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Abstract—Helmholtz stereopsis (HS) exploits the reciprocity principle of light propagation (i.e., the Helmholtz reciprocity) for 3D
reconstruction of surfaces with arbitrary reflectance. In this paper, we present the polarimetric Helmholtz stereopsis (polar-HS), which
extends the classical HS by considering the polarization state of light in the reciprocal paths. With the additional phase information from
polarization, polar-HS requires only one reciprocal image pair. We derive the reciprocity relationship of Mueller matrix and formulate
new reciprocity constraint that takes polarization state into account. We also utilize polarimetric constraints and extend them to the
case of perspective projection. For the recovery of surface depths and normals, we incorporate reciprocity constraint with
diffuse/specular polarimetric constraints in a unified optimization framework. For depth estimation, we further propose to utilize the
consistency of diffuse angle of polarization. For normal estimation, we develop a normal refinement strategy based on degree of linear
polarization. Using a hardware prototype, we show that our approach produces high-quality 3D reconstruction for different types of

surfaces, ranging from diffuse to highly specular.

Index Terms—Polarization, Helmholtz Reciprocity, 3D Reconstruction

1 INTRODUCTION

ECONSTRUCTING 3D surfaces from 2D images is a long-
R standing ill-posed problem in computer vision. The complex
surface reflectance properties of real-world objects make the
problem highly challenging. All existing methods are limited to
certain types of surface reflectance. For example, passive tech-
niques examine the optical appearance of a surface under non-
tightly focused illumination (e.g., a distant light source) and often
assume photo-consistency or Lambertian reflectance model for 3D
reconstruction.

Helmholtz Stereopsis (HS) [1] is a 3D reconstruction tech-
nique that can recover surfaces with arbitrary and unknown re-
flectance. HS exploits the symmetry of surface reflectance; this is
accomplished by using reciprocal image pairs (minimal three) that
are captured with exchanged camera and light source positions.
The reciprocity property guarantees that the relationship between
the intensities at corresponding pixels depends only on the surface
shape, and is independent of surface reflectance.

In this paper, we present a novel method we call polarimetric
Helmholtz Stereopsis (polar-HS), which extends the classical HS
by considering the polarization state of light in the reciprocal
paths. We investigate the reciprocity relationship when the po-
larization states of incident and outgoing light are unrestricted
(in which case the original Helmholtz reciprocity property cannot
be directly applied). We derive a transpositional reciprocity rela-
tionship based on the Stokes-Mueller formalism, and formulate a
reciprocity constraint for depth and normal estimation. We also
exploit polarimetric cues under different types of reflections. We
further derive the polarimetric constraints under perspective cam-
era projection. We propose a new polarimetric image decompo-
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sition method that allows us to apply the polarimetric constraints
under different circumstances. By combining the reciprocity and
polarimetric constraints, our method can recover the surface depth
and normal with only one reciprocity pair, which greatly simplifies
the capture process. Unlike other one-pair HS methods [2], [3] that
assume continuous parametric depth functions, polar-HS works
for discontinuous depth and does not require priors on surface
geometry and material properties. We discuss about the degenerate
cases in our one-pair solution and proposed a refinement scheme
using the degree of linear polarization.

We validate our method with both synthetic and real experi-

ments. We build a real polar-HS acquisition system with a rotating
wheel to allow exchange of camera and light source positions.
We perform experiments on objects with various shapes and
reflectances, and on different composite scenes. Results show that
our method is state-of-the-art.
Contributions. Our key contribution is the derivation of the trans-
positional reciprocity relationship when unrestricted polarization
states are being considered. The original Helmholtz reciprocity
property has strong restrictions on the polarization states of the
light beams in the reciprocal paths, which is hard to satisfy
in practice. The transpositional reciprocity we derive allows the
classical HS to be extended to the polarimetric case.

We propose a new image decomposition formulation that con-
sists of three components: polarized-specular, polarized-diffuse,
and unpolarized-diffuse. The decomposition provides a more
accurate estimation of the angle of polarization for regularizing
the surface normal, because it separates diffuse and specular (the
angles of polarization under these two cases have a 90° shift).
Shape-from-polarization methods usually use the overall angle,
and assume a dominant type of reflection. This decomposition also
provides a specular map that allows us to apply the polarimetric
cues under different types of reflection.

Polar-HS reduces the minimal number of image pairs to only
one, without imposing any surface prior. Compared to other shape-
from-polarization methods, polar-HS does not have the problem of
angular ambiguity and does not require the refractive index of the
surface to be known.
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In this journal extension of [4], we improve Polar-HS by: (1)
extending the polarimetric constraints from orthographic projec-
tion to the more general perspective projection, and (2) using
the degree of linear polarization (DoLP) to refine the depth and
normal estimation of degenerate case when only one pair is
used. We have also added more in-depth discussions about the
degenerate cases where the angle of polarization ¢ = £90°, a
mathematical derivation for diffuse angle of polarization (AoP),
additional ablation studies, and more experimental results.

2 RELATED WORK

We first briefly review physics-based methods for 3D shape
recovery before focusing on two specific classes of methods that
are most relevant to our work: reciprocity-based and polarization-
based. Table 1 summarizes a comparison of our method (polar-HS)
with classical methods.

2.1 Physics-based Shape Recovery

Physics-based techniques examine the optical appearance of a
surface under certain illumination mode and often assume photo-
consistency or Lambertian reflectance model for 3D reconstruc-
tion. We can categorize the techniques as passive or active based
on the illumination mode. Passive methods use unknown and
non-tightly focused illumination (e.g., a distant light source).
Notable examples include multi-view stereo [5], [6], [7] and
structure-from-motion [8], [9], [10]. As passive methods heavily
rely on the object’s intrinsic appearance for feature matching,
they are ineffective on textureless surfaces. Active techniques use
known and controlled illumination as a probe; examples include
photometric stereo [11], [12], [13], time-of-flight [14], [15], [16],
and structured light [17], [18], [19], [20]. These methods can
produce dense 3D reconstruction, but are usually sensitive to view-
dependent specularity and the inter-reflection caused by concave
surfaces. All these methods have limitations due to the complex
reflectance of real-world surfaces.

2.2 Helmholtz Stereopsis (HS)

The method is first introduced by Zickler et al. [1]. It is an active
approach that is capable of recovering surfaces with arbitrary re-
flectance. Much progress has subsequently been made to improve
the original HS. Tu and Mendonga [3] solve HS with a single
pair by assuming a piece-wise linear curve constraint. Zickler et
al. [2] formulate a PDE constraint by assuming C'* continuity in
depth, so as to perform HS under a binocular setting. Janké et
al. [21] introduce a general radiometric calibration method for
HS. Delaunoy et al. [22] extend HS to full-body scanning by
using variational approach to optimize over the entire surface.
Weinmann et al. [23] combine HS with a structured light technique
to improve the reconstruction accuracy. Mori et al. [24] introduce
an integration-based Helmholtz condition which reduces the noise
sensitivity of HS. Roubtsova and Guillemaut [25], [26] derive a
Bayesian framework for HS optimization, and use color multi-
plexing to simultaneously capture the reciprocal pair in order to
handle dynamic scenes. Our method extends HS by expanding the
reciprocity constraint to polarimetric reflectance and incorporating
the polarimetric cues for more accurate 3D reconstruction.

TABLE 1
A comparison of polarimetric Helmholtz Stereopsis (polar-HS) with
classical 3D reconstruction methods. Note: MVS - multi-view stereo;
PS - photometric stereo; SL - structured light; SfP -
shape-from-polarization; HS - Helmholtz stereopsis.

Method | Min # of Inputs Aiﬂiﬁf&)ﬂ Accuracy

MVS 2 Lambertian | Moderate
PS 3 Lambertian High
SL > 10 Arbitrary High
StP 3 Dielectric Low

HS 6 Arbitrary Moderate
polar-HS 4 Arbitrary High

2.3 Shape-from-Polarization (SfP)

This class of methods model the surface normal using the degree
or angle of polarization. The surface’s refractive index is usually
assumed to be known. Miyazaki et al. [27] and Atkinson and
Hancock [28] leverage the diffuse polarization for shape estima-
tion. Rahmann and Canterakis [29] propose a specular polarization
model and apply it on reflective surfaces. SfP methods usually
suffer from the azimuth angle ambiguity which may cause the nor-
mal estimation being flipped. To resolve this ambiguity, additional
shape priors or visual cues are combined with the polarization
model. Examples of such priors and cues are convexity prior [27],
[30], boundary normal prior [28], shading cues [31], photometric
cues [32], [33], and multi-spectral measurements [34]. Smith et
al. [35], [36] use SfP to solve for surface height to mitigate the
angular ambiguity. Many works use SfP to recover fine surface
details given a coarse shape estimated from another technique,
such as multi-view stereo [37], [38], [39], photometric stereo [40],
[41], space carving [42], structure-from-motion [43], or RGB-D
sensors [44], [45]. Beak et al. [46] jointly estimate the polarimetric
reflectance and the surface geometry. Ba ef al. [47] propose a data-
driven approach that estimates the surface shape from polarimetric
images with a deep neural network.

3 HELMHOLTZ STEREOPSIS

Helmbholtz stereopsis (HS) [1] works by exploiting the symmetry
of surface reflectance. It uses several reciprocal image pairs with
exchanged camera and light source positions to estimate surface
normal and depth. Let O, € R?® and O, € R? be two 3D
positions. A reciprocal image pair Z = {I,, I} is captured by
swapping the camera and light source at O, and Oy (i.e., I, is
captured with the light source at O, and the camera at Oy; I}, is
captured with the light source at Oy, and the camera at O,). Given
a point on the object surface, the goal is to estimate its 3D position
P and normal vector n.

Let f(i,0) be the bidirectional reflectance distribution func-
tion (BRDF) of the surface point. f is calculated as the ratio of the
outgoing radiance (along the direction o) and the incident irradi-
ance (along the direction i). The Helmholtz reciprocity indicates
that f is symmetric about the incident and outgoing directions,
ie., f(i,0) = f(o,i). Let v, = (O, — P)/||Oa4 — P|* and
vy, = (O — P)/||Op — P||? be two unit directions from P to O,
and from P to Oy. The two intensity images in the reciprocal pair
can be formulated as

Ia = f(VaaVb)Epa(va . 1’1),

1
Iy = f(vy,va)Epy(ve - n), M
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Fig. 1. Configuration of the polarimetric Helmholtz stereopsis.

where E is the light source intensity, p, = 1/||0, — P||? and
pb = 1/]|Op — P||? are distance attenuation factors, and v, -n =
cos 6, and vy, - n = cos 0 are angular fall-off factors.

By dividing the above two equations, we eliminate the
light source intensity £ and the surface BRDF (noting that
f(Va,ve) = f(vs, Va)). We thus obtain the following reciprocity
constraint that regularizes depth and normal with respect to the
reciprocal image pair:

(Iappvy — Ippav,) )n = 0. 2

Given a pre-calibrated camera and light source positions (O,
and Oy), the surface position P and normal n can be solved with
at least three reciprocal pairs. This is because given an estimated
P, we need at least three equations to uniquely solve for n € R3.

4 POLARIMETRIC HELMHOLTZ STEREOPSIS

Our polarimetric Helmholtz stereopsis (polar-HS) uses a linearly
polarized light source and a polarization camera to acquire the
reciprocal image pair. Our images therefore embed the polariza-
tion state of light. Note that the original Helmholtz Reciprocity
Principle restricts its applicability to corresponding polarization
states for incident and outgoing light [48] (i.e., when the light path
is reversed, the polarization states of the two light beams should
also be interchanged). It cannot be directly applied to unrestricted
representations of the polarization states. We derive the reciprocity
relationship under the unrestricted cases, and use it as a constraint
for surface reconstruction (Section 4.1).

We introduce polarimetric constraints that are dependent on
the surface reflection types (i.e., specular polarized, diffuse po-
larized, and diffuse unpolarized), and propose a new image sepa-
ration method to enable the usage of the polarimetric constraints
(Section 4.2). An optimization framework is used to jointly esti-
mate the surface normal and depth by combining the reciprocity
and polarimetric constraints (Section 4.3).

4.1 Polarimetric Reciprocity

We use the Stokes vector to describe the polarization
states. A Stokes vector has four components: S =
[S(0),S5(1),5(2),S5(3)] ", where S(0) specifies the radiant in-
tensity of light (equivalent to the intensity image), S(1) spec-
ifies the preference of horizontal to vertical linear polarization,
S(2) specifies the preference of 45° to 135° linear polariza-
tion, and S(3) specifies the preference of right to left circular
polarization. Additional constraints on Stokes vector values are:
1) S(0) € R, 2) S(1),5(2),5(3) € [~5(0), S(0)], and 3)
S(0)2 > S(1)2 + S(2)? + S(3)%. Note that a Stokes vector is
relative to the selection of reference axes (i.e., a two-dimensional
orthogonal basis on the wave plane that is perpendicular to the

3

light’s propagation direction). Here we assume linearly polarized
light.

We use the same configuration as the standard HS, except that
the light source is linearly polarized with Stokes vector S; and the
camera is polarization-sensitive so that it can measure the Stokes
vectors of the light received. Fig. 1 illustrates our configuration.
Given a reciprocal Stokes vector pair S = {Sg,Sp}, Sq is
measured with the light source at O, and the camera at Oy, and
Sp with swapped light source and camera positions. Similar to the
standard HS, we can formulate the Stokes vectors measured by
the camera (S, and Sp) with the polarimetric surface reflectance
along with the distant and angular fall-off factors as

Sa = M(Va,vp)Sipa(Ve - 1),

3
Sb :M(vb,va)Slpb(vb~n). ( )

The 4 x 4 matrix M (Mueller matrix) represents the polarimetric
surface reflectance that describes how the Stokes vector is changed
after reflection.

Now the question is: does M still follows the same recipro-
cal relationship as the BRDF (i.e., M(vq,vy) = M(vy,v,))
when the Stokes vectors of the incident and reflected light are
represented under arbitrary (or unrestricted) reference axes? The
original Helmholtz Reciprocity Principle [49] is as follows:

Theorem 1 (Helmholtz Reciprocity). Suppose a certain amount
of light J leaving the point A in a given direction is polarized in a,
and that of this light, the amount K arrives at point B polarized
in b. Then, when the light returns over the same path, and the
quantity of light J polarized in b proceeds from the point B, the
amount of this light that arrives at point A polarized in a will be
equal to K.

Theorem 1 has restricted applicability on corresponding po-
larization states for incident and outgoing light (i.e., when the
light path is reversed, the polarization states of light should also
be interchanged). In reality, it is hard to acquire the Stokes mea-
surement under this restricted circumstance. For example, both the
camera and light source have their own Stokes representation un-
der local reference axes. It is impractical to exchange their Stokes
reference axes when their positions are swapped. We therefore
derive a new reciprocity relationship when the representation of
polarization state is unrestricted (i.e., the polarization states of
incident and outgoing light are not interchangeable due to different
reference axes). Our reciprocity relationship is stated as follows:

Lemma 1.1. When the two light beams in a reversible path
are represented by Stokes vectors with reference axes that are
associated with the light beams, the reciprocity relationship can be
expressed as a transposition of the Mueller matrix that correlates
the two Stokes vectors.

Proof. Consider two light beams with Stokes vectors .S; and S,
that propagate along directions i and o, respectively. Both .S; and
S, are represented in their local reference axes b; = {x;,y:}
and b, = {x,,X,} (where {x;,y;} and {x,,x,} are two pairs
of orthogonal axes on their respective wave plane). Let M be
the Mueller matrix that correlates S; and S,. We can write the

following equations:
So=M(i,0)S;, S; =M{(0,i)S,. 4)

As b; and b, are associated with the light beams and are
switched when the light path is reversed, Theorem 1 cannot be
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directly applied to describe the reciprocity relationship between
M (i, 0) and M (o, 1).

In order to apply Theorem 1, we define a global reference basis
by, = {x4,y4} and transform the two Stokes vectors from their
local references to the global reference (see Fig. 2). The global
reference axes are defined as: y, = i X 0, x4, = y, X i for path i,
and X, =y, X o for path 0. The global reference axes satisfy the
condition of Theorem 1 as it is associated with the paths instead
of the light beams.

By multiplying the Mueller matrices that rotate the local
references to the global one, we obtain two new Stokes vectors
S/ and S! that are represented in the global reference axes:
Si = M.(®;)S; and S, = M,.(®,)S,. ®; and D, are the
angles spanned by y; and y,, and y, and y,, respectively.
Let M’ be the Mueller matrix that correlates .S, and S,. Thus
M’ satisfies the reciprocity relationship described in Theorem 1:

M’'(i,0) = M'(0,1i) = My, leading to
S, = M;S;, Si=M;S,. ©)
By substituting .S} and S/, with S; and S, (respectively) in Eq. 5,

we have

S, = M (®,) My M, (®;)S;,

6
Si = M H(®;) My M, (®,)S,. ©

Using the definitions for .S, and S; in Eq. 4, Eq. 6 becomes
M(i,O) = Mr_l((I)O)MfMT(q)i)’ @)

M(o,i) = M, (®;) MM, (D,).

Since the rotational Mueller matrices are orthonormal (i.e.,

M1 = M,") and M is diagonally symmetric (i.e., M; = MfT)

[50], we can derive the following reciprocity relationship in the
form of transposition:

M (i,0) = (M, (®0) My M, (®:))
= M1 (@) MM, (®,) 8)
= M(o,1).

O
Sekera [51] derives a transpositional reciprocity relationship

similar to Lemma 1.1 in the scattering processes.
Reciprocity Constraint. As the Stokes vectors of the camera and
light source are observed in their local reference axes, the surface

reflectance Mueller matrix M follows the transpositional reci-
procity according to Lemma 1.1: M T (vq,vy) = M(vy, v,). By

4

substituting this reciprocity relationship into Eq. 3 and eliminating
M, we obtain the following reciprocity constraint:

(Sa ® S ppvy — S ® Sppav, )n = 0. ©)

where Siq is the transpose of the pseudoinverse of S;; ® is the
Kronecker product.

In Eq. 9, S, Sp, and Slg are of dimension 4 X 1 as they are
Stokes vectors. The Kronecker product ® between .S, (or Sp) and
Slg results in a matrix of dimension 16 x 1. p, and p; are two
scalars that would not affect the matrix dimension. n, v, and vy
are 3D vectors. The left-hand side of this equation ends up as a
16 x 1 matrix. Note that, this doesn’t warrant solving normal using
one reciprocity constraint as the 16 equations are not independent.

We use Eq. 9 to estimate surface depth (pq, and v, are
derivable from depth) and normal n in an iterative way when given
reciprocal Stokes vector pair S = {S,, Sy} and pre-calibrated
light source Stokes vector .S;. More details on the optimization
algorithm can be found in Section 4.3. Given a depth estimation,
we need at least three equations to uniquely solve for the n € R3.

The standard HS generates the three equations from three
reciprocal pairs. In our polarimetric case, we obtain two equations
for one reciprocal pair by changing the polarization state of light
source, because our reciprocity constraint (Eq. 9) is dependent on
the light source (while the standard HS is not). The maximum
number of independent equations we can obtain for one pair is
two. This is because two dot products (i.e., v, - n and vy - n)
reduce the terms that involve the normal to scalars.

In principle, if we use only the reciprocity constraint, we
would need at least two reciprocal pairs (i.e., 4 equations) to
solve for the depth and normal. However, because the observed
polarization states are directly related to the surface geometry and
reflectance type, we use the polarimetric constraints (Section 4.2)
to formulate one additional independent equation on normal. This
means that we can estimate depth and normal using only one
reciprocal pair.

4.2 Polarimetric Cues

We consider the polarimetric constraints under different types of
reflected light. We decompose the measured Stokes vectors into
three components of different reflection and polarization char-
acteristics (i.e., specular vs. diffuse, polarized vs. unpolarized),
and then derive a specific polarimetric constraint for each type of
reflection.

4.2.1 Polarimetric Image Decomposition.

The problem has been studied in polarization-based specularity
removal [52], [53], [54]. An image is often decomposed into a
specular component and a diffuse component, depending on the
polarization status. It is commonly assumed that the specular
component is polarized while diffuse is unpolarized. However, as
shown in [28], diffuse reflection also exhibits useful polarimetric
characteristics that regularize the surface normal. Here we propose
a new decomposition formulation that separates the observed
Stokes vectors (S) into three components: specular-polarized
(Ssp), diffuse-polarized (Sgp), and diffuse-unpolarized (Syq):

S = Ssp+Sdp+Sdu. (10)

Suppose we have two linearly polarized light sources with the
same intensity but perpendicular angles of polarization. Without
loss of generality, we assume their angles of polarization are 0°
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and 90°. Their Stokes vectors are Slo and S0, respectively. Note
that these light sources can also provide us the two reciprocity
constraints. Let SO be the Stokes vector reflected from a surface
point and observed by the camera when light source is Slo, and
S9 is observed under S{° (see Section 4.1 for composition and
properties of the Stokes vector). Here we assume S and S are
linearly polarized (i.e., S°(3) = S%(3) = 0).

We now show how S° can be decomposed; S°° can be simi-
larly decomposed. For notation simplicity, we drop the superscript
for degree in the decomposition components (Ssp, Sqp, and Sqy,).
Since the light sources’ angles of polarization are crossed by 90°,
the polarization parameters in Slo and Sl90 have the following
relationship:

S +5°(1) =0, S2)+5°2)=0 Ay
Since the specular reflection is always fully polarized and its angle
of polarization is the same as that for the light source, we use this
relationship to cancel out the polarization parameters in Sy, by
adding S° and S°°. Since Sy, is unpolarized, it has only the
intensity parameter: Sg, = [S4,(0),0,0,0]T. The polarization
parameters in SO + S0 are then solely related to Sy, yielding

S0(1) + 8%°(1 50(2) + 8%(2
Sup(1) = THEE g, () - SAET) )
The polarization parameters in S, are computed as
Sep(1) = 8°(1) = Sap(1),  Sep(2) = 5°(2) — Sap(2).  (13)

We calculate S(0) for both Sy, and S, using the Stokes vector
constraint S(0)% = S(1)% + 5(2)% + S(3)2, as the two compo-
nents are fully polarized. Finally, we compute the intensity of Sg,,
as

Sau(0) (14)

= SO(O) - SSP(O) - Sdp(o)-

Using Egs. 12-14, we can decompose a reflected Stokes vector into
three components. Fig. 3 shows an example of our decomposition.

4.2.2 Polarimetric Constraints.

Both the specular and diffuse polarized reflections can regularize
the surface normal. According to Fresnel’s equations, the spec-
ular reflection is dominated by s-polarized light, whose angle
of polarization is perpendicular to the incidence plane (i.e., the
plane spanned by the surface normal and the incident light). This
happens when the incident light is not oblique to the local surface.
In the diffuse reflection case, the angle of polarization has a 90°
phase shift [28] which means that the vibration direction lies on
the incidence plane. Therefore, under orthographic projection, by
projecting the angle of polarization and surface normal onto the
image plane, we can formulate the two constraints for the diffuse-
and specular-polarized reflections:

[sin(¢), — cos(¢) Oln =0,
[sin(¢ + ) —cos(¢ + )

where ¢ is the angle of polarization (AoP) and is calculated as

p(2)/5:(1)),

where S, is Sgp, for diffuse reflection and is S, for specular
reflection. Eq. 15a is the constraint for diffuse-polarized
reflection. Eq. 15b is for the specular-polarized case, whose angle
of polarization is shifted 90°. Similar constraints are used in
[35], [36]. However, most methods directly use the overall Stokes
vector to compute the angle of polarization. We empirically show
that we are able to estimate a more accurate angle of polarization
by using the decomposed components.

(15a)

Oln =0, (15b)

o= % arctan(S, (16)

Proof of Diffuse Polarimetric Constraint. It is conceptually
shown in [52] that under a same set of polarization axes, the AoP
of diffuse reflection lies in the incidence plane. However, to the
best of our knowledge, there is lack of mathematical proof to this
constraint. Here we present a Mueller matrix-based proof under
the assumption of smooth dielectric surface. Within the proof,
we set the polarization axes as: x axis being perpendicular to
the incidence plane, y axis being parallel to the incidence plane,
and the © — y plane being perpendicular to the wave propagation
direction.

Diffuse reflection consists of light that first transmits into the
surface, be scattered and then transmits out of the surface [52].
The final outgoing light (i.e., the light observed by camera) is the
result of the scattered light after a one-time refraction. Hence, the
Stokes vector St of the outgoing light satisfies:

St = Mr7Ss, 17

where S is the light after scattering and before transmitting out,
and M is the Mueller matrix for transmission. According to [55],
M is given by:

_ sin26; sin 20,
 2(sinfy cosf_)?2
cos?f_ +1 cos?h_ —1 0 0
cos?f_ —1 cos?h_+1 0 0
0 0 2cosf_ 0 ’
0 0 0 2 cosf_

(18)

where 6; is the incidence angle, 6,. is the refraction angle, and
0+ = 0; + 0,.. Note that 6;, 0, satisfies ngsinf; = n, sin 6,
(Snell’s Law), with ng,n, being the refractive indices of the



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022

surface and air. Based on Egs. 16, 17, 18, the AoP of diffuse
reflection is

2cosf_Sg(2)

((cos?6_ —1)Sg(0) + (cos?0_ +1)Ss(1))
19)

1
= — t
10} > arctan

Since S is generally considered as unpolarized due to scattering,
we have Sg(2) = 0 and the numerator has a value of 0. In the
meantime, Ss(1) = 0 and cos?#_ < 1, so the denominator
is < 0. As a result, the diffuse AoP ¢ = %arctan 0~ = g,
meaning that it is colinear with the y polarization axis. Since y
polarization axis lies in the incidence plane, we prove that the
diffuse AoP also lies in the incidence plane.

Extension to Perspective Projection. Note that Eq. 15a and
Eq. 15b assume orthographic projection. Here we derive an
extension of the polarimetric constraints for the more general
perspective projection. Recall that the angle of polarization is
perpendicular to the incidence plane for specular reflection while
it lies in the incidence plane for diffuse reflection. Here the
angle of polarization is defined based on the wave propagation
direction (i.e., view direction), while the ¢ calculated in Eq. 16
is the projection of the angle of polarization on the image plane.
We represent the projected angle of polarization as a unit vector
p = [cos(¢), —sin(¢), 0] " and denote the unit view direction as
v, both under the camera coordinate system. For diffuse reflection,
all of p,v and surface normal n lie in the incidence plane.
Therefore, the cross product of p, v is perpendicular to n. For
specular reflection, p lies in a plane that is perpendicular to the
incidence plane, so an extra cross product is needed. Specifically,
the polarimetric constraints under perspective projection are

([cos(¢), — sin(¢), 0] x vin=0,
(([cos(¢), — sin(¢), 0] x VT) X VT)II =0,

(20a)
(20b)

where Eq. 20a is for diffuse case and Eq. 20b is for specular.

In order to use the polarimetric constraints, we threshold
Ssp(0) to a binary mask that indicates the specular pixels. We
use Eq. 20b as the additional constraint for the specular pixels,
and Eq. 20a for all other pixels considered diffuse. The diffuse
case (Eq. 20a) is similar to the perspective phase angle proposed
in [56].

4.3 Depth and Normal Recovery

By combining the reciprocity and polarimetric constraints, we can
form a linear system for the surface normal n, i.e., W(d)n =
0: the constraint equations are stacked up as rows in the linear
system. The coefficient matrix W is a function of the surface
depth d. We solve d and n with alternate iterations.

4.3.1 Depth and Normal Estimation

We first optimize the depth values. Once we have the depth
estimation, we can solve the normal n using W(d)n = 0.

For each pixel in the reference view, we discretize depth into
numerous candidates and estimate depth by choosing the best
candidate. Under each depth candidate, we use calibrated camera
extrinsics to reproject pixel to non-reference views.

Reciprocity and Polarimetric Constraints. For a reciprocal pair
of pixels, the corresponding W (d) consists of a reciprocity con-
straint (Eq. 9) and two per-view polarimetric constraints (Eq. 20a
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or Eq. 20b). For non-reference view, the polarimetric constraint
needs to take camera extrinsics into account. For example, Eq. 20a
becomes

([cos(¢s), — sin(¢;),0] x v )R;n =0 (21)

where ¢; is the diffuse AoP in view ¢, and R; is the rotation of
coordinate system from reference view to view <.

Given the true depth d*, the rank of W (d*) should be 2 since
the surface normal n has unit length. If the depth value is incorrect,
the rank of W will be greater than 2. This indicates that if we
apply SVD on W: W = UXV T, where ¥ = diag(oy, 02, 03),
o1 > 09 > 03, the ratio 05 /o3 will be infinitely large at the true
depth d*. Thus, we use the exponential decay function proposed
in [26] as our data term for depth estimation:

g9 (d)
o3(d)

Edata(d) = eXp(_IU/ )7 (22)
where = 0.21n(2) [26].

We also include a smoothness term to reduce noise in the depth
estimation :

Esmooth(d) = Z mln(”dp - qu7K)’

(p.a)EN

(23)

where p and ¢ are two pixels in the neighborhood A; K is a
truncation threshold that prevents the discontinuous depths from
being smoothed.

Consistency of Diffuse AoP. In addition to the above terms,
we further propose to use the consistency of diffuse AoP as
a matching criterion, which is especially beneficial when the
input consists of only one reciprocal pair. The reason is that
W(d)n = 0 is a necessary but insufficient condition [1]. Due
to image noise and finite resolution, Eq. 22 can be minimized
at incorrect depth. Therefore, we develop a consistency term on
diffuse AoP to achieve more accurate depth estimation.

In order to apply this term, we assume the camera is only
weakly perspective, so Eq. 15a is approximately correct for most
object pixels. Here we set the polarization axes to be aligned with
the image axes. For images at different viewpoints, Eq. 15a is
invariant up to a rotation. Specifically, let ¢ and n be the diffuse
AoP and surface normal in the reference view, then we have

[sin(¢;), — cos(¢:), 0] Rin = 0, (24)

where ¢; is the diffuse AoP in view ¢, and R; is the rotation of
coordinate system from reference view to view 1.

We can decompose R; into rotations around the z,y,z
axes as R; .(0; ) R; y(0;y)Ri 2 (0;2) where 6,,0,,0, are the
Euler angles. By assuming R; ,(6; ,)R;.(0;) ~ I, since
[sin(¢;), — cos(¢i), 0] R; - (0:) = [sin(¢; — b;2), —cos(¢i —
6i.-),0], Eq. 24 becomes

[sin(¢; —

Note that the assumption of R; ,,(6; )R »(0; ) ~ I holds when
the z axis of the camera is approximately orthogonal to the rotary
stage, which can be easily realized (see our setup in Fig. 6).
Combining Eq. 15a and Eq. 24, we can establish the following
relationship on the diffuse AoP of different views:

= (¢i —

0;.2),—cos(¢p; — 0; ,),0ln = 0. (25)

0;.») mod 7. (26)
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Based on this, we utilize the following term to measure the
consistency of diffuse AoP:

J - -
Baop(d) = — > _min([¢ — dill, 7 — |l¢ — @ill) /7w, 27
i=1

where ¢; = (¢; — 6, ) mod 7, and m is the total number of
views in all reciprocal pairs except the reference view. The reason
for using the min(-) operation is that AoP wraps around at 0 and 7.

Combined Cost Function. The combined cost function for depth
estimation is:

d* = arglinin Z(Edata + >\1anp + )\2Esmooth)7 (28)
a

where A\; and Ao are balancing weights. In our experiments, we

use A1 = 0.2 and A2 = 0.01. We use graph-cut [57] to solve the

depth as a multi-labeling problem.

4.3.2 Degenerate Case for Depth and Normal Estimation

Solving depth and normal with one reciprocal pair, the coefficient
matrix W (d) may become degenerate when AoP ¢ = +90°. In
this case, the rank constraint we use for solving depth becomes
unstable as the singular value o3 is very close to zero for all depth
values, resulting o2 /03 being infinitely large at all time. There-
fore, when ¢ = £90°, the depth and normal values estimated by
this rank constraint are prone to large errors.

In order to handle this degenerate case, we propose a normal
refinement strategy based on the degree of linear polarization
(DoLP) of the diffuse component.

The DoLP of the diffuse component can be computed from
Stokes vector as:

Sdp(o)
Sap(0) + Sau(0)”

Recall that diffuse reflection consists of light that first transmits
into the surface, be scattered, and then transmits out of the
surface. The light is assumed to be unpolarized after scattering
and partially polarized after transmitting out. Based on the Fresnel
equation for refraction, the DoLP of the diffuse component can
also be formulated as [36]:

DoLP = (29)

(n —1/n)?sin’ 4,
24+2n? — (n+1/n)? sin? 0, + 4 cos 6,.1/n2 — sin? 6, ’
(30)
where n is the refractive index, and 6, is the angle between surface
normal n and view direction v.

Our normal refinement strategy consists of the following three
steps. First, we obtain the surface normal n for all pixels using
only reciprocity and AoP constraints. Second, we select pixels
with reliable surface normal based on the angle of polarization ¢
and use these pixels to estimate the refractive index n via Eq. 30.
Third, using the estimated refractive index, we refine the surface
normal of the rest pixels by formulating Eq. 30 as an additional
constraint on surface normal.

DoLP =

4.3.3 lterative Update of Depth and Normal

We iteratively update the depth and normal with the following
steps: 1) we apply Poisson integration on n to obtain a new set
of depth d’; 2) we use d’ as an additional guidance in Eq. 28
to optimize the depth with a finer depth interval; 3) we use the
estimated depth to form W (d) and solve for the normal again. We
use the normal difference to decide whether the iterative update
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has converged. In our experiments, it usually converges after two
iterations.

5 EXPERIMENTS

We validate our method with both synthetic and real experiments
on scenes with various shapes and reflectance. All our experiments
are run on a laptop computer with Intel Core i7-8750H processor
(2.2GHz) and 16GB memory. Our surface reconstruction algo-
rithm is implemented in Matlab without acceleration. The running
time of our reconstruction algorithm is about 20 mins for one
pair, 23 mins for two pairs, and 26 mins for three pairs. The
execution time does not increase significantly with the number
of reciprocal pairs. This is because the pair number affects only
the dimension of the coefficient matrix W. The complexity of the
graph-cut-based depth optimization does not increase when more
pairs are used. Instead, the computation overhead on using more
numbers of pairs mainly come from accessing data and the SVD
decomposition of W.

5.1 Synthetic Experiments

We use the Mitsuba 2 renderer! to simulate polarimeric images
as captured by a polarization camera. Specifically, we use the
polarized rendering mode to simulate four directional polarization
images: 19, 190 145 and I'3° (each with resolution 500 x 500).
In the polarized rendering mode, the renderer will track the
full polarization state of light during simulation. The system
configuration mirrors our real experimental setup. We use the real-
captured KAIST pBRDF dataset [58] to model the polarimetric
surface reflectance. We test on a variety of 3D models and surface
reflectance. Fig. 4 shows our rendered images, recovered normal
maps, and recovered 3D surfaces with two reciprocal pairs. We
evaluate the reconstruction with per-pixel angular errors (see
normal error map) and the mean angular error (MAE).

Ablation on Material Types. We use different pBRDFs provided
by the KAIST dataset on a sphere object to test our performance
with respect to the material types. Fig. 5 shows recovered normal
maps and cross-sections of the recovered shapes. We also compare
the performance of our method with respect to the number of
pairs (one pair vs. two pairs). We can see that the one-pair results
are sensitive to the material type as the polarized reflection of
some materials (e.g., mint silicone) is weak, which results in
the angle of polarization being highly noisy and unreliable. The
two-pair results are more robust as the reciprocity constraint alone
provides sufficient regularization. Table 2 shows the mean angular
errors of normal estimation for different types of materials. Note
that our method also works on metallic materials, as we use
the full-Stokes representation and our reciprocity constraint can
circularly polarized light that might exist in metal reflections.

Ablation on Constraints. We perform ablation study to verify
the effectiveness of our constraints: reciprocity constraints and
polarimetric constraints. Specifically, we perform experiments
using three reciprocal pairs and compare our full method with
the version without using polarimetric constraint (Polar-HS*) and
the standard Helmholtz Stereopsis (HS). We test on the same set
of materials that are used in the material ablation. By comparing
our method with HS, we can see using polarimetric reciprocity

1. https://www.mitsuba-renderer.org
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Fig. 4. Normal reconstruction on synthetic data.

TABLE 2
Mean angular error (in degree) of the normal estimations with respect
to different types of materials, number of pairs, and constraints.

Recovered Normal Map

Normal Error Recovered 3D Surface

MAE: 1.99°

00— — ()0

TABLE 3
Mean angular error (in degree) of the normal estimations with respect
to the noise levels.

SNR/dB
Matoriale |[POTar-HS [ polar-HS || polar HS [ PolarHS™|_HS Method 10| 20 | 30 | 40
(1-Pair) | (2-Pair) || (3-Pair) | (3-Pair) | (3-Pair) HS (3-pair) 23.41 | 13.59 | 8.05 | 6.87
Spectralon || 17.6963 | 2.2087 || 0.9628 | 2.1951 [11.3151 polar-HS (1-pain) 271 | 805 | 653 | 627
Chrome || 20.0153 | 9.4524 || 3.9634 | 63813 |14.3129 polar-HS (2-pair) 9.16 | 643 | 2.14 | 0.95
Gold 180660 | 7.5412 || 5.1945 | 82255 |13.7741
Black Billiard || 18.4281 | 6.0594 || 1.2341 | 5.0882 |15.0863
710, 85610 | 1.0912 || 1.0824 | 1.8060 |10.9464
Plastic POM || 8.8094 | 0.8978 | 0.8089 | 1.6302 | 9.4417

significantly helps reduce the error for all cases. By comparing
with Polar-HS*, we can see that the polarimetric constraint also
plays an important role on improving the reconstruction accuracy.
The comparison results are shown in Table 2.

Ablation on Noise Levels. We evaluate our method with respect
to different levels of noise. In this experiment, we use a sphere
object with the “white billiard” material. We add Gaussian white
noise to the rendered images and use the signal-noise ratio (SNR)
to quantify the noise level (smaller SNR number indicates higher
noise level). We evaluate the reconstruction using MAE of the

normal estimation. We test our method (polar-HS) using one and
two reciprocal pairs respectively, and compare with the standard
HS that uses three pairs. The results are reported in Table 3. We
can see that both our one-pair and two-pair methods are more
accurate than the three-pair HS, and less sensitive to noise.

Ablation on Distance and Focal Length. In order to show
that our polarimetric constraints formulated under the perspective
project is effective, we evaluate our one-pair method on different
object distances and different levels of focal length errors. In this
experiment, we use a sphere object and use the “PEEK” material
from the KAIST pBRDF dataset. We also compare the perfor-
mance of using orthogonal polarimetric constraints (Eq. 15a, 15b)
vs. perspective polarimetric constraints (Eq. 20a, 20b) during
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Fig. 5. Reconstruction results of our method when using one and two reciprocal pairs for different types of materials. Here we show the cross-
sections of reconstructed surfaces in comparison with the ground truth, color images of the sphere rendered with the specific material, and estimated

normal maps.

TABLE 4
Mean angular error (in degree) of the normal estimations with respect
to different object distances. "Orthogonal cons.” refers to using
orthogonal polarimetric constraints (Eq. 15a, 15b). "Perspective cons.”
refers to using perspective polarimetric constraints (Eqg. 20a, 20b). The
object distances are relative to the diameter of the sphere object.

Object distance 1 2 3 4 5
Orthogonal cons. 1097 7.83 728 7.01 17.17
Perspective cons. 548 525 577 571 5097

TABLE 5

Mean angular error (in degree) of the normal estimations with respect
to different relative focal length errors. The object distance is kept as 3
times the diameter of the sphere object. "Orthogonal cons.” refers to
using orthogonal polarimetric constraints (Eq. 15a, 15b). "Perspective
cons.” refers to using perspective polarimetric constraints
(Eq. 204, 20b).

Focal length error || 2% -1% 0% +1% +2%
Orthogonal cons. 9.54 8.02 728 10.82 17.61
Perspective cons. 9.22 7.28 577 804 1390

normal estimation. Table 4 shows the mean angular normal errors
under different object distances. The distances are relative to the
diameter of the sphere object. We can see that using perspective
constraints consistently produces lower normal errors. The margin
is larger under smaller object distances, since perspective effect
is more significant under such cases. Table 5 shows the results
under different focal length errors. Here the focal length errors are
relative to the ground truth focal length, and the object distance is
fixed at 3 times the sphere diameter. It can be seen that perspective
constraints produce more accurate normal estimation and are more
robust to focal length errors.

5.2 Real Experiments

5.2.1 Prototype of Polarimetric Capture

We implement a physical system for capturing the polar-HS image
pairs. We mount a polarization camera and a pico projector on an
automated rotating wheel so that their positions can be precisely
exchanged.

Point i
light Polarization
camera

Motorized

sendiffl ' linear polarizer

Rotating wheel

Fig. 6. Acquisition system prototype.

System Construction. As shown in Fig. 6, our acquisition system
consists of a monochrome polarization camera (FLIR Blackfly
S Polar-Mono) and a pico projector (Sony MP-CL1A) as point
light source. The polarization camera captures four directional
polarization images (i.e., 10, 199 1%5 and I'3°) in one shot
as its sensor has on-chip polarizers’>. The camera uses a 25mm
F/5.6 lens. The exposure time we use is 800 ms. With the four
directional polarization images captured by the camera, we can
compute the Stokes vector as S(0) = 10+ 1%, S(1) = 1° — 1%,
and S(2) = I* — I'35. Note that since we consider only linear
polarization states, S(3) = 0.

We mount a linear polarizer in front of the projector to
generate polarized light. Note that our reciprocity constraint does
not have restriction on the polarization state of light source. But
we do require their state is known. We use linearly polarized light
for polarimetric image decomposition. The camera and projector
are mounted on a rotating wheel so that their positions can be
precisely exchanged. The distance between the camera and light
source is around 17.5 cm. All moving parts of our system (i.e., the
rotating wheel and the light source polarizer) are controlled with
motorized rotators; our acquisition procedure is fully automated.
The distance between our capture system and the scene is about

2. https://www.sony-semicon.co.jp/e/products/IS/industry/technology/
polarization.html
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Fig. 7. Results on polarimetric image decomposition.
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Fig. 8. Quantitative evaluation of the normal and shape reconstruction
on real scenes.

50 cm. This distance is chosen based on the camera focal length.
The sizes of objects captured are between 5 cm to 25 cm.

System Calibration. Both the camera and projector are calibrated
geometrically and radiometrically. For geometric calibration, we
measure the intrinsic and extrinsic parameters of the camera and
projector [59] in order to extract their relative positions. For
radiometric calibration, we compensate for light anisotropy and
camera response function using the method of Janké er al. [21].
We also calibrate the light source polarization state with respect
to the camera’s. Specifically, we place a mirror in front of the
acquisition system to allow the camera to capture an image of the
light source. We then turn the polarizer in front of the light source
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Diffuse-
polarized

Diffuse AoP Overall AoP

and observe the polarization image captured by the camera.

When 790 becomes the darkest, we consider the light source’s
angle of polarization to be 0°. When I° becomes the darkest, we
consider the light source’s angle of polarization as 90°.

Acquisition Procedure. A reciprocal pair is captured by rotating
the wheel at 180°. At each position in the pair, we capture
two polarization images under 0° and 90° polarized light by
turning the polarizer in front of the light source. Hence, we
have 4 polarization images in a reciprocal pair (captured under
two camera positions and there are two lighting conditions in
each position). Each polarization image can be decoded into
four directional components (i.e., [ 0, 190 145 and I'35). The
total acquisition time of one reciprocal pair is about 2 seconds.
Additional reciprocal pairs can be captured by rotating the wheel
to a new position and repeating this procedure.

5.2.2 Polarimetric Image Decomposition

We first perform polarimetric image decomposition on the cap-
tured images. We use the diffuse-polarized and specular-polarized
components to compute the polarimetric constraints. The diffuse-
unpolarized component is used for computing the reciprocity
constraints. Fig. 7 shows the polarimetric decomposition results of
objects made with different materials. In each example, we show
the intensity image (Sy before decomposition), the three com-
posed components (i.e., specular-polarized, diffuse-unpolarized,
and diffuse-polarized), as well as the angle of polarization (AoP)
computed with the diffuse-polarized component (“diffuse AoP”)
in comparison with the AoP computed with the image before
decomposition (“overall AoP”). We can see that the diffuse AoP
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Fig. 10. Surface reconstruction results on real scenes. Here the results are computed with two reciprocal pairs.
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Fig. 11. One-pair reconstruction result on real scenes.

computed with diffuse-polarized component better encodes the
surface normal. However, this property varies among materials.

5.2.3 Quantitative Evaluation.

We quantitatively evaluate our method on two real scenes: a
billiard ball (59mm diameter) and a cardboard corner (corner angle
of 110°). We compare the normal and surface reconstruction of
our method with one pair and two pairs, and the standard HS with
three pairs. The scene settings and the reconstruction results are
shown in Fig. 8. We report the MAE of recovered normals, and
compare the recovered shapes in cross-sections.

Our one-pair reconstruction results have large errors at the
degenerate case (i.e., ¢ = 90°). Our two-pair reconstruction
results are free from such artifacts and are highly accurate in both
scenes (in the cross-section comparisons, our two-pair results are
the closest to the ground truth ones). Both the one-pair and two-
pair results have smaller errors than the standard HS with three
pairs.

5.2.4 Qualitative Evaluation.

We test our method on a variety of scenes with different types
of reflectance, ranging from purely diffuse to highly specular.
Some are composite scenes that contain multiple surfaces types.
As we do not have ground truth geometry for these scenes, we
only provide qualitative visual results here.

Fig. 9 shows our normal estimation and surface reconstruction
results on objects made with different materials. We also show
close-up views of the recovered surfaces to highlight details. We
use the two reciprocal pairs for the reconstruction. We can see
that our two-pair results are of high quality and our method works
well for objects with different levels of specularity. For example,
the shells are mostly diffuse and have fine structures on surface,
while the plastic cat and apple have strong specularity.

We then show our results on several more challenging scenes.
Some of them are composite scenes that contain surfaces of
different materials. Some have intricate surface geometry. Fig. 10
shows our surface reconstruction results. We can see that our
recovered surfaces preserve fine geometric details (for example,
bandage on the statue and beard of the gnome). Our method
also works for concave scenes that do not exhibit very strong
interreflection (for example, the soap dish and bunny ears). Note
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that these results are recovered with two reciprocal pairs. Our one-
pair reconstruction results are shown in Fig. 11. We can see that
the reconstruction at degenerate cases has been largely improved.

Finally, we compare our method against other state-of-the
arts 3D reconstruction methods, including shape-from-polarization
(SfP) [35], photometric stereo (PS) [11], SfP+PS [41], [60], struc-
tured light (SL) [17], and standard HS [1]. Please refer to Table 1
for the number of input images needed for these methods. Fig. 13
show the comparisons of normal and surface reconstructions. In
the experiment, we show both our one-pair and two-pair results.
Our results visually appear better than all the other methods.
Our SL system uses high-resolution projector (1920 x 1080)
and camera (1224 x 1024) and is able to recover good overall
geometry, but our method is able to recover finer surface details
than SL. Besides, SL takes 10 input images because of using the
Gray code patterns, which is a lot more than the other methods.

In this experiment, we also compare our improved method
(referred to as “this work™) versus our original method (ICCV 21
[4]). We can see that the one-pair reconstruction results have been
improved.

5.2.5 Failure Examples

Here we show two failure examples in Fig. 12. In the “Toy Car”
scene, our reconstruction fails at the car windows, which are made
of transparent acrylic glass. As its diffuse-unpolarized component
is too small, our reciprocity constraints cannot be effectively
applied. In the “Bowl” scene, our reconstruction has artifacts at
the regions with caustic effect, which is caused by strong inter-
reflection. The caustic effect cannot be removed by our polari-
metric image decomposition and resulting both the reciprocity
constraints and polarimetric constraints to be inaccurate. In the
next section, we discuss how to improve our method to handle
these challenging cases.

Acrylic Glass Normal Map

3D Surface

ey

Fig. 12. Two failure examples: a toy car (with transparent glass) and a
bowl (with strong inter-reflection).

6 CONCLUSION AND DISCUSSION

In summary, we extend the classical Helmholtz stereopsis to the
polarimetric case by deriving a new transpositional reciprocity
relationship. We exploit the polarimetric cues and reduce the
minimal number of reciprocal pairs to perform HS to one.
We show that proposed polar-HS can recover various types of
surfaces with high accuracy. In this journal extension, we further
generalize our polarimetric constraints to perspective projection
and improved our optimization framework for better accuracy.
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Fig. 13. Comparisons of our method with classical 3D reconstruction methods. We show the recovered normal maps (row one), relit surfaces (row

two), and close-up views of the surfaces (row three).

Discussions. Although we have demonstrated successful 3D re-
construction on a variety of scenes, our method has limitations on
handling strong inter-reflection and transparent scenes, as shown
in the failure examples. If the inter-reflection is too strong and re-
sults in caustic effect on the surface, our method fails at the regions
where the caustics occurs. There is potential to separate caustics
by analyzing the polarization state of reflected light, because the
change of polarization state upon each reflection is governed by
the Fresnel equations. As for the transparent surfaces, the captured
images are transmission dominant. However, our method relies
on analyzing the reflected light for surface reconstruction. One
possible solution is to separate the weak reflected image from the
transmitted one.

Another limitation of our method is that it suffers from large
errors at oblique polarization angles when only one reciprocal
pair is used. This is because the diffuse polarization constraint
becomes degenerate when the angle of polarization is £90°. We
can combine additional physical constraints (e.g., shading cues or
multi-view constraint) to mitigate this limitation, as these other
constraints could substitute the polarimetric constraint for solving
the normals. Our current prototype system uses a rotating wheel
to capture the reciprocal pairs, which has limitation on capturing
dynamic scenes. Since our method only needs one reciprocal pair,
it is possible to build a compact acquisition system without using
a rotating wheel, e.g., in a binocular setting with polarization-
multiplexing, in order to make our method more practical.
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