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A R T I C L E I N F O A B S T R A C T
Editor: A. Ringwald In modular invariant models of flavor, observables must be modular invariant. The observables discussed so far 

in the literature are functions of the modulus 𝜏 and its conjugate, 𝜏. We point out that certain combinations of 
observables depend only on 𝜏, i.e. are meromorphic, and in some cases even holomorphic functions of 𝜏. These 
functions, which we dub “invariants” in this Letter, are highly constrained, renormalization group invariant, and 
allow us to derive many of the models’ features without the need for extensive parameter scans. We illustrate 
the robustness of these invariants in two existing models in the literature based on modular symmetries, Γ3 and 
Γ5. We find that, in some cases, the invariants give rise to robust relations among physical observables that 
are independent of 𝜏. Furthermore, there are instances where additional symmetries exist among the invariants. 
These symmetries are relevant phenomenologically and may provide a dynamical way to realize symmetries of 
mass matrices.

1. Introduction

The standard model (SM) contains, including neutrinos, almost 30 continuous parameters. Most of these parameters reside in the flavor sector. 
Recently, the modular invariant approach to flavor has emerged as a promising way of deriving the flavor parameters from powerful modular 
symmetries [1], with a significantly reduced number of parameters. The construction of the flavor models entails the finite modular groups Γ𝑁 [1]
or Γ′𝑁 [2]. A number of explicit models has been worked out, such as [3–15], see the recent reviews [16,17] for further references.

One of the main reasons for the popularity of this scheme is that the couplings of the theory are unique, or at least very constrained. In slightly 
more detail, the couplings are functions of a chiral superfield 𝜏 subject to three requirements:

modular covariance or modular invariance (cf. Section 2),
the couplings depend only on the modulus 𝜏 but not on its conjugate, 𝜏 , and
the couplings are finite for all values of 𝜏 .

Note that in different communities, different terminology is being used for these requirements. In mathematics, amounts to saying that the 
coupling is a meromorphic function of 𝜏 whereas in some physics contexts such functions are called holomorphic. and together mean, 
in mathematician’s terminology, that the coupling is a holomorphic function of 𝜏 . In what follows, we will refer to the requirements just by the 
symbols to avoid confusion.

The important point is that , and together are so restrictive that they almost completely fix the couplings [18–20]. Up to this 
point, these requirements have only been discussed at the level of superpotential couplings. The purpose of this Letter is to point out that one can 
make similar statements at the level of observables. As we shall see, there are observables for which all the requirements, i.e. , and , 
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are simultaneously fulfilled. Our findings allow us to make very robust predictions. There are also observables which fulfill and but fail 
to satisfy . We will comment on how in such cases one can still make general statements on the predictions of the model.

In this Letter, we first review the basic framework of modular flavor symmetries in Section 2. In Section 3 we discuss how typical observables 
are non-holomorphic since they involve the normalization of the fields. We then introduce modular invariant holomorphic observables in Section 4, 
and work out some basic applications using two example models in Section 4.1 and 4.2. Section 5 contains some further discussion, and Section 6
contains our conclusions.

2. A short recap of modular flavor symmetries

The key ingredient of modular flavor symmetries is modular invariance, i.e. requirement . That is, the theory is assumed to be invariant 
under SL(2, Z) transformations 𝛾 of the modulus 𝜏 ,

𝜏
𝛾

⟼ 𝑎𝜏 + 𝑏
𝑐 𝜏 + 𝑑

, (1)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z and 𝑎 𝑑 − 𝑏 𝑐 = 1. Modular invariance, along with from supersymmetry (SUSY)1 and the additional requirement that the 
couplings of the theory be finite, i.e. , leads to a highly predictive scheme, in which the superpotential couplings are almost unique. That is, the 
superpotential terms of the models are of the form

𝒲 ⊃ 𝑔 𝑌𝑖𝑗𝑘(𝜏)Φ𝑖Φ𝑗 Φ𝑘 , (2)
where 𝑌𝑖𝑗𝑘(𝜏) are uniquely determined vector-valued modular forms and the Φ𝑖 denote some appropriate superfields. That is, under (1)

𝑌𝑖𝑗𝑘(𝜏)
𝛾

⟼ 𝑌𝑖𝑗𝑘(𝛾 𝜏) = (𝑐𝜏 + 𝑑)𝑘𝑌 𝜌𝑌 (𝛾)𝑌𝑖𝑗𝑘(𝜏) , (3)
where 𝜌𝑌 is a representation matrix of a finite group. As long as 𝑘𝑌 ≠ 0 and/or 𝜌𝑌 (𝛾) ≠ 1, 𝑌𝑖𝑗𝑘(𝜏) is modular covariant (rather than invariant). The 
superfields transform as

Φ𝑖
𝛾

⟼ (𝑐𝜏 + 𝑑)−𝑘𝑖 𝜌𝑖(𝛾)Φ𝑖 , (4)
where 𝑘𝑖 denotes the modular weight of Φ𝑖, which, as indicated may transform nontrivially under the finite modular group with representation ma-
trix 𝜌𝑖(𝛾). 𝑔 denotes a coefficient, which can be chosen arbitrarily in the bottom-up approach.2 However, apart from this freedom, the superpotential 
terms are uniquely determined by requirements , and .

Let us briefly recall what means. It is the requirement that the functions 𝑌𝑖𝑗𝑘(𝜏) remains finite throughout the fundamental domain. Without 
this requirement, we could multiply 𝑌𝑖𝑗𝑘(𝜏) by arbitrary polynomials of the modular invariant function, or Hauptmodul of SL(2, Z), 𝑗(𝜏), while 
still satisfying requirements and . However, as 𝑗 diverges for 𝜏 → i∞, this is inconsistent with , and therefore not allowed. Thus, 
by requiring simultaneously , , and , the couplings are unique up to an undetermined coefficient 𝑔, and in cases where there are 
multiple invariant contractions, up to multiple undetermined coefficients 𝑔𝑖. Examples for the latter case can be found in [4,7,13].

In vast literature, the Kähler potential of the matter fields is assumed to be of the so-called minimal form,

𝐾matter =
∑
𝑖

1
(−i𝜏 + i𝜏)𝑘𝑖

Φ𝑖Φ𝑖 . (5)

Here we set the vector multiplets to zero. It is known that the requirements , and do not fix the Kähler potential to be of the form (5), 
but there are several additional terms which are allowed by the symmetries of the models, thus limiting the predictive power of the models [24]. 
While entirely convincing solutions to this problem have not yet been found, there exist proof-of-principle type fixes which allow one to sufficiently 
control the extra terms to make their impact comparable to the current experimental uncertainties in flavor observables [25]. In what follows, we 
will base our discussion on the minimal Kähler potential (5).

Modular invariance, in particular, means that observables are to be modular invariant. However, this does not mean that the 𝑌𝑖𝑗𝑘(𝜏) of (2)
are modular invariant. Rather, as we shall see next, there are several non-holomorphic observables which are modular invariant because of the 
normalization of the fields, cf. Equation (5).

3. Non-holomorphic observables

To illustrate this point with an explicit example, we consider a toy model based on

𝒲 = (𝜏)
2 Φ2 , (6a)

𝐾 = 1
(−i𝜏 + i𝜏)𝑘Φ

ΦΦ , (6b)

1 SUSY may not be necessary for , cf. [21]. However, so far there is no explicit model illustrating this.
2 See, however, [22] for a proposal for the normalization of the modular forms. It would be interesting to see to which extent this approach replicates the known 

normalizations in explicit top-down constructions such as [23].
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where (𝜏) is a vector-valued modular form of weight 𝑘. Apart from the modular weight of the field, 𝑘Φ, we need to specify the modular weight 
of the superpotential 𝑘𝒲 = 𝑘 + 2𝑘Φ. In large parts of the literature, the modular weight of the superpotential is taken to be zero, 𝑘𝒲 = 0, and in 
this section we adopt this practice. A nonzero 𝑘𝒲 = 0, as required by supergravity, does not change the following discussion qualitatively. This then 
fixes the modular weight of (𝜏) to be

𝑘 = −2𝑘Φ . (7)
Thus, under a modular transformation

𝜏 ↦ 𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑

=∶𝜏′ , (8a)

Φ↦
1

(𝑐𝜏 + 𝑑)𝑘Φ
Φ , (8b)

(𝜏)↦(𝜏′) = 1
(𝑐𝜏 + 𝑑)𝑘 (𝜏) . (8c)

While (𝜏) and 𝜏 both transform nontrivially, is straightforward to confirm that

|(𝜏)|2 (−i𝜏 + i𝜏)−𝑘 (9)
is invariant under (8). This combination emerges from the scalar potential,

𝒱 =
(
𝜕𝒲
𝜕Φ

)
𝐾ΦΦ 𝜕𝒲

𝜕Φ +… (10)

after rescaling the fields to be canonically normalized. That is, we have to take into account the inverse of the Kähler metric, which we obtain from 
Equation (6b)

𝐾ΦΦ = (−i𝜏 + i𝜏)𝑘Φ , (11)
both in (10) and when computing the physical mass,

𝑚2
physical = (−i𝜏 + i𝜏)𝑘Φ 𝜕2𝒱

𝜕Φ𝜕Φ

|||||Φ=Φ=0
. (12)

Here, Φ denotes the scalar component of the superfield Φ. The resulting physical mass of Φ is given by

𝑚physical =𝑚physical(𝜏, 𝜏) = |(𝜏)| (−i𝜏 + i𝜏)𝑘Φ . (13)

As indicated by the notation, the physical mass is not a meromorphic (nor holomorphic) function of 𝜏 , i.e. it does not fulfill . Of course, the 
physical mass 𝑚physical(𝜏, 𝜏) is modular invariant, as it should, i.e. satisfies . However, it is modular invariant “at the expense” of being 
non-holomorphic, i.e. and are fulfilled but not .

The observable of the model, i.e. the mass, fails to satisfy because it involves the Kähler metric. Let us stress that this feature of the toy 
model is rather generic: in order to compute observables, one typically needs to take into account the Kähler metrics, thereby sacrificing . As a 
consequence, the uniqueness discussed in Section 2 does not apply to such observables. In what follows, we will see that there are observables that 
do not receive 𝜏-dependents contributions, and hence fulfill , and are thus highly constrained.

4. Modular invariant holomorphic observables

In order to obtain holomorphic observables, we need to remove the nonholomorphic terms coming from the Kähler metric. It turns out that in 
the lepton sector of the minimal supersymmetric standard model (MSSM) there is a straightforward way to obtain such expressions. Consider the 
superpotential of the lepton sector

𝒲lepton = 𝑌 𝑖𝑗
𝑒 𝐿𝑖 ⋅𝐻𝑑 𝐸𝑗 +

1
2𝜅𝑖𝑗 (𝜏)𝐿𝑖 ⋅𝐻𝑢 𝐿𝑗 ⋅𝐻𝑢 . (14)

Here, 𝐿𝑖 and 𝐸𝑖 denote the three generations of the superfields of the SU(2)L charged lepton doublets and singlets, and 𝐻𝑢∕𝑑 stand for the MSSM 
Higgs doublets. 𝑌𝑒 denotes the charged lepton Yukawa couplings, which is not a modular form. 𝑀(𝜏) = 𝑣2𝑢 𝜅(𝜏) is the neutrino mass matrix, with 
𝜅(𝜏) being the effective neutrino mass operator.

In the basis in which 𝑌𝑒 = diag(𝑦𝑒, 𝑦𝜇 , 𝑦𝜏 ), consider

𝐼𝑖𝑗 (𝜏) ∶=
𝑀𝑖𝑖(𝜏)𝑀𝑗𝑗 (𝜏)
(
𝑀𝑖𝑗 (𝜏)

)2 =
𝜅𝑖𝑖(𝜏)𝜅𝑗𝑗 (𝜏)
(
𝜅𝑖𝑗 (𝜏)

)2 =
𝑚𝑖𝑖(𝜏, 𝜏)𝑚𝑗𝑗 (𝜏, 𝜏)

(
𝑚𝑖𝑗 (𝜏, 𝜏)

)2 , (15)

where no summation over 𝑖, 𝑗 is implied. Here, 𝑚𝑖𝑗 (𝜏, 𝜏) ∶= (−i𝜏 + i𝜏)(𝑘𝐿𝑖+𝑘𝐿𝑗 )∕2 𝜅𝑖𝑗 (𝜏) 𝑣2𝑢 are the entries of the neutrino mass matrix in the canonically 
normalized basis, with 𝑘𝐿𝑖

being the modular weight of the lepton doublet 𝐿𝑖. Crucially, Equation (15) shows that the ratios of the physical mass 
matrix entries, 𝑚𝑖𝑗 (𝜏, 𝜏), can be expressed entirely as rational functions of holomorphic modular functions. This is because, while the individual 
entries 𝑚𝑖𝑗 (𝜏, 𝜏) have a structure analogous to Equation (13), the 𝐼𝑖𝑗 are constructed in such a way that the factors containing 𝜏 cancel. That is, by 
construction the 𝐼𝑖𝑗 fulfill . In what follows, we will discuss to which extent they also fulfill and .
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Table 1
Quantum numbers in Feruglio’s Model 1.
field/coupling (𝐸𝑐

1 ,𝐸
𝑐
2 ,𝐸

𝑐
3 ) 𝐿 𝐻𝑢∕𝑑 𝜑𝑇 𝑌 (2)

𝟑 (𝜏)

SU(2)L ×U(1)Y (𝟏,1) (𝟐,−1∕2) (𝟐,±1∕2) (𝟏,0) (𝟏,0)
Γ3 ≅𝐴4 (𝟏, 𝟏′′, 𝟏′) 𝟑 𝟏 𝟑 𝟑
𝑘𝐼 (2,2,2) 1 0 −3 −2

It has been known for a while that the 𝐼𝑖𝑗 from Equation (15) are renormalization group (RG) invariant [26] (see the discussion in Appendix A).
In the MSSM this can be understood from the non-renormalization theorem and the fact that the normalizations of the field cancel, which is also 
the reason why the 𝐼𝑖𝑗 from Equation (15) are interesting for our present discussion. As we detail in Appendix A, the location of zeros and poles is 
RG invariant to all orders even in the absence of SUSY. In this basis, the neutrino mass matrix is given by

𝑚𝜈 =𝑈∗
PMNS diag

(
𝑚1,𝑚2,𝑚3

)
𝑈†
PMNS , (16)

where the 𝑚𝑖 denote the neutrino mass eigenvalues and the PMNS matrix 𝑈PMNS depends on the leptonic mixing angles (𝜃12, 𝜃13, 𝜃23), the Dirac 
phase (𝛿) and the two Majorana phases (𝜑1, 𝜑2). Altogether, there are nine independent physical parameters,

{𝜃12,𝜃13,𝜃23,𝛿,𝜑1,𝜑2,𝑚1,𝑚2,𝑚3} . (17)
From Equation (16), the invariants can be computed explicitly, and read, in the PDG basis,3

𝐼12 =
𝑎0

[
𝑚̃1

(
ei𝛿𝑐23𝑠12 + 𝑐12𝑠13𝑠23

)2 + 𝑚̃2
(
ei𝛿𝑐12𝑐23 − 𝑠12𝑠13𝑠23

)2 + e2i𝛿𝑚3𝑐213𝑠
2
23

]

𝑐213
[
𝑚̃1𝑐12

(
ei𝛿𝑐23𝑠12 + 𝑐12𝑠13𝑠23

)
+ 𝑚̃2𝑠12

(
𝑠12𝑠13𝑠23 − ei𝛿𝑐12𝑐23

)
− e2i𝛿𝑚3𝑠13𝑠23

]2 , (18a)

𝐼13 =
𝑎0

[
𝑚̃1

(
𝑐12𝑐23𝑠13 − ei𝛿𝑠12𝑠23

)2 + 𝑚̃2
(
𝑐23𝑠12𝑠13 + ei𝛿𝑐12𝑠23

)2 + e2i𝛿𝑚3𝑐213𝑐
2
23

]

𝑐213
[
𝑚̃1𝑐12

(
𝑐12𝑐23𝑠13 − ei𝛿𝑠12𝑠23

)
+ 𝑚̃2𝑠12

(
𝑐23𝑠12𝑠13 + ei𝛿𝑐12𝑠23

)
− e2i𝛿𝑚3𝑐23𝑠13

]2 , (18b)

𝐼23 =
[
e2i𝛿𝑚3𝑐213𝑠

2
23 + 𝑚̃1

(
ei𝛿𝑐23𝑠12 + 𝑐12𝑠13𝑠23

)2 + 𝑚̃2
(
ei𝛿𝑐12𝑐23 − 𝑠12𝑠13𝑠23

)2]

×
4
[
e2i𝛿𝑚3𝑐213𝑐

2
23 + 𝑚̃2

(
𝑐23𝑠12𝑠13 + ei𝛿𝑐12𝑠23

)2 + 𝑚̃1
(
𝑐12𝑐23𝑠13 − ei𝛿𝑠12𝑠23

)2]

[
𝑚̃1𝑎1 + 𝑚̃2𝑎2 − e2i𝛿𝑚3 sin(2𝜃23)𝑐213

]2 , (18c)

where 𝑠𝑖𝑗 ∶= sin𝜃𝑖𝑗 , 𝑐𝑖𝑗 ∶= cos𝜃𝑖𝑗 and

𝑎0 ∶=
(
𝑚̃1𝑐212 + 𝑚̃2𝑠212

)
𝑐213 + e2i𝛿𝑚3𝑠213 , (19a)

𝑎1 ∶=
[(
e2i𝛿𝑠212 − 𝑐212𝑠

2
13
)
sin(2𝜃23)− ei𝛿 cos(2𝜃23) sin(2𝜃12)𝑠13

]
, (19b)

𝑎2 ∶=
[
ei𝛿 cos(2𝜃23) sin(2𝜃12)𝑠13 +

(
e2i𝛿𝑐212 − 𝑠212𝑠

2
13
)
sin(2𝜃23)

]
. (19c)

The invariants 𝐼𝑖𝑗 depend on 𝑚1, 𝑚2, 𝜑1 and 𝜑2 only via the combinations 𝑚̃1 ∶=𝑚1 ei𝜑1 and 𝑚̃2 ∶=𝑚2 ei𝜑2 . As 𝐼𝑖𝑗 are complex constants, they give 
rise to six relations. Based on these relations, one can infer, for instance, the scale dependence of all angles and phases from the running of the three 
mass eigenvalues.

While the expressions (18) are lengthy, they have two important properties:

1. they only depend on the physical parameters (17);
2. they are modular invariant.

In models in which the Majorana neutrino masses are modular forms, the modular weights of the matrix elements of the light neutrino mass matrix 
are solely determined by the modular weights of the left-handed leptons 𝐿𝑖. Then the matrix element 𝑀𝑖𝑗 (𝜏) of the superpotential coupling matrix 
𝑀(𝜏) has modular weight 𝑘𝐿𝑖

+ 𝑘𝐿𝑗
. The invariants (15) must be modular functions of weight 2𝑘𝐿𝑖

+ 2𝑘𝐿𝑗
− 2(𝑘𝐿𝑖

+ 𝑘𝐿𝑗
) = 0 of the corresponding 

modular symmetry. This means that the 𝐼𝑖𝑗 (𝜏) can always be written as rational functions of the so-called Hauptmodul of the corresponding modular 
symmetry [19,20]. The Hauptmodul for a given subgroup 𝐺 of SL(2, Z) is a modular function of weight 0 on 𝐺 which generates all the modular 
functions for this group 𝐺, and fulfills and . The best-known example of this kind is the 𝑗-invariant 𝑗(𝜏) ∶= 𝐸3

4 (𝜏)∕𝜂
24(𝜏), which is the 

Hauptmodul for the full modular group SL(2, Z). Here 𝐸4(𝜏) is the Eisenstein series and 𝜂(𝜏) is the Dedekind eta function. Notice that these modular 
invariant functions have, as opposed to the modular forms, poles [28], i.e. they fulfill & but not . Given these properties we have a 
significant amount of information on these physical observables directly from the theory of modular forms. We will illustrate this crucial point in 
the following examples.

4.1. Feruglio model based on Γ3

Consider Model 1 from [1], which is based on finite modular group Γ3 ≅ 𝐴4. The assignments of modular weights and representations for the 
matter fields are shown in Table 1. The model contains a triplet flavon, 𝜑𝑇 , which only couples to the charged leptons. The effective neutrino masses 

3 Note that we have chosen a different notation 𝜑𝑖 ∶= −2𝜂𝑖 for the Majorana phases with respect to the PDG [27].
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depend only on the modular forms of weight 2. In more detail, the relevant terms of the superpotential are given by

𝒲𝑒 = 𝛼𝐸𝑐
1𝐻𝑑

(
𝐿𝜑𝑇

)
𝟏 + 𝛽𝐸𝑐

2𝐻𝑑
(
𝐿𝜑𝑇

)
𝟏′ + 𝛾𝐸𝑐

3𝐻𝑑
(
𝐿𝜑𝑇

)
𝟏′′ , (20a)

𝒲𝜈 =
1
Λ

(
𝐻𝑢 ⋅𝐿𝐻𝑢 ⋅𝐿𝑌 (2)

𝟑

)
𝟏
, (20b)

and there are no higher-order contributions to the effective neutrino mass operator in the superpotential. The notation (… )𝒓 indicates a contraction 
to the representation 𝒓 of the finite group, i.e. 𝐴4 in this case, and does not imply the SL(2, Z) representation explicitly. The flavon 𝜑𝑇 is assumed 
to develop the vacuum expectation value (VEV)

⟨𝜑𝑇 ⟩ = (𝑢,0,0) . (21)
With the VEV given in (21), the charged lepton and neutrino mass matrices read

𝑀𝑒 = 𝑢𝑣𝑑 diag(𝛼,𝛽, 𝛾) , (22a)

𝑚𝜈(𝜏, 𝜏) = (−i𝜏 + i𝜏)
𝑣2𝑢
Λ

⎛
⎜
⎜⎝

2𝑌1(𝜏) −𝑌2(𝜏) −𝑌3(𝜏)
−𝑌2(𝜏) 2𝑌3(𝜏) −𝑌1(𝜏)
−𝑌3(𝜏) −𝑌1(𝜏) 2𝑌2(𝜏)

⎞
⎟
⎟⎠

=∶ (−i𝜏 + i𝜏)𝑣2𝑢
⎛
⎜
⎜⎝

𝜅11 𝜅12 𝜅13
𝜅12 𝜅22 𝜅23
𝜅13 𝜅23 𝜅33

⎞
⎟
⎟⎠
. (22b)

Here, 𝑌1,2,3 are the components of modular forms triplet 𝑌 (2)
𝟑 (𝜏). Notice that 𝛼 < 𝛾 < 𝛽, and as a consequence 𝑌2 and 𝑌3 in (22b) are swapped 

compared to [1, Equation (38)].
The invariants (15) are given by

𝐼12(𝜏) = 4
𝑌1(𝜏)𝑌3(𝜏)(
𝑌2(𝜏)

)2 , (23a)

𝐼13(𝜏) = 4
𝑌1(𝜏)𝑌2(𝜏)(
𝑌3(𝜏)

)2 , (23b)

𝐼23(𝜏) = 4
𝑌2(𝜏)𝑌3(𝜏)(
𝑌1(𝜏)

)2 . (23c)

The invariants 𝐼𝑖𝑗 (𝜏) are products of ratios of two holomorphic modular forms, so they are meromorphic on the extended upper-half plane  ∶= ∪R ∪ {i∞}. They also transform as 𝐴4 𝟏-plets.
Consider a modular invariant meromorphic function (𝜏). Modular invariance, as opposed to modular covariance, means that (cf. e.g. [28])

1. either (𝜏) is a 𝜏-independent constant,
2. or it has poles.

Both cases are realized in the example at hand. First of all, 𝐼12 is a constant because the 𝑌𝑖 satisfy the algebraic constraint4
(
𝑌 (2)
𝟑 𝑌 (2)

𝟑

)
𝟏′′

= 𝑌 2
2 + 2𝑌1𝑌3 = 0 . (24)

The latter follows from the fact that the modular form triplet 𝑌 (2)
𝟑 (𝜏) of weight 2 can be obtained from the tensor product of modular form doublet 

𝑌 (1)
𝟐 (𝜏) ∶=

(
𝑋1(𝜏), 𝑋2(𝜏)

)⊺ of weight 1 [2],

𝑌 (2)
𝟑 ∶=

⎛
⎜
⎜⎝

𝑌1
𝑌2
𝑌3

⎞
⎟
⎟⎠
=
⎛
⎜
⎜⎝

𝑋2
2√

2𝑋1𝑋2
−𝑋2

1

⎞
⎟
⎟⎠
. (25)

Here, the modular forms 𝑋1,2(𝜏) of weight 1 on Γ(3) are given by

𝑋1(𝜏) ∶= 3
√
2 𝜂

3(3𝜏)
𝜂(𝜏) = 3

√
2𝑞1∕3(1 + 𝑞 + 2𝑞2 + 2𝑞4 + 𝑞5 +…) , (26a)

𝑋2(𝜏) ∶= −3 𝜂
3(3𝜏)
𝜂(𝜏) − 𝜂3(𝜏∕3)

𝜂(𝜏) = −1− 6𝑞 − 6𝑞3 − 6𝑞4 − 12𝑞7 −… , (26b)

where

𝑞 = e2𝜋i𝜏 . (27)
Since the three 𝑌𝑖 can be expressed in terms of the two 𝑋𝑖, the 𝑌𝑖 are not algebraically independent, as manifest in the constraint in Equation (24).

4 Two other interesting identities are 
(
𝑌 (2)
𝟑 𝑌 (2)

𝟑

)
𝟏
= 𝑌 2

1 + 2𝑌2𝑌3 =𝐸4 and 
(
𝑌 (2)
𝟑 𝑌 (2)

𝟑

)
𝟏′
= 𝑌 2

3 + 2𝑌1𝑌2 = −12𝜂8 .
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Table 2
Quantum numbers in the Γ5 model.
field/coupling 𝐸𝑐 𝐿 𝐻𝑢∕𝑑 𝜒 𝜑 𝑌 (2)

𝟓 (𝜏)

SU(2)L ×U(1)Y (𝟏,1) (𝟐,−1∕2) (𝟐,±1∕2) (𝟏,0) (𝟏,0) (𝟏,0)
Γ5 ≅𝐴5 𝟑 𝟑 𝟏 𝟏 𝟑 𝟓
𝑘𝐼 2 1 0 −3∕2 −3∕2 −2

Altogether we find, as expected, that the invariants can be expressed in terms of the Hauptmodul 𝑗3(𝜏) ∶= 𝜂(𝜏∕3)3∕𝜂(3𝜏)3 of Γ(3) as,

𝐼12(𝜏) = −2 , (28a)

𝐼13(𝜏) = −2
(
1 + 1

3 𝑗3(𝜏)
)3

, (28b)

𝐼23(𝜏) = − 32
𝐼13

= 16
(
1 + 1

3 𝑗3(𝜏)
)3 . (28c)

(28b) and (28c) are invariant under Γ(3) and invariant under the full SL(2, Z) if one properly takes the transformation of the flavon 𝜑𝑇 into account, 
cf. Appendix B. Further, Equations (28b) and (28c) imply that

𝐼13 𝐼23 = −32 . (29)
The 𝑞-expansions of 𝐼13 and 𝐼23 are given by

𝐼13 = − 2
27 𝑞

−1 − 10
9 − 4𝑞 + 152

27 𝑞2 + 18𝑞3 − 88𝑞4 + 2768
27 𝑞5 + 216𝑞6 +… , (30a)

𝐼23 = 432𝑞 − 6480𝑞2 + 73872𝑞3 − 725328𝑞4 + 6503328𝑞5 − 54855792𝑞6 +… . (30b)

It can be shown that 𝐼13 has a singularity at 𝜏 = i∞. Similarly, 𝐼23 is singular at 𝜏 = −3+i
√
3

6 , though it vanishes at 𝜏 = i∞.
The conditions in Equations (28a) to (28c) lead to robust phenomenological implications when relations in Equation (18) are utilized where the 

invariants are expressed in terms of the physical mixing parameters (17). In particular, Equation (28a) and Equation (29) give rise to four constraints 
that are independent of the value of 𝜏 . Due to the form of the neutrino mass matrix in this model Equation (22b), there is a sum rule among the 
three physical neutrino masses [29,30],5

𝑚3 =
{

𝑚2 +𝑚1 for normal ordering (NO) ,
𝑚2 −𝑚1 for inverted ordering (IO) .

(31)

Given the sum rule, the three neutrino masses (and thus the absolute neutrino mass scale) are completely fixed by the two mass squared differences, 
Δ𝑚2

sol and Δ𝑚2
atm, which have been determined from oscillation experiments. Furthermore, the mixing angles are also known from oscillation 

experiments [32]. We are thus left with three undetermined observables, namely the three  phases

{𝛿,𝜑1,𝜑2} . (32)
Hence we can use the invariants to predict the values of the  phases in this model.

Equation (28a) trivially fulfills requirements , & . It entails two constraints, Re𝐼12 = −2 and Im𝐼12 = 0. Therefore, for a given 
value of the Dirac  phase 𝛿, we can predict the values of the Majorana phases 𝜑1 and 𝜑2. It is important to note that these predictions are 
independent of the value of 𝜏 . With these predictions, one can then determine the neutrinoless double beta decay matrix element, ⟨𝑚𝑒𝑒⟩, as shown 
in Fig. 1. Given that only two out of the six conditions are utilized, the experimental best-fit values for the mixing parameters that have been used 
as our inputs in Fig. 1 may not be fully consistent with all constraints (in fact they are not, as we will discuss below). Nevertheless, it is interesting 
to see even with one invariant, it is already possible to significantly constrain the model.

After imposing Equation (28c) Equation (28a), there is only one observable left undetermined. If we impose equation (29), which entails two 
constraints, one for the real and one for the imaginary parts of 𝐼13 𝐼23 = −32, the system is overconstrained. We have verified that we cannot impose 
the constraints (28b) and (28c) while still being consistent with data. These findings are consistent with the analyses in [1,35], where it has been 
pointed out that one cannot accommodate all experimental data for the neutrino masses and mixings in this model. Note that we arrived at this 
conclusion without having to scan over 𝜏 . However, as discussed in [35], by adding one more parameter one can obtain a model which is remarkably 
consistent with the current experimental constraints.

4.2. A model based on Γ5

We next consider a model based on Γ5 ≅ 𝐴5 [5,6,35]. The assignments of modular weights and representations for the matter fields are shown 
in Table 2. This model introduces a singlet flavon, 𝜒 , and an 𝐴5 triplet flavon, 𝜑, which only couple to the charged leptons. The effective neutrino 
masses depend only on the modular forms of weight 2. More specifically, the relevant pieces of the superpotential are given by

𝒲𝑒 =
[
𝛼 (𝐸𝑐𝐿)𝟏 𝜒2 + 𝛽 (𝐸𝑐𝐿)𝟏 (𝜑2)𝟏 + 𝛾 (𝐸𝑐𝐿)𝟓 (𝜑2)𝟓 + 𝜁 (𝐸𝑐𝐿)𝟑 (𝜒𝜑)𝟑

]
𝟏 𝐻𝑑 , (33a)

5 Note that, unlike relations between the 𝐼𝑖𝑗 , this sum rule is not RG invariant. Therefore, the numerical results presented in what follows are subject to corrections. 
These corrections can be readily computed in a given model [31].
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Fig. 1. This figure displays the correlation between the neutrinoless double 𝛽-decay matrix element ⟨𝑚𝑒𝑒⟩ and the  phase 𝛿 for inverted ordering (IO) in the Γ3
model, considering only the invariant constraint 𝐼12 = −2. Note that this analysis is independent of 𝜏 . The red-shaded region corresponds to the 3𝜎 disfavored range 
of values for the Dirac phase 𝛿 from the global fit [32], while the gray-dashed line represents the current experimental upper bound for ⟨𝑚𝑒𝑒⟩ from the KamLAND-Zen 
collaboration [33]. The projected sensitivities of future experiments such as nEXO [34] can reach values for ⟨𝑚𝑒𝑒⟩ ∼ 10 meV, and thus will probe the predictions of 
the invariant constraint 𝐼12 = −2 in this model.

𝒲𝜈 =
1
Λ

(
𝐻𝑢 ⋅𝐿𝐻𝑢 ⋅𝐿𝑌 (2)

𝟓

)
𝟏
. (33b)

The symmetries of the model forbid higher-order contributions to the effective neutrino mass operator in the superpotential. The flavons 𝜒 and 𝜑
are assumed to attain the VEVs

⟨𝜒⟩ = 𝑣𝜒 , (34a)

⟨𝜑⟩ = 𝑣𝜑 (1,0,0) . (34b)
With these VEVs, the charged lepton and neutrino mass matrices read

𝑀𝑒 = 𝑣𝑑
⎛
⎜
⎜⎝

𝜇𝑒 + 4𝛾𝑣2𝜑 0 0
0 0 𝜇𝑒 − 2𝛾𝑣2𝜑 + 𝜁𝑣𝜒𝑣𝜑
0 𝜇𝑒 − 2𝛾𝑣2𝜑 − 𝜁𝑣𝜒𝑣𝜑 0

⎞
⎟
⎟⎠
, (35a)

𝑚𝜈(𝜏, 𝜏) = (−i𝜏 + i𝜏)
𝑣2𝑢
Λ

⎛
⎜
⎜
⎜⎝

2𝑌1(𝜏) −
√
3𝑌5(𝜏) −

√
3𝑌2(𝜏)

−
√
3𝑌5(𝜏)

√
6𝑌4(𝜏) −𝑌1(𝜏)

−
√
3𝑌2(𝜏) −𝑌1(𝜏)

√
6𝑌3(𝜏)

⎞
⎟
⎟
⎟⎠

=∶ (−i𝜏 + i𝜏)𝑣2𝑢
⎛
⎜
⎜⎝

𝜅11 𝜅12 𝜅13
𝜅12 𝜅22 𝜅23
𝜅13 𝜅23 𝜅33

⎞
⎟
⎟⎠
, (35b)

where 𝜇𝑒 ∶= 𝛼 𝑣2𝜒 + 𝛽 𝑣2𝜑. Here, 𝑌1,2,3,4,5 are the components of modular forms quintuplet 𝑌 (2)
𝟓 (𝜏). They are not algebraically independent. In fact, 

each of them can be written as a homogeneous polynomial of 10 degrees in two basic modular forms of weight 1∕5, 𝐹1(𝜏) and 𝐹2(𝜏),

𝑌 (2)
𝟓 (𝜏) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝑌1(𝜏)
𝑌2(𝜏)
𝑌3(𝜏)
𝑌4(𝜏)
𝑌5(𝜏)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

−𝐹 10
1 (𝜏)− 𝐹 10

2 (𝜏)√
6𝐹 4

1 (𝜏)𝐹2(𝜏)
(
𝐹 5
1 (𝜏) + 7𝐹 5

2 (𝜏)
)

√
6𝐹 3

1 (𝜏)𝐹
2
2 (𝜏)

(
3𝐹 5

1 (𝜏)− 4𝐹 5
2 (𝜏)

)
√
6𝐹 2

1 (𝜏)𝐹
3
2 (𝜏)

(
4𝐹 5

1 (𝜏) + 3𝐹 5
2 (𝜏)

)

−
√
6𝐹1(𝜏)𝐹 4

2 (𝜏)
(
−7𝐹 5

1 (𝜏) + 𝐹 5
2 (𝜏)

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

, (36)

where [10,36]

𝐹1(𝜏) ∶= e−𝜋i∕10
𝜗(1∕10,1∕2)(5𝜏)
(
𝜂(𝜏)

)3∕5 =

∑
𝑝∈Z

(−1)𝑝𝑞(5𝑝2+𝑝)∕2

∞∏
𝑛=1

(1− 𝑞𝑛)3∕5
, (37a)
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Table 3
Predictions from the best-fit point of the Γ5 model. The neutrino masses 
are predicted to be of inverted ordering. sin2 𝜃13 deviates from the cen-
tral value by about 20𝜎 and sin2 𝜃23 deviates from the central value by 
about 10𝜎. The remaining observables fall within the 3𝜎 ranges of the 
experimental data (cf. NuFIT 5.2 without SK [32]).
masses 𝑚1 = 49.2354meV 𝑚2 = 49.9912meV 𝑚3 = 1.05795meV
angles sin2 𝜃12 = 0.283166 sin2 𝜃13 = 0.0345963 sin2 𝜃23 = 0.795443
phases 𝛿∕𝜋 = 1.39102 𝜑1∕𝜋 = 0.141799 𝜑2∕𝜋 = 0.517899

𝐹2(𝜏) ∶= e−3𝜋i∕10
𝜗(3∕10,1∕2)(5𝜏)
(
𝜂(𝜏)

)3∕5 =
𝑞1∕5

∑
𝑝∈Z

(−1)𝑝𝑞(5𝑝2+3𝑝)∕2

∞∏
𝑛=1

(1− 𝑞𝑛)3∕5
, (37b)

with 𝑞 from (27), 𝜂(𝜏) being the Dedekind 𝜂-function defined before, and the 𝜗-constants given by

𝜗(𝜇,𝜈) =
∑
𝑚∈Z

exp
{
2𝜋i

[1
2 (𝑚+ 𝜇)2𝜏 + (𝑚+ 𝜇) 𝜈

]}
. (38)

The Hermitean combination 𝑀†
𝑒𝑀𝑒 is diagonal, and the three charged lepton masses can be obtained by adjusting the free parameters 𝛼, 𝛽, 

𝛾 , and 𝜁 . As before, we work in the basis in which the charged lepton Yukawa coupling is diagonal and the diagonal entries fulfill (𝑀†
𝑒𝑀𝑒)11 <

(𝑀†
𝑒𝑀𝑒)22 < (𝑀†

𝑒𝑀𝑒)33. The best-fit value of modulus 𝜏 is also close to the critical point i,

⟨𝜏⟩ = −0.0219308 + 0.994295i . (39)
These six real input parameters lead to the following neutrino mass and mixing parameters, as shown in Table 3.6 The ratio of mass squared 
differences is given by

Δ𝑚2
sol

|||Δ𝑚
2
atm

|||
= 0.03 . (40)

While we have not found a set of input values that give rise to predictions that are consistent with all experimental data, it would still be 
interesting, as in the case of the Γ3 Model, to see how robust relations could arise by considering the invariants. The RG invariants emerging from 
the neutrino mass matrix (35b) are given by

𝐼12 =
2
√
6

3
𝑌1(𝜏)𝑌4(𝜏)
𝑌 2
5 (𝜏)

, (41a)

𝐼13 =
2
√
6

3
𝑌1(𝜏)𝑌3(𝜏)
𝑌 2
2 (𝜏)

, (41b)

𝐼23 = 6
𝑌3(𝜏)𝑌4(𝜏)
𝑌 2
1 (𝜏)

. (41c)

These RG invariants are meromorphic modular functions on Γ(5) rather than SL(2, Z). As a consequence, they can be written as rational polynomials 
of the Hauptmodul 𝑗5(𝜏) of Γ(5). Further, the 𝑞-expansions of 𝐼12, 𝐼13 and 𝐼23 are given by

𝐼12 = − 8
147 𝑞

−1 − 338
1029 − 4420

7203 𝑞 +
260
16807𝑞

2 + 125120
352947 𝑞

3 − 856444
2470629𝑞

4 +… , (42a)

𝐼13 = −2 + 92
3 𝑞 − 1460

3 𝑞2 + 6960𝑞3 − 284260
3 𝑞4 + 1248060𝑞5 +… , (42b)

𝐼23 = 432𝑞 − 2412𝑞2 + 7704𝑞3 − 6876𝑞4 − 93240𝑞5 +… . (42c)
Unlike in the Γ3 model discussed in Section 4.1, none of the 𝐼𝑖𝑗 is a constant. In particular, 𝐼12 has a singularity at 𝜏 = i∞, 𝐼13 is singular at 
𝜏 = 1+0.767664i

2 , and 𝐼23 is singular at 𝜏 = 2+i
5 .

Since 𝑌1,2,3,4,5 can be expressed in terms of two building blocks, cf. Equation (36), these three invariants 𝐼𝑖𝑗 are also the rational polynomials of 
the same building blocks.

The way the algebraic relations between the invariants get specified is not unique. In what follows, we show one possible way,

0 = 4 + 18𝐼12 + 18𝐼13 + 9𝐼12𝐼13 + 𝐼12𝐼13𝐼23 , (43a)
0 = 8 + 12𝐼12 − 108𝐼212 + 12𝐼13 + 414𝐼12𝐼13 + 108𝐼212𝐼13 − 108𝐼213 + 108𝐼12𝐼213 + 81𝐼212𝐼

2
13

− 𝐼212𝐼23 − 𝐼213𝐼23 . (43b)

6 Note that the precision with which we present predictions of the model is misleading in that we do not have sufficient theoretical control over the model. These 
are “mathematical predictions” which allow other research groups to cross-check our results. As discussed around Equation (5), there are limitations, and generally 
it is nontrivial to make the theoretical error bars smaller than the experimental ones, see [37] for a more detailed discussion.
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These relations are richer than the corresponding constraint (24) in the Γ3 model of Section 4.1. However, they have the same qualitative virtue as 
their pendants of Section 4.1: they allow us to derive constraints on the observables of the model. Interestingly, Equation (43) is invariant under 
the exchange 𝐼12 ↔ 𝐼13. At the level of the functions of observables (18), this transformation is equivalent to 𝜃23 ↦ 𝜃23 + 𝜋∕2. This transformation 
is also known as 𝜇 ↔ 𝜏 symmetry or 2 − 3 symmetry [38] (see e.g. [39] for a review), and has been considered in the context of modular flavor 
symmetries in [40]. It is, therefore, worthwhile to explore the “fixed point” of this exchange symmetry, i.e. make the ansatz that

𝐼12 = 𝐼13 . (44)
𝐼12 and 𝐼13 depend on 𝐹1 and 𝐹2, and in the limit in which either of the 𝐹𝑖 becomes zero at least one of the invariants becomes undefined. Therefore, 
we can assume 𝐹1 ≠ 0, and define 𝑧 ∶= 𝐹2∕𝐹1.

(i) 𝐹 10
1 (𝜏) = −𝐹 10

2 (𝜏) Let us first the special case in which 𝐹 10
1 (𝜏) = −𝐹 10

2 (𝜏). In this case, 𝑌1(𝜏) = 0 and consequently

𝐼12 = 𝐼13 = 0 and 𝐼23 =∞ . (45)
In this case, the ratio 𝑧 can take any of the 10 values

𝑧(I)𝑛 = e𝜋i(2𝑛+1)∕10 , 𝑛 = 0,… ,9 . (46)
These solutions predict sin2 𝜃23 = 1∕2, and sin2 𝜃13 = 1∕3. Furthermore, the two larger mass eigenvalues are predicted to be degenerate with the sum 
rule 𝑚1 −𝑚2 =𝑚3 = 0 (and thus IO).

For instance, 𝑧(I)9 = e19𝜋i∕10 corresponds to 𝜏 = −2∕5 + i∕5. Note that 𝜏 = −2∕5 + i∕5 is a fixed point under the stabilizer Z2 = {1, 𝑆𝑇 2𝑆(𝑆𝑇 2)−1}. 
At this fixed point, the neutrino mass matrix also has a generalized 𝜇↔ 𝜏 symmetry,

𝑚𝜈 = −
(
𝜌𝟑(𝑆𝑇 2𝑆(𝑆𝑇 2)−1)

)⊺
𝑚𝜈 𝜌𝟑(𝑆𝑇 2𝑆(𝑆𝑇 2)−1) , (47)

where

𝜌𝟑
(
𝑆𝑇 2𝑆(𝑆𝑇 2)−1

)
= −

⎛
⎜
⎜⎝

1 0 0
0 0 e4𝜋i∕5
0 e−4𝜋i𝑛∕5 0

⎞
⎟
⎟⎠
, (48)

and the −1 in Equation (47) comes from the automorphy factor (𝑐𝜏 + 𝑑)2 = −1.

(ii) 𝐹 10
1 (𝜏) ≠ −𝐹 10

2 (𝜏) Now consider the more general case, 𝐹 10
1 ≠ 𝐹 10

2 , i.e. 𝐼12, 𝐼13 ≠ 0. The fixed point relation (44) can be traded for a constraint 
on 𝑧, which turns out to be a polynomial of degree 10. The 10 solutions are given by

𝑧(II)𝑛 =
√
5− (−1)𝑛

2 e2𝜋i𝑛∕10 , 𝑛 = 0,… ,9 . (49)
We can express the RG invariants in terms of 𝑧,

𝐼12 = −
2
(
3𝑧5 + 4

)(
𝑧10 + 1

)

3𝑧5
(
𝑧5 − 7

)2 , (50a)

𝐼13 =
2
(
4𝑧5 − 3

)(
𝑧10 + 1

)

3
(
7𝑧5 + 1

)2 , (50b)

𝐼23 = −
36𝑧5

(
3𝑧5 + 4

)(
4𝑧5 − 3

)
(
𝑧10 + 1

)2 . (50c)

Clearly, the 𝐼𝑖𝑗 are rational functions of 𝑧5. Since 𝑧5 is real, 𝐼𝑖𝑗 are real. In fact, for all 10 solutions in (49),

𝐼12 = 𝐼13 = −2
3 and 𝐼23 = 36 . (51)

As one would expect, 𝜃23 is maximal, i.e. sin2 𝜃23 = 1∕2, and sin2 𝜃13 = 1∕5. The size of the mass eigenvalues depends only on whether 𝑛 is even or 
odd, i.e. |𝑧(II)𝑛 |. For each 𝑧(II)𝑛 , there exist 𝜏(II)𝑛 such that 𝑟21

(
𝜏(II)𝑛

)
∶= 𝐹2

(
𝜏(II)𝑛

)
∕𝐹1

(
𝜏(II)𝑛

)
≃ 𝑧(II)𝑛 . All even (odd) 𝑛, 𝜏(II)𝑛 can be obtained from 𝜏(II)0 (𝜏(II)1 ) 

via SL(2, Z) transformations, i.e. for 𝑚 ∈Z5

𝑟21
(
𝜏(II)2𝑚

)
≃ 𝑧(II)2𝑚 , (52a)

𝑟21
(
𝜏(II)5+2𝑚

)
≃ 𝑧(II)5+2𝑚 . (52b)

While there are no exact analytic solutions, the following 𝜏 values

𝜏(II)2𝑚 = 𝜏(II)0 +𝑚 , where 𝜏(II)0 ≃ 𝜀i , (53a)
𝜏(II)5+2𝑚 = 𝜏(II)5 +𝑚 , where 𝜏(II)5 ≃ 2.5 + 𝜀′i , (53b)

with 0 < 𝜀, 𝜀′ ≪ 1, solve (52) almost perfectly. The appearance of the relative phases between 𝑧(II)𝑛 can be seen easily from the definition of the 𝐹𝑖
in (37). Note also that all 𝜏(II)2𝑚 are related via SL(2, Z) but not Γ5 transformations, and likewise for 𝜏(II)2𝑚+1.
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However, the solutions in (49) also predict the unrealistic relation 𝑚1 = 𝑚2 along with the sum rule 𝑚3 = 𝑚1 + 𝑚2 (and thus NO) and, as a 
consequence of (50), vanishing phases. The sum rule implies a continuous symmetry of the neutrino mass matrix,

𝑅(𝜃) ⋅𝑚𝜈 ⋅
(
𝑅(𝜃)

)𝑇 =𝑚𝜈 , (54)
where 𝑅(𝜃) ∶=𝑈†

PMNS ⋅𝑅3(𝜃) ⋅𝑈
⊺
PMNS with 𝑅3(𝜃) being a rotation in the 1 − 2 plane.

Furthermore, the predicted relations for the masses and mixing angles are a consequence of an approximate discrete symmetry of the neutrino 
mass matrix

𝑚𝜈 =
(
𝑈𝟑(𝑛)

)⊺
𝑚𝜈 𝑈𝟑(𝑛) , (55)

where the Hermitean unitary matrix 𝑈𝟑(𝑛) squares to unity and is given by

𝑈𝟑(𝑛) = −
⎛
⎜
⎜⎝

1 0 0
0 0 e2𝜋i𝑛∕5
0 e−2𝜋i𝑛∕5 0

⎞
⎟
⎟⎠
. (56)

This transformation can be regarded as a Z2 transformation of the 𝟓-plet,
⎛
⎜
⎜
⎜
⎜
⎜⎝

𝑌1
𝑌2
𝑌3
𝑌4
𝑌5

⎞
⎟
⎟
⎟
⎟
⎟⎠

↦

⎛
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 0 0
0 0 0 0 e2𝜋i𝑛∕5
0 0 0 e4𝜋i𝑛∕5 0
0 0 e−4𝜋i𝑛∕5 0 0
0 e−2𝜋i𝑛∕5 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜⎝

𝑌1
𝑌2
𝑌3
𝑌4
𝑌5

⎞
⎟
⎟
⎟
⎟
⎟⎠

=∶𝑈𝟓(𝑛) ⋅

⎛
⎜
⎜
⎜
⎜
⎜⎝

𝑌1
𝑌2
𝑌3
𝑌4
𝑌5

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (57)

We emphasize that none of the symmetries (55) are exact symmetries of the action, they are symmetries of neutrino mass matrix at the fixed point of 
the syzygies (43). However, in this setup having symmetries of the neutrino mass matrix, as opposed to symmetries of the action, comes at a price: 
the modular forms become very large, their absolute values can exceed 100. In the context of bottom-up model building this can be acceptable 
because there is no a priori normalization of the modular forms, i.e. we can always multiply them with a small constant. It is to be noted that 
symmetries of mass matrices have been discussed in the literature. However, to the best of our knowledge, these symmetries have been imposed in 
a rather ad hoc fashion in the sense that there is no model realization for these previous examples. We speculate that the type of model construction 
considered in this Letter may provide a consistent framework from which symmetries of mass matrices can arise dynamically. We will investigate 
this aspect further in a subsequent work.

5. Discussion

As we have seen, in modular invariant models of flavor, it is possible to relate certain meromorphic modular invariant functions to physical 
observables. In some cases, such as (28a) and (29), one even obtains modular invariant holomorphic observables, where a combination of observables 
conspires to become an integer, independent of the renormalization scale. We have shown that useful information and phenomenological constraints 
can be extracted from these relations, which, due to RG invariance, can be directly, modulo the limitations discussed around Equation (5), applied 
to observables measured in experiments. It will also be interesting to apply our discussion to the quark sector, where invariants were obtained from 
different considerations [41,42].

The fact that these observables conspire to be integers may be regarded as a hint towards a topological origin of these relations. In the effective 
theory approach, it is not obvious how to substantiate such speculations. However, it has been known long before modular invariance was used in 
bottom-up model building that the couplings in string compactifications are modular forms [43, cf. the discussion around Equation (19)]. Earlier 
work [44–46] and more recent analyses [23,47–59] explore the stringy origin of these couplings. It will be interesting to see whether the above-
mentioned integers, which can be directly related to experimental observation as we have shown, play a special role in stringy completions of the 
SM. It is tempting to speculate that this may provide us with a direct relation between experimental measurements and properties of the compact 
dimensions.

Obviously, this is not the first time in which holomorphy ( ) and modular invariance ( ) is used to make firm physical predictions. 
In particular, the celebrated Seiberg–Witten theory [60,61] makes use of these concepts to solve gauge theories with  = 2 SUSY. However, 
our discussion shows, in the framework of modular flavor symmetries, , , and in some instances govern certain combinations of 
real-world observables. As we discussed, these combinations are RG invariant to all orders within  = 1 SUSY, and their poles and zeros are RG 
invariant even without SUSY. Let us reiterate that these conclusions are generally valid only under the assumption that the Kähler potential attains 
its minimal form (5) at some scale. It will, therefore, be interesting to find alternatives to [25] allowing us to control the Kähler potential. Likewise, 
the discussion of modular invariant holomorphic observables for non-minimal Kähler potentials is left to future work.

6. Summary

We have pointed out that in modular invariant models of flavor, certain combinations of couplings give rise to modular invariant meromorphic 
and even holomorphic physical observables. These objects are highly constrained by their symmetries and properties, RG invariant, and, at the 
same time, composed solely of quantities that can be measured experimentally. They carry a lot of information, and allow us to draw immediate, 
important, and robust conclusions on the model without the need to perform scans of the parameter space. In addition, symmetry relations among 
the invariants exist for certain modular symmetries, as illustrated in the Γ5 model studies in this Letter. Fundamentally they are symmetries of the 
fixed points and can correspond to phenomenologically relevant ones, such as the 𝜇 − 𝜏 symmetry.

More importantly, to the best of our knowledge, these are the first examples in which physical observables are given by modular invariant 
functions. This Letter is only the start of exploiting their properties to obtain better theoretical control of model predictions.
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Appendix A. Renormalization-group invariant expressions

Let us now study the RG evolution for the effective neutrino mass operator. The structure of the renormalization group equation (RGE) in the 
SM, two-Higgs doublet models (2HDMs) and the MSSM is

16𝜋2 d
d𝑡 𝜅 = 𝑃 ⊺ 𝜅 + 𝜅 𝑃 + 𝛼 𝜅 , (58)

where at one-loop 𝑃 = 𝐶𝑒 𝑌
†
𝑒 𝑌𝑒 with 𝑌𝑒 being the charged lepton Yukawa matrix, and 𝑡 = ln(𝜇∕𝜇0). As usual, 𝜇 denotes the renormalization scale 

and 𝜇0 a reference scale. The coefficients 𝐶𝑒 are 𝐶𝑒 = −3∕2 in the SM [62] and two-Higgs models [63], and 𝐶𝑒 = 1 in the MSSM [64,65]. In the 
basis where 𝑃 is diagonal it is easy to see that

Δ𝜅𝑖𝑗 =
Δ𝑡

16𝜋2 𝜅𝑖𝑗
(
𝑃𝑖𝑖 + 𝑃𝑗𝑗 + 𝛼

)
, (59)

where no summation over 𝑖, 𝑗 is implied. It has been pointed out in [26] that certain ratios of entries of 𝜅 do not depend on the renormalization 
scale,

𝐼𝑖𝑗 =
𝜅𝑖𝑖 𝜅𝑗𝑗
𝜅2
𝑖𝑗

(𝑖 ≠ 𝑗) . (60)

In the MSSM, this can be understood from the non-renormalization theorem. Here, only the wave-function renormalization constants are scale-
dependent, and this dependence precisely cancels in the above expressions [66]. It has been noted in [26] that this statement also applies to the 
non-supersymmetric SM at the one-loop level.

The scale invariance of 𝐼𝑖𝑗 is due to the fact that the renormalizable couplings in the SM have a larger global symmetry. Specifically, the lepton 
sector has global lepton family number symmetries. Therefore, in the basis in which the charged lepton mass matrix is diagonal, corrections that 
multiply the effective neutrino mass operator will be diagonal as well. As a result,

d
d𝑡 𝜅 = 𝑃 𝜅 𝑄̃⊺ + 𝑄̃ 𝜅 𝑃 ⊺ + 𝛼 𝜅 , (61)

where 𝑃 , 𝑄̃ and 𝛼 are composed of the renormalizable couplings of the theory and diagonal,

𝑃 = diag(𝑃1,𝑃2,𝑃3) , (62a)
𝑄̃ = diag(𝑄̃1, 𝑄̃2, 𝑄̃3) . (62b)

At 1-loop, 𝑃 = 1
16𝜋2 𝑃 , 𝑄̃= 1, and 𝛼 = 1

16𝜋2 𝛼. Equation (61) implies that

𝜅̇𝑖𝑗 = 𝜅𝑖𝑗
(
𝑃𝑖 𝑄̃𝑗 + 𝑃𝑗 𝑄̃𝑖 + 𝛼

)
, (63)

where no summation over 𝑖 or 𝑗 is implied. This means that

d
d𝑡 𝐼𝑖𝑗 =

𝜅̇𝑖𝑖 𝜅𝑗𝑗
𝜅2
𝑖𝑗

+
𝜅𝑖𝑖 𝜅̇𝑗𝑗
𝜅2
𝑖𝑗

− 2
𝜅𝑖𝑖 𝜅𝑗𝑗
𝜅3
𝑖𝑗

𝜅̇𝑖𝑗

= 2
(
𝑃𝑖 − 𝑃𝑗

)(
𝑄̃𝑖 − 𝑄̃𝑗

)
𝐼𝑖𝑗 . (64)

This has two immediate consequences:

1. At 1-loop, where 𝑄̃𝑖 = 1 for all 𝑖, 𝐼𝑖𝑗 are RG invariant.
2. Zeros and poles of 𝐼𝑖𝑗 remain zeros and poles at all orders.
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In particular, in the basis in which 𝑃 is diagonal one can write the scale-dependent neutrino mass operator as

𝜅(𝜇) =
⎛
⎜
⎜
⎜⎝

𝑧1(𝜇)𝑧1(𝜇) 𝑧1(𝜇)𝑧2(𝜇)𝐼
−1∕2
12 𝑧1(𝜇)𝑧3(𝜇)𝐼

−1∕2
13

𝑧2(𝜇)𝑧1(𝜇)𝐼
−1∕2
12 𝑧2(𝜇)𝑧2(𝜇) 𝑧2(𝜇)𝑧3(𝜇)𝐼

−1∕2
23

𝑧3(𝜇)𝑧1(𝜇)𝐼
−1∕2
13 𝑧3(𝜇)𝑧2(𝜇)𝐼

−1∕2
23 𝑧3(𝜇)𝑧3(𝜇)

⎞
⎟
⎟
⎟⎠

(65)

as long as 𝜅 does not have zeros. As indicated, only the 𝑧𝑖 =
√
𝜅𝑖𝑖 are subject to RG evolution. In slightly more detail, only the absolute values of 

the 𝑧𝑖 depend on the scale while their phases remain invariant. If one or more entries of 𝜅 are zeros, then our discussion shows that these entries 
remain zero at all scales in the perturbative effective field theory (EFT) description. Zeros of the diagonal (off-diagonal) entries of 𝜅 correspond to 
zeros (poles) of the 𝐼𝑖𝑗 . This leads to RG invariant relations between the physical parameters, which will be studied elsewhere.

Appendix B. More details on Feruglio model

The purpose of this appendix is to show that the observables in Feruglio’s Model 1 (cf. Section 4.1) are modular invariant, provided one transforms 
the VEV of 𝜑𝑇 appropriately. To see this, recall that the superpotential terms in this model are given by contractions between the flavon 𝜑𝑇 and the 
triplet of modular forms. The invariance of superpotential terms requires 𝐴4 invariance and that the modular weights of fields and modular forms 
involved in an operator to add up to zero. As for the former, the fact that 𝑌 (2)

𝟑 transforms as a triplet means that

𝑌 (2)
𝟑 (𝛾 𝜏) = (𝑐𝜏 + 𝑑)2 𝜌𝟑(𝛾)𝑌

(2)
𝟑 . (66)

The fields, including the flavon 𝜑𝑇 , transform in such a way that the superpotential is invariant. The VEV of the flavon 𝜑𝑇 is given by ⟨𝜑𝑇 ⟩ = (𝑢, 0, 0). 
Both this VEV and the invariants 𝐼𝑖𝑗 (𝜏) from (23) are invariant under 𝑇 but not 𝑆 transformations. However, the transformations which change 
𝐼𝑖𝑗 (𝜏) can be regarded as a basis change, and after undoing the basis change the invariants get mapped to their original form.

In slightly more detail, under an 𝑆 transformation

𝑌 (2)
𝟑 (𝜏) =

⎛
⎜
⎜⎝

𝑌1(𝜏)
𝑌2(𝜏)
𝑌3(𝜏)

⎞
⎟
⎟⎠

𝑆
⟼ 𝜏2𝜌(𝑆)𝑌 (2)

𝟑 (𝜏) = 𝜏2
3

⎛
⎜
⎜⎝

−𝑌1 + 2𝑌2 + 2𝑌3
2𝑌1 − 𝑌2 + 2𝑌3
2𝑌1 + 2𝑌2 − 𝑌3

⎞
⎟
⎟⎠
, (67a)

𝑀𝑒 = 𝑢 diag(𝛼,𝛽, 𝛾)
𝑆

⟼ 𝑢
3

⎛
⎜
⎜⎝

−𝛼 2𝛽 2𝛾
2𝛼 −𝛽 2𝛾
2𝛼 2𝛽 −𝛾

⎞
⎟
⎟⎠
. (67b)

Under the 𝑆 transformation alone, 𝐼𝑖𝑗 (𝜏) from (23) are not invariant. However, once we diagonalize the charged lepton Yukawa couplings, which 
amounts to undoing (67b), 𝐼𝑖𝑗 (𝜏) get mapped back to their original form. Of course, these findings are a simple consequence of two basic facts: (i) 
modular transformations of 𝑌 (𝜏) amount to transforming 𝑌 (𝜏) with an 𝐴4 matrix and multiplying it by an automorphy factor, and (ii) invariants 𝐼𝑖𝑗
are constructed in such a way that the automorphy factors cancel. Therefore, undoing the 𝐴4 transformation returns 𝐼𝑖𝑗 to their original form.
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