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ARTICLE INFO ABSTRACT

Editor: A. Ringwald In modular invariant models of flavor, observables must be modular invariant. The observables discussed so far
in the literature are functions of the modulus 7 and its conjugate, 7. We point out that certain combinations of
observables depend only on 7, i.e. are meromorphic, and in some cases even holomorphic functions of 7. These
functions, which we dub “invariants” in this Letter, are highly constrained, renormalization group invariant, and
allow us to derive many of the models’ features without the need for extensive parameter scans. We illustrate
the robustness of these invariants in two existing models in the literature based on modular symmetries, I'; and
I's. We find that, in some cases, the invariants give rise to robust relations among physical observables that
are independent of 7. Furthermore, there are instances where additional symmetries exist among the invariants.
These symmetries are relevant phenomenologically and may provide a dynamical way to realize symmetries of
mass matrices.

1. Introduction

The standard model (SM) contains, including neutrinos, almost 30 continuous parameters. Most of these parameters reside in the flavor sector.
Recently, the modular invariant approach to flavor has emerged as a promising way of deriving the flavor parameters from powerful modular
symmetries [1], with a significantly reduced number of parameters. The construction of the flavor models entails the finite modular groups I"y [1]
orI" ;v [2]. A number of explicit models has been worked out, such as [3-15], see the recent reviews [16,17] for further references.

One of the main reasons for the popularity of this scheme is that the couplings of the theory are unique, or at least very constrained. In slightly
more detail, the couplings are functions of a chiral superfield 7 subject to three requirements:

° modular covariance or modular invariance (cf. Section 2),
@ the couplings depend only on the modulus 7 but not on its conjugate, 7, and

@ the couplings are finite for all values of 7.

Note that in different communities, different terminology is being used for these requirements. In mathematics, @ amounts to saying that the

coupling is a meromorphic function of = whereas in some physics contexts such functions are called holomorphic. @ and @ together mean,
in mathematician’s terminology, that the coupling is a holomorphic function of z. In what follows, we will refer to the requirements just by the
symbols to avoid confusion.

The important point is that °, @ and @ together are so restrictive that they almost completely fix the couplings [18-20]. Up to this
point, these requirements have only been discussed at the level of superpotential couplings. The purpose of this Letter is to point out that one can
make similar statements at the level of observables. As we shall see, there are observables for which all the requirements, i.e. °, @ and @,
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are simultaneously fulfilled. Our findings allow us to make very robust predictions. There are also observables which fulfill @ and @ but fail

to satisfy @ We will comment on how in such cases one can still make general statements on the predictions of the model.

In this Letter, we first review the basic framework of modular flavor symmetries in Section 2. In Section 3 we discuss how typical observables
are non-holomorphic since they involve the normalization of the fields. We then introduce modular invariant holomorphic observables in Section 4,
and work out some basic applications using two example models in Section 4.1 and 4.2. Section 5 contains some further discussion, and Section 6
contains our conclusions.

2. A short recap of modular flavor symmetries

The key ingredient of modular flavor symmetries is modular invariance, i.e. requirement @ That is, the theory is assumed to be invariant
under SL(2, Z) transformations y of the modulus 7,

Yy at+b
— N
ct+d

(€Y

where a,b,c,d € Z and ad — bc = 1. Modular invariance, along with @ from supersymmetry (SUSY)! and the additional requirement that the

couplings of the theory be finite, i.e. @, leads to a highly predictive scheme, in which the superpotential couplings are almost unique. That is, the
superpotential terms of the models are of the form

W D gY, (1)@ & F 2

where Y;;,(7) are uniquely determined vector-valued modular forms and the @' denote some appropriate superfields. That is, under (1)

Y o Yy v) = (er + N py () Vi (0), ©)

where py is a representation matrix of a finite group. As long as ky # 0 and/or py(y) # 1, Y; k(7)) 1s modular covariant (rather than invariant). The
superfields transform as

@, > (et +d) M p() D, )

where k; denotes the modular weight of ®;, which, as indicated may transform nontrivially under the finite modular group with representation ma-
trix p;(y). g denotes a coefficient, which can be chosen arbitrarily in the bottom-up approach.> However, apart from this freedom, the superpotential

terms are uniquely determined by requirements @, @ and @

Let us briefly recall what @ means. It is the requirement that the functions Y}, () remains finite throughout the fundamental domain. Without

this requirement, we could multiply Y; jk(r) by arbitrary polynomials of the modular invariant function, or Hauptmodul of SL(2,Z), j(z), while

still satisfying requirements @ and @ However, as j diverges for 7 — ioo, this is inconsistent with @, and therefore not allowed. Thus,

by requiring simultaneously @, @, and @, the couplings are unique up to an undetermined coefficient g, and in cases where there are

multiple invariant contractions, up to multiple undetermined coefficients g;. Examples for the latter case can be found in [4,7,13].
In vast literature, the Kahler potential of the matter fields is assumed to be of the so-called minimal form,

Kmatter = Z m(‘bi@i . )
Here we set the vector multiplets to zero. It is known that the requirements @, @ and @ do not fix the Kéhler potential to be of the form (5),
but there are several additional terms which are allowed by the symmetries of the models, thus limiting the predictive power of the models [24].
While entirely convincing solutions to this problem have not yet been found, there exist proof-of-principle type fixes which allow one to sufficiently
control the extra terms to make their impact comparable to the current experimental uncertainties in flavor observables [25]. In what follows, we
will base our discussion on the minimal Kihler potential (5).
Modular invariance, in particular, means that observables are to be modular invariant. However, this does not mean that the Y;;,(r) of (2)
are modular invariant. Rather, as we shall see next, there are several non-holomorphic observables which are modular invariant because of the
normalization of the fields, cf. Equation (5).

3. Non-holomorphic observables

To illustrate this point with an explicit example, we consider a toy model based on

M(1)
2

W = %, (6a)

1 —

= 6b
(=it +iT)ke (6b)

1 SUSY may not be necessary for @, cf. [21]. However, so far there is no explicit model illustrating this.

2 See, however, [22] for a proposal for the normalization of the modular forms. It would be interesting to see to which extent this approach replicates the known
normalizations in explicit top-down constructions such as [23].
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where M(7) is a vector-valued modular form of weight k. Apart from the modular weight of the field, k4, we need to specify the modular weight
of the superpotential ko =k, + 2kg,. In large parts of the literature, the modular weight of the superpotential is taken to be zero, kg =0, and in
this section we adopt this practice. A nonzero ko,- =0, as required by supergravity, does not change the following discussion qualitatively. This then
fixes the modular weight of M(z) to be

kg =—2ke - @)

Thus, under a modular transformation

at+b
- —

=7, 8
cord (8a)
1
O ———D, 8b
(ct + d)ko (8b)
M@ > M) = — M@, 80)
(et +d)km

While M(7r) and 7 both transform nontrivially, is straightforward to confirm that

|M(@)? (=it +iz) ©)
is invariant under (8). This combination emerges from the scalar potential,
%(%>K6¢%+... (10)
oD 0D

after rescaling the fields to be canonically normalized. That is, we have to take into account the inverse of the Kahler metric, which we obtain from
Equation (6b)

KO = (Cir +ip)e 1n

both in (10) and when computing the physical mass,

2
m2h sical — (_iT + if)kd’ a—(y— . (12)
Pays 0D 0D |p_F—0
Here, ® denotes the scalar component of the superfield ®. The resulting physical mass of ® is given by
Mphysical = mphysical(fs 7) = |M(7)| (it + i"f_')kd) . 13)

As indicated by the notation, the physical mass is not a meromorphic (nor holomorphic) function of 7, i.e. it does not fulfill @ Of course, the
physical mass mypgca(7,7) is modular invariant, as it should, i.e. satisfies @ However, it is modular invariant “at the expense” of being
non-holomorphic, i.e. @ and @ are fulfilled but not @

The observable of the model, i.e. the mass, fails to satisfy @ because it involves the Kahler metric. Let us stress that this feature of the toy

model is rather generic: in order to compute observables, one typically needs to take into account the Kidhler metrics, thereby sacrificing @ Asa
consequence, the uniqueness discussed in Section 2 does not apply to such observables. In what follows, we will see that there are observables that
do not receive 7-dependents contributions, and hence fulfill @, and are thus highly constrained.

4. Modular invariant holomorphic observables

In order to obtain holomorphic observables, we need to remove the nonholomorphic terms coming from the Kéhler metric. It turns out that in
the lepton sector of the minimal supersymmetric standard model (MSSM) there is a straightforward way to obtain such expressions. Consider the
superpotential of the lepton sector

. 1
Wlepmn=Yeu Li'HdEj+5Kij(T)Li'HuLj'Hu' a4

Here, L' and E' denote the three generations of the superfields of the SU(2); charged lepton doublets and singlets, and H,, /4 stand for the MSSM

Higgs doublets. Y, denotes the charged lepton Yukawa couplings, which is not a modular form. M(7) = uz k(7) is the neutrino mass matrix, with
k(7) being the effective neutrino mass operator.
In the basis in which Y, = diag(y,, Vs Ve)s consider

M;i () M (1) _ K () k;;(7) 3 m; (7, T)m;;(7,7)

(Mij(f))2 (Kij(T))z (m,-j(r,f)>2

Lj(r) := (15)

. e . _ Lk ¥k /2 . . . .
where no summation over i, j is implied. Here, m;;(z,7) := (—iz + 11)( Litke)/ K;;(7) Uﬁ are the entries of the neutrino mass matrix in the canonically

normalized basis, with kbeing the modular weight of the lepton doublet L;. Crucially, Equation (15) shows that the ratios of the physical mass
matrix entries, m;;(z,7), can be expressed entirely as rational functions of holomorphic modular functions. This is because, while the individual
entries m;;(z, 7) have a structure analogous to Equation (13), the /;; are constructed in such a way that the factors containing 7 cancel. That is, by

construction the [;; fulfill @ In what follows, we will discuss to which extent they also fulfill @ and @

3
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Table 1

Quantum numbers in Feruglio’s Model 1.
field/coupling  (ES, ES,ES) L H,/y or Y2()
SU2), x U(1)y €1 2,-1/2) 2,x1/2) 1,0) (1,0)
T,=A, €1, 1) 3 1 3 3
ky 2,2,2) 1 0 -3 -2

It has been known for a while that the I, 7 from Equation (15) are renormalization group (RG) invariant [26] (see the discussion in Appendix A).
In the MSSM this can be understood from the non-renormalization theorem and the fact that the normalizations of the field cancel, which is also
the reason why the I;; from Equation (15) are interesting for our present discussion. As we detail in Appendix A, the location of zeros and poles is
RG invariant to all orders even in the absence of SUSY. In this basis, the neutrino mass matrix is given by
* . T
m, =Upns diag(my,my,ms) Upyins * (16)
where the m; denote the neutrino mass eigenvalues and the PMNS matrix Upyg depends on the leptonic mixing angles (6},,63.,6,3), the Dirac
phase (6) and the two Majorana phases (¢, ¢,). Altogether, there are nine independent physical parameters,

{012,013,023,6, 01, 02, my,my, m3} . a7)
From Equation (16), the invariants can be computed explicitly, and read, in the PDG basis,>
= (i 2 (a8 2, J2is,, 2 2
a [ml (€Pco381p +¢12813523) " + 1y (el €12€23 —512513523> +e myeiys 2;]

I, = , (18a)
2 [ i & is 2i6 2
13 [Aiyc1n (€cazsin +€12513503) + ys1n (512513523 = €0cpp603) — eH0mys3503)

~ i 2, ~ is 25, 2 .2
ag [ml (123513 = 2512523 )” + 7y (23512513 + %€ 125 )” + €7 m3cisc 23]
I;= , (18b)

2 [m —¢id i is _ o2i6 2
ey [P (eraeassiz = €0s12803) + Masin (€a3810515 +€Pc12803) — e2omyeassis)

2, 2 2~ (s 2~ (5 2
123—[3 m3Cy3853 +my (e C23512+012513523) + 1 (€9¢1p¢03 = 512513523) ]

2i6 ~ is 2
4 [e m%CB 23 + 1y (381813 + ¢ 012322) +iiy (€12623513 = €512503) ]

X , (18¢)
[ a, + Myay — c20my sin(2023)c123]2
where s;; :=sin6;;, ¢;; :=cos0;; and
ay = (Fn’,clz2 + %ﬂ%z) iy +62‘5m3s%3 , (19a)
a: Cd %2 - 012313) sin(26,3) — € cos(26,3) sm(2012)sn] (19b)
a, : [e“’ c08(26,3) sin(26,)s3 + ( 2o f2 - 5%251%) sm(2923)] (190)

The invariants I;; depend on m;, m,, ¢, and @, only via the combinations i, :=m, e'?1 and m, :=m,el®2. As I, ; are complex constants, they give
rise to six relations. Based on these relations, one can infer, for instance, the scale dependence of all angles and phases from the running of the three
mass eigenvalues.

While the expressions (18) are lengthy, they have two important properties:

1. they only depend on the physical parameters (17);
2. they are modular invariant.

In models in which the Majorana neutrino masses are modular forms, the modular weights of the matrix elements of the light neutrino mass matrix
are solely determined by the modular weights of the left-handed leptons L;. Then the matrix element M;;(r) of the superpotential coupling matrix
M () has modular weight k;_+ k L The invariants (15) must be modular functions of weight 2k; + 2k L~ 2k, +k Lj) =0 of the corresponding

modular symmetry. This means that the /;;(r) can always be written as rational functions of the so-called Hauptmodul of the corresponding modular
symmetry [19,20]. The Hauptmodul for a given subgroup G of SL(2,7Z) is a modular function of weight 0 on G which generates all the modular

functions for this group G, and fulfills @ and @ The best-known example of this kind is the j-invariant j(r) := Ei (r)/ #**(r), which is the
Hauptmodul for the full modular group SL(2, Z). Here E, () is the Eisenstein series and #(z) is the Dedekind eta function. Notice that these modular
invariant functions have, as opposed to the modular forms, poles [28], i.e. they fulfill @ & @ but not @ Given these properties we have a

significant amount of information on these physical observables directly from the theory of modular forms. We will illustrate this crucial point in
the following examples.

4.1. Feruglio model based on I';

Consider Model 1 from [1], which is based on finite modular group I'; = A,. The assignments of modular weights and representations for the
matter fields are shown in Table 1. The model contains a triplet flavon, ¢4, which only couples to the charged leptons. The effective neutrino masses

3 Note that we have chosen a different notation ¢, := —2#, for the Majorana phases with respect to the PDG [27].
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depend only on the modular forms of weight 2. In more detail, the relevant terms of the superpotential are given by

W,=aE{H; (Lor), +BPESH, (Lor), +vESH, (Lor) (20a)

1// )
V, = @ b
V= (#LHLY?) (20b)

and there are no higher-order contributions to the effective neutrino mass operator in the superpotential. The notation (... ), indicates a contraction
to the representation r of the finite group, i.e. A4 in this case, and does not imply the SL(2, Z) representation explicitly. The flavon ¢ is assumed
to develop the vacuum expectation value (VEV)

<(pT> = (u’ov 0) . (21)

With the VEV given in (21), the charged lepton and neutrino mass matrices read

M, =uv, diag(a, p,y), (22a)
2 (2N Y@ -Ys@)
m,(1,%) = (=it +i7) X“ “Y,(r) 2Y3(z) -Yi(v)

=Y3(r) =Y (r) 2Y,(7)
Kir Ki2 K3
= (it +iD) v |k Ky K3 |- (22b)
K13 K3 K33
Here, Y] , 5 are the components of modular forms triplet Y;z) (7). Notice that @ <y < f, and as a consequence Y, and Y; in (22b) are swapped

compared to [1, Equation (38)].
The invariants (15) are given by

I(7) = 4w (23a)
(Ya(0))

INCRFRCLACL (23b)
(3(0)

o AT 250
(¥,(®)

The invariants [;;(r) are products of ratios of two holomorphic modular forms, so they are meromorphic on the extended upper-half plane H =
HURU {ico}. They also transform as A, 1-plets.
Consider a modular invariant meromorphic function I(z). Modular invariance, as opposed to modular covariance, means that (cf. e.g. [28])

1. either I(7) is a 7-independent constant,
2. or it has poles.

Both cases are realized in the example at hand. First of all, I}, is a constant because the Y; satisfy the algebraic constraint*
2) (2 _vy2 —
(n?r?), =v2+2ry,=o. 4

The latter follows from the fact that the modular form triplet Y;z)(r) of weight 2 can be obtained from the tensor product of modular form doublet
Y@ = (X, (o), X,(r))" of weight 1 [2],

2
o Y, X3

=Y = V2x X, | (25)
Y3 _X12

Here, the modular forms X ,(r) of weight 1 on I'(3) are given by

3
X,(7) :=3\ﬁ% =3V2¢ 30+ q+22 +2¢* + ¢ +..), (262)
3 3 3
Xy(e) 1= 3D /D 6 6t —124T— . (26b)
n(r) n(r)
where
qzeZJriT . (27)

Since the three Y; can be expressed in terms of the two X, the Y; are not algebraically independent, as manifest in the constraint in Equation (24).

4 Two other interesting identities are (Y;Z) Y;z)) =Y?+2Y,Y; = E, and (Y;z) Y;Z)) =YZ+2Y,Y, =-12¢%.
1 ’ v

5
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Table 2

Quantum numbers in the I'y model.
field/coupling E* L H,, 7 ® YS(Z) ()
SUQ@) xU(ly @D @2.-1/2) (2,x1/2 @0 1,00 (1,0
T = Aj 3 3 1 1 3 5
ky 2 1 0 -3/2  -3/2 =2

Altogether we find, as expected, that the invariants can be expressed in terms of the Hauptmodul j5(7) :=n(z/ 3)3/n(37)? of I'(3) as,

I,(r)=-2, (28a)
3

@ =-2(1435@) . (28b)

Iyo=-2-__ 16 (28¢)

I3 <1+%j3(1)>3

(28b) and (28c) are invariant under I'(3) and invariant under the full SL(2, Z) if one properly takes the transformation of the flavon ¢ into account,
cf. Appendix B. Further, Equations (28b) and (28c) imply that

I3 Iy ==32. 29
The g-expansions of I3 and I,3 are given by

2 ., 10 152

2768
Is=—=q ' = — -4+ ==¢* +18¢> - 884" + =—=¢° +216¢° + ... , 30
13 774 9 q+27q+q q+27q+ q° + (30a)
Iy; = 432q — 6480¢° + 738724 — 725328¢* + 6503328¢° — 54855792¢° + ... . (30b)
It can be shown that 1,5 has a singularity at 7 =ico. Similarly, I,; is singular at 7 = _3+Ti\/§, though it vanishes at 7 =ico.

The conditions in Equations (28a) to (28c) lead to robust phenomenological implications when relations in Equation (18) are utilized where the
invariants are expressed in terms of the physical mixing parameters (17). In particular, Equation (28a) and Equation (29) give rise to four constraints
that are independent of the value of 7. Due to the form of the neutrino mass matrix in this model Equation (22b), there is a sum rule among the
three physical neutrino masses [29,30],°

(€19)

my +m; for normal ordering (NO),
m3 =
my —m; for inverted ordering (I0) .

Given the sum rule, the three neutrino masses (and thus the absolute neutrino mass scale) are completely fixed by the two mass squared differences,
AmfOl and Amitm, which have been determined from oscillation experiments. Furthermore, the mixing angles are also known from oscillation
experiments [32]. We are thus left with three undetermined observables, namely the three CP phases

{0, 01,02} . (32)

Hence we can use the invariants to predict the values of the CP phases in this model.

Equation (28a) trivially fulfills requirements @, @ & @ It entails two constraints, Re I}, = =2 and Im I, = 0. Therefore, for a given
value of the Dirac CP phase §, we can predict the values of the Majorana phases ¢; and ¢,. It is important to note that these predictions are
independent of the value of 7. With these predictions, one can then determine the neutrinoless double beta decay matrix element, (m,,), as shown
in Fig. 1. Given that only two out of the six conditions are utilized, the experimental best-fit values for the mixing parameters that have been used
as our inputs in Fig. 1 may not be fully consistent with all constraints (in fact they are not, as we will discuss below). Nevertheless, it is interesting
to see even with one invariant, it is already possible to significantly constrain the model.

After imposing Equation (28c) Equation (28a), there is only one observable left undetermined. If we impose equation (29), which entails two
constraints, one for the real and one for the imaginary parts of I3 I,3 = —32, the system is overconstrained. We have verified that we cannot impose
the constraints (28b) and (28c) while still being consistent with data. These findings are consistent with the analyses in [1,35], where it has been
pointed out that one cannot accommodate all experimental data for the neutrino masses and mixings in this model. Note that we arrived at this
conclusion without having to scan over 7. However, as discussed in [35], by adding one more parameter one can obtain a model which is remarkably
consistent with the current experimental constraints.

4.2. A model based on I';

We next consider a model based on I's = A5 [5,6,35]. The assignments of modular weights and representations for the matter fields are shown
in Table 2. This model introduces a singlet flavon, y, and an A; triplet flavon, ¢, which only couple to the charged leptons. The effective neutrino
masses depend only on the modular forms of weight 2. More specifically, the relevant pieces of the superpotential are given by

W, = [a(EL)y x* + B(EL); (9> + 7 (EL)s (9*)s + { (E°L)3 (x@)3], Hy . (33a)

5 Note that, unlike relations between the I, ;» this sum rule is not RG invariant. Therefore, the numerical results presented in what follows are subject to corrections.
These corrections can be readily computed in a given model [31].
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Fig. 1. This figure displays the correlation between the neutrinoless double f-decay matrix element (m,,) and the CP phase 6 for inverted ordering (I0) in the I';
model, considering only the invariant constraint /;, = —2. Note that this analysis is independent of 7. The red-shaded region corresponds to the 3¢ disfavored range
of values for the Dirac phase 6 from the global fit [32], while the gray-dashed line represents the current experimental upper bound for (m,,) from the KamLAND-Zen

collaboration [33]. The projected sensitivities of future experiments such as nEXO [34] can reach values for (m,,) ~ 10meV, and thus will probe the predictions of
the invariant constraint I,, = —2 in this model.

W :l(H ‘LH -LY(Z)) (33b)
2 A u u 5 1

The symmetries of the model forbid higher-order contributions to the effective neutrino mass operator in the superpotential. The flavons y and ¢
are assumed to attain the VEVs

(r)=v,, (34a)
(p)=10,(1,0,0). (34b)
With these VEVs, the charged lepton and neutrino mass matrices read
He + 4}/02 0 0
M,=v, 0 0 ye—Zyui+§Ulu(p s (35a)
0 Me—Zin—CUZUq, 0
2 Mo Ve -vVane
m,(z,7) = (=i +i7) ¢ —V3Y5(0) VeY,r)  -Y,(x)
R A TS A6 BV A¢))
Kt Koo Kp3
=: (—it +1i7T) 115 Kip Kyp kx|, (35b)

K13 K3 Ks3

where y, :=av? + U?o. Here, Y| 345 are the components of modular forms quintuplet Ys(2)(r). They are not algebraically independent. In fact,
each of them can be written as a homogeneous polynomial of 10 degrees in two basic modular forms of weight 1/5, F|(r) and F,(7),

Y, (x) -F°@) - F,°(x)
Y,(2) V6F! (0)Fy(2) (F3(1) + TF(1))
Y@ :=| v300) |=| VOF}@F2(0) 3F} (1) -4F(0) |, (36)
Y@ | | VOFX@F) @) (4F3 (@) +3F(1)
Ys)) \=VOF(0F @) (-TF3 @)+ F(0))

where [10,36]

D (_1)pq(5p2+p)/2
—zij10%0/1049(57) _ pez )
3/5 ) s e
() I - g5

n=1

Fi(r):=¢
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Table 3

Predictions from the best-fit point of the I's model. The neutrino masses
are predicted to be of inverted ordering. sin’ ,; deviates from the cen-
tral value by about 20 and sin’ 6, deviates from the central value by
about 10c. The remaining observables fall within the 3¢ ranges of the
experimental data (cf. NuFIT 5.2 without SK [32]).

masses  m; =49.2354meV my =49.9912meV my =1.05795 meV
angles  sin®0,, =0.283166  sin®0,; =0.0345963  sin’6,; = 0.795443
phases  &/7=1.39102 @, /7 =0.141799 @, /7 =0.517899

g3 Y (=1)pPgr+3p/2

09 (57) z
Fy(7) 1= e~ 37i/10 i (3/10’1/2)3/5 = Pi > (37b)
(n()) T = gny3/s
n=1
with ¢ from (27), n(z) being the Dedekind #-function defined before, and the §-constants given by
Q) = Z exp{Zni[%(m+;4)2r+(m+;4) v]} . 38)

meZ

The Hermitean combination M: M, is diagonal, and the three charged lepton masses can be obtained by adjusting the free parameters a, f,
v, and {. As before, we work in the basis in which the charged lepton Yukawa coupling is diagonal and the diagonal entries fulfill (M Z M) <
(M;f M)y < (M Z M, )33. The best-fit value of modulus 7 is also close to the critical point i,

(7) =—0.0219308 + 0.994295i . (39)

These six real input parameters lead to the following neutrino mass and mixing parameters, as shown in Table 3.° The ratio of mass squared
differences is given by

Am?
—__0,03. (40)
’Amgtm‘
While we have not found a set of input values that give rise to predictions that are consistent with all experimental data, it would still be
interesting, as in the case of the I'; Model, to see how robust relations could arise by considering the invariants. The RG invariants emerging from
the neutrino mass matrix (35b) are given by

- %8 Y, <r2)Y4(r> 7 “1a)
Y2(2)
13= 23ﬁ 7)]1(?)/3(1) (41b)
Y2 (@)
Y2 (@)

These RG invariants are meromorphic modular functions on I'(5) rather than SL(2, Z). As a consequence, they can be written as rational polynomials
of the Hauptmodul j5(7) of I'(5). Further, the g-expansions of I,, I3 and I,3 are given by

Jo-_8 1338 4420 260 o 125120 5 856444 , (422)
277179 T 1020 T 72037 168077 T 3520477 T 24706297 T

I3=-2+ 93—2q - l‘gﬁ(f +6960g> — zg‘gﬂq“ +1248060¢° + ... , (42b)

Iy =432q — 2412¢° + 7704¢> — 68764* —93240¢° + ... . (42¢)

Unlike in the I'; model discussed in Section 4.1, none of the I;; is a constant. In particular, I, has a singularity at r =ioco, I3 is singular at

1
14+0.767664i - 2+
7= LOT6T664 " and I, is singular at 7 = %

Since Y) 5345 can be expressed in terms of two building blocks, cf. Equation (36), these three invariants /;; are also the rational polynomials of
the same building blocks.
The way the algebraic relations between the invariants get specified is not unique. In what follows, we show one possible way,

0=4+181,+1813+91 )13+ 15113153, (43a)

2 2 2 2 2 72
0=8+121y, — 10812, + 1203 + 414115 1,5 + 10817 I3 — 10817 + 1081, 1% + 8117 1%,

— I Iy =TI (43b)

© Note that the precision with which we present predictions of the model is misleading in that we do not have sufficient theoretical control over the model. These
are “mathematical predictions” which allow other research groups to cross-check our results. As discussed around Equation (5), there are limitations, and generally
it is nontrivial to make the theoretical error bars smaller than the experimental ones, see [37] for a more detailed discussion.
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These relations are richer than the corresponding constraint (24) in the I'; model of Section 4.1. However, they have the same qualitative virtue as
their pendants of Section 4.1: they allow us to derive constraints on the observables of the model. Interestingly, Equation (43) is invariant under
the exchange I, < I;3. At the level of the functions of observables (18), this transformation is equivalent to 6,3 — 6,3 + /2. This transformation
is also known as y < 7 symmetry or 2 — 3 symmetry [38] (see e.g. [39] for a review), and has been considered in the context of modular flavor
symmetries in [40]. It is, therefore, worthwhile to explore the “fixed point” of this exchange symmetry, i.e. make the ansatz that

I,=1y. (44)

I, and 15 depend on F; and F,, and in the limit in which either of the F; becomes zero at least one of the invariants becomes undefined. Therefore,
we can assume F; #0, and define z := F, /F|.

@) F 110(1) = —leo(r) Let us first the special case in which F, llo(r) = —leo(‘[). In this case, Y;(7) = 0 and consequently

112:113 =0 and 123:00. (45)

In this case, the ratio z can take any of the 10 values

Z;I)=efri(2n+l)/10, I’l=0,...,9. (46)

These solutions predict sin’ 0,3 =1/2, and sin’ 0,3 = 1/3. Furthermore, the two larger mass eigenvalues are predicted to be degenerate with the sum
rule m; — my, = my =0 (and thus IO).

For instance, zg) =¢!971/10 corresponds to 7 = —2/5 +1/5. Note that = —2/5+1/5 is a fixed point under the stabilizer Z, = {1, ST2S(ST?)~'}.
At this fixed point, the neutrino mass matrix also has a generalized y < 7 symmetry,

m, =—(p3(ST2S(ST?) ™) m, p3(ST2S(ST?)™), “7)
where
10 0
p3(ST?S(STH ) =—-|0 0  e¥/5], (48)
0 e—4min/5 0

and the —1 in Equation (47) comes from the automorphy factor (¢ +d)> = —1.

(ii) Fllo(r) #* —leo(r) Now consider the more general case, Fl10 * leo, i.e. 115,113 #0. The fixed point relation (44) can be traded for a constraint
on z, which turns out to be a polynomial of degree 10. The 10 solutions are given by

200 = Me%"/w, n=0,...,9. “

We can express the RG invariants in terms of z,

_2(325 +4) (z19+1)

n= (50a)
3z5 (z5 - 7)2
2(42° =3) (219 +1
= 2029 E ). o)
3(729+1)
3625 (32° +4) (42° - 3)
3= 2 : (500)
(z10+1)
Clearly, the I, ; are rational functions of z°. Since z° is real, I ij are real. In fact, for all 10 solutions in (49),
2
112:113:—§ and I,3=36. (51)

As one would expect, 6,5 is maximal, i.e. sin? 6,3 = 1/2, and sin> 0,3 = !/5. The size of the mass eigenvalues depends only on whether n is even or
odd, i.e. |zIV|. For each z!", there exist 7\ such that ry, (rf,H)) =F, (rf,H)) /F (T,SH)) =~z All even (odd) n, 7™ can be obtained from T(()H) (TiH))
via SL(2, Z) transformations, i.e. for m € Zs

1) 1)
21 (T;m ) = Z(2m ’ (523)

an y _ _an
21 (T5+2m) =Zsiom e (52b)

While there are no exact analytic solutions, the following 7 values

an _ a .
Ty =T TM, where 7, ~éi, (53a)
=10 +m, where 2{V ~25+¢i, (53b)

with 0 < g,€’ < 1, solve (52) almost perfectly. The appearance of the relative phases between zﬁ,“) can be seen easily from the definition of the F;

in (37). Note also that all T;lri,) are related via SL(2, Z) but not I'5 transformations, and likewise for Télriz)-l—l'

9



M.-C. Chen, X. Li, X.-G. Liu et al. Physics Letters B 852 (2024) 138600

However, the solutions in (49) also predict the unrealistic relation m; = m, along with the sum rule m; = m; + m, (and thus NO) and, as a
consequence of (50), vanishing phases. The sum rule implies a continuous symmetry of the neutrino mass matrix,
T
R(©®)-m, - (R®) =m,, (54)

where R(0) := U]IMNS - R3(0) - UIIMNS with R;(6) being a rotation in the 1 — 2 plane.

Furthermore, the predicted relations for the masses and mixing angles are a consequence of an approximate discrete symmetry of the neutrino
mass matrix

T
m, = (Us(m)) m, Us(n), (55)
where the Hermitean unitary matrix Uz(n) squares to unity and is given by
1 0 0
Us(m)y=—|0 0 e2rin/5 | | (56)
0 6727rin /5 0

This transformation can be regarded as a Z, transformation of the 5-plet,

Y, 1 0 0 0 0 Y, Y,
Y, 0 0 0 0 eS|, Y,
Yy |=]0 0 0 etrn/s 0 ||y |=Ustm) | 15 | (57)
Y, 0 0 e~4min/5 0 Y, Y,
Ys 0 e 2min/> 0 0 0 Y5 Y5

We emphasize that none of the symmetries (55) are exact symmetries of the action, they are symmetries of neutrino mass matrix at the fixed point of
the syzygies (43). However, in this setup having symmetries of the neutrino mass matrix, as opposed to symmetries of the action, comes at a price:
the modular forms become very large, their absolute values can exceed 100. In the context of bottom-up model building this can be acceptable
because there is no a priori normalization of the modular forms, i.e. we can always multiply them with a small constant. It is to be noted that
symmetries of mass matrices have been discussed in the literature. However, to the best of our knowledge, these symmetries have been imposed in
a rather ad hoc fashion in the sense that there is no model realization for these previous examples. We speculate that the type of model construction
considered in this Letter may provide a consistent framework from which symmetries of mass matrices can arise dynamically. We will investigate
this aspect further in a subsequent work.

5. Discussion

As we have seen, in modular invariant models of flavor, it is possible to relate certain meromorphic modular invariant functions to physical
observables. In some cases, such as (28a) and (29), one even obtains modular invariant holomorphic observables, where a combination of observables
conspires to become an integer, independent of the renormalization scale. We have shown that useful information and phenomenological constraints
can be extracted from these relations, which, due to RG invariance, can be directly, modulo the limitations discussed around Equation (5), applied
to observables measured in experiments. It will also be interesting to apply our discussion to the quark sector, where invariants were obtained from
different considerations [41,42].

The fact that these observables conspire to be integers may be regarded as a hint towards a topological origin of these relations. In the effective
theory approach, it is not obvious how to substantiate such speculations. However, it has been known long before modular invariance was used in
bottom-up model building that the couplings in string compactifications are modular forms [43, cf. the discussion around Equation (19)]. Earlier
work [44-46] and more recent analyses [23,47-59] explore the stringy origin of these couplings. It will be interesting to see whether the above-
mentioned integers, which can be directly related to experimental observation as we have shown, play a special role in stringy completions of the
SM. It is tempting to speculate that this may provide us with a direct relation between experimental measurements and properties of the compact
dimensions.

Obviously, this is not the first time in which holomorphy (@) and modular invariance (@) is used to make firm physical predictions.

In particular, the celebrated Seiberg-Witten theory [60,61] makes use of these concepts to solve gauge theories with N =2 SUSY. However,
our discussion shows, in the framework of modular flavor symmetries, @, @, and in some instances @ govern certain combinations of

real-world observables. As we discussed, these combinations are RG invariant to all orders within A" =1 SUSY, and their poles and zeros are RG
invariant even without SUSY. Let us reiterate that these conclusions are generally valid only under the assumption that the Kéhler potential attains
its minimal form (5) at some scale. It will, therefore, be interesting to find alternatives to [25] allowing us to control the Kéhler potential. Likewise,
the discussion of modular invariant holomorphic observables for non-minimal Kahler potentials is left to future work.

6. Summary

We have pointed out that in modular invariant models of flavor, certain combinations of couplings give rise to modular invariant meromorphic
and even holomorphic physical observables. These objects are highly constrained by their symmetries and properties, RG invariant, and, at the
same time, composed solely of quantities that can be measured experimentally. They carry a lot of information, and allow us to draw immediate,
important, and robust conclusions on the model without the need to perform scans of the parameter space. In addition, symmetry relations among
the invariants exist for certain modular symmetries, as illustrated in the I's model studies in this Letter. Fundamentally they are symmetries of the
fixed points and can correspond to phenomenologically relevant ones, such as the y — 7 symmetry.

More importantly, to the best of our knowledge, these are the first examples in which physical observables are given by modular invariant
functions. This Letter is only the start of exploiting their properties to obtain better theoretical control of model predictions.

10
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Appendix A. Renormalization-group invariant expressions

Let us now study the RG evolution for the effective neutrino mass operator. The structure of the renormalization group equation (RGE) in the
SM, two-Higgs doublet models (2HDMs) and the MSSM is

167[2%K=PTK+K'P+GK', (58)

where at one-loop P =C, Y:Ye with Y, being the charged lepton Yukawa matrix, and ¢ = In(u/ ). As usual, 4 denotes the renormalization scale
and y a reference scale. The coefficients C, are C, = —3/2 in the SM [62] and two-Higgs models [63], and C, =1 in the MSSM [64,65]. In the
basis where P is diagonal it is easy to see that

At

AKU=@K” (P”+Pu+a), (59)

where no summation over i,j is implied. It has been pointed out in [26] that certain ratios of entries of k¥ do not depend on the renormalization
scale,

K:: K.
Iy==3% (#). (60)
ij

In the MSSM, this can be understood from the non-renormalization theorem. Here, only the wave-function renormalization constants are scale-
dependent, and this dependence precisely cancels in the above expressions [66]. It has been noted in [26] that this statement also applies to the
non-supersymmetric SM at the one-loop level.

The scale invariance of I;; is due to the fact that the renormalizable couplings in the SM have a larger global symmetry. Specifically, the lepton
sector has global lepton family number symmetries. Therefore, in the basis in which the charged lepton mass matrix is diagonal, corrections that
multiply the effective neutrino mass operator will be diagonal as well. As a result,

%K:§K§T+§KﬁT+§K, 61)

where P, O and @ are composed of the renormalizable couplings of the theory and diagonal,

P =diag(P,, P,, Py)., (62a)

0 =diag(0,.0,.05). (62b)
At 1-loop, P= ﬁP, Q =1,and a = #a. Equation (61) implies that

ki =k;(PO;+P 0, +7), (63)

where no summation over i or j is implied. This means that

d, Kk KKy KiKjj
/A 2 3 i
dr Kij Kij Kij
=2(F-P)(0;-0)) 1;- (64)

This has two immediate consequences:

1. At 1-loop, where éi =1 for all i, I;; are RG invariant.
2. Zeros and poles of /;; remain zeros and poles at all orders.
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In particular, in the basis in which P is diagonal one can write the scale-dependent neutrino mass operator as

R LT RN EN ()Y SNGREN ENHY e
kW= WL W nw 200260 L," (65)
Wz IL" Hwnw I 230 230

as long as kx does not have zeros. As indicated, only the z; = \/K—” are subject to RG evolution. In slightly more detail, only the absolute values of
the z; depend on the scale while their phases remain invariant. If one or more entries of x are zeros, then our discussion shows that these entries
remain zero at all scales in the perturbative effective field theory (EFT) description. Zeros of the diagonal (off-diagonal) entries of k correspond to
zeros (poles) of the /;;. This leads to RG invariant relations between the physical parameters, which will be studied elsewhere.

Appendix B. More details on Feruglio model

The purpose of this appendix is to show that the observables in Feruglio’s Model 1 (cf. Section 4.1) are modular invariant, provided one transforms
the VEV of ¢ appropriately. To see this, recall that the superpotential terms in this model are given by contractions between the flavon ¢ and the
triplet of modular forms. The invariance of superpotential terms requires A, invariance and that the modular weights of fields and modular forms
involved in an operator to add up to zero. As for the former, the fact that Y3(2) transforms as a triplet means that

Y2 1)=(ct+dP p3(n)Yy . (66)

The fields, including the flavon ¢, transform in such a way that the superpotential is invariant. The VEV of the flavon ¢ is given by (@) = (1,0, 0).
Both this VEV and the invariants I; j(r) from (23) are invariant under T but not S transformations. However, the transformations which change
I;;(z) can be regarded as a basis change, and after undoing the basis change the invariants get mapped to their original form.

In slightly more detail, under an S transformation

Y, () =Y, +2Y, +2Y;
@ S @ _ T
Y, 7 (0) = Ya(2) |F— tp(S)Y, 7 (7) = 5 2, =Y, +2Y; |, (67a)
Y3 (T) 2Y] + 2Y2 - Y3
s —a 20 2y
M, =u diag(a, f,y) — g 20 —f 2y |. (67b)
20 2 -y

Under the .S transformation alone, I, (0 from (23) are not invariant. However, once we diagonalize the charged lepton Yukawa couplings, which
amounts to undoing (67b), I;;(r) get mapped back to their original form. Of course, these findings are a simple consequence of two basic facts: (i)
modular transformations of Y (r) amount to transforming Y (r) with an A4 matrix and multiplying it by an automorphy factor, and (ii) invariants I;;
are constructed in such a way that the automorphy factors cancel. Therefore, undoing the A, transformation returns /;; to their original form.
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