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Abstract
Given a flag variety Fl(n; r1, . . . , rρ), there is natural ring morphism from the symmetric
polynomial ring in r1 variables to the quantum cohomology of the flag variety. In this paper,
we show that for a large class of partitions λ, the image of sλ under the ring homomorphism
is a Schubert class which is described by partitioning λ into a quantum hook (or q-hook) and
a tuple of smaller partitions. We use this result to show that the Plücker coordinate mirror
of the flag variety describes quantum cohomology relations. This gives new insight into the
structure of this superpotential, and the relation between superpotentials of flag varieties and
those of Grassmannians (where the superpotential was introduced by Marsh–Rietsch).

1 Introduction

The extension of mirror symmetry for Fano varieties beyond the toric context, where it is
well-understood due to foundational work by Hori and Vafa [12], Givental [10], Lian et al.
[18] and others, is an area of active research. Grassmannians and flag varieties are central
examples here, as Fano GIT quotients with a rich geometric and combinatorial structure.

One of the oldest proposals for a mirror, or superpotential, for the Grassmannian Gr(n, r)

was given by Eguchi et al. [7]. This was later generalized to type A flag varieties by Batyrev
et al. [1] (for simplicity, we refer to these mirrors as EHXmirrors). These proposals are moti-
vated by taking toric degenerations of Grassmannians and flag varieties, and then applying
toric methods to the singular fiber. However, the toric degeneration approach has not been
successful in proving required properties of thesemirrors—partial verificationwas completed
for Grassmannian and flag varieties by Rietsch in [21] using the Lie theoretic superpoten-
tial, and a full verification for Grassmannians by Marsh and Rietsch [19] using the Plücker
coordinate mirror.
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The Plücker coordinate mirror for the Grassmannian is the most promising approach to
mirror symmetry beyond the toric context. This remarkable construction connects the earlier,
Lie theoretic proposals of the Grassmannian with the conjectures of the Fanosearch program
and the toric degeneration approach. Extending the construction beyond the Grassmannian is
thus an important problem. In [13], the second author introduces a conjectural Plücker coor-
dinate mirror for type A flag varieties (see [23, 24] for recent progress on the subject in other
types). As a first test of its validity, the second author proves in [13] that the Plücker coordi-
nate mirror is compatible with the EHX mirror. More is required, however: a superpotential
or mirror should compute quantum information about the variety—through determining both
quantum relations as well as certain genus 0 Gromov–Witten invariants.

In this paper, we prove a theorem in this direction. We show that partial derivatives of the
Plücker coordinate mirror of a type A flag variety give quantum cohomology relations. To
state the result carefully, we need some more background.

The Plücker coordinate mirror of the Grassmannian is a rational function on the Grass-
mannian. As for toric varieties, there is a map from the Cox ring of the Grassmannian (the
ring generated by Plücker coordinates) to the cohomology ring of the Grassmannian. Plücker
coordinates of the Grassmannian of quotients Gr(n, r) are indexed by the same set as Schu-
bert classes of the Grassmannian—i.e. by partitions fitting into an r × (n − r) box—and
this map takes the Plücker coordinate pλ to the Schubert class sλ. Under this map, partial
derivatives of the Plücker coordinate mirror give quantum cohomology relations [19].

For n =: r0 and r = (r1 > · · · > rρ > rρ+1 := 0), let Fl(n; r) := Fl(n; r1, . . . , rρ) be
the partial flag variety of successive quotients of C

n of dimension ri . The Plücker coordinate
mirror WP of Fl(n; r)was proposed in [13]. Themirror WP is a rational function on a product
of Grassmannians Y = ∏ρ

i=1 Gr(ri−1, ri ), with the convention r0 := n. See Definition 3.10
for the precise construction of WP . More precisely, there are sets of algebraic independent
Plücker coordinates on Y , called cluster charts, such that when WP is expanded in a particular
cluster chart C , the resulting function WP,C is a Laurent polynomial. See Sect. 3.1 for more
details on cluster charts. We index Plücker coordinates on Y by pi

λ, where i = 1, . . . , ρ and
λ is a partition that fits into an ri × (ri−1 − ri ) box.

Schubert classes of the Grassmannian are indexed by partitions, and Schubert classes σ�λ
in a flag variety are indexed by tuples �λ = (λ1, . . . , λn) of partitions. To interpret partial
derivatives of the Plücker coordinate mirror requires a map from the Cox ring of Y to the
cohomology of the flag variety. This is not the natural map given by

pi
λ �→ s �μ,

where �μ j is λ if i = j and ∅ otherwise. Instead, we require the Schubert map F (see
definition 4.2). Our main result is then the following.

Theorem A Let WP be the Plücker coordinate mirror of a flag variety, and WP,C the
expression of WP in any choice of cluster charts. Then

F

(
∂

∂ pi
λ

WP,C

)

= 0

in quantum cohomology, for any i = 1, . . . , ρ and pi
λ in the cluster chart.

This result represents a significant step towards a full verification of the Plücker coordi-
nate mirror of flag varieties. If similar structure holds beyond the type A case, this result
may also be important in extending candidate mirrors from cominuscule varieties to any
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Fig. 1 A partition λ containing
Hλ1 , the skew shape λ/Hλ1 , and
the associated tuple of partitions
�μ = (μ1, . . . , μI+1, ∅, . . . , ∅)

· · ·

μI+1

μI μ2 μ1

Hλ1

homogeneous space. It elucidates the increased complexity from the Grassmannian case. It
also demonstrates a previously unobserved structure relating the mirrors of Grassmannians
and flag varieties: although not at all obvious from the description of the Schubert map, we
show that it precisely interpolates between the Plücker coordinate mirror of the flag variety
Fl(n; r) and containing Grassmannians Gr(N , r1), N >> 0. It is this property of the Schu-
bert map which is key to the proof of Theorem A, as it essentially allows us to reduce to
the Grassmannian case. This interpolation result is a corollary of Theorem B below, a purely
quantum cohomology statement.

Following the approach of [5, 8], we use a “quantization” approach for the quantum
cohomology ring of the flag variety. This and other descriptions will be reviewed in Sects. 2
and 3. There is a natural ring homomorphism from the ring �r1 of symmetric polynomials in
r1 variables to QH∗ Fl(n; r) defined sending elementary symmetric polynomials to certain
quantum elementary polynomials. We write s1λ ∈ QH∗ Fl(n; r) for the image of a Schur
polynomial sλ (see (7) for more details). The first part of Theorem B states that for certain
partitions λ, the image is a Schubert class (up to multiplication by quantum parameters), and
the second part of Theorem B states that for another class of partitions, the image is zero.

For 0 < b ≤ n, let 0 ≤ I ≤ ρ be such that n−rI < b ≤ n−rI+1. In Sect. 5, we define the
quantum hook or q-hook ofwidth b to be the partition Hb := (bb−n+r1 , (b−n+rI )

n−rI+1−b),
and set Rb := (bb−n+r1) to be the maximal width rectangle contained in Hb, with Hb =
Rb = ∅ if b < n − r1. Set

q Hb := qr1−r2
1 . . . (q1 . . . qI−1)

rI−1−rI (q1 . . . qI )
b−(n−rI ).

For a partition λ that contains the q-hook of width equal to the width of λ, we associate a
tuple of partitions �μ = (μ1, . . . , μI+1, ∅, . . . , ∅) by subdividing the skew shape λ/Hλ as
in Fig. 1, where μi ∈ P(ri−1, ri ) is of width ri−1 − ri . (See Definition 5.6 for more details.)

Theorem B Let λ ⊆ r1 × n be a partition, and let I be such that n − rI < λ1 ≤ n − rI+1.

(a) If Hλ1 ⊆ λ, then

s1λ = q Hλ1σ �μ in QH∗ Fl(n; r),
where �μ = (μ1, . . . , μI+1, ∅, . . . , ∅) is the tuple of partitions associated to λ above.

(b) If λ contains Rλ1 , but Hλ1 � λ, then

s1λ = 0 in QH∗ Fl(n; r).
In particular, s1Hλ1

= q Hλ1 since Hλ1/Hλ1 = ∅, so μ j = ∅ for all j and σ(∅,...,∅) = 1.
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In the case of the Grassmannian Gr(n, r), the rim-hook removal rule of Bertram, Ciocan-
Fontanine, and Fulton [2, Main Lemma] recovers Theorem B: for a partition λ ⊆ r × n of
width λ1 = n − r + a, the quantity in part (a) of Theorem B is obtained after removing a
n-hooks from λ, and the vanishing in part (b) of Theorem B corresponds to λ not containing
a consecutive rim-hooks.

In Sect. 2, we review the necessary background on quantum cohomology of Grassmanni-
ans and flag varieties, and in Sect. 3, we discuss the EHX and Plücker coordinate mirror of
the Grassmannian. In Sect. 4, we describe the Schubert map and prove Theorem A, and in
Sect. 5, we study q-hooks and prove Theorem B.

2 Quantum cohomology of flag varieties

2.1 Permutations and Schubert classes

Fix an n-dimensional vector space V and a tuple of integers r = (n > r1 > · · · > rρ > 0)
and let Fl(n; r) = Fl(n; r1, . . . , rρ) denote the partial flag variety parametrizing successive
quotient flags of V of dimensions ri . It comes equipped with a tautological sequence of
quotient bundles VFl(n;r) � Q1 � · · · � Qρ of ranks r1, . . . , rρ .

The cohomology ring H∗ Fl(n; r) has a basis of Schubert classes commonly indexed by

S(n; r) := {w ∈ Sn : w(i) < w(i + 1) if i /∈ r},
the set of permutations in Sn whose descent set is contained in {r1, . . . , rρ}. If Sn,r is the
parabolic subgroup of Sn generated by simple transpositions (i, i + 1) for i /∈ r, then
S(n; r) is a set of coset representations for Sn/Sn,r. Given w ∈ S(n; r), the corresponding
Schubert class σw ∈ H2�(w) Fl(n; r), where the length of w is the number of inversions
�(w) = #{i < j | w(i) > w( j)}.

There is a unique permutation of longest length in S(n; r) given explicitly by

w◦ = [n − rρ + 1, . . . , n, . . . , n − r1 + 1, . . . , n − r2, . . . , 1, 2, . . . , n − r1].
Its length is �(w◦) = dim Fl(n; r). Let w◦ denote the unique permutation of greatest length
in Sn given byw◦(i) = n +1− i . There is an involution on S(n; r), using the longest element
wr◦ of Sn,r. (The permutationwr◦ can be defined byw◦ = w◦ ·wr◦.) Givenw ∈ S(n; r), define

w∨ = w◦ · w · wr◦.

This is an element of S(n; r), with �(w∨) = dim Fl(n; r) − �(w). The classes σw∨ form a
Poincaré dual basis:

∫
Fl(n;r) σw ∪ σv∨ = δw,v .

2.2 Another basis and tuples of partitions

We describe another basis for H∗ Fl(n; r) in terms of tuples of partitions. Consider the set

P(n, r) :=
ρ∏

i=1

P(ri−1, ri ),

where we set r0 := n and rρ+1 := 0, and where P(a, b) denotes the partitions inside a
b × (a − b) rectangle.
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Remark 2.1 There is a bijection between permutations in S(n, r) and tuples of partitions in
P(n, r). Given a tuple �μ = (μ1, . . . , μρ) ∈ P(n, r), for 1 ≤ i ≤ ρ, denote by wi the
Grassmannian permutation in Sn with possible descent at ri defined by the partition μi ⊆
P(ri−1, ri ) ⊆ P(n, ri ), i.e. μi = (wi (ri ) − ri , . . . w

i (1) − 1), so that wi = w(∅,...,μi ,...,∅)

Then the tuple �μ ∈ P(n, r) corresponds to the permutation

w �μ := w(μ1,∅,...) . . . w(∅,...,μρ) = w1w2 . . . wρ.

On the other hand, given w ∈ S(n, r), we can produce a tuple �μ = (μ1, . . . , μρ). (See also
[4]).

If a tuple of partitions �μ = (μ1, . . . , μρ) ∈ P(n, r) corresponds to the permutation w

under the bijection in Remark 2.1, we also write the Schubert class σw as σ �μ.

Example 2.2 Consider the flag variety Fl(8; 6, 4, 3) with n = 8 and r = (6, 4, 3). For

the tuple
(

, , ∅

)
in P(n, r), w1 = [123457|68]w2 = [1245|3678], w3 = id with

descents marked at r1 = 6 and r2 = 4. The corresponding permutation in S(n, r) is

w = w1w2w3 = [1245|37|68]. Similarly,

(

, ,

)

corresponds to the permutation

[123468|57] · [1356|2478] · [234|15678] = [368|1|24|57], and
(

, ,
)
corresponds to

[123457|68] · [1246|3578] · [134|25678] = [147|2|35|68].
For a partition λ ∈ P(ri−1, ri ), we define the class si

λ to be the Schur polynomial associated
to the partition λ in the Chern roots of Qi , the rank ri tautological quotient bundle on Fl(n; r):

si
λ = det(si

1λ′
k +l−k ). (1)

Note that si
1a = ca(Qi ) is the ath Chern class of the bundle Qi so that si

1a = ea(ri ). Via the
bijection in Remark 2.1, si

λ is equal to the Schubert class

si
λ = σ(∅,...,λ,...,∅)

associated to the tuple of partitions consisting i th partition equal to λ and the empty partition
elsewhere.

Note that we can use (1) to define si
λ even when λ /∈ P(ri−1, ri ), although it is no longer

a Schubert class in general.

Remark 2.3 Given a tuple of partitions �μ = (μ1, . . . , μρ), we obtain another important class

s �μ := s1μ1
. . . sρ

μρ
.

Running over all �μ we obtain another basis for the cohomology of the flag variety. The two
bases {σ �μ} and {s �μ} are distinct, except in the case of the Grassmannian.

2.3 Quantum cohomology

The quantum cohomology ringQH∗ Fl(n; r) is a commutative and associative graded algebra
overZ[q1, . . . , qρ], where qi is a parameter of degree ri−1−ri+1. As a module, QH∗ Fl(n; r)
is simply Z[q] ⊗Z H∗ Fl(n; r), so it has a Z[q]-basis of Schubert classes σw:

QH∗ Fl(n; r) =
⊕

w∈S(n;r)
Z[q] · σw.
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The quantum product is a deformation of the usual product. For permutations u, v ∈ S(n; r),
define a product by

σu ∗ σv =
∑

w,d

qd cw,d
u,v σw,

where d ranges over (n − 1)-tuples of nonnegative integers, and the three-pointed Gromov-
Witten invariant cw,d

u,v is defined as follows.
Let M0,3(Fl(n; r),d) be the Kontsevich moduli space of three-pointed genus-zero stable

maps to Fl(n; r) of degree d, parametrizing data ( f , C, (x1, x2, x3)), where C is a genus-
zero curve with marked points xi , f : C → Fl(n; r) is a map of degree d, and a certain
stability condition is imposed [16]. The space of stable maps is of dimension dim Fl(n; r) +∑3

i=1 di (ri−1 − ri+1), and comes with natural evaluation morphisms

evi : M0,3(Fl(n; r),d) → Fl(n; r)
for 1 ≤ i ≤ 3 that send ( f , C, (x1, x2, x3)) to f (xi ). Now one defines cw,d

u,v = π∗(ev∗
1σu ·

ev∗
2σv · ev∗

3σw∨). This defines an associative product. See [9] for more details on quantum
cohomology.

2.4 Quantum cohomology of flag varieties

The Schubert polynomials of Lascoux and Schützenberger are defined inductively, starting
fromSw◦(x) = xn−1

1 xn−2
2 . . . xn−1 and moving down Bruhat order using divided difference

operators [17]. For any w ∈ Sn , the polynomial Sw(x) has a unique expansion in terms of
elementary symmetric polynomials:

Sw(x) =
∑

ak1...kn−1 ek1(1) . . . ekn−1(n − 1) (2)

over sequences (k1, . . . , kn−1) with 0 ≤ k j ≤ j and
∑

k j = �(w), where the ak1...kn−1

are integers and ek( j) := ek(x1, . . . , x j ) is the kth elementary symmetric polynomial in the
variables x1, . . . , xl .

Let

σ
ρ
1 , . . . , σ ρ

rρ
, σ

ρ−1
1 , . . . , σ

ρ−1
rρ−1−rρ

, . . . , σ 0
1 , . . . , σ 0

n−r1

be n independent variables, with σ
j

i of degree i . To form quantum polynomials for Fl(n; r),
one replaces ek( j)with quantum elementary polynomials eq

k (rl), which are defined for rl ∈ r
and r0 = n recursively by

er,qa (rl−1) =
rl−1−rl∑

m=0

σ l
mer,qa−m(rl) + (−1)rl−1−rl+1ql er,qa−(rl−1−rl+1)

(rl+1), (3)

where we set eq
0 (rl) = 1 and eq

m(rl) = 0 if either m < 0 or m > rl . When r is understood,
we simply write eq

k (rl) for er,qk (rl). (Our conventions here differ from those found elsewhere

in the literature, e.g. our rl and σ
j

i correspond to nρ+1−l and σ
ρ+1− j
i in [5].)

From [5, 14], we know a presentation of the quantum cohomology ring and polynomial
representatives of the quantum Schubert classes.

QH∗ Fl(n; r) ∼= Z[q][ σ
ρ
1 , . . . , σ ρ

rρ
, . . . , σ 0

1 , . . . , σ 0
n−r1 ]/I q ,
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where I q is the ideal (er,q1 (n), . . . , er,qn (n)) generated by n relations er,q1 (r0) = 0 which
specialize to the known relations defining H∗ Fl(n; r) when q �→ 0, and

σw = Sr,q
w (σ)

for w ∈ S(n; r), where the quantum Schubert polynomial Sr,q
w (σ) is formed by substituting

er,qk (rl) for ek( j) on the RHS of (2) whenever j ∈ [rl , rl−1).
The quantumstructure constants of the alternate basis, s �μ, can be computed using rim-hook

removals via the Abelian/non-Abelian correspondence [11].

2.5 Determinantal formulas

In Sect. 5, we will study certain skew shapes λ/μ along with a labeling ω(i, j) = r1 +
i − j . By [3], associated to (λ/μ, ω) is a 321-avoiding permutation w whose corresponding
Schubert polynomial is equal to a flagged skew Schur polynomial that can be expressed as a
determinant:

Sw(x) =
∣
∣
∣eλ′

i −μ′
j + j−i ( f j )

∣
∣
∣
1≤i, j≤t

(4)

where f j = ω( j, λ′
j ) = r1 + j − λ′

j is the “flagging” associated to w.
For a skew shape λ/μ and φ = (φ1, . . . , φt ) with 1 ≤ φi ≤ ρ, define

�λ/μ(eq(φ)) :=
∣
∣
∣
∣e

q
λ′

i −μ′
j + j−i (rφ j )

∣
∣
∣
∣
1≤i, j≤t

. (5)

When φ j is defined by rφ j ≤ f j < rφ j −1, substituting ek( j) = eq
k (rl) in (4) as in the

discussion in Sect. 2.4, we obtain a determinantal expression for the quantum Schubert
class:

σw = �λ/μ(eq(φ)) in Q H∗ Fl(n; r). (6)

We can also define quantum classes si
λ for partitions λ by computing the determinant (1)

using the quantum product. When λ ∈ P(ri−1, ri ), this gives the quantum Schubert class
σ∅,...,λ,...,∅, but si

λ is also defined when λ /∈ P(ri−1, ri ). In particular, since si
1a = ea(ri )

classically, we have si
1a = eq

a (ri ) in QH(Fl(n; r)) and
si
λ =

∣
∣
∣si

1λ′
k +l−k

∣
∣
∣
1≤k,l≤λ1

= �λ(e
q(φ)), (7)

where φ = (i, . . . , i).

Remark 2.4 If μ � λ, then λ′
k < μ′

k for some 1 ≤ k ≤ t . If i ≥ k and j ≤ k, the (i, j)th
entry of the matrix in�λ/μ is indexed by λ′

i −μ′
j + j −i < λ′

k −μ′
k < 0, and so is zero. Since

the matrix is block upper triangular with left upper block of determinant zero, �λ/μ = 0.

3 Cluster structure and superpotentials

3.1 The cluster structure of the Grassmannian

In this section, some brief facts about the cluster structure of the Grassmannian are recalled.
Good references include [20, 22]. Fix a Grassmannian of quotients Gr(n, r). Plücker coor-
dinates on the Grassmannian are indexed by partitions λ fitting in an r × (n − r) box, i.e.
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by λ ∈ P(n, r). The homogeneous coordinate ring of the Grassmannian is generated by
pλ, λ ∈ P(n, r), and relations are given by the Plücker relations.

This ring, as well as certain localizations of it, has a cluster structure. Certain sets of
algebraically independent Plücker coordinates are clusters. An important example of a cluster
is the rectangles cluster.

Definition 3.1 The rectangles cluster chart is the set of Plücker coordinates indexed by all
partitions λ ∈ P(n, r) such that λ is a rectangle.

One cluster can be obtained from another via mutation. These mutations arise from three-
term Plücker relations [22]. The three term quadratic Plücker relations are of the form

pλ pμ = pa pb + pc pd

where λ,μ, a, b, c, d ∈ P(n, r) are six partitions related in a particular way. A cluster
containing pλ, pa, pb, pc, and pd can be mutated to one containing pμ, pa, pb, pc, and pd .
Any cluster is related to any other by a series of mutations of this form.

Let M(n, r) be set of partitions that are either the empty set or a rectangular partition that
is maximally wide or maximally tall.

Remark 3.2 M(n, r) is the set of frozen variables in the cluster structure of theGrassmannian:
they appear in every cluster.

3.2 Superpotentials of the Grassmannian

The Eguchi–Hori–Xiong (EHX) superpotential for Grassmannians is described by building
a ladder diagram for the Grassmannian, and super-imposing a dual quiver on the diagram.
The ladder diagram for the Grassmannian Gr(n, r) is an r × (n − r) grid. There is a toric
degeneration of theGrassmannian to the quivermoduli space describedby aquiver originating
from the ladder diagram. The superpotential is given by a head-over-tails process on the dual
quiver. We illustrate this briefly in the example Gr(5, 2): the ladder diagram is a 2× 3 grid:

.

The dual quiver is then:

.

In general, to form the dual quiver, place a vertex in each box of the ladder diagram, as well
as one at the top left and bottom right of the diagram, and then add arrows oriented down
and right.

To obtain the superpotential, assign to each of the vertices a variable zi j , where i indicates
the row (starting at 0) and j the column (starting at 1). We set z10 = 1 and zr(n−r+1) = q .
The EHX superpotential is then:

WE H X =
∑

a

zh(a)

zt(a)

.
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The sum is over the arrows of the quiver, and h(a) and t(a) indicate the head and tail of an
arrow respectively.

Example 3.3 The EHX superpotential for Gr(4, 2) is

z11 + z12
z11

+ z21
z11

+ z22
z12

+ z22
z21

+ q

z22
.

A superpotential is a mirror to a Fano manifold if information about the genus 0 Gromov–
Witten invariants of the Fanomanifold can be computed by the superpotential.More precisely,
one or both of the following conditions might hold:

(1) The period sequence of the superpotential is equal to the regularized quantum period of
the Fano manifold (see [6] for definitions and details).

(2) The Jacobi ring of the superpotential computes the quantum cohomology ring of the Fano
manifold.

Thefirst conditionwas the original conjecture ofEguchi–Hori–Xiong, later proved byMarsh–
Rietsch [19] for the Grassmannian. This conjecture remains open for flag varieties.

The second condition—that the superpotential produces relations in the quantum coho-
mologry ring—is the central focus of the paper. We first discuss the proof in the case of the
Plücker coordinate mirror for the Grassmannian, introduced by Marsh–Rietsch in [19]; the
same statement for the EHX mirror is obtained as a corollary.

To construct the Plücker coordinate mirror the Grassmannian Gr(n, r), take n equations
of the form

s ∗ sλ = qi sμ (8)

where i = 0, 1 depending on the partition. Here λ := (a, a, . . . , a) is a rectangular partition
in M(n, r).

Note that by manipulating the equations 8, we see that the sum

∑

λ∈M(n,r)

qi sμ

sλ

(9)

is equal to ns = −KGr(n,r). This is the anti-canonical class of the Grassmannian.
To transform the sum into a (rational) function, every Schubert class sλ is replaced with

the Plücker coordinate pλ.

Remark 3.4 This construction is inspired by the Hori–Vafa superpotential of a Fano toric
variety, which is also built out of a special breakdown of the anti-canonical class.

Example 3.5 The Marsh–Rietsch Plücker coordinate superpotential for Gr(4, 2) is

p

p∅

+
p

p
+

p

p
+ qp

p
.

Following [19],we denote the open subvariety onwhich the Plücker coordinate superpotential
is a function (i.e. where pλ �= 0, λ ∈ M(n, r)) as Gr(n, n − r)◦.

Using Plücker relations, we can expand the Plücker coordinate mirror into a Laurent poly-
nomial in each cluster chart in the cluster structure on the coordinate ring of theGrassmannian.
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Example 3.6 We can use the three term Plücker relation

p p = p p + p∅ p

to find that in the rectangles cluster chart, the mirror for Gr(4, 2) is

p

p∅

+ p

p
+

p

p
+

p

p
+

p

p
+ qp

p
.

In each cluster chart, one can compute the critical locus by setting the partial derivatives
to zero: ∂

∂WC
WC = 0. It is clear how to interpret these equations as candidate relations in

quantum cohomology: both Plücker coordinates and Schubert classes of the Grassmannian
Gr(n, r) are indexed by the same set of partitions, λ ⊂ r × (n − r).

Theorem 3.7 [19] The Jacobi ring of the Plücker coordinate mirror is isomorphic to the
quantum cohomology ring of the Grassmannian.

The Plücker coordinate mirror is a compactification of the EHX mirror: that is,

Proposition 3.8 [19] The Plücker coordinate mirror in the rectangles cluster chart is
isomorphic to the EHX mirror under the map φ, where

φ(zi j ) = pi× j

p(i−1)×( j−1)
.

This proposition and theorem can be combined to show the following theorem:

Theorem 3.9 [19] . Let F : C[pλ] → QH∗ Gr(n, r)[s−1
λ : λ ∈ R] be the map given by

pλ �→ sλ. Then for any zi j ,

F

(

φ

(
∂

∂zi j
WE H X

))

= 0.

3.3 Superpotentials of flag varieties

We first recall the Batyrev–Ciocan-Fontanine–Kim–van Straten generalization of the EHX
mirror to flag varieties [1]. Fixing Fl(n; r1, . . . , rρ), for each Grassmannian step Gr(ri−1, ri )

draw an ri ×(ri−1−ri ) grid of boxes, placing them together. For example, the ladder diagram
of Fl(5; 4, 2, 1) is

.

The dual quiver is similar to the Grassmannian case. There are vertices inside each box, as
well as at the top left and bottom right corners and in the inner corner of each step of the
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diagram. In this example, it is

.

Assigning to each of the vertices a variable zv , the EHX superpotential is:

WE H X =
∑

a

zh(a)

zt(a)

.

In [13], the second author proposes a generalization of the Plücker coordinate mirror from
Grassmannians to type A flag varieties. We recall the construction now. Fix a flag variety
Fl(n; r1, . . . , rρ). For each i = 1, . . . , ρ, we can consider ri−1 equations

si ∗ si
λ = G̃i

λ,

where λ ∈ M(ri−1, ri ), and G̃i
λ is simply the expansion of the left hand side in quantum

Schubert calculus. This can be described explicitly—see [13] for details. As in the Marsh–
Rietsch construction, we can use this to obtain an expression of the anti-canonical class of
the flag variety:

ρ∑

i=1

⎛

⎝

⎛

⎝
∑

λ∈M(ri−1,ri )

G̃i
λ

si
λ

⎞

⎠ − ri+1si

⎞

⎠ .

The set P(n, r) naturally indexes elements of the coordinate ring of the product of
Grassmannians

Y (n, r) :=
ρ∏

i=1

Gr(ri−1, ri ).

Let Qi be the tautological quotient bundle pulled back to Y (n, r) from the i th Grassmannian
factor. Sections of det(Qi ) are indexed by λ ∈ P(ri−1, ri ). We write pi

λ for the Plücker
coordinate associated to i and λ.

We denote Y (n, r)◦ := ∏ρ
i=1 Gr(ri−1, ri−1 − ri )

◦ the locus in Y (n, r) where pi
λ �= 0 for

all i and λ ∈ M(ri−1, ri ). This is the complement of an anti-canonical divisor on Y (n, r).
To each Schubert class s �μ we associate the product

p �μ :=
ρ∏

i=1

pi
μi

.

We denote the polynomial in the coordinate ring of Y (n, r) and the q1, . . . , qρ obtained by
replacing the Schubert classes in G̃i

λ with Plücker coordinates in this way as Gi
λ.

Definition 3.10 The Plücker coordinate superpotential WP of the flag variety is

ρ∑

i=1

⎛

⎝

⎛

⎝
∑

λ∈M(ri−1,ri )

Gi
λ

pi
λ

⎞

⎠ − ri+1 pi

⎞

⎠ .
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Example 3.11 Consider the flag variety Fl(6; 4, 2, 1). The Plücker coordinate superpotential
is

p1

p1
∅

+

p1

p1
+

p1

p1
+

p1 + q1 p1

p1
+

p1 + q1 p1 p2

p1
+

q1 p1 p2

p1

+ p2

p2
∅

+
p2

p2
+

p2 + q2

p2
+ q2 p2 p3

p2
+ p3

p3
∅

+ q3
p3

.

By choosing a cluster chart for each Grassmannian factor of Y (n, r), we can expand the
Plücker coordinatemirror of the flag variety into algebraically independent sets of coordinates
on Y (n, r).

In [13], a first check of the validity of the Plücker coordinate mirror is carried out by
demonstrating that the Plücker coordinate mirror is a compactification of the EHX mirror
(that is, Proposition 3.8 in the flag case). Fix a flag variety Fl(n; r). Recall that the ladder
diagram is made up of the ladder diagrams of ρ Grassmannians, i.e. an ri × (ri−1 − ri ) grid
for each i . Recall the definition of the map φ from Proposition 3.8. Given a vertex v in the i th

block of the dual quiver, let φ(zv) be as prescribed in the Grassmannian case for Gr(ri−1, ri ),
and then scale by q1 . . . qi−1.

Example 3.12 To demonstrate, we label the vertices with φ(zv) in the following example
(where the flag variety is Fl(5; 3, 2, 1)):

p1

p1
∅

p1

p1

q1 p2

p2
∅

q1q2 p3

p3
∅

p1

p1
∅

p1

p1
∅

1

q1q2q3

p1

p1

p1

p1
∅

q1 p2

p2
∅

q1

q1q2

.

Theorem 3.13 [13] For any type A flag variety, the Plücker coordinate mirror in the
rectangles cluster chart is isomorphic to the EHX mirror under the isomorphism

zv �→ φ(zv).
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4 Quantum cohomology andmirrors of the flag variety

To summarize the situation for the Grassmannian, there are two mirrors—the Plücker coor-
dinate mirror and the EHX mirror—the first of which is isomorphic with the second in a
particular cluster chart. Because the same partitions index Plücker coordinates and Schubert
classes, partial derivatives of the Plücker coordinate mirror can easily be interpreted—and
indeed give—quantum cohomology relations.

Upuntil the last clause, the same is true for amulti-step flag variety: there are twomirrors—
the Plücker coordinate mirror and the EHX mirror—the first of which is isomorphic with
the second in a particular cluster chart. The same partitions index Plücker coordinates and
Schubert classes—and indeed, the Abelian/non-Abelian basis of the cohomology as well.
But consider the following example.

Example 4.1 The Plücker coordinate mirror of Fl(4; 2, 1) is

p1

p1
∅

+
p1 + q1

p1
+

p1

p1
+ q1 p1 p2

p1
+ p2

p2
∅

+ q2
p2

.

Expanding in the rectangles cluster and applying p2 ∂

∂ p2
, we obtain

q1 p1 p2

p1
+ p2 − q2

p2
.

The most natural way to interpret this as a quantum cohomology relation is as:

q1s1 s2

s1
+ s2 − q2

s2
= 0,

however, this relation does not hold. One could attempt to use Schubert classes instead, for
example:

q1σ ,

σ
,∅

+ σ∅, − q2
σ∅,

= 0.

However, this relation also does not hold, and at any rate there will quickly be ambiguity
with this approach with multi-step flag varieties.

The above example demonstrates the central difficulty in the flag case: the Plücker coordinate
mirror is built out of quantum Schubert calculus, but is written in Plücker coordinates which
have the same multiplicative structure of the s �μ basis. By multiplicative structure, we mean
the property that the basis element associated to a tuple (λ1, . . . , λρ) is the product of the ρ

basis elements given by tuples with a single non-empty partition λi in the i th spot, as i runs
from 1 to ρ.

For the flag variety, we must instead use the Schubert map, which we introduce now.
Fix a flag variety Fl(n; r), where r := (r1, . . . , rρ) as usual. Recall that P(n, r) is the
set of Plücker coordinates pi

λ on Y (n, r), where λ is a rectangle. Let UP(n,r) be the open

subvariety of Y (n, r) where the pi
λ, λ ∈ P(n, r) do not vanish. Let Q̃ H

∗
(Fl(n; r)) denote

the localization of the quantum cohomology ring at the rectangular Schubert classes.
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The ring of functions C[UP(n,r)] is generated (as an algebra) by P(n, r), as every Plücker
coordinate can bewritten as aLaurent polynomial in the rectangular Plücker coordinates using
three term Plücker relations. We extend the coefficient field to the ring R = C[q1, . . . , qρ]
We define a map

F : R[UP(n,r)] → Q̃ H
∗
(Fl(n; r))

a morphism of C[q1, . . . , qρ] algebras—by specifying the images of the rectangular Plücker
coordinates.

Fix some pi
j×k , where the rectangle j×k is an element of P(ri−1, ri ).We define two tuples

of partitions. For l = 1, . . . , i − 1, let Rl be the ( j −k +ri−1−ri )×(rl−1−rl) rectangle, and
set Ri := j×k. Set �μ1 := (R1, . . . , Ri , ∅, . . . , ∅) and �μ2 := (R1, . . . , Ri−1, ∅, ∅, . . . , ∅).

Definition 4.2 The Schubert map

F : C[UP(n,r)][q1, . . . , qρ] → Q̃ H
∗
(Fl(n; r))

is defined by setting

F(pi
j×k) = σ �μ1

σ �μ2

.

Example 4.3 In Fl(4; 2, 1), F(p1j×k) = s1j×k , and

F(p2 ) = σ ,

σ ,∅

.

Remark 4.4 Note that the Schubert map in the Grassmannian case is just the map pλ �→ sλ,

which agrees with the map defined in Theorem 3.9.

The Schubert map allows partial derivatives of the Plücker coordinate mirror to be
interpreted as quantum relations. We are now ready to prove Theorem A as stated in the
introduction, which we restate here.

Theorem A C = (C1, . . . , Cρ) be a choice of clusters for each Grassmannian factor in Y ,
and let WC be the expansion of the Plücker coordinate mirror in this chart. For all i and
pi
λ ∈ Ci ,

F

(
∂

∂ pi
λ

WC

)

= 0.

To show this theorem will require two propositions.

Proposition 4.5 Let C = (C1, . . . , Cρ) and C ′ = (C ′
1, . . . , C ′

ρ) be two choices of clusters for
Y connected by a mutation. Let WC and WC ′ be the expansions of W in C and C ′ respectively.
Suppose Theorem A holds for C. Then it holds for C ′.

Proof For some i = 1, . . . , ρ there is a λ,μ, a, b, c, d ∈ P(ri−1, ri ) such that C ′
i is obtain

from Ci via the three term Plücker relation

pi
λ pi

μ = pi
a pi

b + pi
c pi

d
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That is, pi
λ ∈ Ci and pi

μ ∈ C ′
i , and pi

a, pi
b, pi

c and pi
d are elements of both Ci and C ′

i . The

Laurent polynomial WC ′ is obtained from WC by replacing pi
λ with

pi
a pi

b + pi
c pi

d

pi
μ

.

Note that by construction,

F(pi
λ) = F

(
pi

a pi
b + pi

c pi
d

pi
μ

)

.

For any C ′
i , we can then compute using the multi-variable chain rule that

∂

∂ pi
α

WC ′ = ∂

∂ pi
α

(
pi

a pi
b + pi

c pi
d

pi
μ

)
∂

∂ pi
λ

WC |
pi
λ= pi

a pi
b+pi

c pi
d

pi
μ

+ ∂

∂ pi
α

WC |
pi
λ= pi

a pi
b+pi

c pi
d

pi
μ

.

It follows that

F

(
∂

∂ pi
α

WC ′
)

= 0,

as

F

⎛

⎝ ∂

∂ pi
λ

WC |
pi
λ= pi

a pi
b+pi

c pi
d

pi
μ

⎞

⎠ = F

(
∂

∂ pi
λ

WC

)

= 0

and

F

⎛

⎝ ∂

∂ pi
α

WC |
pi
λ= pi

a pi
b+pi

c pi
d

pi
μ

⎞

⎠ = F

(
∂

∂ pi
α

WC

)

= 0.

��
The implication of this proposition is that we can reduce Theorem A to the statement for a
single cluster, the rectangles cluster. The next proposition is the main ingredient in the proof
of TheoremA, and is a corollary of the second theorem proved in this paper. This proposition
uses the fact that the ladder diagram of a flag variety Fl(n; r) can be viewed naturally as a
subquiver of the ladder diagram of a Grassmannian Gr(N , r1), where N >> 0 (or we can
think of Gr(∞, r1) if we wish).

For example, below, the ladder diagram of the flag variety Fl(5; 3, 2, 1) is superimposed
on that of Gr(∞, 3) (the second is drawn dashed in grey):

.

Recall that for a Grassmannian or flag variety, we have defined a map φ (see the discussion
before Theorem 3.13) which maps coordinates on the ladder quiver mirror to Plücker coordi-
nates. We also have defined the Schubert map, which takes Plücker coordinates to Schubert
classes.
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Viewing the ladder diagram of a flag variety either as a ladder diagram on its own right,
or as a sub-quiver of the big Grassmannian’s ladder diagram, we get two different ways
of mapping the zv to Plücker coordinates. That is, we now have two φ maps, both with
domain C[zv], where v ranges over the vertices of the dual ladder quiver of the flag variety.
Let φFl : C[zv] → C[UP(n,r)] denote the homomorphism obtained by viewing vertices as
vertices in the flag quiver. If we view a vertex zv as a vertex of a Grassmannian quiver, then
we obtain a map φGr from C[zv] to a localization of the coordinate ring of Gr(∞, r1). More
precisely, this is just the ring generated by minors of the infinite matrix

⎡

⎢
⎢
⎢
⎣

x11 x12 x13 x14 · · ·
x21 x12 x13 x14 · · ·
...

...

xr11 xr12 xr13 xr14 · · ·

⎤

⎥
⎥
⎥
⎦

,

which we can index by all partitions of length at most r , localized at the rectangular partitions
appearing in the flag quiver. Abusing notation, we call this ring C[UP(∞,r1)].

Example 4.6 Labeling the vertices the dual ladder quiver for the flag variety Fl(4; 2, 1) with
φFl(zv) gives:

p1

p1
∅

p1

p1
∅

p1

p1

q1 p2

p2
∅

p1

p1
∅

q1

q1q2

1

.

Labeling the same vertices with φGr gives:

p1

p1
∅

p1

p1
∅

p1

p1

p1

p1

p1

p1
∅

p1

p1
∅

p1

p1

1

.

By taking limits, we can see that there is a well-defined map from the ring of minors of
the infinite matrix above to the symmetric polynomial ring in r1 variables, �r1 , given by

pλ �→ sλ.
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Let �◦
r1 be the localization at the rectangular coordinates. The map above gives rise to a

natural generalization of the Schubert map

FGr : C[UP(∞,r1)] → �◦
r1 .

We also have the Schubert map for the flag variety:

FFl : C[UP(n,r)][q1, . . . , qρ] → Q̃ H
∗
(Fl(n; r)).

Proposition 4.7 Consider the natural map

π : �◦
r1 → Q̃ H

∗
(Fl(n; r)), sλ �→ s1λ

discussed in the introduction and in (7). Then the following diagram commutes.

C[UP(∞,r1)] �◦
r1

C[zv]

C[UP(n,r)][q1, . . . , qρ] Q̃ H
∗
(Fl(n; r))

FGr

π

φGr

φFl
FFl

Example 4.8 (Example 4.6 continued) We illustrate the proposition in the case of Fl(4; 2, 1).
We have already described φGr(zv) and φFl(zv) in Example 4.6.

Proposition 4.7 states that if we apply the Schubert map to φGr(zv) and then apply π , we
obtain the same cohomology class as applying the Schubert map to φFl(zv), for any vertex
zv appearing the dual ladder quiver. This is trivially true for the vertices in the first block.

Consider the vertex satisfying φGr(zv) = p /p∅. One can check using Theorem B
(see Example 6.1) that

π

(

FGr

(
p

p∅

))

= s1

s1
∅

= q1,

which is indeed the image under FFl of the label corresponding to the same vertex in the flag
diagram.

Similarly, from Example 6.1, we also have

π

(

FGr

( p

p

))

=
s1

s1
= q1σ ,

σ ,∅

= FFl

(
q1 p2

p2
∅

)

,

and

π

(

FGr

( p

p

))

=
s1

s1
= q2

1q2
q1

= q1q2 = FFl(q1q2).

To summarize, the ladder diagram of any flag variety is a subquiver of the ladder diagram
of a sufficiently large Grassmannian. Using this inclusion of ladder diagrams, we can induce
an inclusion of dual ladder quivers. For the Grassmannian, Theorem 3.9 gives a map from
vertices of theGrassmannian ladder quiver to the cohomology of theGrassmannian. Theorem
3.13 together with the Schubert map gives a map from vertices of the flag variety to the
quantum cohomology of the flag variety. There is a natural map from the cohomology of the
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Grassmannian to the flag variety. Proposition 4.7 states that the Schubert map is precisely
the map that makes this diagram commute. We’ll delay the proof of Proposition 4.7 to the
next section, where it will be an easy corollary of Theorem B.

Proof of Theorem A By Proposition 4.5, it suffices to show that for C = (C1, . . . , Cρ) the
rectangles cluster, and for all i and pi

λ ∈ Ci ,

F

(
∂

∂ pi
λ

WC

)

= 0.

Recall that Theorem 3.13 implies that WC can be computed using the dual ladder quiver,
together with the labels as in Example 3.12: that is,

WC =
∑

a

L(vt(a))

L(vs(a))
(10)

where a ranges over the arrows in the quiver, vs(a) and vt(a) are the vertices that are the source
and target of the arrow a, and L(vs(a)) and L(vt(a)) the labels of these vertices.

Fixing a rectangle j × k, in either the Grassmannian or the flag case, the partial derivative
pi

j×k
∂

∂ pi
j×k

can be computed using the ladder diagram as well just as in (10). In this case, it is

a signed sum involving the arrows with source or target at one of the two vertices where pi
j×k

appears in the numerator or denominator of the label. That is, the sum is over the following
eight arrows, and it is a signed sum—dashed arrows have a negative sign and solid arrows a
positive sign:

pi
j×k

pi
( j−1)×(k−1)

pi
( j+1)×(k+1)

pi
j×k

(11)

If a vertex is on the border of the diagram, some arrows do not appear. For example, a variable
of the form pi

ri ×k appears in the label of only one vertex, and that vertex is the in the bottom
row. In this case, the diagram is simply

pi
ri ×k

pi
(ri −1)×(k−1)

Notice that if we consider two variables pi
j×k and pi

( j+1)×(k+1), the arrows involved
overlap, and therefore the corresponding equations share half their terms in common. By
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starting with a variable of the form pi
ri ×k and then consider consecutive variables

pr1×k, p(r1−1)×(k−1), p(r1−2)×(k−2), . . .

for some k, we can easily see the partial derivatives vanish under the Schubert map if and
only if diagrams of the following form vanish:

pi
j×k

pi
( j−1)×(k−1)

. (12)

Again, some arrows may not appear depending on the position of the middle vertex in the
quiver.

To summarize, it suffices to show for every internal vertex in the dual ladder quiver of the
flag variety, the equation arising from (12) vanishes under the Schubert map. Let EFl be such
an equation for a fixed vertex v. Let EGr be the corresponding equation for the Grassmannian
for the same vertex. By Theorem 3.9,

FGr(EGr) = 0.

Our claim is that

0 = π(FGr(EGr)) = FFl(EFl).

If the arrows with source or target at v as a vertex in the Grassmannian quiver are also arrows
in the ladder quiver, this follows immediately from Proposition 4.7. For some vertices along
the border, however, there may be extra arrows in the Grassmannian quiver that contribute
extra terms to EGr. For example, the vertex in the gray box is such a vertex in the following
diagram:

.

We claim, however, that these extra terms vanish under the Schubert map, and so the above
equation still holds. In the example above, the extra term in EGr comes from the vertical
arrow into the gray box, and is

p p

p p
.

Note that π(FGr(p )) = s1 = 0, so the whole term vanishes as required.
In general, these extra arrows come in two forms: vertical arrows along the top of a step

in the ladder diagram and horizontal arrows along the side. Fixing a block or step i ≥ 1 of
the quiver, vertical arrows contribute the factor below to an extra term:

p(r1−ri+1−1)×(n−ri +k)

p(r1−ri+1)×(n−ri +1+k)
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for k = 1, . . . , ri − ri+1 − 1. Horizontal arrows contribute a factor of the form

p(r1−ri +k)×(n−ri +1)

p(r1−ri +k−1)×(n−ri )

,

for k = 1, . . . , ri − ri+1 − 1. Since

s1(r1−ri+1−1)×(n−ri +k) = 0, k = 1, . . . , ri − ri+1 − 1

and

s1(r1−ri +k)×(n−ri +1) = 0, k = 1, . . . , ri − ri+1 − 1

in Fl(n; r) by part (b) of Theorem B, the extra terms vanish as claimed. ��

5 Quantum hooks and quantum cohomology

In this section, we study a natural ring homomorphism from the ring �r1 of symmetric
polynomials in r1 variables to QH∗ Fl(n; r) given by mapping the kth elementary symmetry
polynomial in r1 variables ek(r1) to the kth quantum elementary polynomial eq

k (r1), defined
by the recursion (3) as in Sect. 2.

We have a Z-basis of �r1 given by Schur polynomials indexed by partitions λ of height at
most r1. Using the identity sλ = det(s

1λ′
i + j−i ) = det(eλ′

i + j−i (r1)), where λ′ is the transpose
of λ, we write s1λ for the image of sλ under the map �r1 → QH∗ Fl(n; r):

sλ �→ s1λ := det(eq
λ′

i + j−i (r1)).

For λ ∈ P(n, r1), s1λ represents a quantum Schubert class. When λ has width greater than
n − r1, s1λ is still defined, and Theorem B states that for a particular class of partitions λ, s1λ
is equal to a Schubert class, up to power of q , and that for another class of partitions, s1λ = 0.

We begin with some terminology. For 0 < b ≤ n − rρ , write b̄ := b − (n − rI ) for I
such that n − rI < b ≤ n − rI+1. As in the introduction, set the quantum hook (or q-hook)
of width b to be the partition

Hb := (bb−n+r1 , (b − n + rI )
n−rI+1−b) = (br1−rI +b̄, b̄n−rI+1−b).

In the proof of our results, we will often consider the column heights of Hb, which we can
read from the transpose of Hb:

H ′
b = ((r1 − rI+1)

b̄, (r1 − rI + b̄)n−rI ) = ((r1 − rI+1)
b−n+rI , (b − n + rI )

n−rI ) (13)

The q-hook Hb can also be described as the partition obtained from a (r1 − rI ) × (n − rI )

rectangle after adding b̄ rim-hooks of length n + r1 − rI − rI+1, each beginning in row
r1 − rI+1 and ending in row 1 (see Fig. 2, also Fig. 3).

For a q-hook Hb of width b, set q Hb := qr1−r2
1 . . . (q1 . . . qI−1)

rI−1−rI (q1 . . . qI )
b−(n−rI ).

With this definition, note that

q Hb = q Hb−1 · q1 . . . qI . (14)

Example 5.1 Consider QH∗ Fl(4; 2, 1) with deg q1 = 3 and deg q2 = 2. For the q-hooks
H3 = (3, 0) and H4 = (4, 4) shown in Fig. 2, we have q H3 = q1 and q H4 = q1(q1q2) =
q2
1q2.
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Fig. 2 q-hooks Hb of width b = 3, 4 for Fl(4; 2, 1) and of width 3 ≤ b ≤ 8 for Fl(8; 6, 4, 3)

×

+

n − rI b̄

r 1
−

r I
r I

−
r I

+
1

b̄ n − rI

· · ·

μI+1

μI μ2 μ1

Hλ1

λ1

Fig. 3 A q-hook Hb of width b and a skew shape λ/Hλ1 with associated tuple of partitions �μλ =
(μ1, . . . , μI+1, ∅, . . . , ∅)

Example 5.2 Consider QH∗ Fl(8; 6, 4, 3) with deg q1 = 4, deg q2 = 3, and deg q3 = 4. Let
I be such that n − rI < b ≤ n − rI+1. For the q-hooks of width 3 ≤ b ≤ 8 (depicted in Fig.
2), we have:

b I Hb q Hb

3 1 (3, 1) q1
4 1 (4, 4) q21
5 2 (5, 5, 5) q21 (q1q2) = q31q2
6 3 (6, 6, 6, 6, 1, 1) q21 (q1q2)(q1q2q3) = q41q22q3
7 3 (7, 7, 7, 7, 7, 2) q21 (q1q2)(q1q2q3)

2 = q51q32q23
8 3 (8, 8, 8, 8, 8, 8) q21 (q1q2)(q1q2q3)

3 = q61q42q33

Let Rb := (br1−rI +b̄) = (br1−(n−b)) be the maximal rectangle of width b contained in
Hb, with Hb = Rb = ∅ if b < n − r1.

Remark 5.3 For a partition λ ⊆ r1 × n, let I be such that n − rI < λ1 ≤ n − rI+1. Then
Rλ1 ⊆ λ if condition (i) below holds, and Hλ1 ⊆ λ if conditions (i) and (ii) below hold.

(i) λ′
λ1

≥ λ1 − (n − r1)
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H3

H5
H6

Fig. 4 Partitions η, λ, and ν, skew shapes η/H3, λ/H5 and ν/H6, and their associated tuples of partitions
�μη, �μλ and �μν for Fl(8; 6, 4, 3)

(ii) λ′
λ1−(n−rI )

≥ r1 − rI+1.

(Note that if λ1 = n − rI+1, then condition (ii) is redundant.)

Conditions (i) and (ii) are illustrated in the left diagram of Fig. 3 by λ containing the southeast
corner boxes of the q-hookmarked by+ and×, respectively.Here, b = λ1, b̄ := λ1−(n−rI ),
and r1 − rI + b̄ = λ1 − (n − r1).

Definition 5.4 A partition λ ⊆ r1×n is compatible with a q-hook if Hλ1 ⊆ λ, i.e. conditions
(i) and (ii) of Remark 5.3 holds.

Remark 5.5 The partition Hb has height r1 − rI+1. By convention, r0 = n, so when 0 =
n − r0 < b ≤ n − r1, Hb is the empty partition, and so every partition λ of width at most
n − r1 is compatible with a q-hook.

For a partition λ ⊆ r1 × n that is compatible with a q-hook, define partitions μ1, . . . , μI

by subdividing the skew shape λ/Hλ1 , where μ1 is the partition consisting of the rightmost
n −r1 columns of Hλ1 ,μ

2 is the partition consisting of the second rightmost r1 −r2 columns
of Hλ1 , etc. If I < ρ, let μI+1 be the partition consisting of the leftmost b̄ columns. (See
Fig. 3.)

Definition 5.6 For a partition λ ⊆ r1 × n that is compatible with a q-hook, define the tuple
of partitions associated to λ/Hλ1 to be �μλ = (μ1, . . . , μI+1, ∅, . . . , ∅) if I < ρ and
�μλ = (μ1, . . . , μI ) if I = ρ, as described above (see Figs. 3, 4). Here, �μλ ∈ P(n, r) since
μ� ⊆ r� × (r�−1 − r�) for 1 ≤ l ≤ ρ.

Lemma 5.7 For a partition λ that is compatible with a q-hook, let w be the (321-avoiding)
permutation corresponding to (λ/Hλ1 , ω) with labeling ω(i, j) = r1 + i − j under the
bijection in [3]. Then w is equal to the permutation corresponding to the tuple �μλ via the
bijection described in Remark 2.1. Moreover, w is either Grassmannian with descent at rI+1

or has descents at exactly rI and rI+1, where I is such that n − rI < λ1 ≤ n − rI+1.

Proof A reduced expression for the (321-avoiding) permutation w corresponding to
(λ/Hλ1 , ω) is given by [3] as the product of simple transpositions obtained from reading
the labeling from bottom to top, beginning with the rightmost column. This product respects
the subdivision of λ/Hλ1 into the tuple of labeled partitions μ1, . . . , μI , μI+1 with labeling
ω�(i, j) = r�+i − j for 1 ≤ � ≤ I +1. (FromDefinition 5.6, if I = ρ, then the tuple consists
of only μ1, . . . , μI .) Again, by [3] (see also [15]), a reduced word for μ� is the product of
simple transpositions obtained by reading the labeling of μ� from bottom to top, beginning
with the rightmost column. Concatenating these expressions recovers w. Moreover, define
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the partitionμ[I ] to be the partition obtained by appending the partitionsμI , . . . , μ1 together;
this consists of the last n − rI columns of λ/Hλ1 . Let w I+1 and w[I ] := w1 . . . w I be the
Grassmannian permutations associated to μI+1 and μ[I ]; these have possible descents at
rI+1 and rI , respectively, and so their product has possible descents at only rI+1 and rI . ��
Remark 5.8 For a partition λ that is compatible with a q-hook with corresponding tuple �μλ

and permutation w, we denote the associated Schubert class by σ �μλ
, σw , or simply σλ/Hλ1

.

Example 5.9 Consider Fl(4; 2, 1) as in Example 5.1. The partition (3, 3) is compatible with
the q-hook H3 = (3, 0).

The associated tuple of partitions ( , ) is read from right to left from the skew shape
(3, 3)/H3.

Example 5.10 Consider Fl(8; 6, 4, 3) as in Example 5.2 and partitions η = (3, 3, 3, 2), λ =
(5, 5, 5, 5, 5, 4, 2) and ν = (6, 6, 6, 6, 5, 3). Then η is compatible with the q-hook H3 =
(3, 1), λ is compatible with the q-hook H5 = (5, 5, 5) and ν is compatible with the q-hook
H6 = (6, 6, 6, 6, 1, 1). The associated tuples of partitions to η/H3, λ/H5 and ν/H6 are

�μη = ( , , ∅), �μλ =
(

, ,

)

and �μν =
(

, ,
)
, as seen in Fig. 4 by reading

the associated tuple of partitions from right to left. Note that I = ρ = 3 in Definition 5.6 for ν
since n −r3 = 5 < ν1. Also note that as in Lemma 5.7 and Example 2.2, the first permutation
has descents at r1 = 6 and r2 = 4 and the other two permutations are Grassmannian with
descent at r3 = 3.

Before proving Theorem B, we introduce and study the following auxiliary partitions.

Definition 5.11 Given a partition λ ⊆ r1 × n and 1 ≤ m ≤ λ1, define λ(m) to be the partition
obtained from λ by removing column m from λ and adding 1 to columns 1, . . . , m − 1, i.e.

(λ(m))′ = (λ′
1 + 1, . . . , λ′

m−1 + 1, λ′
m+1 + 1, . . . , λ′

λ1
),

where λ′ is the transpose of λ, i.e. (λ(m))′i = λ′
i + 1 for i < m and (λ(m))′i = λi+1 for i ≥ m.

(See Fig. 5.)

Lemma 5.12 If a partition λ ⊆ r1 × n is compatible with a q-hook, then λ(m) is compatible
with a q-hook for 1 ≤ m ≤ λ1.

Proof This follows from Remark 5.3 and Definition 5.11, where conditions (i) and (ii) of
Remark 5.3 for λ(m) are illustrated by ⊗ and ⊕ in Fig. 5. ��

For a partition λ ⊆ r1 × n, consider s1λ := det(s1
λ′

i + j−i ) and the determinants � as in (5)

and (7).

Proposition 5.13 Given a partition λ ⊆ r1 × n of width b := λ1, let I be such that n − rI <

b ≤ n − rI+1 and let b̄ = b − (n − rI ). Then

b∑

m=1

(−1)m−1s1
1λ′

m −m+1 ∗ �λ(m)/Hb−1
(ψ) = q1 . . . qI �λ/Hb (e

q(φ)) in QH∗ Fl(n; r),

where φ = ((I + 1)b̄, I rI−1−rI , . . . , 1n−r1) and ψ = ((I + 1)b̄−1, I rI−1−rI , . . . , 1n−r1).
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Fig. 5 The skew shape λ/Hλ1

and the skew shape λ(m)/Hλ1−1

λ1

×

+
⊕

⊗

mth column of λ

Proof From (5), we have

�λ/Hb (φ) = det

(

eq
λ′

i −(Hb)′j + j−i (φ j )

)

=: det[v1, . . . , vb] (15)

�λ(m)/Hb−1
(ψ) = det

(

eq
(λ(m))′i −(Hb−1)

′
j + j−i

(ψ j )

)

, (16)

where φ and ψ are as in the statement of the proposition, and where we write v j for the
j th column of the matrix in (15). (Note that λ and λ(m) need not contain Hb and Hb−1,
respectively.) Since s11a = eq

a (r1) in QH∗ Fl(n; r), the left hand quantity of the proposition
can be rewritten as the determinant:

det
(

eq
λ′

i −(0,(Hb−1)
′) j + j−i (1, ψ j )

)

i, j
(17)

where (1, ψ) = (1, (I +1)b̄−1, I rI−1−rI , . . . , 1n−r1). We proceed by reordering the columns
of this matrix and then comparing the resulting determinant to (15). More concretely, let
τ ∈ Sb be the permutation defined by

τ( j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b̄ + r1 − rI if j = 1
j if 2 ≤ j ≤ b̄
b̄ + r�+1 − rI + 1 if j = b̄ + r�−1 − rI for 1 ≤ l < I
1 if j = b̄ + rI−1 − rI

j + 1 otherwise.

Reordering columns using the permutation τ , from the description of H ′
b and H ′

b−1 in (13),
(17) is equal to sgn(τ ) times

det
(

eq
λ′

i −κ j + j−i (ψ j )
)

1≤i, j≤b
=: det[v1, . . . , vb], (18)

where κ = H ′
b − (rI − rI+1)e1 − ∑

1≤l<I (r�−1 − r�)eb̄+1+r�−rI
and ψ = φ − e1 −∑

1≤l<I eb̄+1+r�−rI
. Here, e j denotes the sequence that is 1 in position j and 0 elsewhere,
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and v j is the j th column of the determinant in (18). Thus, column v j of (15) is equal to
column v̄ j of (18) except when j = 1 or j = b̄ + 1 + (r�−1 − rI ) with 1 ≤ l < I .

We rewrite (3) as

eq
a (r�) = eq

a (r�−1) −
(r�−1−r�∑

m=1

σ l
meq

a−m(r�)

)

+ (−1)r�−1−r�q� eq
a−(r�−1−r�+1)

(r�+1). (19)

Note that for l = 1, the first term vanishes since eq
a (r0) = eq

a (n) = 0 is a relation in the
quantum cohomology ring for all a.

We now describe the transition matrix between vectors v j and v′
j . Consider the b × b

matrix A = (ai j ) with entries

ai j =

⎧
⎪⎪⎨

⎪⎪⎩

−σ I
b̄+rI−1−rI +1−i

if j = 1

−σ l
b̄+r�−1−rI +1−i

if j = b̄ + 1 + r�+1 − rI for 1 ≤ l < I

0 otherwise,

(20)

with the convention that σ l
0 = 1 and σ l

i = 0 for i < 0 and i > r�−1 − r�. Then A is a lower
triangular matrix with zeros along the diagonal. Let D = (di j ) be the b × b diagonal matrix
with entries

d j j =

⎧
⎪⎨

⎪⎩

(−1)rI−1−rI qI if j = 1

(−1)r�−1−r�q� if j = b̄ + 1 + r�+1 − rI for 1 ≤ l < I

1 otherwise.

(21)

With this notation, the relation between the vectors v j and v′
j is given bymatrixmultiplication

[v1, . . . , vb] = (A + D)[v1, . . . , vb].
Since A+ D is lower triangular with diagonal entries d j j , det(A+ D) = ∏I

�=1(−1)r�−1−r�q�,
and so

det[v1, . . . , vb] = (−1)n−r1q1 . . . qI · det[v1, . . . , vb]
and hence by (17) and (18), the left hand side of the proposition is equal to

(−1)n−r1+I q1 . . . qI sgn(τ ) det[v1, . . . , vb].
Since the signature sgn(τ )of the permutation τ is (−1)n−rI , we conclude that (18) is equal
to q1 . . . qI times the determinant (15), as needed. ��

6 Proof of Theorem B

In this section, we use the set up and results from Sect. 5, including Proposition 5.13, to prove
Theorem B, which we restate here.

Theorem B Let λ ⊆ r1 × n be a partition, and let I be such that n − rI < λ1 ≤ n − rI+1.

(a) If Hλ1 ⊆ λ, then

s1λ = q Hλ1σ �μ in QH∗ Fl(n; r),
where �μ = (μ1, . . . , μI+1, ∅, . . . , ∅) is the tuple of partitions associated to λ above.
In particular, s1Hb

= q Hb since Hb/Hb = ∅, so μ j = ∅ for all j and σ(∅,...,∅) = 1.
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(b) If λ contains Rλ1 , but Hλ1 � λ, then

s1λ = 0 in QH∗ Fl(n; r).
Example 6.1 For QH∗ Fl(4; 2, 1), by part (a) of the theorem and Examples 5.1 and 5.9, we
have

s1 = σ ,∅

s1 = q1

s1 = q1σ ,

s1 = q2
1q2.

(See also Example 4.8.)

Example 6.2 Consider QH∗ Fl(8; 6, 3, 2) as in Examples 5.2 and 5.10. By part (a) of the
theorem, for the partitions η = (3, 3, 3, 2), λ = (5, 5, 5, 5, 5, 4, 2) and ν = (6, 6, 6, 6, 5, 3),
we have

s1η = q1σ
, ,∅

, s1λ = q3
1q2σ

, ,

and s1ν = q4
1q2

2q3σ
, ,

.

FromRemark 2.1 and Example 2.2, we can alsowrite this in terms of the indexing of Schubert
classes by permutations as

s1η = q1σ12453768, s1λ = q3
1q2σ36812457 and s1ν = q4

1q2
2q3σ14723568.

On the other hand, for the partition γ = (6, 6, 6, 6, 3), we have s1γ = 0 by part (b) of the
theorem since γ contains R6 = (6, 6, 6, 6) but not H6 = (6, 6, 6, 6, 1, 1).

We now prove part (a) of Theorem B and then use part (a) to prove part (b).

Proof of part (a) of Theorem B We proceed by induction on the width b := λ1 of λ. For the
base cases, when 0 < b ≤ n − r1, by Remark 5.5, Hb is the empty partition, and we have
the equality s1λ = σλ = σλ/∅.

Now assume the result for partitions of width at most b − 1. Given a partition λ ⊆ r1 × n,
expanding the determinant s1λ := det(s1

λ′
i + j−i ) along the first column gives

s1λ =
b∑

m=1

(−1)m−1s1
1λ′

m −m+1 ∗ s1
λ(m) . (22)

From Lemma 5.12, λ(m) is compatible with a q-hook, so by the induction hypothesis, s1
λ(m) =

q Hb−1σλ(m)/Hb−1
, and (22) becomes

s1λ =
b∑

m=1

(−1)m−1s1
1λ′

m −m+1 ∗ q Hb−1σλ(m)/Hb−1

= q Hb−1 ∗ (q1 . . . qI σλ/Hb ) = q Hb σλ/Hb ,

where the second and third equalities follow from Proposition 5.13, Lemma 5.7, (6), and
(14). ��
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Fig. 6 The partitioning of λa

Rn−rI+k

· · ·

RI+1

RI R2 R1

k

n − rI + k

r I
−

r I
+
1

r 1
−

r I
j

r 1
−

r I
+

k
c

We can now prove Proposition 4.7.

Proof of Proposition 4.7 Choose a vertex in the (I + 1)th step of the ladder quiver (choosing
this notation for compatibility with Theorem B), and let zv be the associated variable in the
EHX mirror. We need to show that

π(FGr(φGr(zv))) = FFl(φFl(zv)). (23)

Suppose v is in the j th row of the kth column of the (I + 1)th block of the ladder quiver.
Then

φFl(zv) = q1 . . . qI
pI+1

j×k

pI+1
( j−1)×(k−1)

.

As in the definition of the Schubert map, for � = 1, . . . , I , let R� be the

c × (r�−1 − r�), c := rI − rI+1 + j − k

rectangle, and set RI+1 := j × k. Set RI+1 := ( j − 1) × (k − 1). Set
�μa := (R1, . . . , RI+1, ∅, . . . , ∅), �μb := (R1, . . . , RI+1, ∅, . . . , ∅), and �μ2 :=
(R1, . . . , RI , ∅, ∅, . . . , ∅). Then the right hand side of (23) is

q1 . . . qI
σ �μa

σ �μ2

σ �μ2

σ �μb

= q1 . . . qI
σ �μa

σ �μb

.

Next, we compute the left hand side of (23). It isn’t hard to see that the vertex under consid-
eration is in the n − rI + k column and the r1 − rI+1 + j row of the Grassmannian quiver.
Let λa = (r1 −rI+1 + j)× (n −rI + k), and let λb = (r1 −rI+1 + j −1)× (n −rI + k −1).
The left hand side of (23) is therefore

s1λa

s1λb

.

Both λa and λb are compatible with a q-hook. The partition λa is compatible with the q-hook
Hn−rI +k . Note that we can partition λa as in Fig. 6 (so, in the notation of Theorem B, b = k):

Therefore

s1λa
= q Hn−rI +k σ �μ1 .
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Similarly, λb is compatible with the q-hook Hn−rI +k−1, and

s1λb
= q Hn−rI +k−1σ �μb .

It finally follows by comparing the q factors that

s1λa

s1λb

= q1 . . . qI
σ �μa

σ �μb

as required. ��

We now prove the second part of Theorem B, that for λ ⊆ r1 × n such that Rλ1 ⊆ λ, but
Hλ1 � λ, s1λ = 0 in QH∗F .

Proof of part (b) of Theorem B We proceed by induction on the width of λ. If λ1 ≤ n − r1,
then λ is compatible with a q-hook since Hλ1 = ∅, so the proposition holds vacuously. Now
assume the result holds for partitions of width b − 1, and consider a partition λ of width
b := λ1 that contains Rb but not Hb. Let I be such that n − rI < λ1 ≤ n − rI+1.

We use the expansion (22) of the determinant s1λ . From Remark 5.3 and Definition 5.11,
λ(m) contains Rb−1 for 1 ≤ m ≤ λ1. If λ1 = n − rI+1, then Hb = Rb and there is nothing
to prove, so assume n − rI < λ1 < n − rI+1 and write b̄ = λ1 − (n − rI ).

First consider the case where b̄ > 1 and λ′̄
b−1

< r1 − rI+1 − 1. This corresponds to

the cell marked ⊗ in Fig. 5 not being contained in λ. In this case, (λ(m))′̄
b−1

< r1 − rI+1

for 1 ≤ m ≤ λ1 by Remark 5.3 so that λ(m) does not contain Hb−1. Then by the inductive
hypothesis, s1

λ(m) = 0. Since all the summands in (22) are zero, s1λ = 0.

Now if b̄ > 1 and λ′̄
b−1

≥ r1 − rI+1 − 1, i.e. λ contains the cell marked ⊗ in Fig. 5, then

by Remark 5.3 and Definition 5.11, if m < b̄, then λ(m) does not contain Hb−1, so by the
inductive hypothesis, s1

λ(m) = 0. On the other hand, if m ≥ b̄, then λ(m) contains Hb−1, and
so by part (a) of Theorem B, the expansion (22) becomes

s1λ =
b∑

m=b̄

(−1)m−1s1
1λ′

m −m+1 ∗ q Hb−1σλ(m)/Hb−1
.

Since Hb−1 � λ(m) for m < b̄, by Remark 2.4 and (6), we have

s1λ =
b∑

m=1

(−1)m−1s1
1λ′

m −m+1 ∗ q Hb−1�λ(m)/Hb−1
(eq(ψ)), (24)

where ψ = ((i + 1)b̄−1, irI−1−rI , . . . , 1n−r1). Similarly, if b̄ = 1, then Hb−1 = Rb−1 and
λ(m) contains Hb−1 for all 1 ≤ m ≤ b, so by part (a) of Theorem B and (6), we have (24) as
well. Moreover, by Proposition 5.13, (24) becomes

s1λ = q1 . . . qI �λ/Hb (e
q(φ)) in QH∗ Fl(n; r),

where φ = ((i + 1)b̄, irI−1−rI , . . . , 1n−r1). Since Hb � λ, we conclude that s1λ = q1 . . . qI ·
0 = 0 by Remark 2.4. ��
Acknowledgements The authors would like to thank Konstanze Rietsch, Dave Anderson, and Jennifer Morse
for helpful conversations.
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