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Abstract— Global Navigation Satellite System (GNSS) is per-
vasive in navigation and positioning applications, where precise po-
sition and time referencing estimations are required. Conventional
methods for GNSS positioning involves a two-step process, where
intermediate measurements such as Doppler shift and time delay
of received GNSS signals are computed and then used to solve
for the receiver’s position. Alternatively, Direct Position Estimation
(DPE) was proposed to infer the position directly from the sampled
signal without intermediate variables, yielding to superior levels of
sensitivity and operation under challenging environments. However,
the positioning resilience of DPE method is still under the threat
of various interferences. Robust Interference Mitigation (RIM)
processing has been studied and proved to be efficient against
various interference in conventional two-step positioning (2SP)
methods, and therefore worthy to be explored regarding its potential
to enhance DPE. This article extends DPE methodology by incor-
porating RIM strategies that address the increasing need to protect
GNSS receivers against intentional or unintentional interferences,
such as jamming signals, which can deny GNSS-based positioning.
RIM, which leverages robust statistics, was shown to provide
competitive results in two-step approaches and is here employed
in a high-sensitivity DPE framework with successful results. The
article also provides a quantification of the loss of efficiency of using
RIM when no interference is present and validates the proposed
methodology on relevant interference cases, while the approach can
be used to mitigate other common interference signals.
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Mitigation, Anti-Jamming, Robust statistics.
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I. Introduction

The conventional approach to process GNSS signals
is a 2SP process, where the so-called Cross Ambiguity
Function (CAF) is computed and maximized as a function
of time delay and Doppler shift of each in-view satellite
[1]–[3]. The GNSS solution including position and ve-
locity of a GNSS receiver is then calculated based on the
time delay and Doppler shift from the first step. Despite of
the generality and efficiency of the 2SP approach, the fact
that intermediate measurements (Doppler shift and time
delay) are used would degrade the performance compared
with the case when position is directly estimated in one
step, which is the DPE approach. This is proved in [4],
[5] showing the performance of DPE approach can never
be worse than the 2SP approach. One of the main benefits
of DPE processing is that receivers can increase their
senstivity, thus being able to operate at lower signal-to-
noise ratios compared to their 2SP versions [6].

DPE for GNSS was first proposed in [7]. This ap-
proach is based on the fact that time delays and Doppler
shifts of all satellites are intimately related to one another
through the GNSS solution of receiver. Considering the
CAF as a function of Position Velocity and Time (PVT)
of GNSS receiver, the PVT results can be acquired in just
one step by maximizing the CAF. Compared with conven-
tional 2SP approach, DPE approach has following advan-
tages [6]: i) no intermediate measurements: as discussed
above, 2SP approach needs to estimate Doppler shift and
time delay parameters for GNSS solution, which brings
potential correlation among channels and propagation
effects. Those errors would cause further distortions in
GNSS solution through non-linearity; ii) lower dimension
size: since 2SP approach needs to estimate Doppler shift
and time delay of every available channel, the dimension
size can simply increase to a larger value especially in
a multi-constellation receiver, while DPE approach only
need to estimate PVT solution; iii) simpler syncronization
problem: The prior information from the tracking loops
in 2SP approach is generally applied as an involved
task [8] and would need extensive test-field campaigns
to generate relevant data [9], and the algorithm needs
to clarify among difference synchronization evolution
models based on the dynamics of receiver. This is much
more difficult compared with the case when the parameter
of interest is the user’s position itself, with each parameter
has their own physical meaning to aid the inclusion of
side information; iv) robustness, DPE approach is more
robust than 2SP approach against interferences, given the
estimation of position is jointly performed taking into
account measurements from all in–view satellites [7],
[10].

However, regardless of the robustness of DPE com-
pared with 2SP approach, the interferences can still cause
a degradation to its performance. Such interferences, such
as intentional jammers or unintentional interferences [11],
become challenging threats in the GNSS processing chain.
Despite of the fact that jammers are illegal devices in
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most (not all) countries, they are very easy to built
and cheap to buy, those devices can cause a large-area
disruption to GNSS-based services (in kilometers level).
In addition, unintentional interferences can also be a
problem in GNSS positioning. For example, the Distance
Measuring Equipment (DME) signal, which is essential
in aircraft navigation, or other technologies are known to
interfere GNSS signals [12]–[14]. Therefore, the research
of interference mitigation techniques have been triggered
recently.

In terms of the 2SP approach, a classical jamming sig-
nal mitigation method is Interference Cancellation (IC), in
which the detection, estimation and reconstruction of the
interference waveform is done. For instance, pulse blank-
ing and (adaptive) notch filtering [15], [16] are the two
typical and popular IC methods. However, the drawback
of this approach cannot be neglected, where detection
and estimation are two possible causes of failure during
processing, and that there is a need to make assumptions
on the jamming signal waveform [17]. To overcome
those drawbacks, a robust statistics based approach was
investigated, where interferences are regarded as outliers.
It is referred to as RIM approach, in which the estimation
of the interference waveform and its detection can be
avoided. The concept was first implemented in [18],
where the RIM approach acts as a filter to mitigate pulsed
interference as outliers in received signal. In [18], the
myriad Zero Memory Non-Linearity (ZMNL) was derived
by substituting the classical Gaussian assumption with
Cauchy assumption on the jammed input signal, while
the complex signum ZMNL, is derived under a Laplacian
model in [19]. Both works apply their ZMNLs in time
domain, under a more relaxed assumption of heavy-tailed
Probability Density Function (PDF) to the noise statistics,
modelling large outliers in the sampled signal. Then, [20]–
[22] explored the use of Huber’s ZMNL in transformed
domain instead of the time one. Furthermore, [23] studied
Huber’s ZMNL in multiple domains, both time and trans-
formed, which was referred to as Dual-Domain RIM. Re-
cently, [24] has discussed the jointly use of RIM approach
and other typical interference mitigation techniques in
multi-layer multi-constellation GNSS processing. In this
paper, we study the potential of RIM approach in DPE
processing, considering Huber’s ZMNL to single- and
dual-domains, exploring the performances of them in
the presence and absence of different kinds of jamming
signals. Specifically, intentional Continuous Wave (CW)
jamming signal and DME interference signal. Notice that
RIM, which DPE-RIM is based on, is effective against
interference signals that can be considered to be outliers
in time (e.g. pulsed interferences), frequency (e.g. CW), in
arbitrary domains (e.g. wavelet transform), or in multiple
domains (e.g. the case of the DME signal) [23]. As a
consequence, RIM (and therefore DPE-RIM) could be
applicable to wideband interferences when these appear as
pulsed in time domain, otherwise this methodology is not
applicable and other solutions such as the use of antenna
arrays may be considered [25].

In summary, the main novel contributions of this
article with respect to previously published works are:

• A robust DPE receiver solution that mitigates inter-
ferences through the incorporation of RIM method-
ology. This results in a novel GNSS receiver frame-
work that features high-sensitivity and interference
rejection.

• Analysis of the Loss of Efficiency (LoE) of such
approach in terms of the Cramér–Rao Bound (CRB)
degradation under a direct-positioning framework.

• Performance analysis of a specific RIM method
(based on Huber’s non-linearity) under direct-
positioning framework against CW and DME inter-
ferences, validating the theoretical results.

The remainder of the paper is organized as follows:
Section II describes the signal model for both GNSS and
interference signals, as well as recalls the basics of DPE
processing. Section III contains the main contribution,
showing the application of RIM to DPE. Section IV
provides a discussion and the derivation of LoE of RIM
under DPE, which corresponds to the degradation of using
RIM when there is no interference present. Section V
details the simulation experiments and corresponding
analysis. Finally, the paper concludes with final remarks
in Section VI.

II. Signal models and direct-positioning background

This section provides a discussion on the signal mod-
els for GNSS signals and interference signals that are used
later in the article. Particularly, we formulate the signal
model for a generic intentional jammer and the DME
signal, the latter being a type of unintentional interference
that is explored in the simulations result. This section also
provides a review of DPE signal processing, which will
be augmented with the RIM approach in Section III.

A. Signal Model

As described in [6], [26], the complex baseband
equivalent of the received signal at an antenna can be
modeled as the summation of several scaled, structure-
known signals with time delay and Doppler shift as shown
below:

x(t) =

M∑
i=1

αici(t− τi)ej(2πfd,it+ϕi) + η(t) + i(t) (1)

where M is the number of satellites that are visible
to the receiver, the index i ∈ {1, · · · M} denotes each
satellite, αi is the complex amplitude containing phase
information, ci(t) is the complex navigation signal spread
by the corresponding Pseudo-Random Noise (PRN) code,
τi is the time delay from the satellite to the receiver, fd,i is
the Doppler shift, η(t) denotes Additive White Gaussian
Noise (AWGN) signal with double sided spectral density
N0/2, and ϕi denotes the phase shift introduced by the
communication channel, which is regarded as an unknown
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parameters alongside τi and fd,i. In the absence of inter-
ference η(t) is the dominating random term and the reason
for assuming that x(t) follows a Gaussian distribution.
When an interference is present, i(t), the noise component
η(t) + i(t) would incorporate both contributions. In this
paper, i(t) is modeled as a generic signal, and can be, for
instance, a CW jamming signal or a DME interference
signal as will be described later in this section. The
covariance of the noise is defined as

E{η(t)η(t)H} = σ2
n . (2)

It is noted that the noise signal is circularly-symmetric
complex Gaussian such that the real and imaginary parts
have the same variance σ2

n/2. After sampling at a suitable
rate fs = 1

Ts
that satisfies the Nyquist criterion, the

resulting complex discrete-time sequence is:

x[n] =

M∑
i=1

αici(nTs−τi)ej(2πfd,inTs+ϕi)+η[n]+i[n] (3)

B. Interference signal

The baseband interference signal, i[n], can assume dif-
ferent forms depending on the type of source generating
it [27], [28]. A wide class of interference signals can be
modeled as

i[n] = αIej2πfI [n]nTs+jϕI [n] , (4)

that is, signals with a constant amplitude, αI , and a time-
varying frequency/phase, fI [n] and ϕI [n] respectively. For
instance, CW interferences can be modeled as (4) with
some constant parameters fI [n] = fCW = const and
ϕI [n] = ϕCW = const. When the interference amplitude
is assumed constant, the signal model (4) is not able to
capture pulsed signals such as DME components. Due to
its relevance in the context of GNSS, DME signals are
specifically discussed in the next section.

C. Distance Measurement Equipment signal model

DME is used to measure the distance between aircraft
and ground station by measuring the propagation delay
between a DME interrogator equipment onboard the air-
craft and a transponder at the ground station. It operates
in four modes: X, Y, W and Z, between 960 MHz and
1215 MHz in an Aeronautical Radionavigation Services
(ARNS) band [12]. In particular, the X-mode replies in
1151 − 1213 MHz, which thus overlaps with the GNSS
E5 and L5 bands. For this reason, GNSS signal reception
in the E5 and L5 band can be degraded by DME signals.
Therefore, DMEs replying in X-mode can interfere with
GNSS signal reception and should be mitigated.

DME signals are composed of pulse pairs and Fig. 1
shows one pair of DME signal in time domain. As shown
in the figure, considering its short time duration and high
peak power, the DME signal can be regarded as an outlier
in the time domain. Moreover, when considering its Power
Spectral Density (PSD) in [12], DME signals can also be
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Fig. 1. Example of DME signal waveform with normalized
amplitude.

considered as an outlier in the frequency domain due to its
high power concentrated in a narrow band. More details
of the parameters and modeling of DME signals can be
found in [12], [29].

D. Direct Position Estimation

The signal model in (1), typically considered in most
receiver designs [3], assumed that delay and Doppler are
constant within an observation window (the integration
interval). However, in practice, these quantities evolve
over time as a consequence of their physical interpretation
[30]. We review this in this section, while we notice that
time delay and Doppler shifts can be parameterized by
the position of the receiver, as well as the time-varying
positions and velocities of the satellites. Particularly, the
time delay – or the signal propagation time –, is related
to the distance between the satellite and the receiver.
Consequently, the pseudorange observable ρi = cτi is
modeled as

ρi = ϱi(p) + c(δt− δti) + ϵi, (5)

ϱi(p) ||p− pi|| between the i-th satellite, located at
position pi = (xi, yi, zi)

⊤, and the receiver,
whose position p = (x, y, z)⊤ is unknown;

c is the speed of light in m/s;
δt the unknown receiver clock bias with respect

to GNSS time;
δti the i-th satellite clock bias with respect to

GNSS time given by the ephemeries; and
ϵi a random term including ephemeris errors,

atmospheric-induced delays, relativistic ef-
fects, and other unmodeled errors.

The Doppler shift is the difference between the ob-
served carrier frequency and its nominal value at transmis-
sion. The Doppler effect is caused by the relative motion
between the receiver and the corresponding satellite. The
Doppler shift can be modeled as

fd,i = −(vi − v)⊤ui(1 + δ̇t)
fc
c
, (6)

where vi = (vx,i, vy,i, vz,i)
⊤ is the velocity vector of

the i-th satellite, v = (vx, vy, vz)
⊤ is the velocity of
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the receiver, δ̇t is the clock drift of the receiver, and ui

denotes the unit vector from the receiver pointing to the
i-th satellite as ui = pi−p

||pi−p|| , where || · || denotes the
ℓ2-norm of a vector and fc denotes the carrier frequency
of the transmitted GNSS signal.

As shown in (5) and (6), the delay τi and Doppler shift
fd,i of the i-th satellite are functions of the position p and
velocity v of the receiver. More generally, if we gather
all dynamics-related unknown parameters into a vector κ
(for instance, κ = p or κ⊤ = (p⊤,v⊤) [6]), the signal
model in (1) can be parameterized by κ

x(t) =

M∑
i=1

αici(t− τi(κ))ej(2πfd,i(κ)t+ϕi) + η(t) + i(t)

(7)
After sampling at a fs = 1

Ts
that satisfies the Nyquist

criterion, the resulting discrete-time complex signal is:

x[n] =

M∑
i=1

αici(nTs−τi(κ))ej(2πfd,i(κ)nTs+ϕi)+η[n]+i[n]

(8)
DPE solves for the Maximum Likelihood (ML) esti-

mation of κ, given the model in (7). It can be seen [6] that
maximizing such likelihood is equivalent to minimizing
the cost function:

Λ(κ) =

N−1∑
n=0

|x[n]−
M∑
i=1

αici(nTs−τi(κ))ej(2πfd,i(κ)nTs+ϕi)|2

(9)
Following the derivation from [6], the estimate of κ is

κ̂ = argmax
κ


M∑
i=1

∣∣∣∣∣
N−1∑
n=0

x[n]ci(nTs − τi(κ))e−j(2πfd,i(κ)nTs)

∣∣∣∣∣
2


= argmax
κ

{
M∑
i=1

|Ci(κ)|2
}

(10)
where Ci(κ) is the so-called CAF of the i-th satellite [3],
defined as the correlation between the received samples
and the local code, in this case parameterized by κ.
Notice that when carrier-phase is also parameterized by
κ the resulting cost function would be different, in which
case high-accuracy DPE would be enabled [31]. In this
work we restrict to the typical DPE case where phase is
considered unknown but independent of κ [6].

III. Robust Interference Mitigation and
direct-positioning

This section discusses how the RIM approach can be
incorporated in DPE approach. Particularly, its applica-
bility in various domains is treated, namely: Transformed
Domain (TD) and Dual Domain (DD). At a glance,
RIM modifies the maximum likelihood cost function that
typically results in (10) using a nonlinear function ρ(·),
which produces estimates that are more robust to outliers.
In this case, outliers are interference signals that are
stronger than GNSS signals and sparse in one or several
of the aforementioned domains [17]. In practice, RIM
results in a variation of the CAF, which is referred to as a

Fig. 2. Generic block diagram of RIM processing on signal samples.

Robust CAF and denoted as Cρ,i(κ) for the i-th satellite
(cf. Appendix A). In the context of DPE, the resulting
robust estimation of the parameters in κ is then

κ̂ = argmax
κ

{
M∑
i=1

|Cρ,i(κ)|2
}

(11)

where the definition of depends on the time of RIM
processing performed, as detailed in the following subsec-
tions. Notice that, in the case of 2SP, the RIM solution
resembles (11) with the exception that there is no sum
over satellites and that the CAF is parameterized by time
delay and Doppler shift instead of κ.

A. RIM in TD

In RIM processing, the ZMNLs can be applied in gen-
eral TDs, which is depicted in Fig. 2. A linear transform,
T1, is used to project the interference component into
a domain such that it occurs as a sparse representation,
where only a limited number of samples are affected.
Transform T1 produces the TD samples

X[k] = T1(x[n]). (12)

The change of index, from n to k, is a notational con-
vention adopted to indicate that the input samples, x[n],
have been brought to a different representation domain.
Following T1, a ZMNL is used to reduce the impact of
outliers in the TD. A generic ZMNL is denoted here as
ρz(·) and produces the samples

Xρz [k] = ρz(X[k]) . (13)

Finally, a second linear transform, T2, is applied to
the samples, Xρz

[k] to obtain new, filtered time domain
discrete-time signal. T2 inverts the effects of T1 and
brings back the samples to the time domain. The output
of T2 is denoted here as

x̄[n] = T2(Xρz
[k]). (14)

Therefore we can say that T1 and T2 are inverse opera-
tors, T1 ◦T2 = I, where I is the identity operator. Note
that the above TD formulation is general and encompasses
different alternatives such as time domain (when both T1

and T2 are identity operators) or frequency domain (when
T1 is a Fast Fourier Transform (FFT) matrix and T2 is the
Inverse Fast Fourier Transform (IFFT)) processing. RIM
aims at reducing the impact of an interference i[n] on the
cleaned samples, x̄[n], which are used for the computation
of the robust CAF [18]. Following the procedure shown

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020



Fig. 3. DD-RIM with ZMNLs applied successively in the time and
frequency domains. Green boxes indicate the application of a ZMNL

and yellow boxes denote a linear transformation of the signal.

Fig. 4. DD-RIM with ZMNLs applied at first in the frequency and
then in the time domain.

in Appendix A, a robust CAF after TD-RIM can be
computed as:

Cρ,i(κ) =
N−1∑
n=0

x̄[n]ci (nTs − τi(κ)) e−j2πfd,i(κ)nTs ,

(15)
which can be then used to solve for DPE’s positioning
solution in (11).

In essence, the robust CAF Cρ,i(κ) applies a prepro-
cessing to the data by means of a nonlinear function
ρz(x[n]). A variety of nonlinearities can be employed to
pre-process the signal that constructs the so-called robust
CAF, as reviewed in Appendix B.

B. RIM in DD

Following the approach proposed in [23] for two-steps
processing schemes, this section describes the implemen-
tation of ZMNLs in two consecutive domains, referred to
as DD-RIM. It can be regarded as a cascade of two TD
RIM processing blocks, for instance time and frequency
domains. In particular, a doubly robust CAF is obtained
as follows:

Cρ,i(κ) =
N−1∑
n=0

x̄[n]ci (nTs − τi(κ)) e−j2πfd,i(κ)nTs .

(16)
where x̄[n] are the time domain samples obtained after the
sequential nonlinear processing on time and transformed
domains as shown in Fig. 3, mathematically described as

x̄[n] = T2 (ρzF (X[k])) (17)

where
X[k] = T1 (ρzT (x[n])) (18)

In this section, T1 and T2 are specified as FFT and IFFT,
to bring the signal from the time to the frequency domains
and vice versa. In general, other pairs of transformations
could be used [17]. Estimates of the signal parameters are
then obtained by maximizing the robust CAF as in (10).

As shown in Fig. 3, the received signal x[n] is
processed first with ρzT (·) and then transformed into

the frequency domain where ρzF (·) is applied to get
ρzF (X[k]). Intuitively, the first nonlinearity would be in
charge of mitigating outliers in the time domain (e.g.
pulsed interferences) and the second nonlinearity of doing
so in frequency (e.g. continuous wave interferences). The
resulting cleaned signal, x̄[n] = ρzF (X[k]) can be used
to compute the robust CAF (16) used for DD-RIM DPE
processing as in (10). Conversely, Fig. 4 shows an al-
ternative DD-RIM configuration, where the nonlinearities
order is changed. In Fig, 4, DD-RIM approach is applied
in the frequency domain first and then in the time domain.
In detail, received signal x[n] is transformed into the
frequency domain signal, obtaining X[k], which then is
processed with RIM technique ρzF (·) and transformed
back into the time domain where a second ZMNL ρzT (·)
is applied.

IV. Loss of Efficiency

In robust statistics, an importance performance metric
is the so-called loss of efficiency, or LoE for short. The
LoE is the performance of the estimator under nominal
conditions, which in the context of this work is in the
absence of an interference. The rationale is to quan-
tify the degradation of the robust method, compared to
the optimal method when the nominal conditions hold.
Ideally, one would like that LoE to be small. Previous
works on RIM considered the output signal-to-noise-ratio
(SNR) degradation in the absence of interferences for a
number of ZMNLs [20]. Notice that in the DPE case, this
approach is less intuitive since the robust methodology
is used to compute a position solution jointly processing
satellite signals. Therefore, in this article we derive the
LoE for DPE-RIM in terms of its CRB degradation, which
we will show it is indeed related to the SNR degradation
of two-steps RIM. To achieve that result, the section first
presents the CRB without RIM and then, secondly, the
achievable CRB when RIM is considered. In particular
we focus on Huber’s nonlinearity due to its superior
performance [20], [23]. transformations are considered.
The LoE is then established as the difference between
the former CRB and the RIM-based solutions.

A. Non-RIM

In order to obtain a more compact expression to
compute the bound, we express (3) in vector form. Notice
that, given that we are studying the LoE, the interference
i[n] is not accounted for. The resulting signal model is

x = C(κ)α+ η, (19)

where α = [α1, α2, · · · , αM ]⊤ ∈ CM×1 is the complex-
value amplitude vector of each signal; the N signal sam-
ples are gathered in x = [x[0], · · · , x[N − 1]]⊤ ∈ CN×1

and η ∈ CN×1 is a vector of N AWGN samples, each
drawn from CN (0, σ2

n). C = (c1, c2, · · · , cM ) ∈ CN×M

is the joint local replica, in which each column is gener-
ated for corresponding satellites and each row is generated
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for different sampling instants. More concretely, we have

ci =


si(−τi(κ))

si(Ts − τi(κ))e(j2πfd,i(κ)Ts)

...
si((N − 1)Ts − τi(κ))e(j2πfd,i(κ)(N−1)Ts)

=


ωi,0(κ)

ωi,1(κ)
...

ωi,N−1(κ)

 .

(20)
Considering this vector form for the received signal
model, the log-likelihood function is proportional to

L(x|κ) = − 1

σ2
n

[x−C(κ)α]
H
[x−C(κ)α] . (21)

Following the same derivation as in [32], the Fisher
Information Matrix (FIM) is

I(κ) = 2P⊤ΞΓP . (22)

Γ = diag(γ⊤) = diag([SNR1,SNR2, · · · ,SNRM ]⊤) ∈
RM×M = kout · diag([SNRout

1 ,SNRout
2 , · · · ,SNRout

M ]⊤) ∈
RM×M is the diagonal SNR matrix. P (κ) =
[P⊤

1 (κ),P⊤
2 (κ), · · · ,P⊤

M (κ)]⊤ ∈ RM×3 is the concate-
nation of Pi(κ) from each satellite. The SNRi denotes
the prior-correlation SNR of the received signal from the
i-th satellite

SNRi =
1

σ2
n

N−1∑
n=0

ω∗
i,n(κ)∥αi∥2ωi,n(κ) =

1

σ2
n

N−1∑
n=0

∥αi∥2s2i (κ),

(23)
and SNRout

i denotes the corresponding post-correlation
SNR while kout is a scale parameter depending on the cor-
relation form (i.e. correlation period, coherent correlation,
noncoherent correlation). The mean quadratic bandwidth
(MQBD) of the signal, ξ2i , is defined as

ξ2i =

N−1∑
n=0

s′2i [n]

N−1∑
n=0

s2i [n]

=
Es′

Es
, (24)

such that Ξ = diag([ξ21 , ξ22 , · · · , ξ2M ]) ∈ RM×M is the
matrix form of MQBD. Typically, for a given GNSS
constellation, a modulation scheme and a fixed bandwidth,
the MQBD values are known and equal across signals of
the same type. In other words, Ξ = ξ2I ∈ RM×M if the
M satellites are from the same constellation/signal. Recall
that the inverse of the FIM in (22) provides the CRB for
the parameters in κ.

B. RIM in Time Domain

Comparing equation (10) and (11), we can identify
that the difference between those two solutions (i.e. non-
RIM and RIM) is the ZMNL ρz(·) applied to the received
signal x[n]. Note that the same optimal solution for
estimating θ could be obtained when x[n] is assumed as
a heavy tailed distribution and when ρz(x[n]) is assumed
to be Gaussian distributed. This section provides a CRB
result under that assumption, which is then compared to
the CRB in Section A to quantify the LoE.

In the previous section, we had a likelihood distri-
bution of the form x|κ ∼ N (C(κ)α, σ2

nI). Once the

nonlinearity is applied to the data, the resulting likelihood
is derived in Appendix C as ρz(x)|κ ∼ N (C(κ)ᾱ, σ̄2

nI),
where ᾱ is the distorted signal amplitude after the pre-
processing and σ̄2

n is the modified noise variance, related
to the original parameters by [20], [21]:

ᾱ = α

[
1− e

− T2
h

2σ2
n +

√
π

2

Th√
2σn

erfc
(

Th√
2σn

)]
(25)

σ̄2
n = σ2

n

[
1− e

− T2
h

2σ2
n

]
. (26)

when the ZMNL is Huber’s (cf. Appendix B), with this
relation changing depending on the class of nonlinearity.

Under the assumed Gaussian model after applying the
ZMNL to the data, the corresponding FIM is:

Iρ(κ) = 2P⊤ΞΓ̄P , (27)

where Γ̄ = diag(γ̄) = diag([ ¯SNR1, · · · , ¯SNRM ]⊤) = kout ·
diag([ ¯SNRout

1 , · · · , ¯SNRout
M ]⊤) ∈ RM×M is composed of

the SNRs of the satellites computed as in (23), but with
the modified parameters in (25) and (26). Therefore, the
CRB after Huber’s nonlinearity is applied to x[n], in the
time domain, would be given by I−1

ρ (κ).
In order to define the LoE of the robust method,

we consider the losses in (25) and (26) impact on the
post-correlation SNR of each satellite as a reduction by
L(σn, Th) =

¯SNRout
i

SNRout
i
, i ∈ {1, . . . ,M}. As a consequence, it

is easy to see that I−1(κ) = I−1
ρ (κ) · L(σn, Th).

C. RIM in Transformed Domain

Following the processing chain in Fig. 2, we have
x̄[n] as the output signal when the ZMNL function is
applied in the transformed domain (in this case, the
frequency domain which is the most common transformed
domain in GNSS) [33]. Given the fact that T1 is a linear
transformation, X[k] is still Gaussian with expected value
E{X[k]} and variance Var{X[k]}. For instance, after the
Huber’s nonlinearity ρz(·), the mean and covariance of
the resulting variable are modified as [20]:

E{ρz(X[k])} = E{X[k]}

[
1− e

− T2
h

2σ2
n +

√
π

2

Th√
2σn

erfc
(

Th√
2σn

)]
(28)

Var{ρz(X[k])} = Var{X[k]}

[
1− e

− T2
h

2σ2
n

]
. (29)

When transforming the signal back to time domain,
through the use of the linear transformation T2, several
frequency samples ρz(X[k]) are combined to form the
different time samples, x̄[n]. By virtue of the Central
Limit Theorem (CLT), [34] the resulting time domain
signal x̄[n] can be considered to follow a Gaussian
distribution as well [33]. Considering that T2 is also linear
transform and T1 · T2 = I is the identity operator (this
holds for instance for FFT/IFFT operators), it was shown
that x̄|κ ∼ N (C(κ)ᾱ, σ̄2

nI) has the same expected and
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variance values as in (25) and (26). Following the same
procedure as in earlier subsections, the FIM and CRB
expressions can be obtained, respectively, as Iρ(κ) =
2P⊤ΞΓ̄P and CRBρ(κ) = I−1

ρ (κ).

D. RIM in Dual Domain

Given the Gaussian assumption in RIM time domain
processing and the CLT in RIM transformed domain
processing, we can assume our processed signal x̄[n]
as Gaussian distribution after RIM at DD following a
similar derivation as in earlier subsections [23]. Therefore,
the log-likelihood of processed signal after RIM DD
processing is x̄|κ ∼ N (C(κ)ᾱ, σ̄2

nI) where

ᾱ = α

[
1− e

− T2
h

2σ2
n +

√
π

2

Th√
2σn

erfc
(

Th√
2σn

)]2

(30)

σ̄2
n = σ2

n

[
1− e

− T2
h

2σ2
n

]2

. (31)

Following the same procedure, we can derive the FIM
and CRB as Iρ(κ) = 2P⊤ΞΓ̄P and CRBρ(κ) =
I−1
ρ (κ), respectively. ¯SNRi represents the updated SNR

of i-th satellite signal under influence of RIM method in
frequency domain, and Γ̄, the corresponding SNR matrix.

V. Results

Different experiments were run in order to validate
the propose RIM DPE methodology. In particular, we first
assessed the theoretical LoE of the different RIM flavours
by a simulation of I&Q samples from 7 GPS L1 C/A
satellites. In this experiment, the SNR of each transmitted
signal was set to be the same, with a sampling frequency
of fs = 50 MHz and a frontend low-pass filter of 2
MHz bandwidth. The receiver was simulated to be still
at a fixed location. The LoE was computed by comparing
the increase of Root Mean Square Error (RMSE) as a
function of the carrier-to-noise-density ratio (CN0) when
RIM approaches are applied in the standard case (that
is, when RIM processing is not applied). Without loss
of generality, in order to avoid numerical errors, we
conducted the LoE experiments under a moderately high
CN0 of 44 dB-Hz for DPE and 50 dB-Hz for 2SP method.
In these simulations, the Accelerated Random Search
(ARS) numerical optimization method was employed to
optimize DPE cost function and estimate κ [30]. In the
2SP method, a Least Square (LS) method was used to
estimate κ using the pseudoranges produced by a CAF
maximization. The RMSE is computed after averaging
5 · 104 independent Monte Carlo experiments. Fig. 5
compares the LoE of various RIM approaches, both for
DPE and 2SP methods, as a function of the normalized
threshold Th, an important parameter in Huber’s non-
linearity. In the figure, the black dashed lines represents
the theoretical LoE of both single domain RIM (i.e.
either time or frequency) and DD-RIM approaches, where
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Fig. 5. LoE calculated from RMSE of position estimation under
different RIM processing schemes.
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Fig. 6. RMSE of position estimation under different DPE RIM
processing techniques in the presence of a CW jamming signal.

the line with circle represents DD-RIM approaches and
the lines with triangles indicate single domain RIM.
Similarly, the solid lines with circle also represent the
experimentally computed LoE of DD-RIM approaches
while those with triangles indicate experimental LoE of
single domain RIM approaches. It can be observed that
both DPE and 2SP approaches share the same LoE, given
a RIM processing scheme. Overall, the results should
good agreement between theoretical and experimental
LoE, thus validating our LoE derivation.

Another set of experiments were performed in or-
der to assess the robustness of RIM-DPE. In particular,
simulations considering both CW and DME interferences
were tested, which are discussed here. The strength of the
interference was adjusted with the Jamming to Noise ratio
(JN), defined as JN =

α2
I

σ2
n

with αI being the amplitude of
the interference. Similarly as before, a simulation of I&Q
samples from 7 GPS L5 C/A satellites was generated, with
CN0 = 44 dB-Hz for all. The receiver employed a 20
MHz bandwidth low-pass filter and was static throughout
the experiment, which consisted of 50 seconds worth
of data. Note that the higher bandwidth is designed to
include GPS L5. The threshold of Huber’s ZMNL is
chosen as Th = 1.345σ̂n, which is generally picked to give
reasonably high efficiency in the normal case, and the σ̂n

is calculated using the Median Absolute Deviation (MAR)
of received signal: σ̂n = MAR/0.6745 [35].
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Fig. 7. RMSE of position estimation under different DPE RIM
processing techniques in the presence of a DME interference signal.

Fig. 6 shows the various RIM approaches compared
with the standard DPE non-RIM processing in the pres-
ence of a CW jamming signal, with JN varying from
−20 dB to 48 dB. It can be observed that the case
when RIM is not used, the presence of a CW jamming
signal noticeably affects the estimation performance. In
contrast, when DPE is used in conjunction with RIM
processing techniques, the results show relatively stable
performances over different CW power values. From the
figure, we note that the best performance is achieved
when a single non-linearity is applied directly in the
frequency domain. This result is consistent to previous
works considering two-steps processing [20], where it
was noted that CWs are maximally concentrated in the
frequency domain. Nevertheless, results show that the use
of DD-RIM does not significantly degrade interference
mitigation performance. Similarly, Fig. 7 shows the per-
formance of the same set of DPE approaches, in this case
under the presence of a DME interference signal, with JN
varying from −4 dB to 56 dB. The received DME power
was modeled in the simulations considering the Free-
Space Path Loss Model (FSPLM). In general, RIM in one
domain was not able to effectively mitigate DME signals
and DD-RIM provides the best performance as compared
with single-domain RIM techniques. The most effective
approach was obtained when time-then-frequency domain
processing was implemented. More specifically, time-
then-frequency domain processing performed better than
frequency-then-time domain processing. In the former,
after time processing, the resulting signal is still relatively
sparse in the frequency domain and thus it can be further
mitigated using a robust non-linearity. In the second case,
frequency processing does not produce an interfering
signal that is sparse in time and that can be exploited by
RIM in that domain. This ordering of RIM solutions is,
again, consistent with the results for two-steps positioning
reported in [20].

VI. Conclusions

Interference mitigation is crucial to protect GNSS
from both intentional or unintentional interference sig-

nals. This paper presented the use of different RIM
approaches within a direct-positioning framework. RIM
has the desirable feature of avoiding the estimation of the
interference signal, thus simplifying its implementation
when compared to interference cancellation methods.
Incorporating RIM augments the range of applicability of
DPE in interference-rich situations, while DPE is already
known to enhance the sensitivity of GNSS receivers to
operate under weak signal conditions. The RIM method-
ology leverages results in robust statistics to design a
new cross-ambiguity function and, consequently, a novel
DPE cost function. In particular, this article explored the
use of Huber’s non-linearity for complex-valued signals,
showing remarkable performance results under CW and
DME interferences. Notice that RIM, which DPE-RIM
is based on, is effective against interference signals that
can be considered to be outliers in time and/or trans-
formed domains, which encompass most of the known
GNSS interference threats, although not all. This paper
provided analytical expressions for the LoE of DPE RIM,
that is, the degradation of performance caused by the
proposed robust methods under nominal conditions when
the interference signal is not present, showing negligi-
ble losses. DPE is a receiver framework that is known
to provide enhanced sensitivity, enabling GNSS use in
contested environments featuring weak signal conditions.
The use of RIM in conjunction to DPE enables the high-
sensitivity operation even under interference conditions.
Future developments of DPE might involve its extension
to high-accuracy applications.

Appendix A
Parameter estimation under RIM processing

This appendix provides the derivation of the estimator
for κ and amplitudes α1, . . . , αM under RIM processing
in a transformed domain, which results in the optimization
of a robust version of the CAF. To achieve this goal, we
take a twofold process. First, we linearize the general cost
function using a first-order Taylor, as was done earlier in
2SP works. This is explained in equations (34) to (36).
Secondly, to estimate the additional amplitude parameters
α1, . . . , αM , approximations based on the non-linearity
are required, as derived in equations (45) and (48). Then,
both results are combined in order to obtain a general
robust CAF whose maximization would result in the RIM
solution.

In RIM processing, the standard square error function
is replaced by other choices that are able to attenuate the
effect of model outliers. See Appendix B for an overview
of those considered in the GNSS context of interest in
this paper. Generally, the cost function to minimize under
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M-estimation framework is:

Jρ(κ) =

N−1∑
k=0

(ρ(T1(x[k]−
M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))))

=

N−1∑
n=0

ρ((T1(x[k])−T1(

M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi)))

(32)
where ρ(·) is a cost function, which is a design choice
that depends on the modeling assumptions. For instance,
if ρ(·) is |·|2, we obtain the standard least squares solution,
as shown in (10). T1 is the linear transforms defined in
Section III-A. Note that T1 is a unitary matrix, satisfying
T1◦TH

1 = I. In other words, T2 = TH
1 . According to the

fact that received GNSS signals are weak and the signal
amplitude αi can be assumed to be small compared to
the noise term, ρ(·) can be expanded in Taylor series [18]
for small amplitudes. Function ρ(·) can be regarded as a
real function of two real variables, the real and imaginary
parts of the complex signal. That is, with z ∈ C we can
express:

ρ(z) = ρ(zI , zQ) (33)

which, for a small increment ∆z = ∆zI + j∆zQ, can be
expressed as

ρ(z −∆z) = ρ(zI −∆zI , zQ −∆zQ)

⋍ ρ(z)− ∂ρ(z)

∂zI
∆zI −

∂ρ(z)

∂zQ
∆zQ

= ρ(z)−ℜ{ρz(z)∆z∗}

(34)

where z∗ denotes complex conjugate of z and

ρz(z) = ρI(z) + jρQ(z) =
∂ρ(z)

∂zI
+ j

∂ρ(z)

∂zQ
= 2

∂ρ(z)

∂z∗

(35)

ρz̄(z) = ρI(z)− jρQ(z) =
∂ρ(z)

∂zI
− j

∂ρ(z)

∂zQ
= 2

∂ρ(z)

∂z
(36)

According to (34), (32) can be approximated as

Jρ(κ) ⋍
N−1∑
n=0

ρ(T1(x[k]))

−ℜ{
N−1∑
k=0

ρz(T1(x[k]))T1(

M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))∗}

(37)
Since the first term in (37) does not depend on the param-
eter κ, minimizing the cost function could be transformed

into maximizing

Jreal(κ) = ℜ{
N−1∑
k=0

ρz(T1(x[k]))T1(

M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))∗}

∝ ℜ{
N−1∑
n=0

T2(ρz(T1(x[n])))

T2(T1(

M∑
i=1

αici(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)))∗}

= ℜ{
N−1∑
n=0

ρ̃z(x[n])

M∑
i=1

αici(nTs − τi(κ))e−j(2πfd,i(κ)nTs+ϕi)}

= ℜ{
M∑
i=1

N−1∑
n=0

ρ̃z(x[n])αici(nTs − τi(κ))e−j(2πfd,i(κ)nTs+ϕi)}

=

M∑
i=1

αiℜ{
N−1∑
n=0

ρ̃z(x[n])ci(nTs − τi(κ))e−j(2πfd,i(κ)nTs+ϕi)}

(38)
which is a function of both κ and the amplitudes
α1, . . . , αM , and ρ̃z(x[n]) = T2(ρz(T1(x[n]))).The pro-
portional symbol in the equation above comes from the
Parseval’s theorem and the fact that T1 and T2 are linear
and can be represented as unitary matrix. To achieve the
optimal estimation of κ, we first need to estimate the αi:

α̂i = argmin
αi

N−1∑
k=0

ρ(T1(x[k]−
M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi)))

= argmin
αi

N−1∑
k=0

ρ((T1(x[k])−T1(

M∑
i=1

αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi)))

(39)
whose derivative with respect to αi is (following the chain
rule):

ℜ{2
N−1∑
k=0

T1(ci(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))

ρz̄(T1(x[k]− αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi)))} = 0

(40)

The equation above can be further simplified when one
accounts for the properties of the most common ZMNLs
used in RIM processing, as reviewed in Appendix B. For
instance, we can identify that the cost functions are all
functions of the absolute value of a sample. Therefore we
can further express (33) as:

ρ(z) = g(|z|) (41)

with first derivative

ρz(z) = 2
∂g(|z|)
∂|z|

∂|z|
∂z∗

= 2
∂g(|z|)
∂|z|

z ≜
z

h(|z|)
(42)

where h(|z|) ≜ 1

2
∂g(|z|)
∂|z|

, and similarly we have:

ρz̄(z) = 2
∂g(|z|)
∂|z|

∂|z|
∂z

= 2
∂g(|z|)
∂|z|

z∗ ≜
z∗

h(|z|)
(43)

It can be seen that (41)is satisfied by the common ZMNL
choices, cf. Appendix B, for instance observing that the
different ρ(·) are a function of the magnitude of the
argument. Using (43), we have:

ℜ{2
N−1∑
k=0

T1(ci(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))

T1(x[k]− αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))∗

h(|T1(x[k]− αici(kTs − τi(κ))ej(2πfd,i(κ)kTs+ϕi))|)
} = 0

(44)
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Given that αi is relatively small compared to x[n], we
have an approximation of the denominator term in as:

ℜ{2
N−1∑
n=0

T1(ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))

T1(x[n]− αici(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))∗

h(|T1(x[n])|)
} = 0

(45)

Considering the unitary property and linearity of the
matrices corresponding to T1 and T2, as well as the
Parseval’s theorem, the equation above can be transformed
as:

ℜ{2
N−1∑
n=0

T2(T1(ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)))

T2(
T1(x[n]− αici(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))

h(|T1(x[n])|)
)∗} = 0

(46)
leading to

ℜ{2
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)T2(
T1(x[n])

h(|T1(x[n])|)
)∗}

− αiℜ{2
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)

T2(
T1(ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))

h(|T1(x[n])|)
)∗}

= ℜ{2
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)ρ̃z(x[n])
∗}

− αiℜ{2
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)

T2(
T1(ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))

h(|T1(x[n])|)
)∗} = 0

(47)
Given that RIM processing is based on the assumption

that the interference component occurs as sparse repre-
sentation in the processed domain and few samples are
affected, we have the assumption that h(|T1(x)|) ∝ I,
where x is a vector with x[n] as its n-th element. With
this assumption, we have

ℜ{2
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)

T2(
T1(ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi))

h(|T1(x[n])|)
)∗} ∝ 2N

(48)
leading to

α̂i ∝ ℜ{
N−1∑
n=0

ci(nTs − τi(κ))ej(2πfd,i(κ)nTs+ϕi)ρ̃z(x[n])
∗}

= ℜ{
N−1∑
n=0

ci(nTs − τi(κ))e−j(2πfd,i(κ)nTs+ϕi)ρ̃z(x[n])}

(49)

Substituting (49) into (38), we have Jreal(κ) as

Jreal(κ) ∝
M∑
i=1

ℜ{
N−1∑
n=0

ρ̃z(x[n])ci(nTs − τi(κ))e−j(2πfd,i(κ)nTs+ϕi)}2

=

M∑
i=1

ℜ{Cρ,i(κ)e−jϕi}2

=

M∑
i=1

ℜ{
∣∣Cρ,i(κ)∣∣ej(∠Cρ,i(κ)−ϕi)}2

=

M∑
i=1

(∣∣Cρ,i(κ)∣∣ℜ{ej(∠Cρ,i(κ)−ϕi)}
)2

=

M∑
i=1

(∣∣Cρ,i(κ)∣∣ cos(∠Cρ,i(κ)− ϕi)
)2

(50)
According to (50), the cost function is factored in two
terms. The first is the absolute value of the CAF and
depends only on κ. The second term is a cosine which
also depends on ϕi. The cosine can be maximised by
setting with ϕ̂i = ∠Cρ,i(κ), we can further convert the
optimization of (50) to:

κ̂ = argmax
κ

M∑
i=1

|Cρ,i(κ)|2 (51)

where Cρ,i(κ) is the robust version of CAF define as

Cρ,i(κ) = ρ̃z(x[n])ci(nTs − τi(κ))e−j2πfd,i(κ)nTs . (52)

Appendix B
Selected Non-linearities for RIM processing

This appendix provides an overview of some RIM
non-linearities considered in the GNSS context of inter-
est. In GNSS signal processing, the most common cost
functions ρ(z) are introduced in [17], [36], [37], among
which three of the ZMNLs as well as the corresponding
cost functions are listed in this section as examples:

1) Laplacian model assumption for the likelihood
distribution [19]. The cost function ρ(z) is:

ρ(z) = |z| (53)

Then, the ZMNL function ρz(z) in (14) can be obtained
as (36):

ρz(z) =
z

|z|
≜ ρz(z) for z ̸= 0 (54)

The ZMNL in (54) is referred to as complex signum
ZMNL according to [38]. Furthermore, we have that

ρzz(z) =
−z2

|z|3
for z ̸= 0 , (55)

as needed with the DPE RIM framework discussed in this
paper.

2) Cauchy model assumption for the likelihood distri-
bution [18]. The cost function ρ(z) is:

ρ(z) =
3

2
log(KC + |z|2) + 1

2
log(

4π2

KC
) (56)

where KC is referred to as the linearity parameter [39].
The corresponding myriad ZMNL is:

ρz(z) =
KCz

KC + |z|2
(57)
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with

ρzz(z) =
−KCz

2

(KC + |z|2)2
(58)

3) M-estimation based on Huber’s loss [20] The cost
function ρ(z) is defined as:

ρ(z) =

{
1
2 |z|

2 for |z| ≤ Th

Th|z| − 1
2T

2
h for |z| > Th

(59)

By using (36), the resulting ZMNL ρz(z) is:

ρz(z) ≜ ρz(z) =

{
z for |z| ≤ Th

Th csign(z) for |z| > Th

(60)
where Th is a decision threshold, that is a tuning constant
[37], and csign(z) is defined as:

csign(z) =
{

z
|z| for z ̸= 0

0 for z = 0
. (61)

such that

ρzz(z) =

{
0 otherwise
Th

−z2

|z|3 for|z| > Th and z ̸= 0
(62)

Appendix C
Maximum likelihood estimation after RIM non-linearity

This appendix shows the derivation of maximum
likelihood estimator of κ once the RIM nonlinearity is
applied. The Gaussian model assumption is shown in
subsection IV. B. To estimate κ, the maximum likelihood
estimator is applied in (63):

κ̂ = argmin
κ

Jρ(κ)

= argmin
κ

[ρz(x)−C(κ)ᾱ]
H
[ρz(x)−C(κ)ᾱ]

(63)

where ᾱ is the distorted signal amplitude after the non-
linearity processing, related to the original parameters by
[20], [21]. To minimize the cost function, we first take
derivative w.r.t. ᾱ and setting it to zero yields to

ˆ̄α = (CHC)−1CHρz(x). (64)

which turns in to ˆ̄α = CHρz(x), given the property that
CHC ≈ I [12]. Substituting equation (64) into equation
(63), it can be seen that

Jρ(κ) =
[
ρz(x)−C(ζ) ˆ̄α

]H [
ρz(x)−C(ζ) ˆ̄α

]
= ∥CHρz(x)∥2 = Cρ,i(κ) .

(65)

which is the vector form of the robust CAF in (15). This
equality shows that the Gaussian assumption on ρz(x[n])
leads to the same κ estimation as under the actual distri-
bution, as shown in Appendix A. As a consequence, this
modeling assumption can be used to derive the estimation
bounds, which greatly simplifies the calculations.
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[31] S. Tang, H. Li, H. Calatrava, and P. Closas, “Precise Direct Position
Estimation: Validation Experiments,” in Proc. of the IEEE/ION
PLANS, Monterey, CA, April 2023.
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