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Abstract. Each coil image in a parallel magnetic resonance imaging (pMRI) system is an imaging slice mod-
ulated by the corresponding coil sensitivity. These coil images, structurally similar to each other,
are stacked together as 3-dimensional (3D) image data, and their sparsity property can be explored
via 3D directional Haar tight framelets. The features of the 3D image data from the 3D framelet
systems are utilized to regularize sensitivity encoding (SENSE) pMRI reconstruction. Accordingly,
a so-called SENSE3d algorithm is proposed to reconstruct images of high quality from the sampled
K-space data with a high acceleration rate by decoupling effects of the desired image (slice) and
sensitivity maps. Since both the imaging slice and sensitivity maps are unknown, this algorithm
repeatedly performs a slice step followed by a sensitivity step by using updated estimations of the
desired image and the sensitivity maps. In the slice step, for the given sensitivity maps, the esti-
mation of the desired image is viewed as the solution to a convex optimization problem regularized
by the sparsity of its 3D framelet coefficients of coil images. This optimization problem, involving
data from the complex field, is solved by a primal-dual three-operator splitting (PD30) method. In
the sensitivity step, the estimation of sensitivity maps is modeled as the solution to a Tikhonov-
type optimization problem that favors the smoothness of the sensitivity maps. This corresponding
problem is nonconvex and could be solved by a forward-backward splitting method. Experiments
on real phantoms and in vivo data show that the proposed SENSE3d algorithm can explore the
sparsity property of the imaging slices and efficiently produce reconstructed images of high quality
with reduced aliasing artifacts caused by high acceleration rate, additive noise, and the inaccurate
estimation of each coil sensitivity. To provide a comprehensive picture of the overall performance of
our SENSE3d model, we provide the quantitative index (HaarPSI) and comparisons to some deep
learning methods such as VarNet and fastMRI-UNet.
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1. Introduction and motivation. Magnetic resonance imaging (MRI) is a common tech-
nique in medical diagnosis. Most of the MRI sequences in use today are based on a “spin-
warp” imaging scheme [7], where the spatial information with phase was encoded succes-
sively by varying the amplitude of the gradients of the radio frequency pulses. Such a
scheme is a Fourier-transform MRI method that produces data in the spatial frequency
space, known as the K-space. The spatial frequency domain content of the imaged ob-
ject is encoded directly into g(ks,ky), the magnetic resonance (MR) signal at spatial fre-
quencies k, and k, in the z- and y-directions, respectively. In the K-space of the form
9k, ky) = [[ s(z,y)u(x,y)e? ke e2mky dudy, s(z,y) is the coil sensitivity function and u(x,y)
is the spatial spin density function of the original object such as bones, joints, and soft tissues.
The decoding process involves an inverse Fourier transform to obtain the target MRI image
u(x,y) for medical diagnosis purpose. In order to reproduce accurate reconstruction images,
enough phase-encoding steps are needed to cover sufficient positions in the K-space. Hence,
MRI scans typically take longer time.

The parallel MRI (pMRI) technique is a hardware solution used in clinical applications to
shorten the imaging time. It utilizes a set of receiver coils surrounding the target object to
detect MR signals. To accelerate the data acquisition procedure, the pMRI system uses re-
construction algorithms to predict the imaging structures of the original MR signal only from
collected partial (downsampling) K-space data [9, 28]. This downsampling process signifi-
cantly reduces the scan time, but the resulting pMRI reconstruction is ill-posed and requires
regularization techniques to improve the quality of the MRI images [6]. Most pMRI techniques
can be categorized as the image domain methods (e.g., sensitivity encoding (SENSE)), the
K-space methods (e.g., generalized autocalibrating partially parallel acquisitions (GRAPPA)),
and their hybrids. In this paper, we focus on the SENSE-based pMRI method.

1.1. SENSE-based pMRI reconstruction. SENSE is a technique that allows a reduction
in scan time through the use of multiple receiver coils in an imaging mode [28]. More precisely,
in a pMRI process, we denote gy, the acquired K-space signal received by the fth coil, by

(1.1) ggzpF(SgG)u)—i-T]g, (=1,...,L,

where L is the total number of coils, u € R" is the vectorization form of the desired image
representing the density of the hydrogen protons in tissues (this is for convenience of pre-
sentation; in practice, u is kept as a 2D image), F € C"*" is the discrete Fourier transform
matrix, P € R™*" is a sampling matrix, n, € C™" is the additive noise, and s, € C" is the
sensitivity vector of the fth coil. Here, a ® b is the Hadamard product of a and b with the
same dimension. The sampling matrix P is diagonal with diagonal entries being 0 or 1. The
observation model in (1.1) shows that the coils simultaneously measure the same region but
with a downsampling process in order to increase the scan speed.
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When the sensitivity vectors s, are available, we can write (1.1) in a compact form. To
this end, let us define Sy := diag(sy) for £=1,...,L and

a1 51 m PFSl
(1.2) g=|:[.S=:1]|n=|:|,M:= :
gr ST nr PFSy,

With these notations, a unified representation of the acquired signal g¢ in (1.1) is given by
(1.3) g=Mu+n,

where g € CI™, M € CL" " and n € CM.
Regularization techniques are often adopted to regularize the ill-posed problem (1.3). In
what follows, we address the issues related to dealing with the inverse problem (1.3).

1.2. Structural sparsity of coil images explored via 3D directional framelets. Regular-
ization techniques on the 2D target image are commonly used for SENSE methods to improve
the reconstruction quality. One typical example is the framelet (or wavelet) regularization
model of the following form:

1
(1.4) min{2|Mu—g||%+|FW2Du||1:u€R”},

where T' is a diagonal matrix with nonnegative diagonal elements and Wsp is the matrix
associated with a 2D framelet transform. Model (1.4) uses fixed (pre-estimated) coil sensitivity
maps sy and regularizes on the framelet coefficients of the underlying target image u. It applies
Wap on each coil image or target slice to produce sparse coefficient sequences and process them
one by one. We refer to (1.4) as the SENSE2d-U model.

The pMRI system has multiple coil images, and each coil image contains parts of the
information of the target slice that are correlated with each other. For example, Figure 1(a)
shows the four coil images of size 512 x 512 from (the inverse discrete Fourier transform of)
the corresponding full K-space data gy acquired by an MRI machine. It can be seen that the
intensity of each coil image is uneven and the intensities of the coil images are mismatched.
Without considering their correlated information together, it could lead to poor quality of the
reconstruction image; e.g., see Figure 2(c).

Observe that the coil images are sparse in two aspects: (1) Each coil image contains
essentially smooth areas separated by edge features, and (2) the coil images are structurally
similar to each others with areas of different high intensity. How can we explore the sparsity
within each coil image and among different coil images? In view of the fact that the coil images
are from the same target slice modulated via multiple coils in different positions, it is thus
natural and reasonable to stack and view them as a 3D signal (data) of size 512 x 512 x 4; see
Figure 1(b). We can then use a 3D directional framelet system to get a more harmonic image
and explore its sparsity. More precisely, using a 3D Haar lowpass filter o’ in a 3D directional
Haar framelet (DHF) system DHFj = {a'’;b,, by, bay, bry, bauz } (see section 2) that plays the
role of averaging, the neighboring coil images with labels (1)—(4) are averaged, which produces
a 3D signal of four images, labeled as (1+2), (24 3), (3+4), and (4 + 1), having more areas
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(1+2+3+4)

(1+2+3+4)

(1+2+3+4)

(1+2+3+4)

(a) coil img. (b) 3D data (c) 15 level (d) 27 level

Figure 1. 2-Level 3D directional Haar tight framelet lowpass filtering. (a) Four 512 x 512 coil images. (b)
The 4 coil images, labeled as (1), (2), (3), and (4), are stacked as 3D image data of size 512 x 512 x 4. (c)
First-level lowpass filtering of the 3D image by a 3D Haar lowpass filter a™ . This results in images obtained
from averaging within each coil image and across coil images. (d) Second-level lowpass filtering of the middle
3D image. Each slice of the second-level filtered 3D image is the same, which is the average of the 4 coil images.

with less intensive difference; see Figure 1(c). In the second level, the 3D signal, which is
the stacked version of the four images (1 + 2), (2 + 3), (3 + 4), and (4 + 1), is further
averaged by the upsampled lowpass filter, which produces a 3D signal of four images with
label (14 2+ 3+ 4) having almost the same intensity level of brightness (see Figure 1(d)).
The lowpass filtering by the 3D tight framelet filter greatly utilizes the correlated information
among the coil images as well as within-the-coil images to produce images with harmonic
intensity level, which, in turn, facilitates the production of the sparse representation of the 3D
signal by the directional highpass filters by, by, byy, bz (playing the role of differencing) of the
3D framelet system DHF%. The full 3D directional framelet system DHF% plays the central
role in our 3D SENSE-based pMRI regularization model.

In view of the above discussion, it is natural to consider the following 3D framelet regu-
larization pMRI model:

1
(1.5) min{2|Mu—g||%—¢—||FW3DSu|1:uERn}7

where W3p is the matrix associated with a 3D tight framelet transform. The differences of
the regularization terms in (1.4) and (1.5) are obvious. The regularization term [|[TWapul||; in
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(1.4) measures the sparsity with the ¢; norm for the desired image u under a 2D tight framelet
transform, while the regularization term ||[I'W3pSul|; in (1.5), as motivated by Figure 1(c),
measures the sparsity with the /1 norm of all coil images Su under a 3D framelet transform.
If S is pre-estimated, then we shall call such a model in (1.5) the SENSE3d-U model.

1.3. The SENSE3d algorithm and the SENSE3d model. The sensitivity vectors s; are
spatially nonuniform and are unknown. The difficulty of model (1.5) is to find an estimate of
u under the scenario that sy are unknown and the acquired K-space signals g, are incomplete.
For the SENSE2d-U model and SENSE3d-U models, each sensitivity map s, is usually pre-
estimated as follows: The blurry coil image §, = F~lg, is acquired by the inverse Fourier
transform of the center K-space data, and then, the sensitivity for each coil is estimated as
se = Ge//I1|> + - +1gr|?. However, both models with such pre-estimated coil selectivity
maps usually do not perform well. See Figure 2(c), (d), and (e).

We treat both u and the sensitivity vectors sy as our target solutions in our proposed
optimization models and propose a so-called SENSE3d algorithm to find the estimates of u
and sy iteratively. The basic steps in the SENSE3d algorithm are the ‘slice step’ and the
‘sensitivity step’:

(1) Slice step: Find an estimate of the slice image u from the observed K-space signals
ge and the guesses of sy. The reconstruction of u from (1.3) is obtained by solving
an optimization model (see (1.5) or (3.3)) regularized by a 3D directional Haar tight
framelet system.

(2) Sensitivity step: Update the sensitivity vectors sy for £=1,2, ..., L from the observed
K-space signal gy and the estimate of u. The target image u is obtained by using

Full 29% SENSE?d U d)SENSEQd U SENSE3d U SENSE3d
") Full 29% SENSEQd U ")SENSE2d- U ")SENSE3d-U ")SENSE3d

Figure 2. (a) Reference Sum of Square (SoS) image by the full K-space data with to-be zoomed-in area (the
white rectangle); (b) SoS image by the four coil images with 29% K-space data on uniform sampling model
as shown in Figure 3(a); (c) the SENSE2d-U model (1.4) by pMRI algorithm Fast Adaptive Directional Haar
Framelet Algorithm (FADHFA) [21]; (d) the SENSE2d-U, which is the pMRI algorithm FADHFA using the
sensitiity map estimated by our SENSE3d algorithm; (e) the SENSE3d-U model (1.5); and (f) the SENSE3d
model (3.3) + (3.10). (a')~(f'): The zoomed-in part of (a)—(f) of the same white rectangle area, respectively.
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a smooth assumption on sy;. Once we have an approximation to the target image
u, we can use it to update the sensitivities that are the solution of a Tikhonov-type
optimization model (see (3.10)).
The above two steps are alternately repeated until stability is reached. To avoid additional
notation, details on the slice step and the sensitivity step will be discussed in section 3. We
shall call the model using the SENSE3d algorithm—that is, (3.3) and (3.10) detailed in section 3
together with our DHF% framelet regularization—the SENSE3d model.

The SENSE3d model significantly improves the quality of the reconstruction target image
u. One can see the performance comparisons among the four models SENSE2d-U, SENSE3d-
U, SENSE3d, and SENSE2d—U, from Figure 2. We use phantom images with four coil images
of size 512 x 512. The K-space data of each coil are partially sampled according to the sam-
pling model in Figure 3(a) (29% of the K-space with 24 autocalibration signal (ACS) lines).
Figure 2(b) is the SoS (sum-of-square) image of the four downsampled coil images, which
is obviously blurred with aliasing artifacts. The MRI images reconstructed by SENSE2d-U,
SENSE2d-U, SENSE3d-U, and SENSE3d are shown in Figure 2(c), (d), (e), and (f), respec-
tively.

Comparing the SENSE3d-U and SENSE2d-U models, one can see that SENSE3d-U model
is better in reducing the aliasing artifacts than that of the SENSE2d-U model. As shown by the
zoomed-in parts, the “Column” and the “Row” aliasing artifacts in Figure 2(c’) (SENSE2d-U)
are mostly reduced by the SENSE3d-U model in Figure 2(e’). This confirms that the corre-
lated futures of coil images by our 3D framelet system can efficiently suppress the artifacts
by the downsampling operation in the K-space domain. Comparing the SENSE3d-U model
(without iterating updates of sy) and the SENSE3d model (with iterating updating of s),
one can see from Figure 2(e) and (f) that the reconstruction target image u by the SENSE3d
does not have aliasing artifacts. The zoomed-in parts in Figure 2(e’) and (f’) show that the
SENSE3d model can get more accurate sensitivity to reconstruct better target images. Alias-
ing artifacts in Figure 2(e’) are removed in Figure 2(f’) via our SENSE3d models. Finally, the
SENSE2d-U, which is the pMRI algorithm FADHFA using the sensitivity map estimated by
our SENSE3d algorithm, shows its improvement over SENSE2d-U but is still not as good as
SENSE3d-U.

The performance of the SENSE3d-U model from the above is better than that of the
SENSE2d-U model, while the performance of the SENSE3d model is better than that of the
SENSE3d-U model. The reconstructed and sensitivity models in (3.3) and (3.10), respectively,
interact with each other to improve the quality of the MRI images by our DHF% framelet
regularization. We demonstrate in section 4 with more experimental results for comparing
with other state-of-the-art methods.

1.4. Contributions and structure. The contributions of the paper mainly lie in the follow-
ing three aspects. First, we introduce the use of 3D DHFs for the regularization of the pMRI
reconstruction under the SENSE-based method. In view of the correlated information among
coil images, the 3D DHF system DHF% not only produces coil images with harmonic pixel
intensity but also greatly facilitates the exploration of the sparsity within each coil image as
well as the sparsity across coil images. Secondly, we propose a so-called SENSE3d algorithm
to estimate the target image and the coil sensitivity maps iteratively. Unlike some 2D models
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and 3D models that are using pre-estimated coil sensitivity maps, our SENSE3d algorithm
treats both the underlying image u and the coil sensitivity maps sy as our target solutions of
some optimization models by 3D regularization. Such a SENSE3d algorithm together with
our 3D DHF regularization gives rise to our SENSE3d model, which provides high-quality
reconstruction images with excellent performance improvement. Finally, we provide detailed
step-by-step procedures for solving the optimization problems appeared in the slice step and
sensitivity step of the SENSE3d algorithm. Moreover, we give theoretical justifications on
the convergence analysis of the two iterative algorithms for the slice step and sensitivity step,
respectively.

The structure of the paper is as follows. In section 2, we discuss 3D DHF's for our pMRI
regularization. In section 3, we present our optimization model for the pMRI SENSE recon-
struction and develop the numerical algorithms to solve the model iteratively. In section 4, we
conduct numerical experiments on the comparisons of several state-of-the-art methods using
various MRI data. Conclusions and further remarks are given in the last section. Some proofs
are postponed to the appendix.

2. 3D directional Haar framelets filter banks. In what follows, we briefly discuss the 3D
directional Haar tight framelet filter bank DHF% for our 3D SENSE-based pMRI regularization
model.

By 1o(Z%), we denote the set of all finitely supported sequences. A mask/filter h =
{h(k)}reza 7% — C on Z% is a sequence in lo(Z%) whose Fourier series is defined to be
h(&) == eza h(k)e *¢ for £ € R%. We denote & as the Dirac sequence such that §(0) =1 and
5(k) =0 for all k € Z4\{0} and &, := &(- — ) for v € Z%. Throughout the paper, we assume
that the tight framelets are dyadic dilated; that is, the dilation matrizis 214, with I; the d x d
identity matrix. For filters a,by, ..., by, € lo(Z?), we say that a filter bank {a;b1,...,by} is a
(d-dimension dyadic) tight framelet filter bank if, for all £ € R% w € {0,1},

m
(2.1) a(€)a( +mw) + D bu(€)bu(€ +mw) = 8(w),

=1
where = denotes the complex conjugate of x € C. The filter a is a lowpass filter satisfy-
ing a(0) = 1, while b,’s are the highpass filters satisfying 0,(0) = 0. Such a filter bank
{a;b1,...,by} corresponds to a framelet system {@;11,...,1¥n} through the refinement rela-
tions ©(2€) = a(&)p(&) and 1,@(25) = IZ({)@(E), where the Fourier transform is defined to be
f({) i= [pa f(z)e”dz for a function f € Li(R?). For more details, we refer to [11].

Now, consider aff =279 276{071}11 0~ to be the d-dimensional Haar lowpass filter. Define
the set {b1,...,bn} == {274d,, — 8,,) : 71,72 € {0,1}? and 71 < 72} of highpass filters.
Here, 1 < 72 is understood in the sense of lexicographical order. Then, we have m = (2d =
24-1(24—1). It was shown in [12] (see also [19, 38] for the generalization) that {a’l;by,...,b,,}
is a tight framelet filter bank such that all the highpass filters b1, ..., b, have only two taps
and exhibit %(3‘1 — 1) directions in dimension d. In particular, for d = 1, the tight framelet
filter bank is just the standard Haar orthogonal wavelet filter bank DHF; := {af;b} with
afl =1 (80+61) and b= 3 (8o — &1). For d =2, the corresponding tight framelet filter bank
reduces to the directional Haar tight framelet filter bank DHFy := {a®;b1,...,b} in [21,
equation (3.5)].
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For d = 3, it is a 3D directional Haar tight framelet filter bank DHFS := {a™;by,... bog}
with af = £(8(0,0,0)+(0,0,1) +6(0,1,0) +60,1,1) + 8(1,0,0) + 0(1,01) +6(1,1,0)+81,1,1)) and the 28
filters b, = %(5% —4,,) for 1 =1,...,28. Since we employ the UDFmTs (undecimated discrete
framelet transforms) for the W3p in our model (1.5), only the partition of unity condition is
needed (w=01n (2.1)) to guarantee the perfect reconstruction property. Hence, by considering
filters with the same direction, the 28 highpass filters in DHF% can be regrouped to 13 filters
as a filter bank DHF% with filters a®, b,, by, b=, by, br oy bezy by 2 byz, by 2y by, by 2y be gz, bz y
in [23]. Furthermore, as demonstrated in [22], the output framelet coefficient sequences in-
volving the z-filters (i.e., those b, by, byy-, etc.) are actually ‘bad’ features for our 3D signal
reconstruction. They represent local contrast discrepancy between coil images that do not
play a role in our restriction process. Hence, in [22], the filter bank DHF3 is further sim-
plified to the filter bank DHF3 := {a" by, by, bay, be y, baux }, Where by = 1(8(1,0.0) — 6(0,0,0));

by = i(‘s(o,l,o) - 6(0,0,0))5 bmy = %(5(1,1@\— 5(0,070))7 and bx,y = %(5(170,0) - 5(071,0)) and the
filter baux is determined by baux i= 1 — (|a#|? + |ba|? + \bAy|2 + \b/m\y|2 + \b;\y|2)

The 3D directional Haar filter bank DHF% nicely fits into our SENSE pMRI regulariza-
tion and reconstruction with the following properties: (a) The lowpass filter a'l produces an
underlying image with harmonic pixel intensity for further process by the directional highpass
filters; (b) the directional highpass filters by, by, by, by, are properly chosen to capture the
edge information for the sparse representation, which facilitates the successful recovery in the
{1-based optimization models; and (c) the auxiliary filter by, guarantees the perfect recon-
struction of the 3D filter bank and the UDFmT, where, in practice, it does not participate in
the shrinkage operation so that the procedure of UDFmTs is equivalent to the UDFmT using
the tight framelet filter bank DHF2. We refer to [22, 23] for the detailed construction of the
DHF} and the implementation of the UDFmT based on the DHF3.

3. Optimization models and the SENSE3d algorithm. The problem (1.1) is highly ill-
posed because different pairs of u and s, can bring about the same gy. Under the priori
knowledge about u and sy, our goal is to approximate the desired image u when sy are unknown
and the acquired K-space signal gy are incomplete. To achieve this goal, we introduce a so-
called SENSE3d algorithm for finding an estimate of both w and sy. The basic steps for the
SENSE3d algorithm are outlined in Algorithm 3.1.

Algorithm 3.1. The SENSE3d algorithm.

1: Given the observed K-space signal gy, sampling matrix P and an initial sensitivity matrix
s9,0=1,2,....L,

2: for k=1,2,..., do

3:  slice step: Find an estimate of u from the observed K-space signals g, and the estimated
sensitivity matrices sy;

4:  sensitivity step: Update the sensitivity vectors sy for £=1,2,..., L from the observed K-
space signal gy and the estimated image u.

5: end for

6: Return u the estimate of the desired image wu.
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The SENSE3d algorithm is an iterative way to find the estimate of u by decoupling the
effects of u and the sensitivity maps sy. We remark that a model called JSENSE, which
alternatively estimates the slice image u and the sensitivity vectors sy, was proposed in [44],
but it is without considering any regularization technique and the convergence analysis. On
the other hand, in the slice step of Algorithm 3.1 for our SENSE3d model, we integrate
the regularization with the novel 3D directional Haar filter bank DHF3, which captures the
sparsity of the coil images. In the sensitivity step of Algorithm 3.1, we propose a Tikhonov-
type regularization that favors the smoothness of the sensitivity mapping sp, £ =1,2,..., L.
For the regularized optimization problems in the slice step and sensitivity step, we develop
efficient algorithms to solve them and provide convergence analysis of these algorithms.

3.1. Slice step: Object estimation. We begin by introducing the basic notation. The
pMRI acquisition model involves complex numbers. For a vector u € C", we use |Ju|z :=

> i [l Mfully = 3252 [ulf]l, and [lulle == maxigj<n |ulj]] to represent, respectively,
the a-, £1-, and {-norms of u, where u[j] is the jth component of u. For a matrix A € C™*™,
we define its norm as follows:

[ A]l2 ;= max {||Aul|z : w € C" with ||ull2 =1} .

Hereafter, Re(-) and Im(-) stand for the real and imaginary parts, respectively. For u € C",
we have u = Re(u) + ilm(u), where both Re(u) and Im(u) are in R™ and ¢ is the imaginary
unit satisfying i2 = —1.

For the purpose of the exposition of optimization algorithms on C™, the inner product of
two vectors u and v in C" is defined as

(3.1) (u,v) ;== Re(u'v),

where ' is the conjugate transpose of . With this inner product, the vector space C" is
actually viewed as the vector space R?".

From the observed K-space signals g, and the estimated sensitivity maps s, we propose to
estimate v in (1.1) through an optimization model that is regularized by the prior knowledge
of the coil images. Note that the ¢th coil image sy ® u = diag(s¢)u = Spu. From the identities
Spu=F~1FSpu and I,, = (I,, — P) + P, in the noise-free situation, we have

Spu=F~Y((I, — P)FSpu+ PFSpu) = F~ (I, - P)FSpu + F~'g,
for all /=1,2,..., L. Putting all L coil images together, the above equations yield
(3.2) c=Nu+ (I ®F g,

where ¢ = Su and N = (I, ® (F~1(I,, — P)F))S. Here, S is defined in (1.2) and ® denotes the
Kronecker product. Equation (3.2) says that the integration of the coil images ¢ is composed
of the missing information Nu and the available information (I, ® F~1)g.

Denoting W := W3p as the transformation matrix associated with the filter bank DHF§
onto the coil images ¢, we have We =W (Nu + (I, ® F~1)g). Using this identity, (1.3), and
(3.2), we propose to estimate image u through the following optimization problem:

1
(3.3) min {2||Mu g3 +ITW(Nu+ (L@ FH)g)|i:ue R”} :
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where I' is a diagonal matrix with nonnegative diagonal entries. In the objective function
of (3.3), the term 3|/ Mu — g||3 measures the faithfulness of the recovered image to the given
data, while the term |[TW (Nu + (I, ® F~1)g)||; relates to the sparsity of the coil images
Nu+ (I, ® F~1)g under W. Note that the ideal image u is restricted in R™.

With the above preparation, we first present the PD30 (primal-dual three-operator split-
ting) algorithm for solving (3.3) and the convergence analysis of the sequence generated by
the algorithm. We postpone discussion on the development and the convergence analysis of
the algorithm to Appendix A.1 to avoid a lengthy digression.

This algorithm is written as follows: Given the initial guess (v°,2°) € C* x C? and the
parameters v, § and I, iterate

uf =Re(v¥),

wh =T —y0AAT) 2P + SAF — yM T (MuF — g)),
2L = (wk 4 6b) — soft(w* + 6b,T),

VP = b — A M T (MuF — g) — yAT 2L

Here, A=WN, b=W (I, ® F~1)g, and wF is the auxiliary variable. Furthermore, soft is the
well-known soft shrinkage operator; i.e., for w € C%,

. . . w|j
(soft (1, 1)) 1] = mace{uw[j]| ~ T[5. 1.0} 2
lwls]|
for 7 =1,2,...,d. One iteration of the above scheme can be viewed as the operator Tpp3o

(see (A.3a), (A.3b), and (A.3c) in Appendix A.1 for its definition) such that (vF*+1 2F+1) =
Tppso(v", 2F).

The theorem for the convergence analysis of the PD30 algorithm for problem (3.3) is
given as follows.

Theorem 3.1. Let the pair (v*,z*) be any fixed point of the Tppso operator. Let k be
defined by

L
(34) o= max 3 Js ]
=1

and let {vF,2F} >0 be the sequence generated by the PD30 algorithm (A.3a), (A.3b), and
(A.3¢) with

(,Uk—i-l7 Zk+1) — TPD3O(Uk7 Zk)
and the initial guess (v°,2°). Choose v and § such that v < 2/k and v§ < 1/k. Define
B:=2(I—-~6AA") and ||(v,2)| 5 :=\/|[v]|? + (2, Bz). Then, the following statements hold.

(i) The sequence {||(vF,2*) — (v*,2%)||B}r>0 is monotonically nonincreasing.

(ii) The sequence {||(vFF1, 251y — (V% 2%)|| pYks0 is monotonically nonincreasing. More-

k41 k1 k k|| — of L
over, we have |[(v", 2" — (0", 2%) || B = 0(737)-

The detailed proof of the above theorem is given in Appendix A.1. We next focus on the

estimation of the sensitivity maps sy.
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3.2. Sensitivity step: Sensitivity maps estimation. Once we have an approximation to
the target image u, we can use it to update the sensitivity maps sy, £ = 1,2,..., L. From
the acquisition model (1.1) and the facts that I, = P+ (I, — P) and g, = PF(s; ® u) in the
noise-free case, the approximation of the full K-space signal, denoted by geq ¢ and received by
the ¢th coil, can be modeled as

(3'5) Gest,t = 9o + (In - P)F(SE O) u)

That is, geste is composed of the observed partial K-space information g, and the estimated
unobservable K-space data (I — P)F(s; ® w). In the noise-free case, due to sy Qu=u© sy =
diag(u)sg, we indeed have

(3.6) Gest,e = F'(s¢ © u) = (F'diag(u))se.
Define
Gest,1 S1
(3'7) Jest = >Q:IL®(Fdiag(u))>5:
YGest,L SL

Here, gest € CE, Q € CE*L7 and s € CI™. With these preparations, a compact representa-
tion of (3.6) is as follows:

(3.8) Gest = @s.

To estimate a faithful s from model (3.8), we should take both reliable K-space data infor-
mation from g.s and prior knowledge of s into consideration. Regarding the prior knowledge
of s, each sensitivity map s, is assumed to be smooth and the energy of the values coming from
the same location of the sensitivity maps is identical and equal to one; that is, 25:1 Isel]]? =1
for all j=1,...,n (see [24]). Due to u® s; = (hsg) ® (u/h) holding for any nonzero constant
h, the constraint on the sensitivity maps sy ensures the uniqueness of the underlying problem.
Therefore, we define the domain

L
(3.9) D:= {s:sGCLn,ZLS[j—i-(E—l)n]|2:1forj:1,...,n}.

(=1

With these preparations, our proposed optimization problem for estimating s from model
(3.8) has a form of

.1 1
(3.10) min {2||P561(Qs — Gest) |3+ §||F5Ws||% (s € D} ,

where Py is a sampling matrix and W = Wsp is associated with the 3D DHF transform used
in the slice step. Here, I'y is a diagonal matrix whose diagonal entries corresponding to the
framelet coefficients from the lowpass filter of the framelet system are zero, and the others
have the same value. The use of Py here is twofold. First, the K-space data are usually fully
sampled near its center (i.e., the ACS lines) and thus give more accurate estimation of ges
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near the center. The sampling matrix Py is hence defined to sample coefficients near the
center of K-space only. Second, the smooth assumption on each s, implies that the frequency
response of sy is concentrated around the center of the K-space (a lowpassed signal). Therefore,
there is no need to use the full K-space data. Moreover, Py, reduces the computation cost
significantly. In our experiments, P, is indeed the sampling matrix corresponding to the
ACS line.

Since the objective function of the optimization problem (3.10) is Lispchitz continuous,
problem (3.10) can be solved through the forward-backward algorithm (see, for example, [1]).
It reads as, for any initial guess s, iterate

(3.11) PLER projD(sk — Tk(QTPsel(st — Gest) + WTI‘QWsk)),

where 7, > 0. Here, if t = projp(s) for s € C, then, for each j = 1,2,...,n, letting
t=[tlj],t[j +nl,...,t[j + (L — 1)n]] and 5 = [s[k], s[k +n],...,s[k + (L — 1)n]], we have

r { i if 82 #0:

any unit-vector in C%, otherwise.

The convergence analysis of the iterative scheme (3.11) is given in the following theorem.

Theorem 3.2. Given an € € (0, SE HI(liiag(F)H“’ )) and a sequence of stepsize T, such that

€< T < W — €, we consider the sequence {s"}p>o generated by (3.11). Then, the
sequence converges to a point s* in D such that

QTPsel(Qs* — Gest) + QTI‘QQS* +vdiag(I, @ v)s* =0

for some vector v € R™ with positive v; >0, 1=1,2,...,n.
The proof of the above theorem is given in Appendix A.2.

4. Experiments. In this section, we provide numerical experiments to demonstrate the
performance of our SENSE3d model. We begin by reviewing some related work on SENSE
and GRAPPA. We then provide numerical experiments for the comparisons of our model with
some traditional methods as well as some deep learning methods.

4.1. Related work. For the SENSE method, total variation (TV) is one of the regular-
ization techniques that has an ability to recover the edge details in the target image for the
PMRI problem [43]. Tt is well known that TV does not distinguish between jumps and smooth
transitions and tends to give piecewise constant images with staircase artifacts. Total general-
ized variation (TGV) with a high-order differential operator can remove the staircase artifacts
caused by TV, and the TGV of second order is applied to parallel imaging in [17]. Wave-
let transforms are adopted to detect artifacts appearing in the basic SENSE reconstruction
and reduce the artifacts by emphasizing the sparse representation of the underlying image
[4]. However, the reconstructed image will suffer from ringing artifacts when the wavelet
coefficients are modified in an incorrect way. The 2D DHF-based regularization technique as-
similating the advantages of both total variation and wavelet regularization, called FADHFA,
was proposed for SENSE to preserve details of slice and remove noise in [21]. To adaptively
represent the image with sparse canonical coefficients by tight frame, a data-driven tight
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frame-based off-the-grid regularization model was proposed for the compressive sensing MRI
reconstruction in [3]. The nonconvex and nonsmooth Euler’s elastica functional was proposed
to regularize SENSE reconstruction in [42]. These 2D regularization techniques only focus
on each coil image independently, and the redundant information among multicoil images of
pMRI is not considered in the SENSE reconstructions.

The GRAPPA in [9] is a K-space method and interpolates the missing data in the K-
space for each coil from the multicoil neighboring K-space samples. The GRAPPA method
can reconstruct almost the same quality of images as those from the SENSE method [2], but
it requires the ACS data, near the center of K-space, to estimate the interpolation weights
or coil sensitivities. In [37], sparsity-promoting calibration was proposed to regularize the
GRAPPA-based interpolation weights for reconstructing high-quality MRI images. By ex-
ploiting the nonlinear relationship between ACS and missing data, a kernel-based approach
was suggested to interpolate the missing data in the K-space [25]. Iterative self-consistent
parallel imaging reconstruction (SPIRIiT) extends the GRAPPA’s interpolation weights on
sampled and unsampled data and fills missing K-space as an inverse problem [24]. ESPIRiT
is a “soft” SENSE reconstruction using the eigenvectors of a calibration matrix constructed
by the SPIRIT model as sensitivity maps and is called ¢/1-ESPIRIT by regularizing the wavelet
coefficients of the target images with the ¢;-norm [33]. Joint sparsity of the wavelet coeffi-
cients of each coil image at same position is applied to the SPIRiT model (¢;-SPIRIT) [27] and
SENSE model (JSCSSENSE) [5] to further improve the quality of the reconstruction results.
Since ESPIRIT does not consider the phase of image, an algorithm called VCC-ESPIRIT
[34], incorporating the virtual conjugate coils, was proposed to estimate the sensitivity maps
that include the absolute phase of the image. A 3D directional Haar tight framelet (3DHF)
was proposed to regularize the related features between coil images reconstructed by SPIRiT
model for reducing the aliasing artifacts caused by the downsampling operation [23].

The filling of K-space data was formulated as the low-rank matrix completion problem
n [14]. The low-rank matrix modeling of local K-space neighborhoods (LORAKS) [10], and
simultaneous autocalibration and K-space estimation (SAKE) [31] use local neighborhoods
of multicoil K-space data to construct low-rank matrices for regularizing parallel imaging
reconstruction. Under smooth-phase assumptions, the LORAKS method also imposes phase
constraints on low-rank matrices. When an image is with the finite rate of innovation, then its
K-space data have a property with low-ranked weighted Hankel structured matrix, leading to
an annihilating filter—based low-rank Hankel matrix approach (ALOHA) [15]. Jointing spar-
sity of the patches from multicoil images using a sparse dictionary was proposed to regularize
the reconstruction coil MR images by considering the cross-channel relationships in [36].

Deep learning methods based on many neural network architectures can discover the
internal relationship of large-scale data through training and learning and make multilevel
abstract representations of data [40, 41]. A deep convolutional neural network was proposed
to learn the regularization part of the optimization model for an inverse problem and was
applied to the pMRI problem in [16]. U-Net is a commonly used neural network model
in medical image processing [30] and has been successfully applied to MRI reconstruction
[32, 45]. An end-to-end variation network (VarNet) [32] is a more powerful model built upon
the fastMRI-UNet model [45]. The VarNet model utilizes a sensitivity map estimation module,
a refinement module, and a data consistency module to estimate missing K-space data and
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reconstruct MRI images. It achieves good results on the fastMRI data set and served as the
baseline model for the 2020 fastMRI challenge [26].

Deep learning methods for pMRI reconstruction require a large amount of multicoil K-
space data and accurate information about the MR machine acquisitions; however, the param-
eters of the imaging setting of an MRI machine (for example, field of view, slice thicknesses,
and others) may be different for different cases. For example, a person’s heartbeat, slight body
jitter, and other factors in the process of scanning can form gradient information similar to
adversarial attack, which affects the accuracy of prediction and results in blurred anatomical
structure details and artifacts in reconstructed MRI images using deep learning methods [8].
Hence, in this paper, we focus on approaches without the need of large-scale data but simply
with the small given multicoil data in the pMRI reconstruction. Nevertheless, we provide
comparisons of our methods with the deep learning methods as well.

4.2. Parameter settings. The parameter setting of our SENSE3d algorithm is as follows.
In the slice step, for the parameters v = 1.99 and § = 0.5, and, for a more precise choice of I and
the thresholding parameter \, we refer to [22, section 4.2]; in the sensitivity step, all nonzero
diagonal entries of the diagonal matrix I' are identical, say, each sth diagonal entry Ag =0.05
for all experiments. After this parameter is determined, we choose 7, = % and 25
iterations for the sensitivity step. We terminate our method when ||u**! —u*(]2/||u*||2 < 1076
or when the number of iterations exceeds 40. Here, u* is the kth iteration produced by the
underlying algorithm. Our SENSE3d algorithm only updates the sensitivity maps at k = 8,
16, and 24 by the sensitivity step and then fixes them after k = 24 to guarantee convergence
in the slice step. The two-level decomposition of DHFg is adopted in all experiments.

Several state-of-the-art methods reviewed above, including the fast adaptive DHF algo-
rithm FADHFA [21], the ¢;-ESPIRIT method [33], and ALOHA [15], are adopted to fur-
ther compare with our SENSE3d model in numerical experiments. The source code of the
¢1-ESPIRIiT method was downloaded from the website of Michael Lustig,! and its default
settings are used except for kernel size with 5 x 5, maximal iteration 50, and regularization
parameter A set by hand for its best performance. The source code of the ALOHA method
is available at the website of Biolmaging, Signal Processing & Learning Lab @ KAIST AL’
and its default settings are used except for the following: pyramidal decomposition with de-
creasing Low-Rank Matrix Fitting (LMaFit) tolerances, annihilating filters, and smoothed
regularization parameter named as srot.

To evaluate the performance of the algorithms for removing artifacts and preserving de-
tails, we use the Haar perceptual similarity index (HaarPSI) to calculate the similarity between
the reference image and the reconstructed image [29].> The HaarPSI ranges from 0 to 1, and
higher values mean that the algorithm is better to reconstruct details of slice and remove
artifacts.

The experiments will be carried out on real phantom and in vivo data to test differ-
ent pMRI reconstruction algorithms. The phantom MR images are acquired on a 3T MRI
System (Tim Trio, Siemens, Erlangen, Germany). A turbo spin-echo sequence was used to
acquire Th-weighted images. The detailed imaging parameters are as follows: field of view

!The code is available at https://people.eecs.berkeley.edu/~mlustig/Software.html.
2The code is available at https://bispl.weebly.com/aloha-for-mr-recon.html.
3The code is available at http://www.math.uni-bremen.de/cda/HaarPSI/.
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I
]
[
(a) 512-29%-24 (b) 512-18%-25 (c) 256-34%-11

Figure 3. Sampling modes for the K-space. (a) 29% data by the uniform sampling model of 512 x 512
(one line taken from every four lines) with 24 ACS lines (the middle white area); (b) 18% data by the random
sampling model of 512 x 512 with 25 ACS lines; (c) 34% data by the random sampling model of 256 x 256 with
11 ACS lines.

(FOV) = 256 x 256 mm?, image matrix size = 512 x 512, slice thickness (ST) = 3 mm, flip
angle = 180 degree, repetition time (TR) = 4000 ms, echo time (TE) = 71 ms, echo train
length (ETL) = 11, and number of excitation (NEX) = 1.

4.3. Comparisons with other methods: MRI phantoms. In this subsection, three pMRI
reconstruction methods—FADHFA [21], ¢;-ESPIRIT [33], and ALOHA [15]—are compared
with our proposed SENSE3d model on two slices of the MRI phantoms.

We first use four MRI phantom images under the 512 x 512 (512-29%-24) sampling model
as shown in Figure 3(a), that is, the uniform sampling model of 512 x 512 with one line
taken from every four lines and with 24 ACS lines. In Figure 4, panel (a) is the SoS image
reconstructed from the full K-space data, while panel (b) is the SoS image with blurring and
aliasing artifacts by four coil images from the downsampled K-space data by the uniform
sampling mode in Figure 3(a). The regularization parameter A is 0.035 and 0.001 for ¢;-
ESPIRIT and our SENSE3d model, respectively. The settings for ALOHA are four levels
of pyramidal decomposition with decreasing LMaFit tolerances (0.3, 0.03, 0.003, 0.0003),
annihilating filters with size of 11 x 11, and sroi = 10.

The four pMRI reconstruction algorithms can retrieve most of the information from parts
of the K-space data, but the images in Figure 4(c), (d) and (e) by ALOHA, FADHFA, and
{1-ESPIRIT, respectively, have some obvious aliasing artifacts, which are removed by our
SENSE3d model and do not appear in Figure 4(f). That is to say, the correlated features by 3D
tight framelet can be utilized to regularize the reconstruction image. We provide the zoomed-
in parts of the reconstructed images in Figure 4(a’)—(f") for distinguishing their difference. One
can see that the ‘circle’ and ‘line’ false aliasing artifacts in Figure 4 (b’) are mostly reduced by
the regularized algorithms, but false ‘circle’ structures on the black region and noisy artifacts
still appear in the zoomed-in image Figure 4(c’) by low-rank regularization, while the ‘line’
artifact exists at the left-down corner of the zoomed-in image Figure 4(d’) by the 2D-U model
and at the middle of the zoomed-in image Figure 4(e’) by ¢;-ESPIRIT using 2D wavelet
regularization without considering the correlated features of coil images. Figure 4(f’), by our
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(c) ALOHA

A |

(d) FADHFA

(e) ¢,-ESPRIT

(a’) Full (b”) 29% (¢’) ALOHA (d’) FADHFA (€’) (,-ESPRIiT  (f’) SENSE3d

Figure 4. MRI phantoms of slice 1 with size 512 x 512. (a) Reference SoS image by four full K-space
data with zoomed-in area. (b) SoS image by four coil images by 29% K-space data on uniform sampling mode
in Figure 3(a). (c) ALOHA. (d) FADHFA. (e) ¢1-ESPRiT. (f) Our proposed 3D-US model. (a')—(f') are the
zoomed-in parts of (a)—(f), respectively.

Table 1
The HaarPSIs of the zoomed-in parts of reconstructed images by ALOHA, FADHFA, ¢1-ESPIR:T, and
SENSE3d in Algorithm 3.1 for removing artifacts and preserving details.

Algorithm ALOHA FADHFA (1-ESPIRIT SENSE3d
Zoomed-in parts in figures

Figure 4 0.68 0.81 0.84 0.90

Figure 5 0.73 0.85 0.86 0.92

Figure 7

First row 0.89 0.93 0.95 0.96

Second row 0.87 0.90 0.93 0.96

SENSE3d model, does not have these aliasing artifacts, and it removes noise and preserves
details of the edges closer to the reference image Figure 4(a’) with full K-space data. The
HaarPSIs in Table 1 of these four zoomed-in images by ALOHA, FADHFA, ¢/1-ESPIRiT, and
SENSE3d are 0.68, 0.81, 0.84, and 0.90, respectively. Our SENSE3d algorithm can get the
highest index, which means that our SENSE3d model can efficiently remove artifacts and
preserve details.

We next use four MRI phantom images under the 512 x 512 (512-18%—25) sampling model
as shown in Figure 3(b). That is, we use 18% sampling rate and 25 ACS lines to collect K-
space data for this phantom slice. The parameter settings for ALOHA are four levels of
pyramidal decomposition with decreasing LMaFit tolerances (0.3, 0.03, 0.003, 0.0003), 9 x 9
annihilating filers, and sroi = 8. The reconstructed results by ALOHA, FADHFA, ¢,-ESPIRiT
with regularization parameter A = 0.025, and the proposed SENSE3d model with parameter
A =0.0002 are shown in Figure 5(c), (d), (e), and (f), respectively.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/10/24 to 144.214.124.183 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

904 LI, CHAN, SHEN, ZHUANG, WU, HUANG, AND LIU

=

(c) ALOHA ) FADHFA  (e) ¢,-ESPRIiT  (f) SENSE3d
(a’) Full (b") 18% (c’) ALOHA ) FADHFA (') £,-ESPRIiT  (f’) SENSE3d

Figure 5. MRI phantoms of slice 2 with size 512 x 512. (a) Reference SoS image by four full K-space
data, (b) SoS image by 18% K-space data with sampling model in Figure 3(b). (¢) ALOHA. (d) FADHFA. (e)
01-ESPRiT. (f) Our proposed SENSE3d model. (a')—(f') are the zoomed-in parts of (a)—(f), respectively.

Due to the downsampling operation on the K-space, the SoS image in Figure 5(b) from 18%
K-space data is blurry and has lots of aliasing artifacts. The ALOHA, FADHFA, /;-ESPIRIT,
and proposed SENSE3d model can reconstruct most of details of the target slice and reduce
aliasing with respect to reference image by full K-space data in Figure 5(c)—(f). However,
Figure 5(c) by the ALOHA method has obvious aliasing artifacts and false structures, which
is not suitable for doctor’s diagnosis. We present the zoomed-in parts of the reconstruction
images as Figure 5(a’)—(f") to further compare these methods. It is obvious to see that our
SENSE3d model can efficiently remove aliasing artifacts and keep the structures of the imaging
slice. The ALOHA method is not efficient at preserving the shape of the bright ‘points’ and
separating the boundary between the upper and lower regions and at aliasing artifacts in the
zoomed-in images in Figure 5(c’); £1-ESPIRIT is better than ALOHA at retrieving the bright
‘points’ and reducing aliasing artifacts, but it is worse than FADHFA and our SENSE3d model
at preserving the boundary edges; the FADHFA model is almost the same as SENSE3d at
preserving structural details of the slice, but Figure 5(d’) by FADHFA has ‘arc’ artifacts at
left-down of the zoomed-in image and false ‘gray’ edges covering the regions of bright ‘points’.
Figure 5(e’) by ¢1-ESPIRIT also has the same aliasing artifact problem as that in Figure 5(d’)
by FADHFA, but it is not efficient at preserving sharp edges and blurs these regions. All the
above issues in Figure 5(c¢’)—(e’) do not appear in Figure 5(f") by our SENSE3d model. The
HaarPSIs in Table 1 of these four zoomed-in images by ALOHA, FADHFA, ¢;-ESPIRIT, and
SENSE3d are 0.73, 0.85, 0.86, and 0.92, respectively. It shows that our SENSE3d model gives
the best performance for reconstructing the slice image.

The 3D tight framelet regularization is essentially different from the 2D tight framelet
regularization when extracting the features of the correlated coil images for pMRI reconstruc-
tion. Our SENSE3d model not only has the merit of 2D tight framelet—based FADHFA to
preserve details but also utilizes correlated features to remove aliasing artifacts caused by
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the downsampling operation in K-space. This case again shows that our SENSE3d pMRI re-
construction algorithm can reconstruct most details of the slice and remove aliasing artifacts
when the accelerated sampling rate is high.

4.4. Comparisons with other methods: In vivo data. In this subsection, we test our
SENSE3d model on MRI data that were obtained by head examination from a healthy vol-
unteer. The detailed imaging was done on a 3T MRI system. Transverse Th-weighted images
were acquired with a turbo spin-echo sequence. The detail imaging parameters for Figure 7
are as follows: FOV = 256 x 256 mm?, image matrix size = 256 x 256, ST = 3 mm, flip angle
= 150 degree, TR =5920 ms, TE = 101 ms, ETL = 11, and NEX = 1.

The MR signal of each slice is received by 32 channels, and the reference image of one slice
in Figure 6(a) is an SoS image of 32 coil images by the full K-space data. In phase direction,
about 34% of K-space data are collected using the pseudorandom sampling mode with 11 ACS
lines in Figure 3(c). The resulting SoS image of the collected 34% K-space data in Figure 6(b)
is noisy, and the brain structures are blurry. Furthermore, faint semicirclelike aliasing artifacts
can be seen in the upper and lower portions of the image due to the accelerating K-space
sampling mode.

(d) FADHFA (e) (1-ESPRIT (f) SENSE3d

Figure 6. In vivo data with sampling model 256 x 256 (256 — 34% ~11) as shown in Figure 3(c) with two
to-be zoomed-in square areas. (a) Reference SoS image of 32 coil images by full K-space data with two zoomed-in
regions. (b) SoS image by 34% K-space data. (¢) ALOHA. (d) FADHFA. (e) ¢1-ESPRiT. (f) Our SENSE3d
model.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/10/24 to 144.214.124.183 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

906 LI, CHAN, SHEN, ZHUANG, WU, HUANG, AND LIU

7

) Full SoS ) ALOHA (c) FADHFA  (d) /;-ESPRiT  (e) SENSE3d
. . ﬂ
) Full SoS ) ALOHA (h) FADHFA (i) 4-ESPRiT  (j) SENSE3d

Figure 7. Two zoomed-in parts of Figure 6. (a) and (f) show reference SoS image. (b) and (g) show
ALOHA results. (c) and (h) show FADHFA results. (d) and (i) show ¢1-ESPRiT results. (e) and (j) show our
SENSE3d model results.

The reconstructions created by the ALOHA, FADHFA, ¢;-ESPIRIT, and our SENSE3d
models are shown in Figure 6(c), (d), (e), and (f), respectively. Their parameter settings
are as follows: four levels of pyramidal decomposition with decreasing LMaFit tolerances
(1071, 1072, 1073, 10~%), 9 x 9 annihilating filers, and regularization parameter sroi = 1.1
for ALOHA; ¢;-ESPIRIT with A =0.003; and our 3D SENSE3d algorithm with A = 0.00001.
Clearly, the quality of the images in Figure 6(c), (d), (e), and (f) is much better than the
one in Figure 6(b) in terms of the structures of the slice, the levels of noise, and the aliasing
artifacts.

To discriminate the difference of reconstructed images, we zoomed in on two square regions
as in Figure 6(a) to compare the quality of the reconstructions by the ALOHA, FADHFA, ¢;-
ESPIRIT, and our SENSE3d models. The first region at the left side of frontal lobe is zoomed
in on and provided in Figure 7(a)—(e). According to the HaarPSIs in Table 1, Figure 7(b)—(e)
by ALOHA, FADHFA, ¢;-ESPIRIT, and SENSE3d are 0.89, 0.93, 0.95, and 0.96, respectively.
Our SENSE3d algorithm is the best to reconstruct slice details from in vivo data.

We label three positions by red, green, and yellow arrows to compare their differences by
different algorithms. The artery pointed out by the green arrow in Figure 7(b) by ALOHA is
not clear and is blurred, but the arterial structures in Figure 7(c), (d), and (e), respectively, by
FADHFA, /1-ESPIRIT, and SENSE3d are more obvious than that by ALOHA. The FADHFA
and SENSE3d models are better than the ¢1-ESPIRIT method and reconstruct the arterial
structures almost the identically to the reference one in Figure 7(a). At the region of white
matter between the red arrow and the yellow arrow, there are aliasing artifacts in Figure 7(d)
by ¢1-ESPIRIT, extending from the frontal lobe into white matter; the boundary between the
frontal lobe and white matter is blurry in Figure 7(b) by ALOHA; there are ‘white artifacts’
(yellow arrow pointing) in Figure 7(b) by FADHFA; but Figure 7(e), by our SENSE3d model,
does not have these aliasing problems and provides an obvious boundary between tissues and
is very close to the reference image in Figure 7(a).
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We zoom in on another part of slice at the anterior border of the corpus callosum region and
present zoomed-in images in Figure 7(f)—(j). The lobus images (green arrow) in Figure 7(h),
(i) and (j), respectively, reconstructed by FADHFA, ¢;-ESPIRIT, and our SENSE3d, still dis-
play better tissue structure than that in Figure 7(g) by ALOHA. The low-rank regularized
method ALOHA does not preserve details in the tissue. The yellow arrow—pointing regions in
Figure 7(g), (h) and (i), respectively, reconstructed by ALOHA, FADHFA, and /;-ESPIRIT,
have aliasing artifacts at the anterior border of the corpus callosum, which are false structures
and do not appear in the reference image in Figure 7(f). However, in Figure 7(j), the aliasing
artifact is removed by our SENSE3d model, and the geometry structure of the border is re-
trieved almost identically to the reference one. The HaarPSIs in Table 1 and Figure 7(f)—(i)
by ALOHA, FADHFA, ¢;-ESPIRIT, and SENSE3d are 0.87, 0.90, 0.93, and 0.96, respectively.
The highest HaarPSI of our SENSE3d algorithm is consistent with our visual observation.
The ALOHA, FADHFA, and ¢;-ESPIRIiT methods are not very efficient at removing these
artifacts shown in Figure 6(b), but our SENSE3d model can be efficient at removing these
aliasing artifacts, and its reconstructed structures of tissues are close to the reference im-
age in Figure 6(a). That is to say, the 3D tight framelet-based SENSE3d algorithm has a
greater capacity of preserving edges and reducing most of the aliasing artifacts caused by the
downsampling operation in K-space than the 2D tight framelet-based, 2D wavelet-based, and
low-rank—based regularization algorithms.

4.5. Comparisons with deep learning methods: Knee data. In this section, we compare
our SENSE3d model with the deep learning model VarNet [32],* which is built upon the
fast MRI-UNet model [45] with a fastMRI data set.”

A set of knee with full K-space data from the fastMRI data set is used for this section.
This knee data set was acquired using a clinical 1.5T system with a 2D turbo spin-echo
sequence and a conventional Cartesian 2D TSE protocol. The detailed imaging parameters
are as follows: FOV = 280.00 x 162.82 x 4.50 mm?, image matrix size = 640 x 372, ST =
4.5 mm, flip angle = 140 degree, TR = 2800 ms, TE = 32 ms, and ETL = 4. VarNet crops
the reconstructed images from the network outputs with size 640 x 372 to be image blocks
with size 320 x 320 centered on the original ones. We follow the settings of the VarNet model.
The fully sampled images and reconstructed images by SENSE3d are also taken out from the
same region for comparisons. Note that this knee data set serves as a validation set for the
VarNet model in training process. Hence, there is no doubt that the trained model VarNet
gives superior performance on such data than the fastMRI-UNet model.

The reference image in Figure 9(a) is an SoS image by 15 coil images with full K-space data.
In phase direction, about 35% K-space data are collected using the pseudorandom sampling
mode with 30 ACS lines in Figure 8(a). The resulting SoS image of the collected 35% K-space
data in Figure 9(b) is noisy, and the knee structures are blurry. Furthermore, numerous faint
elongated aliasing artifacts can be seen across the entire image due to the accelerating K-space
sampling mode. The reconstructions by the VarNet and our SENSE3d model are shown in

“The code is available at https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/
varnet.

5The data set is available at https://fastmri.med.nyu.edu/ and served as the baseline model for the 2020
fastMRI challenge [26].
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(a) 372-35%-30 (b) 770-35%-59

Figure 8. Sampling modes for the K-space. (a) 35% data by the uniform sampling model of 372 x 640 with
30 ACS lines; (b) 35% data by the random sampling model of 770 x 768 with 59 ACS lines.

(a) Full SoS (b) SoS (35%) (c) VarNet (d) SENSE3d

Figure 9. FastMRI data with sampling model 372 —35%-30 as shown in Figure 8(a) with two to-be zoomed-
in rectangle areas. (a) Reference SoS image of 15 coil images by full K-space data with two zoomed-in regions.
(b) SoS image by 35% K-space data. (c¢) VarNet. (d) Our SENSE3d model.

Figure 9(c) and (d), respectively. The parameter setting of our 3D SENSE3d algorithm is
A = 0.0005, which remains the same throughout the subsequent experiments. Clearly, the
quality of the images in Figure 9(c) and (d) is much better than the one in Figure 9(b) in
terms of the structures of the slice, the levels of noise, and the aliasing artifacts. To compare
the difference between these two reconstructed images, we zoomed in on parts of the femur and
tibia regions and show them in Figure 10. It is obvious that the zoomed-in images by VarNet
are smoother than the original ones (loss of details) and have some aliasing artifacts, such as
the tibia image with a ‘white line’ and the femur image with a ‘black line.” But our SENSE3d
algorithm can suppress these artifacts, and its reconstructed images have structures closer to
the reference one. We provide their HaarPSI for further comparisons. The HaarPSIs provided
in Table 2 for the tibia and femur images in Figure 10(c) and (f) by our SENSE3d model
are 0.891 and 0.894, respectively, but the HaarPSIs by VarNet in Figure 10(b) and (e) are
0.866 and 0.879, respectively. Our SENSE3d model gets higher HaarPSIs than VarNet does.
Another knee data set is different from the data used in FastMRI, which are provided at an
MRI data website.® This knee data set was acquired using a clinical 2.897T system with a turbo
spin-echo sequence. The detail imaging parameters are as follows: FOV = 280 x 280.7 x 4.5

Shttp://www.mridata.org.
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) Full SoS ) VarNet ) SENSE3d
) Full SoS ) VarNet ) SENSE3d

Figure 10. Two zoomed-in parts of Figure 9. (a) and (d) show reference SoS image. (b) and (e) show
VarNet results. (c) and (f) show our SENSE3d model results.

Table 2
The HaarPSIs of the zoomed-in parts of reconstructed images by VarNet, fastMRI-UNet, and SENSE3d in
Algorithm 3.1 for removing artifacts and preserving details.

Figure 10 Figure 12
Algorithm First row Second row Algorithm First row Second row
VarNet 0.866 0.879 fastMRI-UNet 0.906 0.836
SENSE3d 0.891 0.894 SENSE3d 0.970 0.961

mm?, image matrix size = 768 x 770, slice thicknesses = 4.5 mm, flip angle = 150 degree, TR

= 2800 ms, and TE = 22 ms.

We attempt to use VarNet to reconstruct the MRI image on these new knee data. How-
ever, VarNet cannot produce correct results on the new knee data. The main reason is due to
the inaccurate sensitivity maps estimated by VarNet, besides the common generalization lim-
itations of the network model such as inconsistent images from the fastMRI data set, different
machines’ data acquisition settings, and so on. We hence use another model, fastMRI-UNet
[45], that has fewer restrictions to reconstruct the result and compare it with our model. Un-
like VarNet, fastMRI-UNet directly takes K-space data as input and produces reconstructed
MRI images without the need for a sensitivity map estimation model. The source code of
fast MRI-UNet is available at the GitHub website.”

We use the sampling mode with 59 ACS lines in Figure 8(b) to collect 35% K-space
data for the fastMRI-UNet and our SENSE3d model to reconstruct the target image. The
reconstructions by fastMRI-UNet and our SENSE3d model are shown in Figure 11(c) and (d),
respectively. The SoS image in Figure 11(b) by the collected 35% K-space data is blurry, but

“The code is available at https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/unet.
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(a) Full SoS (b) SoS (35%) (c) fastMRI-UNet (d) SENSES3d

Figure 11. MRI data with sampling model 770 — 35 %-59 as shown in Figure 8(b) with two to-be zoomed-in
rectangle areas. (a) Reference SoS image of 15 coil images by full K-space data with two zoomed-in regions. (b)
SoS image by 35% K-space data. (c) fastMRI-UNet. (d) Our SENSE3d model.

reconstructed images by fastMRI-UNet and our SENSE3d model are clear with more structure
details. To compare the difference between Figure 11(c) and (d), we zoomed in on parts of the
popliteus and soleus muscle regions and show them in Figure 10. The reconstructed images
by our SENSE3d model have clearer organizational details than the images reconstructed
by fastMRI-UNet. The popliteus part, by our model, is almost close to reference one with
HaarPSI value 0.961 (see Table 2), but the image by fastMRI-UNet is only 0.836. The HaarPSI
values of another part of the soleus muscle by fastMRI-UNet and our SENSE3d model are
0.906 and 0.970, respectively. Our model achieves a 0.064 higher result than the fastMRI-
UNet model. This case shows that our model is stable for reconstructing images and gets
good results from the different data by different machine acquisition.

5. Conclusions and further remarks. We have proposed an effective SENSE3d model for
the pMRI reconstruction. The proposed method can reconstruct high-quality images from
the sampled K-space data with a high acceleration rate by decoupling effects of the desired
image (slice) and sensitivity maps. The developed SENSE3d algorithm, which consists of
a sequence of alternating slice steps and sensitivity steps, exploits the decoupled slices and
sensitivity maps. Each slice step solves a convex optimization problem for an estimated image
with the given estimations of sensitivity maps, while each sensitivity step solves a nonconvex
optimization problem for estimated sensitivity maps with the given estimation of the desired
image. The convergence analysis for the optimization algorithm in both the slice step and
sensitivity step has been studied. Numerical results on various data and comparisons to
other state-of-the-art methods, including deep learning methods, have demonstrated that the
proposed method can produce images of high quality and efficiently reduce aliasing artifacts
caused by inaccurate estimation of each coil sensitivity.

The use of neural networks is to learn the relationship between input data (K-space data)
and output data (for example, slice images) by training data. Thus, databases with a large
amount of multicoil K-space data are needed to train the neural networks for pMRI reconstruc-
tion [18]. The challenge of pMRI reconstruction by using neural networks is their instability of
predicting output data when the imaging conditions of input data are different with different
training conditions [35]. How to take the advantages of our model to improve the performance
of the models based on deep learning methods can be one of our future research topics.
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) Full SoS ) fastMRI-UNet ) SENSE3d
) Full SoS ) fastMRI-UNet SENSES’d

Figure 12. Two zoomed-in parts of Figure 11. (a) and (d) show reference SoS image. (b) and (e) show
fastMRI-UNet reconstruction. (c) and (f) show SENSE3d reconstruction.

Appendix A.

A.1. Proof of Theorem 3.1. In this appendix, we give the proof of Theorem 3.1. To this
end, we first introduce our notation and recall some necessary background materials from
optimization. The class of all lower semicontinuous convex functions f : C% — (—o0, +00] such
that dom f:= {z € C?: f(z) < 400} # () is denoted by I'o(C?). The indicator function of a
closed convex set C' in C¢ is defined, at u € C%, as

Lc(u)::{O ifued,

400, otherwise.

Clearly, the indicator function ¢ is in To(C?) for any closed nonempty convex set C.
For a function f € I'o(C%), the proximity operator of f with parameter \, denoted by
prox,y, is a mapping from C? to itself, defined for a given point = € C¢ by

1
prox, s(z) = argmin{§||u — x5+ N f(u):ue (Cd} .

We also need the notation of the conjugate. The conjugate of f € I'o(C%) is the function
f*€To(CY) defined at x € C? by f*(x) :=sup{({u,z) — f(u):u € C?. A key property of the
proximity operators of f and its conjugate is

(A1) prox, ¢ () 4+ Aproxy-i - (v/A) =z,

which holds for all x € C" and any A > 0.
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For a real function f defined on C%, we say that f is Fréchet differentiable at z € C? if
there exists a v € C? such that

o 1)~ £@) — v,y — )

=0.
y—e ly — |2

The vector v is called the gradient of f at x, denoted by V f(x). As an example, V(||A-—b||3) =
AT (A —b), where A€ C¥™" and b e C%.

We consider the following optimization problem

(A.2) min p(z) + q(z) + r(Az),
zeCn
where A is a d x n matrix, p € ['o(C") is differentiable, g € ['o(C"), and r € I'o(C?).

Several algorithms have been developed for the optimization problem (A.2); see, for ex-
ample, [20, 39]. We adopt the algorithm given in [39] for problem (A.2) since it converges
under a weaker condition and can choose a larger step-size, yielding a faster convergence. This
algorithm, named PD30O, has the following iteration:

(A.3a) ak = proqu(yk),
(A.3b) 2FH = proxg,.. <(I —YSAAT) P £ 5 A(22F — yF — ’pr(xk))) ,
(A.3c) Y =2k — AVp(aF) — yAT 2L

One PD30O iteration can be viewed as an operator Tppzo such that (ka,zkH) =
Tppso(y”, 2¥). The convergence analysis of PD30 is given in the following lemma.

Lemma A.1 (sublinear convergence rate [39]). Let p € To(C"), and let its gradient be
Lipschitz continuous with constant v. Choose v and § such that v < 2/v and B = g([ -
YSAAT) is positive definite. Let (y*,2*) be any fized point of Tppso, and let {(y*,2¥)} k>0 be
the sequence generated by PD30O. Define ||(y,2)||s :== \/|ly||? + (2, Bz). Then, the following
statements hold.

(i) The sequence {(||(v*,2%) — (y*,2")||B) }r=0 is monotonically nonincreasing.

(ii) The sequence {(||(y**1, 2" 1) — (y*, 2%)||B) k>0 is monotonically nonincreasing. More-

over,

1
B+l Jk+1y ook k(2 .
65,2540 = 6l =0 (7 )
We remark that the statements in Lemma A.1 are originally presented in real vector space
R™ (see [39]). By using the inner product (3.1) for C", we essentially work with real vector
space R?". Therefore, the results in Lemma A.1 hold on C" as well.
By identifying p, ¢, r, and A in (A.2), respectively, as
1

(A4) p()=5IM - =gl a(-) = tr (), 7() = [T + D) [, A=WN
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with b = W (I, ® F~1)g, the PD30 algorithm can be applied for solving problem (3.3).
To efficiently implement this algorithm, we need to know both prox, and proxs,.. By the
definition of the proximity operator, prox, = Re; i.e., prox, takes the real part of an input.
The proximity operator proxg,. is given in the next lemma.

Lemma A.2. Let r be given in (A.4). Then, for 6 >0 and z € C?, proxs,.(z) = (z + 0b) —
prox;p.|, (2 + 6b).

Proof. Write w = proxg,.(z). From the identity (A.1), w = z — dproxs_., (6 '2). Based on
the separable property of r in (A.4)—that is, r(u) = |T'(u+b)||1 = S2¢_, v[k]|ulk] + b[E]|—we
have that w[k] = z[k] —0proxXs—1. k]| +o[k]| (67 12[k]), for k=1,2,...,d. By asimple manipulation
on the above proximity operator, we have that w[k] = (2[k] + 0b[k]) — prox, . (2[k] + 6b[k]).
This completes the proof of this result. [ ]

The proximity operator proxp., is the well-known soft shrinkage operator soft(x,I"). To
show the convergence of the PD30O algorithm under the proper choices of parameters v and
0, we need the following lemma.

Lemma A.3. Let M and g be given in (1.2), and let p and A be given in (A.4). Then, the
following statements hold:

(i). The gradient of p is k-Lipschitz continuous, where k is given in (3.4).

(ii). For any positive numbers v and 8, the matriz I — ySAAT is positive definite if and
only if 76 <1/k.

Proof. Ttem (i): Note that Vp(u) = MT(Mu — g). Then, Vp is ||M|>Lipschitz con-
tinuous. Define Q = Zngl s¢s/ , which is the entrywise conjugate of the matrix ZeL:1 e8] .
From (1.2), we have MM = ZeL:1 diag(5,)F"PFS;, = (FTPF) ® Q. Since Q is a posi-
tive semidefinite matrix, we have, for example, by Theorem 5.5.18 in [13], that ||M T M|y <
max; ; |Q[i, j]|| F T PF||2. Furthermore, due to |F'TPF|| < 1, max; ; |Q[i, j]| = maxy |Q[k, k],
and Q[k, k] = Y1, |se[k]|?, we have [|[M T M||s < &.

Item (ii): The proof replies on the estimation of the norm of AAT. From A = WN and
WTW =1, one has |AAT|s = ||[ATAllz = ||[NTN|j2. Similar to the discussion in item (i),
we have NTN = (FT(I — P)F) ®Q and ||[NTN||y < k. Therefore, the largest eigenvalue of
AAT is less than k. As a result, [ —y0AAT is positive definite if and only if v§ < 1/x. This
completes the proof. |

Proof of Theorem 3.1. By Lemma A.3, the gradient p in (A.4) is k-Lipschitz continuous
and the matrix B is positive definite if and only if 70 < 1/k; the result of this theorem follows
immediately from Lemma A.1. |

A.2. Proof of Theorem 3.2. For given Pge, M, gest, I', and W in (3.10), define
1 2 1 2
(A.5) h(s) 1= 31 Poa(@s — gest) [ + 5 ITW s
We have the following result for the function h.

Lemma A.4. Let h be defined in (A.5). Then, the gradient of h is Lipschitz continuous
with Lipschitz constant |jul|%, + ||diag(T)||2.
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Proof. Note that VA(s) = Q" Psei(Qs — gest) + W T?Ws. For any vectors s; and so, we
have [[Vh(s1) — Vh(s2)llz = [(QTPw@Q + WIT*W)(s1 — s2)2 < ([|QI3]Pectlle +
IWIBITI3) 51 — s2lla. We know that [|[Peifl2 = 1, [WT[l2 = 1, and [Tz = [|diag(T)[ec-
Next, we estimate the norm of (). Since

Q'Q= (I & (Fdiag()))" (I, ® (Fdiag(u)))
= (I, ® (diag(u) F~"))(I ® (Fdiag(u)))
= I, ® (diag(u)diag(u))),

we have that Q[ = QT Qll2 = |11 ® (diag(u)diag(u))|l2 = ||diag(u)||3 = [[ul3,. Hence, the
gradient of h is Lipschitz continuous with Lipschitz constant ||u||2, + ||diag(T)]||2. ]

Proof of Theorem 3.2. Note that h(s) is a quadratic polynomial with respect to s and the
set D given in (3.9) is determined by a set of polynomials. Then, h(s) + tp(s) is a Kurdyka—
Lojasiewicz function (see, e.g., [1]). Hence, the result is the direct consequence of Theorem

5.3 of [1]. m
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