RESEARCH m

i i . Check for
light sheets, we observed running and stan e

QUANTUM GASES

Thermography of the superfluid transition
in a strongly interacting Fermi gas
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Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a
hotspot diffuses, whereas in a superfluid, heat propagates as a wave called “second sound.’ Direct
imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this
study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency
spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase
transition was directly observed as the sudden change from thermal diffusion to second-sound
propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full
heat and density response of the strongly interacting Fermi gas and therefore all defining properties of

Landau's two-fluid hydrodynamics.

eat transport is a ubiquitous phenome-
non at work in everything from steam
enginesto the formation of stars, and it
dictates how energy, information, and
entropy flow in the system. In conven-
tional materials, heat, mass, and charge are all
transported by the motion of (quasi)particles,
such as electrons in metals. This common
origin of transport results, for example, in the
Wiedemann-Franz law, relating thermal and
electrical conductivity. However, in strongly
correlated systems, such as high-temperature
superconductors (I), neutron stars (2), and the
quark-gluon plasma of the early universe (3),
the notion of a quasiparticle is poorly defined.
It is unknown whether there is a common
relaxation rate for heat, density, and spin trans-
port (4) or if strong correlations separate these
phenomena. Understanding the flow of entro-
py is at the forefront of current research, with
powerful theoretical models connecting ther-
mal flow in quantum systems to gravitational
duals (3, 5). Directly measuring thermal trans-
port, as distinct from mass or charge transport,
is thus of great relevance for elucidating the origin
of heat dissipation in strongly correlated matter.
Strongly interacting atomic Fermi gases near
a Feshbach resonance provide an ideal platform
for quantitative studies of fermion transport
(6-10). As a result of scale invariance in
resonant Fermi gases (1I), measurements
performed in one system constrain the equa-
tion of state and transport properties of other
strongly interacting Fermi systems, including
neutron matter at densities 25 orders of mag-
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nitude higher. The system features the largest
superfluid transition temperature T, relative to
its density, of all known fermionic systems (12).

In this study, we introduce a thermography
method to image heat in interacting quantum
gases. The method requires only a temperature-
dependent spectral response that can be locally
resolved. In the case of the Fermi gas that we
studied here, the radio-frequency (1f) spectrum
is temperature dependent (13, 14). We spatially
resolved this spectral response and directly mea-
sured heat transport in the strongly interacting
Fermi gas.

The nature of heat transport can help dis-
tinguish states of matter. In ordinary liquids,
heat transport is purely diffusive and governed
by thermal conductivity. By contrast, in super-
fluids, heat propagates as a wave called “second
sound.” The two-fluid model of superfluidity
introduces normal and superfluid components
that can move in and out of phase (15, 16). This
gives rise to two distinct sound modes, first and
second sound, corresponding to a density and
an entropy wave (I7). The speed of second
soundcs is a direct measure of the superfluid
fraction pg /py, the ratio of the superfluid den-
sity pg to the normal component density py
(18). Its attenuation yields the second-sound
diffusivity Ds, which involves the thermal con-
ductivity, bulk, and shear viscosities (17, 19).
Consequently, we observe a dramatic change
in thermal transport as the Fermi gas is cooled
below T Simultaneously recording the complete
density and heat response of the system to a
known external perturbation allows us to com-
pletely characterize the two-fluid hydrodynamics
of the strongly interacting Fermi gas (19, 20).

Previous studies of thermal transport in quan-
tum gases relied on the weak coupling between
the density and temperature of the gas (21-24).
This allowed the observation of second sound
in Bose (25, 26) and Fermi gases (21, 24, 27) but
without directly measuring heat propagation.
By using a homogeneous box potential formed by
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waves of second sound, demonstrating m__
ple reflections of entropy waves from the walls
of the box. Our thermography works across the
superfluid transition, allowing the observation
of a pronounced peak in thermal diffusion atT,
characteristic of critical behavior expected near
second-order phase transitions.

Spectral thermometry

The working principle of our method is sketched
in Fig. 1, A to D. In rf spectroscopy, interacting
atoms are ejected from the many-body system
into an initially unoccupied internal spin state
(28). For interacting gases, the resulting spectra
depend on temperature. At high temperatures,
when the thermal de Broglie wavelength is
shorter than both scattering length and inter-
particle distance, the spectra approach the bare,
unshifted response for an isolated atom. Con-
versely, at low temperatures, the spectra display
interaction-induced shifts known as “clock
shifts.” In the particular case of attractive two-
component Fermi gases, at zero temperature
the spectral peak is shifted by approximately
the pairing energy Ep of fermion pairs (13),
and at nonzero temperature, broken pairs con-
tribute to the response at lower frequencies
(Fig. 1A). For a fixed detuning my on the flank
of the spectrum, the rf response is sensitive
to changes in temperature (Fig. 1B). As the rf
response can be spatially resolved, this allows
for a direct measurement of the local tem-
perature from a single image of rf-transferred
atoms.

As an exemplary application of this method,
we may detect second sound in the fermionic
superfluid, which is a wave in the gas of excita-
tions that, close to T, consists predominantly
of broken pairs (Fig. 1C). A suitably detuned rf
drive can transfer atoms from the gas of exci-
tations, yielding a direct, local measure of heat
(Fig. 1D). We stress that the method does not
depend on this simplified picture of broken
pairs and only relies on the temperature dep-
endence of the rf spectrum. It therefore applies
in a wide range of temperatures set by the mag-
nitude of clock shifts, which for the unitary
Fermi gas are on the scale of the Fermi tem-
perature (13).

Our experiment began with a uniform fermi-
onic superfluid trapped in a cylindrical box
potential whose axial direction is defined as
the z axis, formed by an equal mixture of re-
sonantly interacting fermions in the first (1)
and third (3) hyperfine state of °Li at a Feshbach
resonance (magnetic field, 690 G) (29). The
density of ny = 0.75 pm ™2 per spin state corre-
sponds to a Fermi energy of Er = h - 10.5 kHz
and a Fermi temperature of Tr = Er/ks =
500 nK, where & is Planck’s constant and kg
is the Bolizmann constant. To create temper-
ature gradients in the superfluid gas, we res-
onantly excited a standing wave of second
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Fig. 1. Direct local thermography using rf spec-
troscopy. (A) A sketch of rf spectra at various
temperatures for the unitary Fermi gas (13). Blue,
gray, and red lines correspond to the rf response
I(w) at successively higher temperatures. (B) At
fixed frequency wg on the flank of a spectrum [black
dotted line in (A)], the rf response is sensitive to
temperature and serves as a local thermometer.
(C) In a simplified picture, the superfluid component
(SF) consists of fermion pairs, whereas the normal
fluid (NF) is composed of broken pairs. (D) The
unpaired atoms are transferred to a weakly inter-
acting state by an rf pulse and subsequently imaged
to determine the spatial distribution of the normal
component density. (E and F) In situ observation of
a second-sound wave after resonant gradient
excitation. Shown are the column density and local
temperature, respectively, from simultaneous in situ
absorption images of unperturbed (3) and rf-
transferred (2) atoms, with density n and
temperature variation AT, averaged along the x axis,
shown below. The vertical dotted line marks the
edge of the box potential (half maximum of
potential). The black dashed line in (F) is a fit to the
fundamental eigenmode in the box [eq. S1 in (18)].
Second sound has a significant effect on the
temperature, but not the density.

sound using an oscillating potential gradient
along the z axis (Fig. 2A). Our thermography
uses rf transfer of atoms from state 1into the
initially unoccupied state f = 2. Simultaneous
in situ absorption images of atoms in states 2
and 3 along one of the radial direction (y axis)
yield the original gas density n(x, 2) (Fig. 1E),
as well as the density n¢(, ) of rf-transferred
atoms, carrying the information on the local
temperature (Fig. 1F). The rf thermometer is
calibrated on gases in thermal equilibrium by
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recording the dependence of n; on temper-
ature, 2% and density, 2, (18). This method
of calibrating spectral responses versus each
thermodynamic variable while holding other
parameters constant can be applied universally.
More generally, all that is required for the ob-
servation of thermal transport is access to any
local observable that is sensitive to tempera-
ture, meaning that it can be achieved even with-
out a calibrated thermometer. Integrating the
two-dimensional (2D) temperature profile along
the uniform . axis yields a 1D temperature pro-
file, AT(z), the deviation in temperature from
the equilibrium state, with a precision of 500 pK
from a single image, as shown in Fig. 1F. The data
reveal an essentially flat density in the presence of
a ~8nK temperature difference across the box.

Observation of heat propagation

Armed with the ability to spatially resolve tem-
perature in the strongly interacting Fermi gas,
we directly observed second sound as the free
back-and-forth sloshing of heat after resonant
gradient excitation (Fig. 2, B to D). Figure 2B
shows the measured temperature variation
AT (x, 2, t) obtained at various times after second-
sound generation. Figure 2C presents the time
evolution of the 1D temperature profiles
AT(z,t), and Fig. 2D shows the correspond-
ing evolution of the amplitude AT (k,¢) of
the first spatial Fourier mode supported by
the axial box length L = 91 pm (k; = jn/L), all
clearly demonstrating the wave-like propaga-
tion of heat. Here, the absolute temperature of
the gas in equilibrium, obtained from expan-
sion (14), was T = 63(2) nK = 0.125(5) T,
or T = 0.75(3) T, when compared with the su-
perfluid transition temperature T, = 0.167T%
reported in (12). A damped sinusoidal fit
toAT (ky, t)yielded a speed of second sound
of ¢; = o/k =3.57(2)mm/s, corresponding
to about a tenth of the Fermi velocity ¢; =
0.092(2)vy . From the measured damping
rate ', we obtained a diffusivity of second sound
Dy, =T/k* = 2.44(11)A/m. As was found for
the diffusivities of spin (30, 3I), momentum (32),
and first sound (33), a natural scale for the dif-
fusivity of second sound is reduced Planck’s
constant # = h/2n divided by the particle mass
m (27, 34). This scale directly emerges in a
strongly interacting quantum fluid from a
mean-free path of carriers of approximately
one interparticle spacing d, and characteristic
speeds of #/md given by Heisenberg’s uncer-
tainty (30). A similar scale of diffusivity is also
measured for second sound in the strongly
interacting bosonic superfluid *He (35), where-
as the more weakly interacting fermionic *He
in its superfluid 4; and B phases displays much
larger values that are many hundreds to thou-
sands of times #/m (36).

Thermography provides an unprecedented
view of the superfluid transition in the strongly
interacting Fermi gas. Figures 2, F and G, show
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the transition from heat diffusion in the normal
state to wave-like propagation of heat, second
sound, in the superfluid. For these data, we
created a local hotspot on one side of the box
by locally applying an intensity-modulated
optical grating (Fig. 2E). Modulation at ~2 kHz
efficiently creates high-frequency phonons that
rapidly decay into heat (33, 37), creating a
temperature profile with good overlap with
thej = 1 mode. The subsequent evolution of
the temperature amplitude AT (%;, T') displays
a striking change in character from exponen-
tial decay above T, to the damped sinusoid of
second sound below T..

Entropy and density response functions

The full linear response theory of two-fluid
hydrodynamics for superfluids was provided
over half a century ago by Hohenberg and
Martin (19). Under an external potential that
acts on the density n with wave vector k& and
frequency , systems respond through changes
in their density n as well as their temperature
or equivalent entropy density s Thermography
enables us to obtain the corresponding response
functions, not only ¥, , (%, ®) but alsoy, ,(k, ).
These encode all the thermodynamic and two-
fluid hydrodynamic information of the unitary
Fermi gas (18-20).

To determine the linear response functions,
we apply a potential gradient, oscillating at fre-
quency o The steady-state temperature change
AT (%, ) and density change An(k;, ), mea-
sured after an integer number of oscillation
cycles, vield the respective out-of-phase response
functions (19, 20). The change in entropy per
particle, As, is linked to the temperature and
density variation by the equation of state.
For our scale invariant, unitary Fermi gas, this
connection is provided by the specific heat per
particle ¢y at constant density (11, 12)

AT 2An
As =cy (? - 5%) (1)

Measurements of fractional temperature and
density variations thus directly yield the entro-
py variation in units of ¢y. Figures 3, A and B,
display the entropy and density response of the
superfluid in a frequency range that solely
excites the lowest spatial mode (j = 1), the
sloshing mode. The density reveals a dominant
peak attributed to first sound near 90 Hz
(33) and a faint signature of second sound at
20 Hz, expected in a gas of nonzero expan-
sivity, where density and temperature are
coupled. However, in the entropy channel,
whose signal derives predominantly from
the rf transfer (I18), the strong second-sound
peak indicates a large response. This directly
demonstrates that second sound in the unitary
Fermi gas is predominantly an entropy wave,
whereas first sound is essentially isentropic.
This is similar to the case in superfluid *He
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Fig. 2. Direct observation of the superfluid transition from heat propaga-
tion in a strongly interacting Fermi gas. (A) Generating second sound with an
oscillating potential gradient for data shown in (B) to (D) at a temperature of
T =63 nK or 0.75T,. (B) In situ thermographs at times t =0, 26, and 54 ms
after second-sound excitation. (C) Time evolution of the axial temperature
profiles, revealing the wave-like propagation of heat. (D) Amplitude of the first
spatial Fourier mode of the temperature profiles AT(ky, t) versus time (gray
circles). A fit to a damped sinusoid (dashed line) gives the speed and attenuation

(17) but drastically different from the case in
2D and 3D Bose gases, in which density and
entropy are strongly coupled (25, 26, 38). In
Figs. 3, C and D, we show the thermal evo-
lution of the entropy and density responses
in the first spatial Fourier mode, which serve
as a direct measurement of the out-of-phase
entropy-density [Imy, ,(%1,®)] and density-
density [Imy,, ,(k:, )] response functions (I8).
The measured response functions completely
encode all information about the two-fluid hy-
drodynamics in a unitary Fermi gas (18—20).
The peak positions and widths give the speeds
and diffusivities of first and second sound.
The speed of first sound is a direct measure
of the energy of the gas (33), and the speed of
second sound yields the superfluid density.
The height of the second-sound peak in the
entropy-density response is given by the ex-
pansivity a,, of the gas, and the weight of the
second-sound versus the first-sound response
in the density-density response directly equals
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v —1, where y = ¢, /cy is the ratio of heat
capacities at constant pressure and density.
The thermodynamic quantities a, and y are
related by the isothermal compressibility xr,
the heat capacity, and temperature by y — 1 =
To}/(nxrey), and in particular for the uni-
tary gas simply by y — 1 = Za, T.

Heat transport across superfluid transition

Figure 4A shows the speed of second sound,
measured consistently with our three inde-
pendent methods: free evolution after resonant
excitation of the second-sound mode (yellow
squares), local heating (red diamonds), and
steady-state response functions (blue circles).
The superfluid fraction is obtained from ¢, and
the previously measured equation of state
(12, 18) and is shown in Fig. 4B. The measure-
ments show a qualitative agreement with
Noziéres and Schmitt-Rink theory (39, 40)
(dotted-dashed line), although their absolute
value of T, differs from experiment. Our super-
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rate of second sound. (E) Local heating with an intensity-modulated optical
grating for data shown in (F) to (G). (F) Time evolution of temperature
amplitudes AT(ki, t) (solid circles) and fits (dashed lines) at various gas
temperatures. The dotted lines show the AT = 0 line for each temperature. The
fitting method used in (D) and (F) is indicated by eq. $24 in (18). (G) Two-
dimensional interpolation with Gaussian smoothing of temperature amplitudes
versus time across the superfluid transition. In (D) and (E), the initial
temperature variation for each time trace is normalized to be 1.

fluid fraction agrees well with the result re-
constructed for the homogeneous case from
the second-sound measurement in a quasi-1D
trapped gas in (21), which relied on the same
equation of state from (I2). With the local
heating method (red diamonds), we are able
to observe the continuous evolution of ¢; and
pg from a finite value in the superfluid phase
to zero in the normal phase. The phase-
transition temperature 7, obtained from this
measurement is consistent with the equilib-
rium thermodynamic measurement (12) (the
vertical gray area) and the onset of pair conden-
sation (7, 13), which we have measured here as
well (Fig. 4C). As is expected, there is a clear
quantitative difference between the superfluid
fraction, which saturates to unity at tempera-
tures T £ 0.17, and the pair condensate
fraction, which remains <0.75. The super-
fluid density quantifies the portion of the
fluid that flows without friction. Formally, it
measures the rigidity against phase twists,
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Fig. 3. Steady-state entropy and density response of the unitary Fermi superfluid. Shown are the

(A) change in entropy per particle (As) and (B) density (An) after excitation by an integer number of
cycles of an oscillating axial potential gradient (Fig. 2E). For frequencies below 50 Hz, the drive duration is
5 cycles at an amplitude of g = h-212 Hz/um; for frequencies above 50 Hz, we drive for 20 cycles at an
oscillation amplitude of g = h- 0.85 Hz/um. The gas temperature is T/T. = 0.75. Amplitudes of the

first spatial Fourier mode are shown in (C) and (D) for various temperatures in the superfluid phase. The
solid lines are fits using the full entropy- and density-response function from two-fluid hydrodynamics

[egs. S9 and S10 in (18)].

whereas the condensate fraction is a measure
for the number of fermion pairs at zero-center
of mass momentum. In the zero-temperature
limit, the entire system is superfluid, but only
a fraction of fermion pairs are condensed,
owing to quantum depletion and Pauli block-
ing (6, 7, 9).

A further dramatic signature of the super-
fluid transition is seen in the temperature
dependence of the second-sound diffusivity D,
in the superfluid state, and thermal diffusion
in the normal state, shown in Fig. 4D. We
observe a striking peak in this transport co-
efficient within a range AT = 0.1T, around the
critical temperature of superfluidity, rising above
a background minimum value of about 2#/m
up to nearly three times this value. This be-
havior echoes that found in liquid *He (35, 41)
near its superfluid transition, associated with
classical criticality. Indeed, the order param-
eters of both the Fermi superfluid and liquid
helium belong to the same 3D XY static uni-
versality class, and also the same [model F
in (42)] dynamic universality class, dictating
a behavior D,o<|T, — T|*/* near the transi-
tion, with critical exponent v = 0.672, as ob-
served in “He (41). Related critical behavior for
the speed of second sound ¢; o< (T — T')"/* and
pgoc(T. — T)" is qualitatively consistent with
the steep slopes we observe close to T, in
these quantities. For the unitary Fermi gas,
the width of the region governed by critical-
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ity is not precisely known but is estimated to
be on the order of T, (43, 44). A quantitative
analysis of critical behavior, such as the mea-
surement of critical exponents, is prevented by
the residual inhomogeneity of the gas den-
sity, giving a variation of A(T/T,) ~ 5 x 1073,
and by the finite size of our system. Indeed,
even for the lowest spatial mode j = 1, second
sound becomes overdamped (T" = 2wm) within
3% of T,. At low temperatures T /T, < 0.6, D,
is again seen to rise significantly, which we
attribute to the diverging mean-free path of
phonons, the only remaining contribution at
low temperatures once pair-breaking exci-
tations are frozen out.

Above the transition temperature, the second-
sound mode evolves into a thermal-diffusion
mode whose diffusivity is directly given by ther-
mal conductivity k: Dy = x/ncp (19, 20, 45, 46).
We therefore find quantum-limited thermal
diffusion ~24/m (47), similar to prior results for
spin (30, 31), momentum (32), and first-sound
diffusion (33) in the unitary gas. However, the
nonmonotonous behavior of second-sound
diffusivity, with steep rise at low temperatures
and around T, has not been observed in other
transport coefficients.

The second-sound diffusivity D, was inde-
pendently measured with Bragg scattering (27),
and a small rise in the second-sound damping
rate approaching T, was observed. However, a
peak in D, near T, could not be resolved, pre-
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Fig. 4. The speed and diffusivity of second
sound. (A) Speed of second sound, normalized by
the Fermi velocity, as a function of temperature,
determined by fitting the steady-state response
functions (blue circles), and the free evolution of
second sound after resonant gradient excitation
(yellow squares) or after local heating (red diamonds).
The first-sound speed measured from the response
functions (gray circles) is also shown. The dotted-
dashed line indicates Nozieres-Schmitt-Rink theory
(39). (B) The superfluid fraction of the unitary Fermi
gas obtained from the speed of second sound
[symbols as shown in (A); also see eq. S13 in (18)].
The blue shaded area indicates the uncertainty from
the equation of state. Solid green circles indicate the
superfluid fraction obtained from quasi-1D experiments
(21) that also utiized the MIT equation of state of

the unitary Fermi gas (12). (C) Pair condensate fraction
measured with the rapid-ramp technique to detect
fermion pair condensates (13). (D) Second-sound
diffusivity obtained from various methods [symbols
as shown in (A)]. The vertical gray area shown in all
panels indicates the uncertainty of critical temper-
ature from (12).

sumably because Bragg scattering as a density
probe becomes insensitive to heat propagation
above T.. Away from T, the values for D re-
ported in (27) were about half of what we
observed. Given that the experiment in (27)
used a much higher wave vector and corre-
spondingly more elevated frequencies, the gas
may no longer have been hydrodynamic but
instead entered the collisionless regime, which is
similar to the behavior for high-momentum first
sound in (33, 37). Assuming the hydrodynamic
relation T' = Dy%? for such modes will yield
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too small a value for D,. By contrast, in the
present work using thermography, we veri-
fied hydrodynamic scaling by exciting also
the second (j = 2) spatial mode supported by
the box, finding within error bars identical
values of D, [fig. S4 in (18)].

In the superfluid regime of the unitary Fermi
gas, there are three contributions to second-
sound diffusion: thermal conductivity x, shear
viscosity ), and bulk viscosity {; from normal-
superfluid counterflow (36, 48). Although it is
known that {; = 0 for a pure phonon gas with
linear dispersion (49), in the rangeT'/T¢. = 0.5,
the normal fluid is dominated by pair-breaking
excitations. In this case, all three contributions
are of similar importance (36, 48). Assuming
{3 = 0 in this regime, as was done in (27), is
not warranted, and obtaining viscosity and
thermal conductivity from first- and second-
sound diffusion alone is not possible.

Outlook

Direct measurement of heat transport has been
a long-standing goal in quantum gas experi-
ments. Thermography now opens the door to
study a host of intriguing nonequilibrium phe-
nomena, from nonlinear heat waves to quench
dynamics (50, 51) and even far<from-equilibrium
phenomena such as prethermal states (52, 53).
Using tomographic imaging techniques (54), the
complete 3D spectral response can be measured,
enabling the investigation of transverse entropy
transport in anisotropic or inhomogeneous sys-
tems. For thermodynamic systems with addi-
tional degrees of freedom beyond density and
temperature, for example, spin-imbalanced
systems, additional independent measurements
such as probes of the local spin polarization can
be supplemented to fully determine thermody-
namicresponse functions. The spectral response
continues to serve as a channel highly sensitive
to temperature. Therefore, our spectroscopic
thermometry method may be applicable to
other quantum gas platforms, including Bose

Yan et al., Science 383, 629-633 (2024)

gases, Bose-Fermi mixtures, impurity systems,
and Hubbard quantum simulators (55).
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