the permutation defined by

b+r —r; ifj=1
J if2<j<b
()= b+rg—r+1ifj=b+ri_ —riforl <l <I
1 iijE-l-l‘]fl—r]
j+1 otherwise.

Reordering columns using the permutation 7, from the description of H;, and Hé_l in (13),
(17) is equal to sgn(t) times

q X . = =
det (e)”;_’(j"‘j_i(w]))lgi,jgb —: det[T1, ..., Ty, (18)

where k = H) — (rj — ryy1)e; — Zlfkl(rg,l — rg.)eI;HJr,PU. and Yy = ¢ — e —
Zl <1<1 Chgidrp—r, Here, e; denotes the sequence that is 1 in position j and O elsewhere,
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and v; is the jth column of the determinant i_n (18). Thus, column v; of (15) is equal to
column v; of (18) exceptwhen j =1lorj=b+ 1+ (rg—y —r;)withl </ < 1.
We rewrite (3) as

re—1—T¢

eq(re) = eg(re—1) — ( > o;le;’_m(m) + Dol L TerD. (19)
m=1

Note that for / = 1, the first term vanishes since el (r9) = el (n) = 0 is a relation in the
quantum cohomology ring for all a.

We now describe the transition matrix between vectors v; and v;.. Consider the b x b
matrix A = (a;;) with entries

1 o
_OE+FI—I_VI+1—i ifj = {
ajj = _613+rg,1—r,+1—i ifj=b4+1+r—riforl <l<lI (20)
0 otherwise,

with the convention that aé = 1and ail =0fori <Oandi > ry_1 —re. Then A is a lower
triangular matrix with zeros along the diagonal. Let D = (d;;) be the b x b diagonal matrix
with entries

(=D7=1"gp it j =1
dij=3(=Dre1""qy ifj=b+1+4ry —riforl <l<I (21)
1 otherwise.
With this notation, the relation between the vectors v; and v} is given by matrix multiplication
[V1,..., 0] = (A+ D)[vy, ..., vl

Since A+ D is lower triangular with diagonal entries d;, det(A+ D) = ]_[é=1 (=D)te=17"eg,,
and so

det[vy,...,0p] = (—1)"""qy...q; - det[vy, ..., vp]
and hence by (17) and (18), the left hand side of the proposition is equal to
(—1)””'1+1q1 ...qq sgn(z)det[vy, ..., vp].

Since the signature sgn(t)of the permutation 7 is (—1)"~"7, we conclude that (18) is equal
to g1 . .. g times the determinant (15), as needed. ]

6 Proof of Theorem B

In this section, we use the set up and results from Sect. 5, including Proposition 5.13, to prove
Theorem B, which we restate here.

Theorem B Let A C ry x n be a partition, and let I be such thatn —r; <Xy <n —ri41.
(@) If Hy,, C A, then

s,{ = gfn o in QH* Fl(n; r),
where i = (u', ..., n' 1, @, ..., @) is the tuple of partitions associated to ) above.
In particular, S}ib = qH" since Hy/Hp = &, so w = @ forall jand oy, @) = 1.
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(b) If A contains Ry, but Hy, € A, then
s){ =0in QH"Fl(n; r).

Example 6.1 For QH* F1(4; 2, 1), by part (a) of the theorem and Examples 5.1 and 5.9, we
have

S]ljj = O—D:Lg
St = 4
SIHEE‘ = q1011J
p e
(See also Example 4.8.)

Example 6.2 Consider QH* FI(8; 6, 3, 2) as in Examples 5.2 and 5.10. By part (a) of the
theorem, for the partitions n = (3, 3,3,2), 2 = (5,5,5,5,5,4,2)and v = (6, 6, 6, 6, 5, 3),
we have

srlz = ‘IWHIHQ’ s) = 41342UHHE3E and s, = Q?qg%UDBjH

From Remark 2.1 and Example 2.2, we can also write this in terms of the indexing of Schubert
classes by permutations as

1 1 3 1 4.2
Sy = 41012453768, 5), = 4192036812457 and s, = q1¢5 3014723568

On the other hand, for the partition y = (6, 6, 6, 6, 3), we have sjl/ = 0 by part (b) of the

theorem since y contains Rg = (6, 6, 6, 6) but not Hg = (6,6,6,6, 1, 1).
We now prove part (a) of Theorem B and then use part (a) to prove part (b).

Proof of part (a) of Theorem B We proceed by induction on the width b := A; of A. For the
base cases, when 0 < b < n — ry, by Remark 5.5, H}, is the empty partition, and we have
the equality si =0) =0)/g.

Now assume the result for partitions of width at most » — 1. Given a partition A C ry X n,
expanding the determinant le = det(si( +j7i) along the first column gives

ol = Z( DS S (22)

. . . . . . ] _
From Lemma 5.12, 1(™ is compatible with a g-hook, so by the induction hypothesis, s L) =

qu*I Tym /Hy_y > and (22) becomes

m=11 Hy
S/\ = Z( D S p-mt1 ¥4 O5m /Hy_

= qH"*‘ *(q1---q100/m,) = 4™ o3 /m,,

where the second and third equalities follow from Proposition 5.13, Lemma 5.7, (6), and
(14). m]
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Fig.6 The partitioning of A, —n—1r; + k———

: T

T Rn—r1+k =

< e
=~
|
<

Il

: -

I

= RI . R2 Rl

| :

'~ RI+1

1 1

—k—

We can now prove Proposition 4.7.

Proof of Proposition 4.7 Choose a vertex in the (I + 1)'" step of the ladder quiver (choosing
this notation for compatibility with Theorem B), and let z,, be the associated variable in the
EHX mirror. We need to show that

7T (FGr(9Gr(2v))) = Fri(ér(zv))- (23)
Suppose v is in the j* row of the k" column of the (I + 1) block of the ladder quiver.
Then
I+1
Pixk
or(zv) = q1 _“qullix.
P(j=1)x-1)

As in the definition of the Schubert map, for £ =1, ..., I, let Ry be the

cX(rg—t—rg), ci=rr—rp1+j—k

rectangle, and set Ry41 := j x k. Set ﬁpr] = (G — 1) x (k — 1). Set
ﬁa = (Ry,...,R1+1,9,...,9), ;Lb = (Ry,...,R;41,9,...,9), and ﬂz =
(R1,...,R;,9,9,...,9). Then the right hand side of (23) is
o5 o o
q1‘..q,ﬂ¥:q1...q1 lj“.
Oy Ofuy, Ojip

Next, we compute the left hand side of (23). It isn’t hard to see that the vertex under consid-
eration is in the n — r; + k column and the r; — r74+1 + j row of the Grassmannian quiver.
LetAy = (ri —ri1+j) X (m—rp+k),andletAp = (ry —rjp1+j—D x(n—ry+k—1).
The left hand side of (23) is therefore
S,
-
55,

Both X, and Aj are compatible with a g-hook. The partition 1, is compatible with the g-hook
H,_;;+«. Note that we can partition A, as in Fig. 6 (so, in the notation of Theorem B, b = k):
Therefore

1

— o Hn—rp 4k 5o
Sy, =9q "o,
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Similarly, A, is compatible with the g-hook Hj,_,,+x—1, and

1

— gHn—rjtk—1 5=
Sy =4 " Ol

It finally follows by comparing the ¢ factors that

1
N o

A Ha
L =qi...qr
Shp Ofip

as required. O

‘We now prove the second part of Theorem B, that for A C r; x n such that Ry, € A, but
Hy, ¢ A, s) =0in QH*F

Proof of part (b) of Theorem B We proceed by induction on the width of A. If Ay < n — rq,
then A is compatible with a g-hook since Hj, = &, so the proposition holds vacuously. Now
assume the result holds for partitions of width » — 1, and consider a partition A of width
b := Aj that contains R} but not Hy. Let I be such thatn —r; < A; <n —ry4q.

We use the expansion (22) of the determinant s)]L. From Remark 5.3 and Definition 5.11,
A contains Rp—j for 1 <m < A If A =n — ri+1, then H, = Rp, and there is nothing
to prove, so assume n — ry < A| < n — ryy1 and write b=x —n—rp).

First consider the case where b > 1 and )‘13 L < TE Iy — 1. This corresponds to

the cell marked ® in Fig. 5 not being contained in A. In this case, ()L(””)’E_1 < ry—rrs1
forl <m < M by Remark 5.3 so that 2 does not contain Hp_;. Then by the inductive
hypothesis, s/\(m> = 0. Since all the summands in (22) are zero, le =0.

Now if b > 1 and A;;_] >ry —rr4+1 — 1, i.e. A contains the cell marked ® in Fig. 5, then

by Remark 5.3 and Definition 5.11, if m < b, then A do_es not contain Hp_1, so by the
inductive hypothesis, si(m) = 0. On the other hand, if m > b, then A" contains Hp_1, and
so by part (a) of Theorem B, the expansion (22) becomes

S)» - Z( l)m 1 ]A/ —m+1 quilO‘)L(m)/Hh—ll
Since Hp_ | ;(_ AU form < b, by Remark 2.4 and (6), we have
sy = Z( D" sl % a0 Dy g, (W), (24)

where ¥ = ((i + 1)5", = 177, Similarly, ifb =1, then Hy_; = Rp_; and
10" contains Hj,_1 forall 1 < m < b, so by part (a) of Theorem B and (6), we have (24) as
well. Moreover, by Proposition 5.13, (24) becomes

Sy =q1-..q1 Ayym, (e(4)) in QH* Fl(n; 1),

where ¢ = ((i + 1)’5, jrr=1mrr oo 1", Since Hp, ;(_ A, we conclude that sl{ =q1...4q]
0 = 0 by Remark 2.4. O
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